EP 3 444 900 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

20.02.2019 Bulletin 2019/08

(51) Int Cl.: H01Q 9/04 (2006.01)

(21) Application number: 17186835.9

(84) Designated Contracting States:

(22) Date of filing: 18.08.2017

· CHUNG, Shyh-Jong

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

- (71) Applicant: Cubtek Inc. Zhubei City, Hsinchu County 302 (TW)
- (72) Inventors:
 - · YU, San-Chuan 302 Zhubei City, Hsinchu County (TW)

- 302 Zhubei City, Hsinchu County (TW)
- TSAI, Ching-Han 302 Zhubei City, Hsinchu County (TW)
- · WANG. Bo-Yi 302 Zhubei City, Hsinchu County (TW)
- (74) Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte

Kennedydamm 55 / Roßstrasse 40476 Düsseldorf (DE)

(54)**DUAL-NOTCH ANTENNA AND ANTENNA ARRAY THEREOF**

A dual-notch antenna includes a radiation member (10) and two microstirp lines (20). The radiation member (57)(10) is formed in a rectangular shape, with two first lateral sides (11) disposed in opposite, and two second lateral sides (12) disposed on two ends of the two first sides (11), respectively. The middle section of each first lateral (11) side is concavely provided with a notch (13). Each notch (13) has a feeding side (131) and two cove sides (132), wherein the feeding side (131) is disposed in parallel to the first lateral sides (11). The two cove sides (132) are connected with two ends of the feeding side (131). Each microstrip line (20) has one end thereof electrically connected with the feeding side (131) of the corresponding notch (130), respectively.

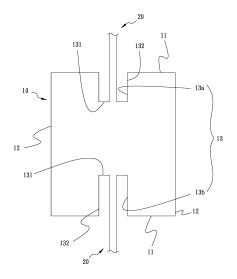


FIG. 1

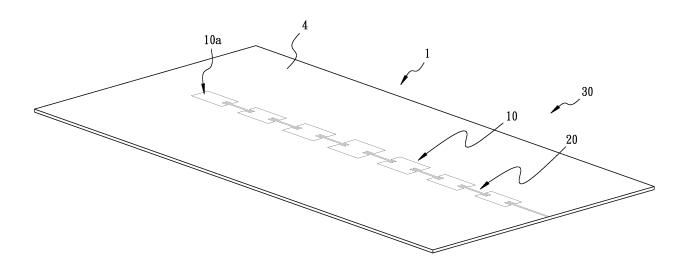


FIG. 3

20

25

40

45

50

55

BACKGROUND OF THE INVENTION

1. Field of the Invention:

[0001] The present invention relates to antenna and antenna array, and more particularly, to a dual notch antenna and antenna array thereof efficiently increasing the impedance bandwidth.

1

2. Description of the Related Art:

[0002] Typically, most of vehicle radar system applies a microstrip antenna array, with a wireless signal transceiver of the vehicle radar system disposed inside a vehicle bumper or a fan guard. The vehicle radar system transmits and receives millimeter-wave wireless signal for carrying out application such as distance detection or information exchange. Because a vehicle bumper is usually provided with a shock absorbing Styrofoam or fiberglass therein, the internally available space is limited. As a result, the radar signal is easily attenuated, causing a designing difficulty of the antenna array.

[0003] Also, typical vehicle radar system operates in a frequency band between 24GHz to 77GHz. Increasing the antenna performance and raising the antenna gain at a high frequency is difficult. In addition, the available space limitation is to be considered. Therefore, the difficulty of the antenna designing is increased.

[0004] Furthermore, US2014/0145909A1 discloses an antenna and array antenna, comprising a radiation member; a grounding element forming an area, wherein the radiation is disposed in the area, and an opening is formed near the fourth side of the radiating element; an extending bar, electrically connected to the fourth side of the radiating element, and extended toward the opening of the grounding element; a first connection element, having one terminal connected to the first side and the fourth side of the radiating element, and another terminal electrically connected to the grounding and feed-in element; and a second connection element, having one terminal electrically connected to the third side and the fourth side of the radiating element, and another terminal electrically connected to the grounding and feed-in element.

