

(11) EP 3 438 563 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 06.02.2019 Patentblatt 2019/06

(21) Anmeldenummer: 18000639.7

(22) Anmeldetag: 02.08.2018

(51) Int CI.:

F24H 3/04^(2006.01) F24D 13/00^(2006.01) F24H 9/18^(2006.01) D21H 13/50 (2006.01) H01B 1/24 (2006.01) H05B 3/34 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

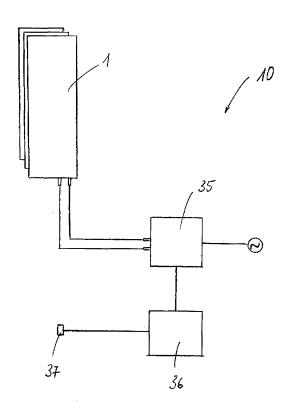
BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 02.08.2017 DE 102017117528

(71) Anmelder: AdFiTech GmbH 90762 Fürth (DE)


(72) Erfinder: Geipel, Franz 86720 Nördlingen (DE)

(74) Vertreter: Schneider, Andreas Oberer Markt 26 92318 Neumarkt i.d.OPf. (DE)

(54) FLÄCHENHEIZELEMENT, ELEKTRISCHE FLÄCHENHEIZUNG UND VERFAHREN ZUR HERSTELLUNG EINES FLÄCHENHEIZELEMENTS

(57) Um die Lebensdauer von elektrischen Flächenheizungen (10) zu erhöhen, wird eine verbesserte elektrische Kontaktierung der Kontaktelemente (3, 4, 18) mit dem Grundkörper (2) des Flächenheizelements (1) vorgeschlagen, bei der die Kontaktfläche (5) des Kontaktelements (3, 4, 18) strukturiert wird.

FIG 15

[0001] Die Erfindung betrifft ein Flächenheizelement sowie eine elektrische Flächenheizung mit einem solchen Flächenheizelement. Außerdem betrifft die Erfindung ein Verfahren zur Herstellung eines Flächenheizelements.

1

[0002] Aus dem Stand der Technik sind Flächenheizelemente bekannt, bei denen Körper aus Kohlenstofffasermaterial durch Stromzufuhr erwärmt werden. Problematisch bei den bekannten Heizelementen ist die Aufrechterhaltung einer sicheren elektrischen Kontaktierung des Kohlenstofffasermaterials im Dauerbetrieb, vor allem bei hohen Stromstärken. Darunter werden in diesem Zusammenhang Stromstärken von mehr als 5 A, bis hin zu 25 A verstanden. Typischerweise bilden sich nach einer mehr oder weniger langen Betriebsdauer sogenannte "Hotspots", da es durch ständige Längenänderungen während des Heizvorganges zu inneren Spannungen und Verschiebungen der leitfähigen Kreuzungspunkte im Flächenheizelement kommt, die stellenweise einen allmählichen Abbau der leitfähigen Kohlefasermodifikation bewirken und somit die Wirksamkeit und Lebensdauer des Heizelements begrenzen.

[0003] Eine Aufgabe der vorliegenden Erfindung ist es, die Lebensdauer von elektrischen Flächenheizungen zu erhöhen.

[0004] Diese Aufgabe wird durch ein Flächenheizelement nach Anspruch 1 bzw. eine elektrische Flächenheizung nach Anspruch 8 bzw. durch ein Verfahren zur Herstellung eines Flächenheizelements nach Anspruch 11

[0005] Vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen angegeben.

[0006] Die im Folgenden im Zusammenhang mit dem Flächenheizelement erläuterten Vorteile und Ausgestaltungen gelten sinngemäß auch für die erfindungsgemäße Flächenheizung und umgekehrt sowie für das erfindungsgemäße Verfahren zur Herstellung eines Flächenheizelements und umgekehrt.

[0007] Eine erste grundlegende Idee der Erfindung besteht in der Verbesserung der elektrischen Kontaktierung der Kontaktelemente mit dem Grundkörper des Flächenheizelements, indem die Kontaktfläche des Kontaktelements derart strukturiert wird, daß Teile der Kontaktfläche, vorzugsweise eine Vielzahl von Teilbereichen der Kontaktfläche, in den Grundkörper eindringen, wodurch die elektrische Kontaktfläche vergrößert und der Übergangswiderstand verringert wird. Die Bildung von "Hotspots" wird dadurch vermieden und die Lebensdauer von elektrischen Flächenheizungen, welche derartige Heizelemente nutzen, verlängert.

[0008] Eine zweite grundlegende Idee der Erfindung besteht in der Abdichtung und Fixierung der hergestellten elektrischen Kontaktierung der Kontaktelemente mit dem Grundkörper des Flächenheizelements, indem eine Schutzfolie oder ein vergleichbares Schutzelement verwendet wird, um die Kontaktstelle abzudichten und mechanisch zu fixieren. Hierdurch wird zugleich die elektrische Verbindung zwischen diesen beiden Elementen fixiert und gesichert, so daß sich auch bei einer Ausdehnung und Schrumpfung eines der beteiligten Elemente oder aller Elemente oder aber bei einer notwendigen Formänderung des Flächenheizelements, beispielsweise aufgrund einer bestimmten Lagerungs- oder Transportform oder aufgrund einer bestimmten Applikation, z.B. als Heizelement einer elektrischen Flächenheizung, die elektrische Kontaktierung nicht löst sondern statt dessen unverändert intakt bleibt.

[0009] Beide Ideen können auch unabhängig voneinander verwirklicht werden und lösen unabhängig voneinander die der Erfindung zugrundliegende Aufgabe.

- [0010] Vorteilhafte Ausführungen der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnungen anhand verschiedener Ausführungsbeispiele näher erläutert. Hierbei zeigen:
- 20 eine Draufsicht auf die Vorderseite eines Hei-Fig. 1 zelements mit einer Längsanordnung der Kontaktelemente,
 - eine Draufsicht auf die Vorderseite eines Hei-Fig. 2 zelements mit einer Queranordnung der Kontaktelemente.
 - Fig. 3 einen Schnitt durch das in Fig. 1 dargestellte Heizelement entlang der Linie III-III,
 - Fig. 4 einen Schnitt entsprechend Fig. 3 durch ein Heizelement mit vollflächig angebrachter Schutzfolie,
 - eine Draufsicht auf die Vorderseite eines Hei-Fig. 5 zelements mit einer Queranordnung der Kontaktelemente und einem Stromfluß quer zu der Faservorzugsrichtung,
- 40 eine Draufsicht auf die Vorderseite eines Hei-Fig. 6 zelements mit einer Queranordnung der Kontaktelemente und einem Stromfluß in Faservorzugsrichtung,
- eine Draufsicht auf die Vorderseite eines Hei-Fig. 7 zelements mit einer Längsanordnung der Kontaktelemente und einem Stromfluß quer zu der Faservorzugsrichtung,
- eine Draufsicht auf die Vorderseite eines Hei-Fig. 8 zelements mit einer Längsanordnung der Kontaktelemente und einem Stromfluß in Faservorzugsrichtung,
- ⁵⁵ Fig. 9 eine Draufsicht auf die Vorderseite eines Heizelements mit drei quer angeordneten Kontaktelementen in einer ersten Anschlußvariante,

- Fig. 10 eine Draufsicht auf die Rückseite des Heizelements aus Fig. 9,
- Fig. 11 eine Draufsicht auf die Vorderseite eines Heizelements mit drei quer angeordneten Kontaktelementen in einer zweiten Anschlußvariante,
- Fig. 12 eine Draufsicht auf die Rückseite des Heizelements aus Fig. 11,
- Fig. 13 einen Schnitt durch eine Kontaktfläche,
- Fig. 14 eine Draufsicht auf eine strukturierte Kontaktfläche,
- Fig. 15 die Komponenten einer Flächenheizung,
- Fig. 16 eine Draufsicht auf ein einzelnes Heizelement (stark vereinfacht),
- Fig. 17 eine Draufsicht auf einen Heizelementeverbund (stark vereinfacht).

[0011] Sämtliche Figuren zeigen die Erfindung nicht maßstabsgerecht, dabei lediglich schematisch und nur mit ihren wesentlichen Bestandteilen. Gleiche Bezugszeichen entsprechen dabei Elementen gleicher oder vergleichbarer Funktion.

[0012] Ein erfindungsgemäßes Flächenheizelement 1 umfaßt einen als Heizwiderstand dienenden, d.h. erwärmbaren Grundkörper 2 in Form eines elektrisch leitfähigen, flexiblen Flächengebildes, das Kohlenstofffasern (nicht im einzelnen abgebildet) beinhaltet.

[0013] Das erfindungsgemäße Heizelement 1 umfaßt außerdem wenigstens zwei elektrische Kontaktelemente 3, 4, die voneinander beabstandet sind und mit dem Grundkörper 2 flächig verbunden sind. Diese Flächenkontakte dienen zum Einspeisen von elektrischem Strom in den Grundkörper 2. Die Kontaktelemente 3, 4 sind mit ihren Kontaktflächen 5 flächig mit der Oberfläche 6 des Grundkörpers 2 verbunden bzw. an der Oberfläche 6 des Grundkörpers 2 angebracht. Insbesondere liegen die Kontaktelemente 3, 4 auf der Oberfläche 6 des Grundkörpers 2 an bzw. auf.

[0014] Die Kontaktflächen 5 der Kontaktelemente 3, 4 des erfindungsgemäßen Heizelements 1 sind derart ausgebildet, daß sie in den Grundkörper 2 eindringen. Dieses Eindringen oder Eingreifen erfolgt dabei vorzugsweise nicht großflächig, sondern punktuell, wobei hier punktuell nicht im Sinne von punktförmig, sondern im Sinne von abschnitts- oder bereichsweise zu verstehen ist. Gleichwohl kann jede einzelne Eingriffsstelle des Grundkörpers 2 als ein punktförmiger Eingriff ausgeführt sein, hervorgerufen durch ein spitzes Eingriffswerkzeug. Das Eingreifen erfolgt vorzugsweise an einer Vielzahl von Stellen der Kontaktflächen 5 der Kontaktelemente 3, 4. Vorzugsweise sind diese Stellen gleichmäßig über die

gesamte Kontaktfläche 5 verteilt.

