TECHNICAL FIELD OF THE INVENTION
[0001] This invention relates, in general, to crawler cranes and, in particular, to a securement
for crawler cranes and system and method for use of the same that enable crawler crane
owners, users, and manufacturers to reduce the risk of catastrophic events and protect
workers.
BACKGROUND OF THE INVENTION
[0002] Crane accidents resulting from high winds are very dramatic and very visible, often
resulting in viral videos and media attention. Worse, crane accidents may cause property
damage, injury, and even death. With respect to crawler cranes and wind resistance,
existing solutions utilize guy wires to increase the stability of crawler cranes during
high winds. Guy wire-based solutions, however, have proved time consuming to deploy
and require an extremely technical analysis to work in varying wind conditions. As
a result of limitations in existing technology, high winds remain a risk for conventional
crawler cranes. Accordingly, there is a need for improved systems and methods for
securing crawler cranes in high winds or during emergency lay-down operations. The
addition of tipping resistance during high wind events can result in the difference
between catastrophe or successful stowage of the boom.
[0003] US 6007271 discloses the use of a mat as a ground engagement platform for supporting heavy equipment,
or as a road surface for supporting vehicular traffic.
[0004] US 2014/193196 A1 discloses the use of reinforced ground cover mats to facilitate the passage of heavy
equipment and vehicles on wet or disturbed ground.
SUMMARY OF THE INVENTION
[0005] It would be advantageous to mitigate the risks to conventional crawler cranes caused
by high winds. It would also be desirable to enable a mechanical-based solution that
is easily and quickly deployed without the need for a complex technical analysis.
To better address one or more of these concerns, a securement for crawler cranes and
system and method for use of the same are disclosed. A pair of structurally designed
securements are spaced at approximately a track-distance apart with respect to the
crawler crane and coupled together by multiple transverse support members. When the
crawler crane is driven onto the securements and fastened thereto, the tipping fulcrum
of the crawler crane is shifted, thereby requiring a greater tipping force to overturn,
thereby adding stability during high wind events. An individual securement and a method,
which accompanies the system, are also disclosed. This structurally designed enhancement,
along with the securement method and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments described hereinafter. The invention
concerns a system according to claim 1 and a method according to claim 8.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] For a more complete understanding of the features and advantages of the present invention,
reference is now made to the detailed description of the invention along with the
accompanying figures in which corresponding numerals in the different figures refer
to corresponding parts and in which:
Figure 1 is a rear perspective view depicting one embodiment of a system utilizing
structural securements for a crawler crane, during the deployment of the structural
securements, according to the teachings presented herein;
Figure 2 is a rear perspective view depicting one embodiment of the system presented
in figure 1 during use of the structural securements;
Figure 3 is a top plan view of the system depicted in figure 2;
Figure 4 is a side elevation view of a structural mat system depicted in figure 2,
wherein only one track of the crawler crane is depicted for purposes of simplifying
the illustration;
Figure 5 is front perspective view of one embodiment of a structural securement for
a crawler crane;
Figure 6 is a top plan view of the structural securement for a crawler crane presented
in figure 5;
Figure 7 is a side elevation view of the structural securement for a crawler crane
presented in figure 5;
Figure 8A is a cross-sectional view of the structural securement for a crawler crane
presented in figure 5 as viewed along line 8A - 8A;
Figure 8B is a cross-sectional view of the structural securement for a crawler crane
presented in figure 5 as viewed along line 8B - 8B;
Figure 9 is a rear perspective view depicting another embodiment of a system utilizing
structural securements for a crawler crane, during the deployment of the structural
securements, according to the teachings presented herein;
Figure 10 is a rear perspective view depicting one embodiment of the system presented
in figure 9 during use of the structural securements;
Figure 11 is a top plan view of the system depicted in figure 10;
Figure 12 is a side elevation view of a structural mat system depicted in figure 10,
wherein only one track of the crawler crane is depicted for purposes of simplifying
the illustration;
Figure 13 is front perspective view of one embodiment of a structural securement for
a crawler crane;
Figure 14 is a top plan view of the structural securement for a crawler crane presented
in figure 13;
Figure 15 is a side elevation view of the structural securement for a crawler crane
presented in figure 13;
Figure 16A is a cross-sectional view of the structural securement for a crawler crane
presented in figure 15 as viewed along line 16A - 16A;
Figure 16B is a cross-sectional view of the structural securement for a crawler crane
presented in figure 15 as viewed along line 16B - 16B;
Figure 17 is a front perspective view of a still further embodiment of a structural
securement for a crawler crane;
Figure 18 is a front perspective view of one embodiment of two structural securements
depicted in figure 17 for a crawler crane being coupled together; and
Figure 19 is a front perspective view of the two structural securements depicted in
figure 18 with the coupling detailed.