[0005] The fourth side of the radiation element above is provided with a concave structure and electrically connected with the extending bar. However, as shown by the reflection coefficient frequency response diagram, the effective bandwidth of the antenna at a frequency about 24GHz is not optimal, failing to achieve a preferably impedance match for avoiding the signal reflection. Also, the fourth side of the radiation has a concave structure. In the basic antenna theory, relative structural design has been mentioned for increasing bandwidth. However, such structure is not suitable for antenna array.

[0006] Therefore, it is desirable to increase the anten-

na efficiency and impedance bandwidth thereof.

SUMMARY OF THE INVENTION

[0007] For improving the issues above, an embodiment of the present invention discloses a dual-notch antenna and the antenna array thereof, which are able to efficiently increase the impedance bandwidth and applicable to array antenna, so as to optimize the antenna radiation pattern.

[0008] An embodiment of the dual-notch antenna, comprising:

a radiation member formed in a rectangular shape, with two first lateral sides disposed in opposite, and two second lateral sides disposed on two ends of the two first sides, so as to form the rectangular shape, a middle section of each first lateral side concavely provided with a notch, each of the two notches provided with a feeding side and two cove sides, the feeding side be disposed in parallel to the two first lateral sides, the two cove sides connected with two ends of the feeding side; and

two microstrip lines, with one end of each microstrip line electrically connected with the feeding side of the two notches, respectively.

[0009] In another embodiment of the present invention, a plurality of radiation members and microstrip lines are applied, wherein each microstrip line is electrically connected with the feeding side of each radiation member, such that the radiation members are connected in series to form a string array.

[0010] With such configuration, with the notches concavely disposed on the two first lateral sides of each radiation member, the microstrip line is allowed to be inserted into the notch with a certain length, so as to be electrically connected with the feeding side at a proper position. Therefore, an optimal impedance match is provided, thus avoiding signal reflection.

[0011] Also, the two first lateral sides of each radiation member are concavely provided with a notch, respectively, so as to adjust the feeding impedance of each antenna and increase the effective frequency of the antenna.

[0012] Furthermore, by arranging the radiation members in series and forming a string array, external frequency bandwidth is effectively increased, so that an optimal impedance match is achieved, thus optimizing the antenna radiation pattern.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

Fig. 1 is a schematic view illustrating the antenna in accordance with an embodiment of the present invention.

4

Fig. 2 is a schematic view illustrating the antenna array in accordance with an embodiment of the present invention.

Fig. 3 is a schematic view illustrating the antenna array disposed on the substrate.

Fig. 4 is a partially sectional view of the Fig. 3.

Fig. 5 is a reflection coefficient frequency response diagram.

Fig. 6 is a schematic diagram illustrating the comparison between the reflection coefficient frequency response diagrams of the antenna array in accordance with the present invention and a conventional antenna array.

Fig. 7 is a schematic view illustrating the density of current vector of the radiation member in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0014] The aforementioned and further advantages and features of the present invention will be understood by reference to the description of the preferred embodiment in conjunction with the accompanying drawings where the components are illustrated based on a proportion for explanation but not subject to the actual component proportion.

[0015] Referring to Fig. 1, Fig. 5, Fig. 6, and Fig. 7, an embodiment of the present invention provides a dual-notch antenna. In an embodiment, the dual-notch antenna refers to a microstrip antenna. The dual-notch antenna is disposed on a circuit board 1, comprising a substrate layer 2 and a grounding layer 3 that are stacked. The substrate layer 2 is provided with a first face 4 and a second face 5 disposed in opposite to the first face 4. The dual-notch antenna is disposed on the first face 4, and the grounding layer 3 is disposed on the second face 5. The dual-notch antenna comprises a radiation member 10 and two microstrip lines 20.

[0016] The radiation member 10 is formed in a rectangular shape, with two first lateral sides 11 disposed in opposite, and two second lateral sides 12 disposed on two ends of the two first lateral sides 11, so as to form the rectangular shape of the radiation member 10. Each of the two first lateral sides 11 has a notch 13 disposed at the middle section thereof. Each of the two notches 13 is provided with a feeding side 131 disposed in parallel to the two corresponding first lateral sides 11, and two cove sides 132 connected with the two ends of the feeding sides 131, respectively. In an embodiment of the present invention, the two cove sides 132 are disposed in parallel with the two second lateral sides 12, and also disposed in vertical to the feeding side 131. With such configuration, the two notches 13 are allowed to adjust the feeding impedance bandwidth of the dual-notch antenna.