[0015] Der Grundkörper 2 des Heizelements 1 ist durch ein Flächengebilde aus Fasern gebildet. Bei dem Flächengebilde handelt es sich entweder um ein Papiervlies (nachfolgend auch kurz als Papier bezeichnet), genauer gesagt um ein elektrisch leitendes Papiergefüge mit zellulosehaltigen Faserstoffen oder anderen zur Papierherstellung üblichen Fasern einerseits und mit Kohlenstofffasern andererseits. Oder es handelt sich bei dem Flächengebilde um ein anderes Faservlies, beispielsweise ein Gebilde aus Kunststofffasern, wie z.B. Polyesterfasern, Mischfasern oder dergleichen, die zusammen mit Kohlenstofffasern in irgendeiner Weise zu einem Vlies, d.h. einer Faserschicht, zusammengefügt ist.

[0016] Das Material des Grundkörpers 2 enthält dabei vorzugsweise 10 bis 50% Gewichtsanteile Kohlenstofffasern. Beispielhaft wird elektrisch leitfähiges Papier verwendet, wie es in DE 10 2013 101 899 A1 beschrieben ist. Derartige Papiere oder Faservliese leiten den elektrischen Strom und lassen sich in der Weise kontaktieren, daß elektrische Leistung mit Hilfe von Niedervolttransformatoren wirksam und effizient in Heizungswärme umgewandelt werden kann. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung enthält der Grundkörper 2 ca. 35 Gew. - % Kohlenstofffasern und die bevorzugte Grammatur des Papiers beträgt 80 bis 150 g/m². Vorzugsweise sind die Materialeigenschaften des für den Grundkörper 2 verwendeten Materials genau definierbar, insbesondere hinsichtlich seiner elektrischen Leitfähigkeit. Die als elektrisch leitfähige Komponente eingesetzten Kohlenstofffasern weisen beispielsweise einen spezifischen elektrischen Widerstand von 1,6 x $10^{-5} \Omega m$ auf.

[0017] Nachfolgend wird beispielhaft angenommen, daß der Grundkörper 2 aus einem Papiervlies besteht. [0018] Vorzugsweise sind die Kohlenstofffasern in dem Grundkörper 2 gleichmäßig verteilt (dispergiert). Aus der Art und Weise der Vliesherstellung ergibt sich, daß die Kohlenstofffasern in dem Papiergefüge anisotrop ausgerichtet sind, meistens bevorzugt entlang der Papierbahnlänge, so daß in solchen Fällen von einer definierten bzw. einheitlichen Faserrichtung 7 ("Vorzugsrichtung") ausgegangen werden kann. Hieraus ergeben sich zwei unterschiedliche Möglichkeiten der Kontaktierung, nämlich einerseits mit einem Stromfluß 8 quer zu der bevorzugten Faserausrichtung 7 und andererseits mit einem Stromfluß 8 längs zu der bevorzugten Faserausrichtung 7. Für den "quer"-Fall ergibt sich, verglichen mit dem "längs"-Fall, ein höherer Widerstand. Dies wird in einer bevorzugten Ausführungsform der Erfindung gezielt genutzt.

[0019] Der Grundkörper 2 ist vorzugsweise derart ausgeführt, daß er flexibel bzw. biegsam ist, insbesondere derart, daß er bei der Applikation des Heizelements 1 in der späteren Flächenheizung 10 verformbar, beispielsweise an die Form eines zu beheizenden Bauteils anpaßbar ist.

[0020] Die Geometrie des Grundkörpers 2, insbeson-

40

45

dere dessen Länge und Breite, ist vorzugsweise frei wählbar und kann an den jeweiligen Anwendungsfall angepaßt werden. Die Grundform des Grundkörpers 2 ist typischerweise rechteckig. In jedem Fall handelt es sich um ein Flächengebilde, d.h. einen flächigen, insbesondere flachen Körper, beispielsweise in Form eines Bogens, einer Platte, einer Tafel, einer Bahn oder einer Rolle

[0021] Eine Seite des flachen, d.h. in der Regel zumindest im unverarbeiteten Ausgangszustand quaderförmigen Grundkörpers 2 wird als Vorderseite 11, die gegenüberliegende Seite als Rückseite 12 definiert, wobei angenommen wird, daß die Vorderseite 11 primär zur Abstrahlung der Wärmestrahlung dienen soll, die freie, nicht mit Kontaktelementen 3, 4 belegte Fläche der Vorderseite 11 also als Heizfläche 13 dient. Aufgrund der Arbeitsweise des Heizelements 1 als Widerstandsheizung erwärmt sich der Grundkörper 2 aber durchgehend, so daß auch die gegenüberliegende Rückseite 12 erwärmt wird, selbst wenn die Kontaktelemente 3, 4 nur auf der Vorderseite 11 mit dem Grundkörper 2 elektrisch verbunden sind. Auch die Rückseite 12 kann daher als Heizfläche 13 dienen bzw. eine Heizfläche 13 ausbilden.

[0022] Der Grundkörper 2 ist in der Form beliebig veränderbar, beispielsweise zuschneidbar, und/oder mit Öffnungen (Löchern, Bohrungen, Durchbrüchen, ...) versehbar, z.B. für die Anbringung von Schrauben oder anderen Befestigungselementen oder für die Anpassung an die Form der zu beheizenden Bauteils etc. pp. Solange die Kontaktelemente 3, 4 intakt bleiben, ist das Heizelement 1 dennoch funktionstüchtig. Der Grundkörper 2 kann mit anderen Worten nicht nur geknickt, gefaltet oder gerollt werden. Die Heizfläche 13, also typischerweise die Fläche zwischen den Kontaktelementen 3, 4 auf der Vorderseite 11 des Grundkörpers 2 des Heizelements 1, kann auch asymmetrisch geformt sein, ohne daß dies der Funktionstüchtigkeit des Heizelements 1 entgegensteht.

[0023] Der Grundkörper 2 muß nicht zwingend als homogener Körper verstanden werden, der lediglich aus einem einzigen Material (Papier, Faservlies etc.) besteht. Der Grundkörper 2 kann auch seinerseits eine Materialkombination darstellen. Insbesondere kann der Grundkörper 2 aus mehreren Schichten unterschiedlichen Materials aufgebaut sein, sofern der Kern bzw. der wesentliche (überwiegende) Bestandteil des Grundkörpers 2 aus kohlenstofffaserhaltigem Material (Papiervlies, Faservlies etc.) besteht und zur Bildung eines Heizwiderstands geeignet ist, also Wärme erzeugt werden kann, indem das Material, das einen vergleichsweise niedrigen elektrischem Widerstand aufweist, von Strom durchflossen wird und sich dadurch erhitzt.

[0024] Besonders vorteilhaft ist es, wenn das für den Grundkörper 2 verwendete Material diffusionsoffen ist, also Feuchtigkeit durch den 2 Grundkörper hindurchtreten kann, wie dies z.B. bei Verwendung des Heizelements 1 in einer Flächenheizung 10 von Nutzen sein kann, die zur Entfeuchtung von Mauerwerk eingesetzt

wird.

[0025] Durch Modifikationen des Grundmaterials lassen sich Änderungen des elektrischen Widerstands des Heizelements 1 hervorrufen. So kann beispielsweise der Widerstand des Grundkörpers 2 durch eine gezielte Tränkung der zum Einsatz kommenden Fasern mit Kunststoffen oder viskosen Haftklebern erhöht werden. Auch kann zwischen den Kontaktelementen 3, 4 und dem Grundkörper 2 als Zwischenschicht eine niedrigschmelzende Folie (nicht dargestellt) vorgesehen sein, welche die Kontaktierung verbessert.

[0026] In einer bevorzugten Ausführungsform der Erfindung sind die Kontaktelemente 3, 4 durch Folien oder Bänder gebildet. Als Material für die Kontaktelemente eignet sich vorzugsweise Kupfer. Die Verwendung anderer geeigneter Materialien ist möglich.

[0027] Sind die Kontaktelemente 3,4 nicht als massive Leiter oder Bleche, sondern als dünnes Material ausgeführt, insbesondere als Folien oder Bänder, z.B. nach Art von Bandelektroden, dann sind sie aufgrund der geringen Materialstärke leicht verformbar und lassen sich daher gut an die Faserstruktur des Grundkörpers 2 anschmiegen (andrücken).

[0028] Eine flexible bzw. biegsame Ausführung der Kontaktelemente 3, 4 gewährleistet darüber hinaus, daß sich die Kontaktelemente 3, 4 einer veränderten Form des Grundkörpers 2 anpassen können, wenn der Grundkörper 2 bei der Applikation des Heizelements 1 in der späteren Flächenheizung 10 verformt, beispielsweise gebogen, gefaltet oder geknickt wird.

[0029] Im Vergleich zu dem Grundkörper 2 weisen die Kontaktelemente 3, 4 geringere Abmessungen auf. In der Regel bedecken die Kontaktelemente 3, 4 im kontaktierten Zustand nur einen Bruchteil der Oberfläche 6 des Grundkörpers 2.

[0030] Die Verbindung der Kontaktelemente 3, 4 mit dem Grundkörper 2 erfolgt vorzugsweise mittels mehrerer Verbindungsarten gleichzeitig, jedoch im einfachsten Fall mittels einer Klebeverbindung. Mit anderen Worten werden die Kontaktelemente 3, 4 auf den Grundkörper 2 aufgeklebt. Die Verbindung mittels Klebstoff ist sehr einfach herstellbar, auch mittels automatisierter Verfahren. Darüber hinaus sind Klebeverbindungen bei geeigneter Klebstoffauswahl auch bei Beaufschlagungen mit hohen Strömen haltbar.

[0031] Besonders vorteilhaft ist die Verwendung eines selbstklebenden Kupferbandes, wie es beispielsweise zur Ableitung statischer Aufladung und Abschirmung elektromagnetischer Felder verwendet wird, als Kontaktelement 3, 4. Das Klebeband umfaßt in einer bevorzugten Ausführungsform der Erfindung einen geeigneten Klebstoff, beispielsweise Acrylatkleber, und eine Kupferfolie als Träger auf einem Papierliner. Das verwendete Kupferband weist vorzugsweise eine Breite von 10 bis 25 mm auf.