DETAILED DESCRIPTION OF THE INVENTION
[0007] Referring initially to figure 1, therein is depicted one embodiment of a system 10
utilizing structural securements 12, 14 for a crawler crane 16. As shown, the crawler
crane 16 includes a crane 18 having a front 20 and a rear 22. The crane 18 may be
utilized for hoisting, excavating and the like and is mounted on a lower undercarriage
24 with a set of parallel tracks 26, 28 having endless treads 30, 32 that provide
stability and mobility to the crawler crane 16. As shown, the structural securements
12, 14 are deployed at approximately a track-distance apart with respect to the crawler
crane. Thereafter, transverse support members 40, 42, 44 are located between the structural
securement 12 and the structural securement 14 such that the structural securements
12, 14 are connected to each other. The crawler crane is then driven forward, as shown
by arrow 46, onto the structural securements 12, 14 such that the rear 22 of the crawler
crane 16 is approximate a rear edge of the structural securements 12, 14. One method
of installation of the clamping tie-down system or shoes is to connect the tie-down
system to the track and drive forward onto the structural mat for final securement
as shown in figure 1.
[0008] Referring now to figure 2 through figure 4, in one embodiment, after the crawler
crane 16 is completely driven forward onto the structural securements 12, 14, tie-downs
60, 62, 64, 66, 68, 70, which may be rods, flat bars or chains, for example, are employed
around the parallel tracks 26, 28 and endless treads 30, 32 to secure the crawler
crane 16 and particularly the rear 22 of the crawler crane 16 to the structural securements
12, 14. With this arrangement, the tipping fulcrum - the balance point around which
there are equal moment arms of length times weight - of the crawler crane is extended
toward the front of the structural securements 12, 14 thereby increasing the tipping
resistance to wind or unbalance loading toward the front during laydown of the crane
boom. As illustrated, the systems and methods herein may be deployed with the crawler
crane 16 in response to a sudden increase in wind speed, as shown by arrow W, or in
response to the crawler crane being taken out-of-service, under normal or emergency
conditions, for example.
[0009] More particularly, use of crawler cranes in congested urban areas and highly volatile
refinery operations restricts the capability of the operator to lay a crawler crane's
boom down during out-of-service periods such as overnight. Further, when high winds
suddenly impact a site the time to properly prepare for lowering the boom is limited
and often attempted under emergency conditions. The systems and methods presented
herein meet the need for a specialized mechanism that provides additional overturning
resistance during emergency lowering procedures or while the crane boom is left erected
after hours. With respect to service, cranes are generally set out-of-service with
the boom over the front of the tracks, which are required to be chocked, and the boom
is placed at an angle of less than 70 degrees. Tipping occurs when the wind forces
on the boom creates sufficient load to overturn the crane over the front tips of the
tracks. With the use of securements, by extending the tipping point beyond the front
tips of the tracks provides additional resistance of overturning. As shown, to achieve
this benefit, the rear tracks utilize a mechanism to provide hold-down resistance
in concert with the extended tipping point. Additionally, as shown, the crawler crane
16 is held in place by blocking member 72 at the track toe for chocking.