[0032] Die Verbindung der Kontaktelemente 3, 4 mit dem Grundkörper 2 kann jedoch in alternativen Ausführungen auch ohne Kleben erfolgen, beispielsweise in-

40

45

dem die Kontaktelemente 3, 4 mittels mechanischer Hilfsmittel an dem Grundkörper 2 fixiert werden. Gegebenenfalls können solche Hilfsmittel nach der Strukturierung der Kontaktelemente 3, 4 wieder entfernt werden, wenn die Kontaktelemente 3, 4 aufgrund ihres mechanischen Eingriffs in den Grundkörper 2 mit diesem verbunden sind.

[0033] Im Zusammenhang mit der Herstellung des Heizelements 1 wird nicht nur über die Größe des Grundkörpers 2, sondern nach Art einer Konfektionierung auch über die Anordnung der Kontaktelemente 3, 4 auf dem Grundkörper 2 entschieden.

[0034] In vorteilhaften Ausführungsformen der Erfindung sind die Kontaktelemente 3, 4 an sich gegenüberliegenden Rändern bzw. Kanten des Grundkörpers 2 angeordnet. Grundsätzlich können die Kontaktelemente 3, 4 dabei längs bzw. quer auf der in der Regel rechteckigen Fläche des Grundkörpers 2 angeordnet sein. Dies hat unterschiedliche Auswirkungen auf den Abstand und die Länge der Kontaktelemente 3, 4 sowie für den späteren Stromdurchtritt zwischen den Kontaktelementen 3, 4 einerseits und den unzähligen Kohlenstofffaser-"Verbrauchern" im Inneren des Grundkörpers 2 andererseits.

[0035] In diesem Zusammenhang muß eine erste grundsätzliche Entscheidung gefällt werden hinsichtlich des Verhältnisses von Länge 14 der Kontaktelemente 3, 4 zu Abstand 15 zwischen den Kontaktelementen 3, 4 auf der Vorderseite 11 des Grundkörpers 2. Bei Grundkörpern 2 mit nicht gleichlangen Seiten kann dabei zwischen einer ersten Variante mit langen Kontaktelementen (effektiven Leiterlängen 14) und einem geringen Abstand 15 zwischen den Kontaktelementen 3, 4 (d.h. die Kontaktelemente 3, 4 sind an den längeren Längsseiten 16 des Grundkörpers 2 angeordnet), wie beispielhaft in Fig. 1 abgebildet, und einer zweiten Variante mit kurzen Kontaktelementen 3, 4 (effektiven Leiterlängen 14) und einem großen Abstand 15 zwischen den Kontaktelementen 3, 4 (d.h. die Kontaktelemente 3, 4 sind an den kürzeren Schmalseiten 17 des Grundkörpers 2 angeordnet) entschieden werden, wie beispielhaft in Fig. 2 abgebildet. [0036] In diesem Zusammenhang muß auch eine zweite grundsätzliche Entscheidung gefällt werden, nämlich hinsichtlich der Anordnung der Kontaktelemente 3, 4 in Bezug auf die Vorzugsrichtung 7 der Kohlenstofffasern im Grundkörpermaterial. Genauer gesagt muß entschieden werden, ob der Stromfluß 8 in Faserrichtung 7 oder quer zu der Faserrichtung 7 erfolgt, Dies hat Einfluß auf den erreichbaren elektrischen Widerstand des Heizelements 1.

[0037] Der für die Heizleistung des Heizelements 1 wichtige elektrische Widerstand R ergibt sich gemäß R = k x A/L, wobei A den Abstand 15 zwischen den Kontaktelementen 3, 4 und L die effektive Länge 14 der Kontaktelemente 3, 4 auf dem Grundkörper 2 sowie k eine Materialkonstante darstellt, die abhängig von dem Anteil der Kohlenstofffasern im Grundkörpermaterial ist.

[0038] Fließt der Strom durch den Grundkörper 2 bei Kontaktelementen 3, 4 mit kurzer Länge 14, die mit gro-

ßem Abstand 15 zueinander angeordnet sind, quer zu der Faserrichtung 7 der Kohlenstofffasern im Grundmaterial, wie in Fig. 5 dargestellt, ergibt sich ein erster elektrischer Widerstand R1.

[0039] Fließt der Strom durch den Grundkörper 2 bei Kontaktelementen 3, 4 mit kurzer Länge 14, die mit großem Abstand 15 zueinander angeordnet sind, in der Faserrichtung 7 der Kohlenstofffasern im Grundmaterial, wie in Fig. 6 dargestellt, ergibt sich ein zweiter elektrischer Widerstand R2 < R1.

[0040] Fließt der Strom durch den Grundkörper 2 bei Kontaktelementen 3, 4 mit großer Länge 14, die mit geringem Abstand 15 zueinander angeordnet sind, quer zu der Faserrichtung 7 der Kohlenstofffasern im Grundmaterial, wie in Fig. 7 dargestellt, ergibt sich ein dritter elektrischer Widerstand R3 << R2.

[0041] Fließt der Strom durch den Grundkörper 2 bei Kontaktelementen 3, 4 mit großer Länge 14, die mit geringem Abstand 15 zueinander angeordnet sind, in der Faserrichtung 7 der Kohlenstofffasern im Grundmaterial, wie in Fig. 8 dargestellt, ergibt sich ein vierter elektrischer Widerstand R4 < R3.

[0042] In Abhängigkeit von der elektrischen Leitfähigkeit bzw. dem Widerstand des Grundkörpers 2 läßt sich unter Berücksichtigung der Vorzugsrichtung 7 der Kohlenstofffasern sowie der Ausführung und Anordnung der Kontaktelemente 3, 4 eine definierte thermische Heizleistung des Heizelements 1 erreichen.

[0043] Ziel der obigen Überlegungen und Auswahlschritte zur Zurichtung bzw. Konfektionierung des Heizelements 1 ist es stets, die gewünschte Heizleistung (z.B. 300 W) bzw. die gewünschten Oberflächentemperaturen (z.B. 80°C) an der Heizfläche 13 des Heizelements 1 mit einem Niedervoltsystem, d.h. bei Nennspannungen von 12V, bevorzugt 24 bis 36V, zu erreichen. Trotzdem dabei vergleichsweise große Stromstärken (z.B. 8 bis 12 A) entstehen, weist das erfindungsgemäße Heizelement 1 eine vergleichsweise lange Lebensdauer auf.

[0044] Mit einer geeigneten Kontaktierung, wie hierin beschrieben, ist es beispielsweise möglich, mit Trafo-Leistungen von vorzugsweise 120, 200 bis 300 Watt, bei einzelnen Anwendungen auch bis zu 500 oder 800 W, Wärmestromdichten zu erzeugen, mit denen, je nach Flächengröße des Grundkörpers 2, Oberflächentemperaturen von vorzugsweise 30 bis 180 °C erreichbar sind. [0045] Bei besonders schmalen Grundkörpern 2 können in bevorzugten Ausführungsformen der Erfindung eine spezielle Anordnung von Kontaktelementen 3, 4 sowie eine spezielle Anschlußgeometrie zum Einsatz kommen. Dies ist insbesondere dann interessant, wenn der Grundkörper 2 ein stark ungleiches Seitenverhältnis aufweist, beispielsweise wenn die Länge der Längsseite (Breitseite) 16 zu der Länge der Querseite (Schmalseite) 17 ein Verhältnis von 10:1 aufweist. Unter einem stark ungleichen Seitenverhältnis wird dabei ein Wert für das Verhältnis zwischen die Länge der Längsseite zu der Länge der Querseite (oder umgekehrt) von mindestens 5:1 verstanden, vorzugsweise ein Wert von mindestens

35

45

10:1 oder größer. In diesen oder ähnlichen Fällen ist es vorgesehen, daß drei oder mehr Kontaktelemente 3, 4, 18 derart auf einer Seite 11 des Grundkörpers 2 angebracht sind, daß der Grundkörper 2 in seiner Längsrichtung 19 in mehrere Heizwiderstandssegmente 21, 22 unterteilt ist. Die Anordnung der Kontaktelemente 3, 4, 18 erfolgt dabei vorzugsweise parallel zueinander sowie parallel zu den Kanten bzw. Rändern der Querseiten (Schmalseiten) 17 des Grundkörpers 2 verlaufend.

[0046] Mit anderen Worten werden die Kontaktelemente 3, 4, 18 nicht nur an den Rändern bzw. Kanten des Grundkörpers 2 vorgesehen, sondern auch in der Fläche der Vorder- und/oder Rückseite 11, 12 des Grundkörpers 2, beispielsweise durch mittige Anordnung eines dritten Kontaktelements 18 auf der Vorderseite 11. [0047] Durch dieses Anbringen von zusätzlichen Kontaktelementen 18 ergibt sich eine vorzugsweise gleichmäßige Segmentierung bzw. Unterteilung der Gesamtfläche des Grundkörpers 2 in mehrere, vorzugsweise gleich große, kleinere Bereiche 21, 22, was für die Widerstandsheizung des Heizelements 1 zu einer Art Parallelschaltung führt, wodurch sich mehrere Teilwiderstände ergeben, aus denen sich der Gesamtwiderstand des Heizelements 1 ergibt.

[0048] Erfolgt dabei die rückseitige Zuführung der Kontaktelemente 3, 4, 18, d.h. die Anordnung der Leiterbahnen auf der Rückseite 12 des Grundkörper 2, mittels Isolierelementen 23, können beide Stromquellen-Anschlüsse 24, 25 der Kontaktelemente 3, 4, 18 an ein und derselben Seite des Grundkörpers 2 ausgeführt sein, bspw. an einer der Querseiten 17, siehe Figuren 9 und 10 bzw. Figuren 11 und 12. Es sind jedoch auch andere Plazierungen der Anschlüsse 24, 25 bzw. der Kontaktelemente 3, 4, 18 möglich.

[0049] In den oben beschriebenen Fällen werden flächige elektrische Isolierelemente 23 zur Bildung einer elektrisch isolierenden Trennschicht zwischen den Kontaktelementen 3, 4, 18 und dem Grundkörper 2 verwendet, nämlich an denjenigen Stellen, an denen die Kontaktelemente 3, 4, 18 aus Gründen der Kompaktheit des Heizelements 1 ebenfalls flächig auf dem Grundkörper 2 angebracht sind. Dies ist beispielsweise zur Rückführung von Anschlußleitungen 26 an definierte Anschlußstellen 24, 25 des Heizelements 1 auf der Rückseite 12 des Grundkörpers 2 erforderlich, ohne daß dabei der Grundkörper 2 elektrisch kontaktiert wird. Bei den auf diese Weise zurückgeführten Anschlußleitungen 26 handelt es sich vorzugsweise um diejenigen, um die Kanten bzw. Ränder des Grundelements 2 herumgeführten Kontaktelemente 3, 4, 18, die auch auf der Vorderseite 11 zur Kontaktierung des Grundkörpers 2 dienen.

[0050] Das für diesen Zweck als Isolierelement 23 vorzugsweise verwendete Isolierklebeband ist vorzugsweise stark selbstklebend und weist eine geschmeidige Trägerfolie auf, die vorzugsweise bis ca. 160 °C temperaturstabil ist.

[0051] Wie in Fig. 10 illustriert, sind die auf der Vorderseite 11 auf dem Grundkörper 2 plazierten Kontaktele-

mente 3, 4, 18 vorzugsweise um die Ränder des Grundkörpers 2 auf die Rückseite 12 herumgeführt. Dort werden die Kontaktelemente 3, 4, 18 entweder als Anschlußleitungen 26 über die elektrischen Isolierelemente 23 zu den Anschlußstellen 24, 25 zurückgeführt oder die freien Enden 27 der Kontaktelemente 3, 4, 18 liegen dort (auf der Rückseite 12) ebenfalls für eine kurze Strecke direkt auf dem Grundkörper 2 auf. Dieses Herumführen der Kontaktelemente 3, 4, 18 bis auf die Rückseite 12 dient zum einen als mechanische Sicherung, nämlich um ein Ablösen der Kontaktelemente 3, 4, 18 im Randbereich zu verhindern. Zum anderen können insbesondere die auf der Rückseite 12 liegenden Freienden 27 zum Anschließen weiterer Heizelemente 1 dienen, wie es in Abhängigkeit von dem jeweiligen Anwendungsfall bei der Zusammenstellung der Flächenheizung 10 aus einer Mehrzahl von Heizelementen 1 unter Umständen der Fall sein kann, insbesondere wenn mehrere Heizelemente 1 nebeneinander plaziert und angeschlossen werden müssen, um eine zusammengesetzte Heizfläche zu bilden, die größer ist als die Heizfläche 13 eines einzelnen Heizelements 1.

[0052] Eine für die Optimierung der Funktion sowie die Erhöhung der Lebensdauer des Heizelements 1 wichtige Maßnahme erfolgt während der Herstellung des Heizelements 1. Gemäß einer bevorzugten Ausführungsform der Erfindung weisen die Kontaktflächen 5 der Kontaktelemente 3, 4, 18 eine Oberflächenstruktur mit einer Vielzahl von Verformungen 28, 29 aufweisen, die zur Herstellung einer (vorzugsweise sowohl mechanischen als auch elektrischen) Verbindung der Kontaktelemente 3, 4, 18 mit dem Grundkörper 2 beitragen, indem sie in den Grundkörper 2 eindringen. Die Materialeigenschaften des Grundkörpers 2, insbesondere dessen Aufbau als Papier bzw. Vlies und/oder das Vorhandensein der Kohlenstofffasern, ermöglichen einen solchen Eingriff. Je nach Länge der Fasern im Fasergefüge ergeben sich Zwischenräume, die, in Abhängigkeit von der Form der Fasern, auf unterschiedliche Weise ausgefüllt werden können. Die Kohlenstofffasern, die vorzugsweise in Gestalt spitzer Nadeln vorkommen, bilden dabei lediglich Kreuzungen mit freien Innenräumen. Die Zellstofffasern bilden statt dessen ein etwas dichteres Geflecht. Der Faserverbund insgesamt ist unverdichtet und erlaubt daher die beschriebenen Eingriffe.

[0053] Dieses mechanische Eindringen der Kontaktflächen in den Grundkörper 2 dient (zumindest auch, d.h. zusätzlich zu einer elektrisch leitenden Klebeverbindung zwischen den Kontaktelementen 3, 4, 18 und dem Grundkörper 2) zur Herstellung einer besonders sicheren und dauerhaften elektrischen Kontaktierung.

[0054] Die Kontaktfläche 5 des Kontaktelements 3, 4, 18 weist hierfür in Richtung des Grundkörpers 2 zeigende Unebenheiten auf (insbesondere Erhöhungen und/oder Vertiefungen der Oberfläche), um bei einem Aneinanderdrücken der beiden Bauteile eine möglichst gute mechanische Verbindung zwischen Kontaktelement 3, 4, 18 und Grundkörper 2 zu ermöglichen. Bei dem Eindrücken

40

40

45

des Kontaktelements 3, 4, 18 in den Grundkörper 2 findet eine Verformung des Grundkörpers 2 statt.

[0055] In einer bevorzugten Ausführungsform der Erfindung ist die Kontaktfläche 5 vielfach perforiert oder wenigstens derart mit Vielzahl von Eindrücken (Eindrückmarken) versehen derart, daß sich das Leitermaterial (z.B. Kupfer) des Kontaktelements 3, 4, 18 und damit das Kontaktelement 3, 4, 18 selbst plastisch verformt. Die Verformungen 28, 29 sind dabei vorzugsweise über die gesamte Kontaktfläche 5 des Kontaktelements 3, 4, 18 mehr oder weniger gleichmäßig verteilt, jedenfalls so, daß keine bewußt hervorgerufene Häufung von Verformungen an bestimmten Stellen der Kontaktfläche 5 entstehen. Die Anzahl der Verformungen 28, 29 beträgt dabei vorzugsweise 50 bis 100 je Quadratzentimeter.

[0056] Die Verformung erfolgt entweder unter Ausbildung z.B. trichterförmiger Öffnungen 28 oder aber unter Ausbildung von (geschlossenen) Auswölbungen (Vertiefungen) 29, siehe Fig. 13. Beide Arten von Verformungen 28, 29 sind dabei in Richtung des Grundkörpers 2 gerichtet, und zwar vorzugsweise derart, daß die geschlossenen Auswölbungen 29 bzw. die offenen Ränder 30 der Öffnungen 28, insbesondere nach Art von Schneidkanten, in das Material des Grundkörpers 2 eindringen und dabei das Kohlenstofffasermaterial örtlich (punktuell) verdrängen und/oder verformen. Dies erfolgt derart, daß sich die Kontaktfläche 5 des Kontaktelements 3, 4, 18 an die Oberfläche 6 des Grundkörpers 2 besonders eng anschmiegt, dies vorzugsweise unter Herstellung einer Kontaktfläche 5, die gegenüber einer vollständig flachen/ebenen Flächenanlage vergrößert ist. Die Vergrößerung der Kontaktfläche 5 ergibt sich durch eine während der Verformung auftretende Dehnung des Kontaktelementmaterials und/oder dadurch, daß sich Grundmaterial beim Eindringen der Schneidränder 30 der Öffnungen 28 in den Grundkörper 2 auch an die der eigentlichen Kontaktfläche 5 gegenüberliegende Seite 34 der Kontaktelemente 3, 4, 18 anlegt, siehe Fig. 13.

[0057] In einer bevorzugten Ausführungsform der Erfindung erfolgt das Bearbeiten des Kontaktelements 3, 4, 18 z.B. mittels einer Nadelrolle oder eines anderen für eine solche Materialbearbeitung geeigneten Bearbeitungswerkzeugs (nicht abgebildet). Das Strukturieren der der Kontaktflächen 5 der Kontaktelemente 3, 4, 18 findet dabei vorzugsweise nicht mittels einer flächig aufliegenden Walze oder dergleichen statt, wodurch das Vliesmaterial des Grundkörpers 2 unzulässig verdichtet werden würde. Statt dessen erfolgt vorzugsweise ein Nadeln, wobei über die dünnen Spitzen der einzelnen Werkzeugnadeln ein vergleichsweise hoher Druck auf die entsprechenden punktuellen Bereiche der zu strukturierende Kontaktfläche 5 aufgebracht wird. Aufgrund dieses Druckes erfolgt die gewünschte Verformung der Kontaktfläche 5. Die Ausrichtung der Verformungen 28, 29 entspricht dabei vorzugsweise im wesentlichen der Bearbeitungsrichtung, mit der das Kontaktelement 3, 4, 18 zur Herstellung der Verformungen 28, 29 bearbeitet wird, bzw. der Richtung der Beaufschlagung des Kontaktelements 3, 4, 18 mit einem geeigneten Bearbeitungswerkzeug. Typischerweise erstrecken sich die Verformungen 28, 29 im wesentlichen senkrecht zu der Oberfläche 6 des Grundkörpers 2.

[0058] Gemäß diesen Ausführungsformen der Erfindung erfolgt die Kontaktherstellung mit anderen Worten, zusätzlich zu der Klebeverbindung, durch ein "kaltes" Eindringen (z.B. ein Einpressen, Einschneiden oder dergleichen) der zu diesem Zweck mit einer geeigneten Oberflächenstruktur, wie insbesondere geschlossene Auswölbungen 29 und/oder offene Schneidränder 30, versehenen Kontaktfläche 5 des Kontaktelements 3, 4, 18 in die Oberfläche 6 des zu kontaktierenden Grundkörpers 2, nämlich vorzugsweise nach Art einer "Einpreßkontaktierung", d.h. es findet eine Verpressung der beiden Fügepartner statt.