[0010] Referring now to figure 5 through figure 8B, the structural securement 12 includes
a top 80, a bottom 82, a left side 84, a right side 86, and ends 88, 90. A structural
mat subsystem 92 is provided having four wide flange beams represented as beam portions
94, 96, 98, 100, 102, 104, 106, 108 welded together with cross structural steel pipe
members 110, 112, 114, 116, 118, 120 such that openings, such as openings 122 are
formed between the wide flange beams 94, 96, 98, 100, 102, 104, 106, 108 and crossbar
members 110, 112, 114, 116, 118, 120. Structural support members, such as wooden timbers
124, are secured between the openings in the mat subsystem 92. As will be presented
hereinbelow, in another embodiment, steel plates can be secured to the top and bottom
of the structural steel mat. In one implementation, the structural mat subsystem 92
may have a width greater than one of the parallel tracks 26, 28 of the crawler crane
16. Also, the structural mat subsystem 92 may have a length greater than one of the
parallel tracks 26, 28 of the crawler crane 16 by at least 3.048m (ten feet). As illustrated,
the structural mat subsystem 92 may have from the end 88 to the end 90, a tie down
region 130, an original crawler crane region 132, and an enhanced crawler crane region
134.
[0011] The structural mat subsystem 92 includes a height configured to accept the crawler
crane 16 in forward drive thereon on the end 88. The tie down region 130 has multiple
surfaces for accepting the tie-downs, such as tie downs 60, 62, 64, 66, 68, 70. As
previously discussed, with respect to the structural securements 12, 14, the enhanced
crawler crane region 134 in combination with the original crawler crane region 132,
and the tie down region 130 shifts the tipping fulcrum of the crawler crane 16 toward
the end 90 of the structural securement 12 when the crawler crane 16 is driven thereon.
[0012] Alternate combinations of wide flange beams may be implemented. Eight wide flange
beams can be utilized instead of four 12.19m (40-foot)long steel wide flange beams.
Five or six crossbar members may be utilized in this implementation. Further, the
wooden timbers may be solid infield wooden oak timbers or steel plates top and bottom
depending on the application. At the ends, in one embodiment, lifting slots may be
provided enabling handling of the structural securement 12 by a conventional crane.
Alternatively, slotted channels specifically placed around the center of gravity of
the structural mat may be used by a forklift for handling. Further, multiple tie-down
rings are provided at the end of the securement to provide for coupling of rigging,
such as chains, bars or wire rope pendants, to secure the crawler crane to the securement.
The structural mat subsystem 92 may include a width of approximately 2.438m (eight
feet). In one embodiment, the mat subsystem may include a length of approximately
12.19m (40 feet). Also the structural mat subsystem may include a length greater than
one of the tracks by at least 3.048m (ten feet) or approximately 3.048m to 4.572m
(10 to 15 feet)
[0013] Referring now to figure 9, therein is depicted another embodiment of the system 10
utilizing structural securements 212, 214 for the crawler crane 16. As shown, the
structural securements 212, 214 are deployed at approximately a track-distance apart
with respect to the crawler crane. Thereafter, the transverse support members 40,
42, 44 are located between the structural securement 212 and the structural securement
214 such that the structural securements 212, 214 are connected to each other. The
crawler crane is then driven forward, as shown by arrow 46, onto the structural securements
212, 214 such that the rear 22 of the crawler crane 16 is approximate a rear edge
of the structural securements 212, 214. As shown in figures 10, 11, and 12, after
the crawler crane 16 is completely driven forward onto the structural securements
212, 214, tie-downs 60, 62, 64, 66, 68, 70, which, as discussed, may be rods, flat
bars or chains, for example, are employed around the parallel tracks 26, 28 and endless
treads 30, 32 to secure the crawler crane 16 and particularly the rear 22 of the crawler
crane 16 to the structural securements 212, 214. It should be appreciated that the
exact type and number of tie-downs will depend on the safety engineering of the particular
application. Additionally, as shown, the crawler crane 16 is held in place by blocking
member 72 at the track toe for chocking.
[0014] Referring now to figure 12 through figure 16B, the structural securement 212 includes
a top 220, a bottom 222, a left side 224, a right side 226, and ends 228, 230. A structural
mat subsystem 232 is provided having beam portions 234, 236, 238, 240, 242, 244, 246,
248, 250 and cross-beam portions 252, 254 welded together with structural support
members 256, 258, which are depicted as upper and lower plates 260, 262. This embodiment
may therefore provide steel wide flange members with top and bottom steel plates.
Ramps 264, 266 are formed at each of the ends 228, 230. It should be appreciated that
the structural mat systems presented herein are also designed to be secured to floating
structures such as barges with the use of disposable mat tie-downs that are inserted
into the ends of the crossbar pipes and welded to the barge deck. By way of example,
in these implementations, subsequent installation of the crawler shoes are installed
on each end of the tracks to hold meet OSHA requirements for tie-down on barges.
[0015] Referring now to figure 17, in another embodiment, a structural securement 280 includes
a top 290, a bottom 292, a left side 294, a right side 296, and ends 298, 300. A structural
mat subsystem 302 is provided having beam portions 304, 306, 308, 310, 312, 314, 316,
318, 320 and cross-beam portions 322, 324 welded together with structural support
members 326, 328, which are depicted as upper support beams 330, 332, 334, 336 and
lower support beams 338, 340, 342, 344. Ramps 346, 348 are formed at each of the ends
298, 300.
[0016] Referring now to figures 18 and 19, the structural mat system is also designed for
multiple mats to be connected at the ends to provide continuous support for travel
over fill material or less than adequate soil conditions. As shown, structural securement
280 and a structural securement 380 are coupled together by a coupling 382. Further,
it should be appreciated that a supplemental steel beam can also be added across the
tailing ends of the structural mats to provide an under body connection to the front
frame of a conventional hydraulic crane body to provide similar wind resistance to
tipping as demonstrated for crawler cranes.
[0017] In operation, it should be appreciated that the embodiments of figures 9 through
19 have substantially the same operational principles as the embodiments of figures
1 through 8B. In particular, the tipping fulcrum - the balance point around which
there are equal moment arms of length times weight - of the crawler crane 16 is extended
toward the front of the structural securements 12, 14 or structural securements 212,
214 or structural securement 280 thereby increasing the tipping resistance to wind
or unbalance loading toward the front during laydown of the crane boom. Further, as
the various structural securements 12, 14, 212, 214, 280 demonstrate, the architecture
and deployment of the system 10 may vary depending on the engineering application.
As illustrated, the systems and methods herein may be deployed with the crawler crane
16 in response to a sudden increase in wind speed, as shown by arrow W, or in response
to the crawler crane being taken out-of-service, under normal or emergency conditions,
for example.
1. A system (10) for securing a crawler crane having a crane mounted to an undercarriage
(24) with a set of parallel tracks (28, 30) having endless treads (30, 32), the system
(10) comprising:
first and second structural securements (12, 14) spaced at approximately a track-distance
apart with respect to the crawler crane (16), each of the first and second structural
securements (12, 14) including:
a structural mat subsystem (92) having four wide flange beams (94, 96, 98, 100, 102,
104, 106, 108) welded together with a plurality of crossbar members (110, 112, 114,
116, 118, 120) such that openings are formed between the wide flange beams (94, 96,
98, 100, 102, 104, 106, 108) and crossbar members (110, 112, 114, 116, 118, 120),
a plurality of structural support members secured proximate the openings (122),
the structural mat subsystem (92) having a first end and a second end,
the structural mat subsystem (92) having a width greater than one of the tracks (26,
28) of the crawler crane (16),
the structural mat subsystem (92) having a length greater than one of the tracks (26,
28) of the crawler crane (16) by at least 3.05 metres (ten feet), the structural mat
subsystem (92) having from the first end to the second end, a tie down region (130),
an original crawler crane region (132), and an enhanced crawler crane region (134),
the structural mat subsystem (92) having a height configured to accept the crawler
crane (16) in forward drive thereon on the first end, and
the tie down region (130) having a plurality of surfaces for accepting a plurality
of tie-downs (60, 62, 64, 66, 68, 70); and
a plurality of transverse support members (40, 42, 44) coupling the first structural
securement to the second structural securement such that the first and second structural
securements are spaced at approximately the track-distance apart,
wherein with respect to the first and second securements, the enhanced crawler crane
region (134) in combination with the original crawler crane region (132), and the
tie down region (130) shift the tipping fulcrum of the crawler crane (16) toward the
second end of the securement when the crawler crane (16) is driven thereon and fastened
thereto.
2. The system (10) as recited in claim 1, wherein the four wide flange beams (94, 96,
98, 100, 102, 104, 106, 108) further comprise four wide flange steel beams.