[0059] Die strukturierte Oberfläche 5 des Kontaktelements 3, 4, 18 greift im Inneren des Grundkörpers 2 unmittelbar einzelne Kohlenstofffasern an und stellt einen körperlichen Kontakt zu diesen her. Dadurch wird die Anzahl der mechanischen und damit zugleich elektrischen Kontakte der Kontaktfläche 5 mit den elektrisch leitfähigen Kohlenstoffasern erhöht. Eine auf diese Weise hergestellte, besonders zuverlässige elektrische Kontaktierung geht einher mit einer vergrößerten elektrischen Kontaktfläche und einem verringerten Übergangswiderstand zwischen Kontaktelement 3, 4, 18 und Grundkörper 2. Dies trägt dazu bei, daß keine "Hotspots" entstehen. Dadurch verlängert sich die Lebensdauer des Heizelements

[0060] Während der Herstellung des Heizelements 1 erfolgt vorzugsweise eine weitere für die Optimierung der Funktion sowie die Erhöhung der Lebensdauer des Heizelements 1 wichtige Maßnahme. Gemäß einer bevorzugten Ausführungsform der Erfindung sind wenigstens die Kontaktelemente 3, 4, 18 und Teile des Grundkörpers 2 mit einer Anzahl Schutzfolien 32 überdeckt. Mit der Schutzfolie 32 abgedeckt werden, sofern vorhanden, auch die auf elektrischen Isolierelementen 23 angebrachten, vorzugsweise an dem Grundkörper 2 rückseitig verlaufenden Kontaktelemente 3, 4, 18 bzw. Anschlußleitungen 26. Vorzugsweise wird das gesamte Heizelement 1 mit all seinen Komponenten mit der Schutzfolie 32 abgedeckt. Wie nachfolgend noch genauer erläutert, ist jedoch auch eine Teilüberdeckung möglich.

[0061] Als Schutzfolie 32 wird vorzugsweise eine hochelastische Schmelzfolie (Schmelzklebefolie) verwendet. Die Folie 32 weist dabei eine sehr hohe Elastizität auf, die es ihr erlaubt, die Kontaktelemente 3, 4, 18 auch dann noch sicher mechanisch an dem Grundkörper 2 zu fixieren, wenn das Heizelement 1 verformt, beispielsweise gefaltet, geknickt oder gerollt ist. Vorzugsweise zeichnet sich die Schutzfolie 32 durch eine hohe (positive) Dehnung aus, vorzugsweise beträgt die Dehnung mehr als 500%. Vorzugsweise werden thermoplastische Polyurethanfolien verwendet. Als besonders gut geeignet hat sich beispielsweise eine Schutzfolie 32 auf

Basis von Polyetherurethanen erwiesen, die weiche Polyethergruppensegmente aufweist und sich durch eine vergleichsweise hohe Permeabilität auszeichnet. Schutzfolien 32 auf anderer Basis (z.B. Copolyamidoder Copolyester-Basis) sind ebenfalls möglich.

[0062] Das Aufbringen der Schutzfolie 32 erfolgt bei Verwendung einer Schmelzklebefolie unter Wärmezufuhr, beispielsweise indem die Folie einen definierten Erwärmungsbereich zum Schmelzen des Schmelzklebers durchläuft, und Druck, beispielsweise unter Verwendung einer Walze oder dergleichen. Hierfür können beispielsweise Warmluft, Thermostrahler oder beheizte Walzen verwendet werden.

[0063] Wichtig ist, daß die Schutzfolie 32 eine hohe Erweichungstemperatur aufweist, damit sie im normalen Heizbetrieb nicht schmilzt. Als besonders geeignet haben sich dabei Folien 32 mit einer Erweichungstemperatur von 140 bis 160 °C erwiesen.

[0064] Die Schutzfolie 32 bedeckt dabei in einer Ausführungsform der Erfindung beidseitig vollflächig den gesamten Grundkörper 2 (Abdichtung des gesamten Grundkörpers), siehe Fig. 2, 4, 9, 10, 11 und 12. Dies führt zu einer besonders hohen mechanischen Stabilität des Heizelements 1. Das Heizelement 1 ist in diesem Fall besonders gut gegen mechanische Beanspruchung geschützt. Außerdem ist das Heizelement 1 in diesem Fall gegen eines unerwünschten Eintritt bzw. Austritt von Materialien bzw. einer Unterwanderung mit Flüssigkeiten geschützt. Insbesondere werden durch diese Art Verkapselung Veränderungen an den elektrischen Kontaktierungsflächen zwischen Kontaktelementen 3, 4, 18 und Grundkörper 2 verhindert. Das gesamte Heizelement 1 ist dann vorzugsweise flüssigkeitsdicht verpackt.

[0065] In einer alternativen Ausführungsform bedeckt die Schutzfolie 32 im wesentlichen nur den Bereich der Kontaktelemente 3, 4, 18 und die unmittelbar angrenzenden Bereiche des Grundkörpers 2, siehe Fig. 1 und 3. Dadurch werden die Köntaktelemente 3, 4, 18 abgedichtet und mechanisch in ihrer elektrischen Kontaktposition auf dem Grundkörper 2 fixiert. In diesem Fall bleibt der größte Teil der Oberfläche 6 des Grundkörpers 2, insbesondere der Großteil der eigentlichen Heizfläche 13, schutzfolienfrei.

[0066] Die Dicke der Folie 32 beträgt vorzugsweise 50 bis 200 pm, wobei ein geringe Foliendicke (z.B. 50 μm) vorteilhafterweise dann verwendet wird, wenn die Schutzfolie 32 diffusionsfähig ausgeführt sein soll, beispielsweise um im Zusammenspiel mit einem diffusionsoffenen Grundkörper 2 Feuchtigkeit den Durchtritt zu gestatten. Besonders dicke Folien 32 eignen sich hingegen aufgrund ihrer mechanischen Stabilität besonders für Anwendungen, bei denen das Heizelement 1 vor mechanischen Belastungen, wie beispielsweise einer Hochdruckreinigung, geschützt werden muß. Bei besonders starker mechanischer Beanspruchung des Heizelements 1 kann dann die Schichtdicke der Schutzfolie 32 bis 1000 μm betragen, ohne daß die gewünschte Flexibilität des Heizelements 1, wie sie beispielsweise für ein

Aufrollen erforderlich ist, wesentlich beeinträchtigt ist. Die Schutzfolie 32 ist vorzugsweise derart ausgeführt, daß sie den Grundkörper 2 nicht nur gegen mechanische Belastung schützt, sondern auch unempfindlich gegenüber Chemikalien, insbesondere Reinigungsmitteln, ist. [0067] Für diffusionsoffene Varianten, bei denen z. B. Wasserdampf durch das Heizelement 1 hindurch diffundieren soll, beispielsweise bei der gezielten Austrocknung von Bauteil-Oberflächen, die mittels einer elektrischen Flächenheizung 10 unter Verwendung der beschriebenen Heizelemente 1 temperiert werden, kommt vorzugsweise eine dünne Schutzfolie 32 z.B. mit einer Dicke von 50 μm zum Einsatz, die als eine Art Membran auf den Grundkörper 2 auflaminiert wird oder aber große Flächen des Heizelements 1 werden zur Gewährleistung einer besonders hohen Diffusionsleistung überhaupt nicht mit einer Schutzfolie 32 versehen. Jedoch werden auch in diesem Fall, ebenso wie bei einer vollflächigen Abdeckung mit Schutzfolie 32, die Kontaktelemente 3, 4, 18 mit Schutzfolie 32 abgedeckt, zusammen mit einem beidseitigen Sicherheitsrand 33, der typischerweise jeweils ca. 15 mm breit ist. In beiden Fällen dient also die Schutzfolie 32 zur Fixierung der mechanischen Verbindung und damit auch zur Fixierung der elektrischen Verbindung der Kontaktelemente 3, 4, 18 mit dem Grundkörper 2, typischerweise zusätzlich zu einer elektrisch leitenden Klebeverbindung.

[0068] Die zum Zweck der verbesserten Kontaktierung des Grundkörpers 2 ausgeführte Oberflächenstrukturierung der Kontaktelemente 3, 4, 18 ist vorzugsweise derart ausgeführt, daß auch die dem Grundkörper 2 gegenüberliegende Seite 34 des Kontaktelements 3, 4, 18 eine Struktur aufweist, die Erhöhungen und/oder Vertiefungen 28, 29 umfaßt. Diese Erhöhungen und/oder Vertiefungen 28, 29 dienen einer verbesserten mechanischen Verbindung der Schutzfolie 32 mit der Oberfläche des Kontaktelements 3, 4, 18.

[0069] Bei der Schutzfolie 32 muß es sich nicht zwingend um eine Folie im eigentlichen Sinn handeln. Als Schutzfolie 32 im Sinne der Erfindung kann jedes andere elastische Schutzelement dienen, das die Haupteigenschaften der Schutzfolie 32, das Abdichten des Kontaktbereiches, insbesondere der Kontaktfläche 5, und die mechanische Sicherung der elektrischen Kontaktierung, erfüllt.

[0070] Da vorzugsweise alle beteiligten Komponenten des Flächenheizelements 1 als Schichten bildende Elemente ausgeführt sind, ist es gemäß einer Ausführung der Erfindung vorgesehen, daß der Grundkörper 2, die Kontaktelemente 3, 4, 18 sowie ggf. die Schutzfolien 32 und die Isolierelemente 23 als (voll- oder teil-)flächig miteinander verklebte Schichten ein Laminat bilden. Wie bereist beschrieben, sind die einzelnen Komponenten vorzugsweise derart ausgebildet, daß das sich ergebende Laminat faltbar und/oder knickbar (z.B. zum Verlegen in der Fensterlaibung) und/oder rollbar (z.B. für Lagerung und/oder Transport) ist. Je nach Anwendung wird dann von dem fertigen, beispielsweise als Rollenware vorlie-

40

25

40

45

genden Heizelement 1 ein Stück der gewünschten Länge abgeschnitten und als Teil einer Heizung 10 verbaut.