3. The system (10) as recited in claim 1, wherein the structural mat subsystem (92) further
comprises a width of approximately 2.44m (eight feet).
4. The system (10) as recited in claim 1, wherein the structural mat subsystem (92) further
comprises a length of approximately 12.2m (40 feet).
5. The system (10) as recited in claim 1, wherein the structural mat subsystem (92) further
comprises a length greater than one of the tracks by approximately 3.05m to 4.57m
(10 to 15 feet).
6. The system (10) as recited in claim 1, wherein the plurality of crossbar members further
comprise a plurality of crossbar structural pipe members (110, 112, 114, 116, 118,
120).
7. The system (10) as recited in claim 1, wherein the plurality of structural support
members further comprise a plurality of wooden timbers (124).
8. A method for securing a crawler crane (10) having a crane (18) mounted to an undercarriage
(24) with a set of parallel tracks (26, 28) having endless treads (30, 32), the method
comprising:
providing first and second structural securements spaced at approximately a track-distance
apart with respect to the crawler crane, each of the first and second structural securements
including:
a structural mat subsystem (92) having four wide flange beams welded together with
a plurality of crossbar members such that openings are formed between the wide flange
beams and crossbar members,
a plurality of structural support members secured between the openings (122),
the structural mat subsystem (92) having a first end and a second end,
the structural mat subsystem (92) having a width greater than one of the tracks of
the crawler crane (16),
the structural mat subsystem (92) having a length greater than one of the tracks of
the crawler crane (16) by at least 3.0 5 metres (10 feet), the structural mat subsystem
(92) having from the first end to the second end, a tie down region (130), an original
crawler crane region (132), and an enhanced crawler crane region (134),
the structural mat subsystem (92) having a height configured to accept the crawler
crane (16) in forward drive thereon on the first end, and
the tie down region (130) having a plurality of surfaces for accepting a plurality
of tie-downs (60, 62, 64, 66, 68, 70); and
coupling a plurality of transverse support members (40, 42, 44) between the first
structural securement and the second structural securement such that the first and
second structural securements are spaced at approximately the track-distance apart,
driving the crawler crane (16) forward onto the first and second structural securements
such that a rear of the crawler crane (16) is approximate the first ends of the first
and second structural securements;
securing the crawler crane (16) to the first and second structural securements with
a plurality of tie-downs (60, 62, 64, 66, 68, 70) around the parallel tracks (26,
28);
extending the tipping fulcrum of the crawler crane (16) toward the second end of the
securement.
9. The method as recited in claim 8, wherein driving the crawler crane (16) further comprises
driving the crawler crane (16) in response to a sudden increase in wind speed.
10. The method as recited in claim 8, wherein driving the crawler crane (16) further comprises
driving the crawler crane (16) in response to the crawler crane (16) being taken out-of-service.
1. System (10) zur Sicherung eines Raupenkrans, der einen Kran aufweist, der auf einem
Fahrgestell (24) mit einem Satz paralleler Raupen (28, 30) montiert ist, die Raupenketten
(30, 32) aufweisen, wobei das System (10) Folgendes umfasst:
eine erste und eine zweite Struktursicherung (12, 14), die etwa in einem Raupenabstand
in Bezug auf den Raupenkran (16) beabstandet sind, wobei die erste und die zweite
Struktursicherung (12, 14) Folgendes umfassen:
ein Strukturmattensubsystem (92), das vier Breitflanschträger (94, 96, 98, 100, 102,
104, 106, 108) aufweist, die mit einer Vielzahl von Querträgerelementen (110, 112,
114, 116, 118, 120) so verschweißt sind, dass Öffnungen zwischen den Breitflanschträgern
(94, 96, 98, 100, 102, 104, 106, 108) und den Querträgerelementen (110, 112, 114,
116, 118, 120) ausgebildet sind,
eine Vielzahl von Strukturstützelementen, die in der Nähe der Öffnungen (122) befestigt
sind,
wobei das Strukturmattensubsystem (92) ein erstes Ende und ein zweites Ende aufweist;
wobei das Strukturmattensubsystem (92) eine größere Breite aufweist als eine der Raupen
(26, 28) des Raupenkrans (16),
wobei das Strukturmattensubsystem (92) eine Länge aufweist, die zumindest um 3,05
Meter (10 Fuß) länger ist als eine der Raupen (26, 28) des Raupenkrans (16),
wobei das Strukturmattensubsystem (92) von dem ersten Ende zum zweiten Ende einen
Festzurrbereich (130), einen eigentlichen Raupenkranbereich (132) und einen Erweiterungs-Raupenkranbereich
(134) aufweist;
wobei das Strukturmattensubsystem (92) eine Höhe aufweist, die ausgelegt ist, um den
Raupenkran (16) in Vorwärtsbewegung auf dem ersten Ende auf diesem aufzunehmen, und
wobei der Festzurrbereich (130) eine Vielzahl von Oberflächen aufweist, um eine Vielzahl
von Verzurrungen (60, 62, 64, 66, 68, 70) aufzunehmen; und
eine Vielzahl von Querstützelementen (40, 42, 44), die die erste Struktursicherung
mit der zweiten Struktursicherung so koppeln, dass die erste und die zweite Struktursicherung
etwa im Raupenabstand voneinander beabstandet sind;
wobei der Erweiterungs-Raupenkranbereich (134) in Kombination mit dem eigentlichen
Raupenkranbereich (132) und dem Festzurrbereich (130) den Kipppunkt des Raupenkrans
(16) in Bezug auf die erste und die zweite Sicherung in Richtung des zweiten Endes
der Sicherung verschieben, wenn der Raupenkran (16) darauf gefahren und daran befestigt
wird.
2. System (10) nach Anspruch 1, wobei die vier Breitflanschträger (94, 96, 98, 100, 102,
104, 106, 108) ferner vier Breitflanschstahlträger umfassen.
3. System (10) nach Anspruch 1, wobei das Strukturmattensubsystem (92) ferner eine Breite
von etwa 2,44 m (8 Fuß) umfasst.
4. System (10) nach Anspruch 1, wobei das Strukturmattensubsystem (92) ferner eine Länge
von etwa 12,2 m (40 Fuß) umfasst.
5. System (10) nach Anspruch 1, wobei das Strukturmattensubsystem (92) ferner eine Länge
umfasst, die um etwa 3,05 m bis 4,57 m (10 bis 15 Fuß) länger ist als eine der Raupen.
6. System (10) nach Anspruch 1, wobei die Vielzahl von Querträgerelementen ferner eine
Vielzahl von Querträgerstrukturrohrelementen (110, 112, 114, 116, 118, 120) umfasst.
7. System (10) nach Anspruch 1, wobei die Vielzahl von Strukturstützelementen ferner
eine Vielzahl von Holzbalken (124) umfasst.
8. Verfahren zur Sicherung eines Raupenkrans (10), der einen Kran (18) aufweist, der
an einem Fahrgestell (24) mit einem Satz paralleler Raupen (26, 28) montiert ist,
die Raupenketten (30, 32) aufweisen, wobei das Verfahren Folgendes umfasst:
das Bereitstellen einer ersten und einer zweiten Struktursicherung, die etwa in einem
Raupenabstand in Bezug auf den Raupenkran beabstandet sind, wobei die erste und die
zweite Struktursicherung Folgendes umfassen:
ein Strukturmattensubsystem (92), das vier Breitflanschträger aufweist, die mit einer
Vielzahl von Querträgerelementen so verschweißt sind, dass Öffnungen zwischen den
Breitflanschträgern und den Querträgerelementen ausgebildet werden,
eine Vielzahl von Strukturstützelementen, die zwischen den Öffnungen (122) festgelegt
sind,
wobei das Strukturmattensubsystem (92) ein erstes Ende und ein zweites Ende aufweist;
wobei das Strukturmattensubsystem (92) eine größere Breite aufweist als eine der Raupen
des Raupenkrans (16),
wobei das Strukturmattensubsystem (92) eine Länge aufweist, die zumindest um 3,05
Meter (10 Fuß) länger ist als eine der Raupen des Raupenkrans (16),
wobei das Strukturmattensubsystem (92) von dem ersten Ende zum zweiten Ende einen
Festzurrbereich (130) einen eigentlichen Raupenkranbereich (132) und einen Erweiterungs-Raupenkranbereich