[0071] Es zeichnet das erfindungsgemäße Heizelement 1 aus, daß es eine besonders große Formflexibilität aufweist, also vor allem besonders biegbar ist, insbesondere auch an unregelmäßig geformte, zu beheizende Bauteile angepaßt werden kann. Dies gilt sowohl für die einzelnen Komponenten des Heizelements 1, insbesondere den Grundkörper 2, die Kontaktelemente 3, 4, 18 und die Schutzfolien 32 sowie ggf. die Isolierelemente 23, als auch für das gesamte Heizelement 1, insbesondere dann, wenn es mit Hilfe der Schutzfolie 32 teilweise oder vollständig zu einem Paket verkapselt ist.

[0072] Vorzugsweise wird das erfindungsgemäße Heizelement 1 derart hergestellt, daß ein als Heizwiderstand dienender Grundkörper 2 in Form eines elektrisch leitfähigen, flexiblen Flächengebildes, welches Kohlenstofffasern beinhaltet, mit wenigstens zwei elektrischen Kontaktelementen 3, 4, 18 voneinander beabstandet mit dem Grundkörper 2 flächig verbunden wird, wobei die Kontaktelemente 3, 4, 18 auf dem Grundkörper 2 angebracht und anschließend die Kontaktflächen 5 der Kontaktelemente 3, 4, 18 derart verändert werden, insbesondere in ihrer Form verändert, also verformt werden, daß sie in den Grundkörper 2 eindringen, genauer gesagt, daß Teile 28, 29, 30 der Kontaktfläche 5 an einer Vielzahl von Stellen in den Grundkörper 2 eindringen.

[0073] Der Vorgang des Strukturierens der Kontaktfläche 5 findet dabei vorzugsweise zeitgleich mit dem Vorgang der Herstellung der endgültigen mechanischen und elektrischen Verbindung des Kontaktelements 3, 4, 18 mit dem Grundkörper 2 statt bzw. ist mit diesem Vorgang identisch.

[0074] Beispielsweise wird zunächst ein selbstklebendes Kupferband 3, 4, 18 auf einem elektrisch leitfähigen Faservlies 2 vorfixiert und mit einer geeigneten Andruckrolle oder dergleichen an das Faservlies 2 angepreßt. Anschließend werden auf dem Kupferband 3 mit einer Nadelrolle oder einem anderen geeigneten Werkzeug Mikroporen 28 erzeugt, welche die Übertrittsfläche zwischen dem Kupferband 3 und dem Faservlies 2 für den geplanten Stromdurchtritt vergrößern, wodurch der Wirkungsgrad der Heizung optimiert wird. Die mikroporösen Flächenleitungen (hier in Form des genadelten Kupferbandes 3) werden anschließend mit einer hochelastischen Schmelzfolie 32 abgedichtet und dabei mechanisch gesichert. Diese mechanische Sicherung der elektrischen Kontaktierung dient insbesondere dazu, sicherzustellen, daß auch bei einer Längenänderung des Kupferbandes 3 dieses nicht von dem Faservlies 2 abhebt. Im übrigen sichert die Schmelzfolie 32 die Kontaktierung insbesondere auch in solchen Fällen, in denen das Heizelement 1 als Rollenware gewickelt werden soll oder für die Applikation gefaltet und/oder geknickt wird.

[0075] Von Vorteil bei der beschriebenen Art der Herstellung ist, daß das Verformen des Kontaktelements 3, 4, 18 zur Vergrößerung der Kontaktfläche 5, beispielsweise das Einbringen von Mikroporen 28, und das ei-

gentliche Kontaktieren des Grundkörpers 2 durch das Anpressen des Kontaktelements 3, 4, 18 durch einen einzigen gemeinsamen Verfahrensschritt verwirklicht werde. Dadurch wird das Herstellungsverfahren von Flächenheizelementen 1 optimiert.

[0076] Mit der Erfindung wird eine elektrische Flächenheizung 10 bereitgestellt, die sich durch die Verwendung wenigstens eines der beschriebenen Flächenheizelemente 1 auszeichnet. Die Flächenheizung 10 umfaßt darüber hinaus eine an die Kontaktelemente 3, 4, 18 des Heizelements 1 anschließbaren Stromquelle 35 (Wechselstrom), siehe Fig. 15. Vorzugsweise wird als Stromquelle 35 ein Niedervoltsystem (Trafo) verwendet. Eine Steuereinheit 36 kann zur Steuerung der Flächenheizung 10 vorgesehen sein. Dabei handelt es sich im einfachsten Fall um eine EIN/AUS-Steuerung, die über einen Temperaturwächter 37 (Sensor) erfolgt, der bspw. als Teil des Transformators 35, an der Oberfläche des Heizelements 1 oder in dem Raum vorgesehen sein kann, in dem sich die Flächenheizung 10 befindet. Anstelle eines Temperatursensors oder in Kombination damit kann zur Schaltung der Heizung 10 auch ein Feuchtigkeits- und/oder Luftdrucksensor verwendet werden. Das Ein- bzw. Ausschalten der Heizung 10 kann aber auch einfach manuell erfolgen, zu welchem Zweck ein Schalter vorgesehen sein kann.

[0077] Besonders vorteilhaft ist es, wenn die Heizung 10 mehrere Flächenheizelemente 1 aufweist, die hintereinander bzw. übereinander, d.h. aufeinander gestapelt, angeordnet sind, so daß sich die Strahlungswärmen addieren. Zur Erwärmung großer Flächen können mehrere Heizelemente 1 nebeneinander angeordnet sein. Vorteilhafterweise sind dann nebeneinanderliegende Heizelemente 1 auch elektrisch miteinander verbunden, so daß nicht für jedes einzelne Heizelement 1 eine eigene Stromquelle, Steuerung usw. notwendig ist. Die Heizung 10 kann aber auch aus mehreren Heizmodulen bestehen, wobei jedes Heizmodul ein oder mehrere Flächenheizelemente 1 umfaßt. Die Ansteuerung der Heizung 10 kann dann vorzugsweise modulweise erfolgen, wobei jedem Heizmodul ein eigener Temperatur-, Feuchtigkeits- oder Luftdrucksensor zugeordnet sein kann.

[0078] Mit der Erfindung werden Heizelemente 1 mit Kohlenstofffasern bereitgestellt, bei denen eine sichere elektrische Kontaktierung des Kohlenstofffasermaterials im Dauerbetrieb auch bei hohen Stromstärken gewährleistet ist. Dabei können diese Heizelemente 1 mit einem Niedervoltsystem betrieben werden.

[0079] Die Erfindung eignet sich besonders für Heizungen 10, bei denen die Heizelemente 1 an Baukörpern von Gebäuden, wie z.B. an Wänden, angebracht sind und zur Erwärmung des Baukörpers (auch als Heizung), zum Trocknen des Baukörpers, zum Verhindern eines Befalls des Baukörpers mit Schimmel oder dergleichen dienen. Zahlreiche weitere Anwendungen sind möglich. Es ist dabei von Vorteil, daß sich die Heizung durch eine sehr geringe Bauhöhe auszeichnet. Sie eignet sich daher besonders für beengte Einbausituationen. Beispielswei-

20

30

40

se weist das zu verlegende, laminierte und mit elektrischen Anschlüssen versehene Heizelement 1 eine Dicke von lediglich 1,5 mm auf.

[0080] Als besonders vorteilhaft hat sich eine Heizung 10 erwiesen, bei der thermische Isolierelemente (nicht abgebildet) an dem Heizelement 1 angeordnet sind, zum Zweck der thermischen Isolierung einer der beiden Heizflächen 13 des Grundkörpers 2, z.B. zur Isolierung der Rückseite 12 des Heizelements 1. Dies ermöglicht eine besonders effiziente Nutzung der Strahlungswärme in einer definierten Richtung. Als besonders geeignet hat sich dabei die kombinierte Verwendung einer Luftpolsterfolie und einer Reflexionsschicht zur Richtungsleitung der Strahlungswärme erwiesen, wobei diese Kombination an der Rückseite 12 des Heizelements 1 angeordnet ist.

[0081] Die oben beschriebenen Ausführungsformen und Varianten der Erfindung beziehen sich in erster Linie, jedoch nicht ausschließlich, auf die Verwendung von Niederspannung zum Betrieb des Flächenheizelements 1. [0082] Vorteilhafterweise kann die Heizung 10 mit allgemein üblichen Transformatoren betrieben werden, typischerweise mit Leistungsaufnahmen zwischen 50 und 300 Watt. Ausgelegt als Niedervoltsystem und bei Leistungsaufnahmen von über 300 Watt benötigen die Heizelemente 1, z.B. bei einer Spannung von 12 Volt, Stromstärken über 25 Ampere und selbst bei Leistungsaufnahmen von über 500 Watt bei 24 Volt Spannung sind Stromstärken über 20 Ampere für den dauerhaften Betrieb notwendig.

[0083] Es sei daher an dieser Stelle noch einmal darauf hingewiesen, daß anstelle einer Niedervolt-Stromquelle (Kleinspannungs-Stromquelle) auch eine von einer Netzspannung gespeiste Stromquelle 35 verwendet werden kann. Insbesondere kann eine Netzwechselspannung von 230V bei einer Netzfrequenz von 50 Hz zum Einsatz kommen, wie sie in europäischen Stromnetzen verwendet wird. Ein Trafo, wie in Fig. 15 dargestellt, wird dann nicht benötigt. Statt dessen können die Heizung 10 unmittelbar an das Stromnetz angeschlossen werden, wobei nach wie vor eine Steuereinheit 36 die Steuerung der Flächenheizung 10 übernehmen kann.

[0084] Der Einsatz von Netzwechselspannung bringt gegenüber der Verwendung von Niederspannung Vorteile mit sich. So läßt sich bei einem Betrieb der Heizung 10 an einem 230Volt/50Hz-Netzspannungssystem das bei wachsenden Stromstärken steigende Brandrisiko minimieren. Eine unerwünschte Wärmebildung in den Bereichen der erfindungsgemäßen Kontaktierung zwischen dem Kupferband und den Kohlenstofffasern wird vermieden, insbesondere dort, wo der Kontaktverbund den eigentlichen Stromdurchtritt gewährleisten soll.

[0085] Auch bei Nutzung des 230Volt/50Hz-Netzspannungssystems eignet sich die erfindungsgemäße Kontaktierung der Flächenheizelemente, um unerwünschte Verluste durch den Leitungswiderstand zu vermeiden, die bei Stromstärken über 20 Ampere bei Kontaktierungen von Flächenheizelementen auftreten können, die

sich über mehrere Meter erstrecken, beispielsweise bei Heizelementen in Form von Bändern.

[0086] Als besonders vorteilhaft bei der Speisung durch Netzwechselspannung hat es sich erwiesen, daß sich mit Spannungen von 230Volt höhere Flächenwiderstände zwischen den Kontaktierungen überbrücken lassen. Dies erlaubt eine besonders flexible Gestaltung der geometrischen Form der Heizelemente 1, insbesondere die Verwendung besonders schmaler Flächenheizelemente als "Heizflächenbänder".

[0087] Mit Hilfe einer geeigneten Dimensionierung der Elektroden (Länge und Abstand der Elektroden) lassen sich solche Heizbänder mit Stromstärken zwischen 0,5 und 2,5 Ampere und Heizleistungen von 100 bis 500 Watt und mehr verwirklichen. Dabei sinken die Stromstärken auf ca. ein Zehntel gegenüber einem 24 Volt-Niedervoltsystem, was besonders bei Leistungsaufnahmen von über 200 bis 500 Watt und mehr vom Vorteil ist, weil es auch den erfindungsgemäßen Kupferband/Kohlenstofffaser-Verbund vor Überhitzung schont und die Lebensdauer der Heizelemente 1 verlängert, indem die Bildung von "Hotspots" noch stärker vermieden werden.

[0088] Das in Fig. 16 dargestellte Flächenheizelement 1 ist beispielsweise 300 cm lang (Länge L) und 10 cm breit (Breite B), so daß sich ein Seitenverhältnis der zu beheizenden Fläche von 30:1 ergibt. Der Widerstand beträgt 99,3 Ohm. Bei einem Betrieb an einem 24 Volt-Niederspannungssystem beträgt die Leistung 5, 8 Watt bei einer Temperaturerhöhung von 1, 1 °C. Bei einem Betrieb an einem 230V/50Hz-Netzspannungssystem beträgt die Leistung hingegen 532,7 Watt bei einer Temperaturerhöhung von 104,5 °C.

[0089] Der Vergleich zeigt, daß sich schmale, mit Blick auf die verwendeten Materialien nahezu nichtmetallische Heizflächenbänder mit hohen Wärmestromdichte verwirklichen lassen, die besonders für Anwendungen mit möglichen Wasserkontakt interessant sind. Der metallische Kupferanteil ist aufgrund der geringeren Stromstärken zur Gesamtmaterialfläche sehr niedrig, besonders im Vergleich zu "metallischen" Heizsystemen, die ähnliche Wärmestromleistungen erzeugen.

[0090] Besonders interessant für eine universelle Anwendbarkeit der Flächenheizelemente 1 ist es, daß sich das erfindungsgemäße Heizflächenband in der für die gewünschte Heizleistung benötigten Länge dimensionieren läßt. Außerdem ist es möglich, mehrere Heizbänder zu einem Heizelementeverbund zusammenzuschließen. Durch eine geeignete Berechnung der Abmessungen der einzelnen Heizelemente und eine geeignete Anordnung der Heizelemente bzw. eines hieraus gebildeten Heizelementeverbundes, insbesondere ausgeführt als Reihenschaltung von Heizsegmenten, entsprechend der gewünschten beheizbaren Nutzungsfläche, kann die gesamte Anwendungsfläche mit (miteinander verbundenen) Heizelementen belegt werden. Dabei können, wie in Fig. 17 dargestellt, nicht nur Seitenverhältnisse der zu beheizenden Fläche von 1:5, sondern durch entsprechende Fortführung der Reihenschaltung auch Seitenverhältnisse von beispielsweise 1:1 erreicht werden. Die Gesamtheizleistung ist dabei u.a. von der Länge, Breite und Dichte der Heizelemente des Verbundes abhängig. [0091] Fig. 17 zeigt einen einfachen Heizelementeverbund 38 mit zwei Heizelementen 39, 40 die über eine Leitungsbrücke 41 in einer Reihenschaltung miteinander verbunden sind. Vorteilhafterweise sind beide Anschlüsse 24, 25 an derselben Seite des Verbundes 38 vorgesehen, so daß Leitungsverluste durch lange Anschlußkabel zu vermieden werden. Im illustrierten Beispiel sind zwei parallel in einem Abstand A von 10 cm zueinander angeordnete Segmente 39, 40 mit einer Breite B von je 10 cm und einer Länge L von je 150 cm miteinander verbunden. Mit Hilfe eines derartigen, aus schmalen, miteinander elektrisch verbundenen Bändern bestehenden Heizelementeverbundes können auch solche Anwendungsflächen beheizt werden, bei denen aufgrund ihrer Größe und/oder Form die Verwendung eines einzelnen Heizelements aus technischen Gründen, insbesondere wegen hoher elektrischer Verluste und starker "Hotspot"-Bildung, nicht möglich ist.

[0092] Eine Anordnung mehrerer, elektrisch miteinander verbundener, vorteilhaft geformter und dimensionierter Heizelemente in einem Verbund ermöglicht es, eine bestimmte Anwendungsfläche F, in Fig. 17 mit strichpunktierter Linie angedeutet, entsprechend der gewünschten Gesamtheizleistung möglichst dicht und/oder möglichst regelmäßig zu belegen.

[0093] Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.

Bezugszeichenliste

[0094]

- 1 Flächenheizelement
- 2 Grundkörper
- 3 erstes Kontaktelement
- 4 zweites Kontaktelement
- 5 Kontaktfläche
- 6 Oberfläche
- 7 Vorzugsrichtung
- 8 Stromflußrichtung
- 9 (frei)
- 10 Flächenheizung
- 11 Vorderseite
- 12 Rückseite
- 13 Heizfläche
- 14 Länge
- 15 Abstand
- 16 Längsseite
- 17 Schmalseite
- 18 drittes Kontaktelement
- 19 Längsrichtung
- 20 (frei)
- 21 erstes Heizsegment

- 22 zweites Heizsegment
- 23 Isolierelement
- 24 erster Stromanschluß
- 25 zweiter Stromanschluß
- 26 Anschlußleitung
 - 27 Freiende
 - 28 Öffnung
 - 29 Vertiefung
 - 30 Schneidkante
- 0 31 (frei)
 - 32 Schutzfolie
 - 33 Sicherheitsrand
 - 34 Oberseite
 - 35 Transformator
 - 36 Steuereinheit
 - 37 Sensor
 - 38 Verbund
 - 39 Heizelement, Verbundsegment
- 40 Heizelement, Verbundsegment
- 20 41 Leitungsbrücke

Patentansprüche

30

35

45

1. Flächenheizelement (1),

mit einem als Heizwiderstand dienenden Grundkörper (2) in Form eines elektrisch leitfähigen, flexiblen Flächengebildes, welches Kohlenstofffasern beinhaltet.

mit wenigstens zwei elektrischen Kontaktelementen (3, 4, 18), die voneinander beabstandet mit dem Grundkörper (2) flächig verbunden sind, zum Einspeisen von elektrischem Strom in den Grundkörper (2)

dadurch gekennzeichnet, daß die Kontaktflächen (5) der Kontaktelemente (3, 4, 18) derart ausgebildet sind, daß sie in den Grundkörper (2) eindringen.

- 2. Flächenheizelement (1) nach Anspruch 1, dadurch gekennzeichnet, daß der Grundkörper (2) durch ein Papier oder ein Faservlies gebildet ist.
- 3. Flächenheizelement (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kontaktelemente (3, 4, 18) durch Folien oder Bänder gebildet sind.
- Flächenheizelement (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Grundkörper (2) ein stark ungleiches Seitenverhältnis aufweist und drei oder mehr Kontaktelemente (3, 4, 18) derart auf einer Seite (11) des Grundkörpers (2) angebracht sind, daß der Grundkörper (2) in seiner Längsrichtung (19) in mehrere Heizwiderstandssegmente (21, 22) unterteilt ist.
 - **5.** Flächenheizelement (1) nach einem der Ansprüche 1 bis 4, **dadurch gekennzeichnet**, **daß** die Kontaktflächen (5) der Kontaktelemente (3, 4, 18) eine Ober-

flächenstruktur mit einer Vielzahl von Verformungen (28, 29) aufweisen, die zur Herstellung einer Verbindung der Kontaktelemente (3, 4, 18) mit dem Grundkörper (2) beitragen, indem sie in den Grundkörper (2) eindringen.

5

6. Flächenheizelement (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß wenigstens die Kontaktelemente (3, 4, 18) und Teile des Grundkörpers (2) mit einer oder mehreren Schutzfolien (32) überdeckt sind.

1

7. Flächenheizelement (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zumindest der Grundkörper (2) und die Kontaktelemente (3, 4, 18) als flächig miteinander verklebte Schichten ein Laminat bilden.

15

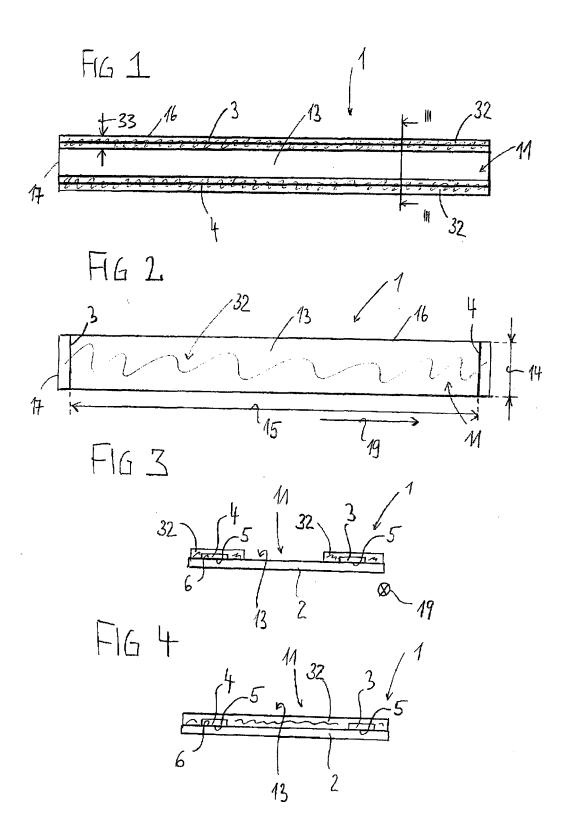
8. Elektrische Flächenheizung (10) mit wenigstens einem Flächenheizelement (1) nach einem der Ansprüche 1 bis 7 und mit einer an die Kontaktelemente (3, 4, 18) des Heizelements (1) anschließbaren Stromquelle (35).