(134) aufweist;
wobei das Strukturmattensubsystem (92) eine Höhe aufweist, die ausgelegt ist, um den
Raupenkran (16) in Vorwärtsbewegung auf dem ersten Ende auf diesem aufzunehmen, und
wobei der Festzurrbereich (130) eine Vielzahl von Oberflächen aufweist, um eine Vielzahl
von Verzurrungen (60, 62, 64, 66, 68, 70) aufzunehmen; und
das Koppeln einer Vielzahl von Querstützelementen (40, 42, 44) zwischen der ersten
und der zweiten Struktursicherung, sodass die erste und die zweite Struktursicherung
etwa im Raupenabstand beabstandet sind;
das Fahren des Raupenkrans (16) vorwärts auf die erste und die zweite Struktursicherung,
so dass ein Heck des Raupenkrans (16) in der Nähe der ersten Enden der ersten und
zweiten Struktursicherung vorliegt;
das Sichern des Raupenkrans (16) an dem ersten und zweiten Strukturelement mit einer
Vielzahl von Verzurrungen (60, 62, 64, 66, 68, 70) um die parallelen Raupen (26, 28)
herum;
das Verlagern des Kipppunkts des Raupenkrans (16) in Richtung des zweiten Endes der
Sicherung.
9. Verfahren nach Anspruch 8, wobei das Fahren des Raupenkrans (16) ferner das Fahren
des Raupenkrans (16) als Antwort auf eine plötzliche Steigerung der Windgeschwindigkeit
umfasst.
10. Verfahren nach Anspruch 8, wobei das Fahren des Raupenkrans (16) ferner das Fahren
des Raupenkrans (16) als Antwort auf das Außer-Betrieb-Stellen des Raupenkrans (16)
umfasst.
1. Système (10) pour fixer une grue à chenilles ayant une grue montée sur un châssis
de roulement (24) avec un ensemble de chemins de roulement (28, 30) parallèles ayant
des bandes de roulement sans fin (30, 32), le système (10) comprenant :
des première et seconde fixations structurelles (12, 14) espacées approximativement
à une distance de chemin de roulement par rapport à la grue à chenilles (16), chacune
des première et seconde fixations structurelles (12, 14) comprenant :
un système secondaire de mat structurel (92) ayant quatre larges poutres en (94, 96,
98, 100, 102, 104, 106, 108) soudées ensemble avec une pluralité d'éléments de traverse
(110, 112, 114, 116, 118, 120) de sorte que des ouvertures sont formées entre les
larges poutres en (94, 96, 98, 100, 102, 104, 106, 108) et les éléments de traverse
(110, 112, 114, 116, 118, 120),
une pluralité d'éléments de support structurels fixés à proximité des ouvertures (122),
le système secondaire de mat structurel (92) ayant une première extrémité et une seconde
extrémité,
le système secondaire de mat structurel (92) ayant une largeur supérieure à celle
des chemins de roulement (26, 28) de la grue à chenilles (16),
le système secondaire de mat structurel (92) ayant une longueur supérieure à celle
des chemins de roulement (26, 28) de la grue à chenilles (16) d'au moins 3,05 mètres
(dix pieds), le système secondaire de mat structurel (92) ayant, de la première extrémité
à la seconde extrémité, une région d'arrimage (130), une région de grue à chenilles
d'origine (132) et une région de grue à chenilles améliorée (134),
le système secondaire de mat structurel (92) ayant une hauteur configurée pour accepter
la grue à chenilles (16) en entraînement avant sur la première extrémité, et
la région d'arrimage (130) ayant une pluralité de surfaces pour accepter une pluralité
d'arrimages (60, 62, 64, 66, 68, 70) ; et
une pluralité d'éléments de support transversaux (40, 42, 44) couplant la première
fixation structurelle à la seconde fixation structurelle de sorte que les première
et seconde fixations structurelles sont espacées approximativement à la distance de
chemin de roulement,
dans lequel par rapport aux première et seconde fixations, la région de grue à chenilles
améliorée (134) en combinaison avec la région de grue à chenilles d'origine (132),
et la région d'arrimage (130) déplacent un pivot basculant de la grue à chenilles
(16) vers la seconde extrémité de la fixation lorsque la grue à chenilles (16) est
entraînée sur ce dernier et fixée à ce dernier.