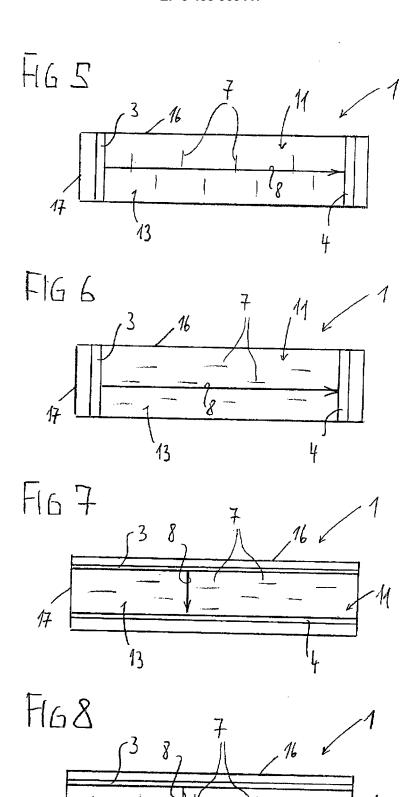
20

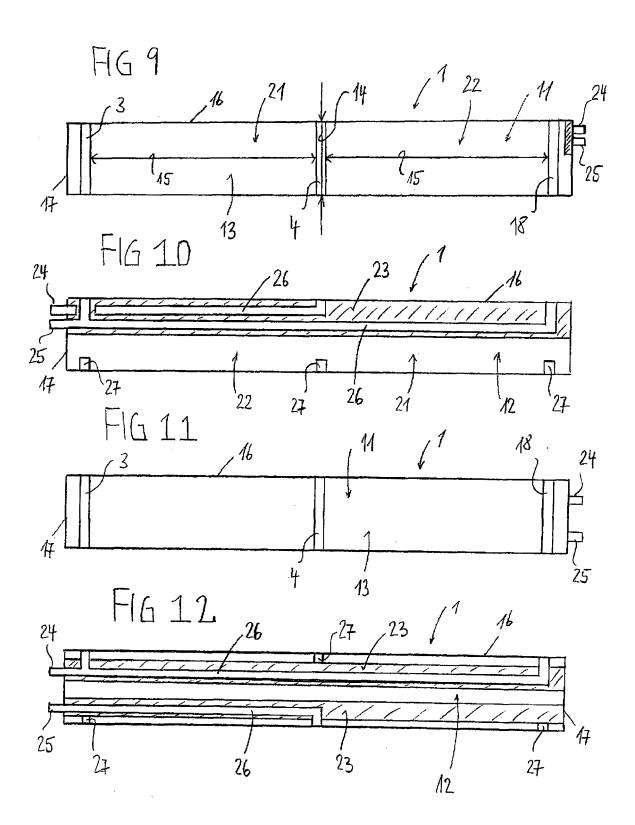
9. Elektrische Flächenheizung (10) nach Anspruch 8, mit einer Niedervolt-Stromquelle (35) oder mit einer von einer Netzspannung gespeiste Stromquelle (35).

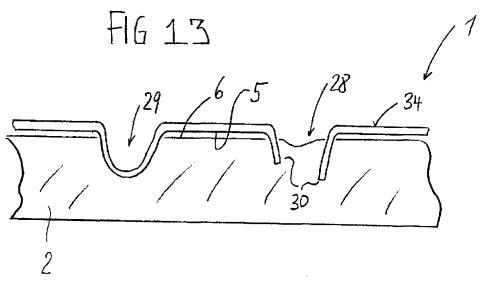
25

10. Elektrische Flächenheizung (10) nach Anspruch 8 oder 9, mit mehreren Flächenheizelementen (1) nach einem der Ansprüche 1 bis 7, die elektrisch miteinander zu einem Heizelementeverbund verbunden sind.


35


11. Verfahren zur Herstellung eines Flächenheizelements (1), bei dem ein als Heizwiderstand dienender Grundkörper (2) in Form eines elektrisch leitfähigen, flexiblen Flächengebildes, welches Kohlenstofffasern beinhaltet, mit wenigstens zwei elektrischen Kontaktelementen (3, 4, 18) voneinander beabstandet mit dem Grundkörper (2) flächig verbunden wird, dadurch gekennzeichnet, daß die Kontaktelemente (3, 4, 18) auf dem Grundkörper (2) angebracht und anschließend die Kontaktelemente (3, 4, 18), zumindest aber deren Kontaktflächen (5), derart verändert werden, daß sie in den Grundkörper (29 eindringen.


40


45

50

FI6 14

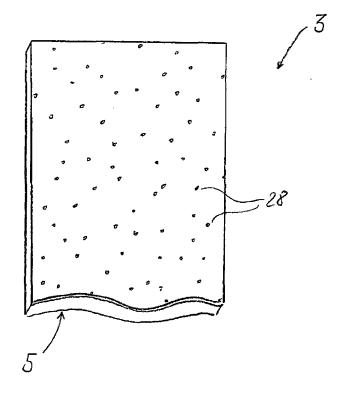
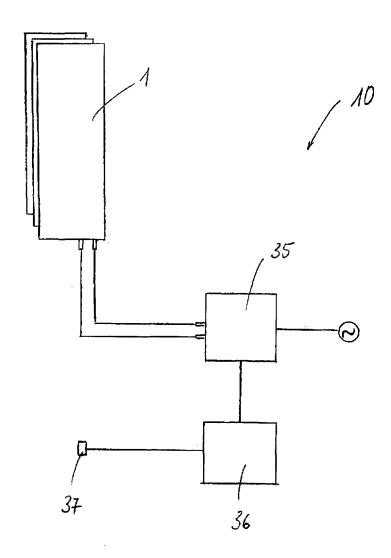
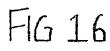
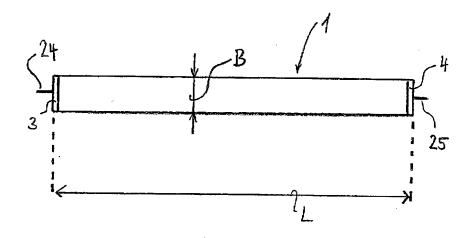
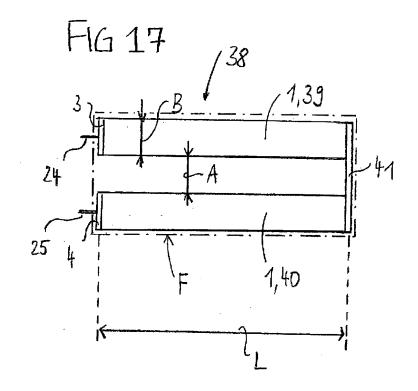






FIG 15

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 18 00 0639

5

10		
15		
20		
25		
30		
35		
40		
45		

50

55

1

EPO FORM 1503 03.82 (P04C03)

	EINSCHLÄGIGE	DOKUMENTE						
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit er en Teile	forderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)			
X A	WO 2006/103081 A1 (RAIDT HEINZ PETER [DE]) 5. Oktober 20 * Seite 12, Zeile 1 Abbildungen 1-3 *	DE]; SCHROEER JO 06 (2006-10-05)	ERN	1-4,6-11 5	F24H3/04 D21H13/50 F24D13/00 H01B1/24 F24H9/18			
x	EP 0 719 074 A2 (DE BODENBELAEGE [DE])			1-4,6-11				
4	26. Juni 1996 (1996 * Spalte 7, Zeile 5 Ansprüche 6,13; Abb	3 - Spalte 9, Ze	ile 8;	5				
(DE 20 2006 007228 L [DE]) 26. Oktober 2	006 (2006-10-26)		1-4,6-11				
1	* Seite 2, Absatz 1 Abbildungen 1-2 *			5				
X	GB 2 285 729 A (BRI [GB]) 19. Juli 1995 * das ganze Dokumer	(1995-07-19)	INT	1-4,6-11	RECHERCHIERTE			
					F24H D21H H05B F24D H01B			
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche	e erstellt					
	Recherchenort	Abschlußdatum der f	Recherche		Prüfer			
	München	14. Dezem	ber 2018	Hof	fmann, Stéphanie			
KATEGORIE DER GENANNTEN DOKUMENTE T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument M: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument								

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 18 00 0639

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

14-12-2018

		cherchenbericht es Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	WO 20	006103081	A1	05-10-2006	AT CA DE EA EP US WO	431694 2601535 102005015051 200702115 1864551 2008210679 2006103081	A1 A1 A1 A1 A1	15-05-2009 05-10-2006 19-10-2006 28-02-2008 12-12-2007 04-09-2008 05-10-2006
	EP 07	719074	A2	26-06-1996	DE EP FI NO	4447407 0719074 956130 955136	A2 A	11-07-1996 26-06-1996 25-06-1996 25-06-1996
	DE 20	02006007228	U1	26-10-2006	KEI	NE		
	GB 22	285729	Α	19-07-1995	AU CA EP GB JP KR TW US WO	1248195 2179821 0736240 2285729 H09509779 100378477 270209 6172344 9518517	A1 A1 A A B1 B B1	17-07-1995 06-07-1995 09-10-1996 19-07-1995 30-09-1997 09-06-2003 11-02-1996 09-01-2001 06-07-1995
EPO FORM P0461								

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 3 438 563 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 102013101899 A1 [0016]