2. Système (10) selon la revendication 1, dans lequel les quatre larges poutres en l
(94, 96, 98, 100, 102, 104, 106, 108) comprennent en outre quatre larges poutres en
l en acier.
3. Système (10) selon la revendication 1, dans lequel le système secondaire de mat structurel
(92) comprend en outre une largeur d'approximativement 2,44 m (huit pieds).
4. Système (10) selon la revendication 1, dans lequel le système secondaire de mat structurel
(92) comprend une longueur d'approximativement 12,2 m (40 pieds).
5. Système (10) selon la revendication 1, dans lequel le système secondaire de mat structurel
(92) comprend en outre une longueur supérieure à celle des chemins de roulement d'approximativement
3,05 m à 4,57 m (10 à 15 pieds).
6. Système (10) selon la revendication 1, dans lequel la pluralité d'éléments de traverse
comprend en outre une pluralité d'éléments de tuyau structurels de traverse (110,
112, 114, 116, 118, 120).
7. Système (10) selon la revendication 1, dans lequel la pluralité d'éléments de support
structurels comprend en outre une pluralité de bois de charpente (124).
8. Procédé pour fixer une grue à chenilles (10) ayant une grue (18) montée sur un châssis
roulant (24) avec un ensemble de chemins de roulement (26, 28) parallèles ayant des
bandes de roulement sans fin (30, 32), le procédé comprenant les étapes consistant
à :
prévoir des première et seconde fixations structurelles espacées approximativement
à une distance de chemin de roulement par rapport à la grue à chenilles, chacune des
première et seconde fixations structurelles comprenant :
un système secondaire de mat structurel (92) ayant quatre larges poutres en l soudées
ensemble avec une pluralité d'éléments de traverse de sorte que des ouvertures sont
formées entre les larges poutres en l et les éléments de traverse,
une pluralité d'éléments de support structurels fixés entre les ouvertures (122),
le système secondaire de mat structurel (92) ayant une première extrémité et une seconde
extrémité,
le système secondaire de mat structurel (92) ayant une largeur supérieure à celle
des chemins de roulement de la grue à chenilles (16),
le système secondaire de mat structurel (92) ayant une longueur supérieure à celle
des chemins de roulement de la grue à chenilles (16) d'au moins 3,05 mètres (10 pieds),
le système secondaire de mat structurel (92) ayant, de la première extrémité à la
seconde extrémité, une région d'arrimage (130), une région de grue à chenilles d'origine
(132) et une région de grue à chenille améliorée (134),
le système secondaire de mat structurel (92) ayant une hauteur configurée pour accepter
la grue à chenilles (16) en entraînement avant sur la première extrémité, et
la région d'arrimage (130) ayant une pluralité de surfaces pour accepter une pluralité
d'arrimages (60, 62, 64, 66, 68, 70) ; et
coupler une pluralité d'éléments de support transversaux (40, 42, 44) entre la première
fixation structurelle et la seconde fixation structurelle de sorte que les première
et seconde fixations structurelles sont espacées approximativement à la distance de
chemin de roulement,
entraîner la grue à chenilles (16) vers l'avant sur les première et seconde fixations
structurelles de sorte qu'une partie arrière de la grue à chenilles (16) est à proximité
des premières extrémités des première et seconde fixations structurelles ;
fixer la grue à chenilles (16) sur les première et seconde fixations structurelles
avec une pluralité d'arrimage (60, 62, 64, 66, 68, 70) autour des chemins de roulement
(26, 28) parallèles ;
étendre le pivot basculant de la grue à chenilles (16) vers la seconde extrémité de
la fixation.
9. Procédé selon la revendication 8, dans lequel l'étape consistant à entraîner la grue
à chenilles (16) comprend en outre l'étape consistant à entraîner la grue à chenilles
(16) en réponse à une augmentation soudaine de la vitesse du vent.
10. Procédé selon la revendication 8, dans lequel l'étape consistant à entraîner la grue
à chenilles (16) comprend en outre l'étape consistant à entraîner la grue à chenilles
(16) en réponse à la grue à chenilles (16) qui est mise hors service.