[0017] Also, the second lateral side 12 is 1 to 2 times the length of the first lateral side 11. In other words, the minimum length of the second lateral side 12 is equal to

the length of the first lateral side 11, and the maximum length of the second lateral side 12 is equal to 2 times the length of the first lateral side 11. In an embodiment, the length of the first lateral side 11 ranges between 2.5 to 5.5 times the length of the feeding side 131, wherein the length of the first lateral side 11 ranges from 1.5 to 3.5 millimeters. The length of the second lateral side 12 ranges from 3.5 to 5 times the length of the cove side 132, and the length of the cove side 132 is larger than the length of the feeding side 131. In an embodiment, the length of the first lateral side 11 is chosen from 1.8 millimeters, 2 millimeters, 2.5 millimeters, or 3 millimeters; the length of the second lateral side 12 is 3.355 millimeters; the length of the feeding side 131 is 0.6 millimeters.

[0018] Further, in an embodiment, the two notches 13 includes a first notch 13a and a second notch 13b. The length of the cove sides 132 of the first notch 13a is different from the length of the cove sides 132 of the second notch 13b, wherein the length of the cove sides 132 of the first notch 13a is 0.7 millimeters, and the length of the cove sides 132 of the second notch 13b is 0.85 millimeters

[0019] Each of the two microstrips 20 has one end thereof electrically connected with the feeding side 131 of a corresponding notch 13, respectively. In an embodiment, the end of the microstrip 20 electrically connected with the feeding side 131 is arranged in vertical to the feeding side 131, wherein the length of the feeding side 131 ranges from 2.5 times to 3.5 times the width of the microstrip line 20. In the embodiment, the width of the microstrip line 20 is 0.2 millimeters. Therefore, each microstrip line 20 is allowed to be inserted with by a certain degree thereof into the corresponding notch 13 and electrically connected with the feeding side 131 at a proper position, so as to achieve the most preferred impedance match.

[0020] Referring to Fig. 7, with the specified size arrangement of the radiation member 10 and the two notches 13, the two second lateral sides 12 and the two notches 13 of the radiation member 10 is provided with high intensity current, so as to increase the radiation efficiency of the radiation member 10. In addition, the current direction on the two second lateral sides 12 are in opposite to the current direction on the two microstrip lines 20. Therefore, an optimal impedance match is achieved.

[0021] Referring to Fig. 2 to Fig. 6, the dual-notch antenna is applied to form an antenna array. Besides lowering the square measure demand, various antenna effects are achievable through adjustment. In another embodiment of the present invention, the dual-notch antenna array is disposed on the first face 4 of the substrate layer 2 of the circuit board 1, as shown by Fig. 3 and Fig. 4.

[0022] The dual-notch antenna array comprises a plurality of radiation members 10 and a plurality of microstrip lines 20. Each of the two first lateral sides 11 of the radiation member 10 is concavely provided with a notch

45

50

55

30

35

40

45

50

55

13. Each of the microstrip lines 20 are electrically connected with the corresponding feeding side 131 of each radiation member 10, respectively, such that the radiation members 10 are connected in series to form a string array 30. As shown by Fig. 2, in an embodiment of the present invention, the first notch 13a of a radiation member 10 faces the second notch 13b of the neighboring radiation member 10.

[0023] Further, the length of the first lateral sides 11 of the two radiation members 10 on two distal ends of the string array 30 is smaller than the length of the first lateral sides 11 of the radiation members 10 that are disposed closed to the center of the string array 30. Also, from the radiation member 10 at the center of the string array 30 toward the two radiation members 10 at the two distal ends of the string array 30, the lengths of the first lateral sides 11 of each radiation member 10 are gradually decreased, such that the radiation member 10 at the center of the string array 30 has the longest first lateral sides 11, and the radiation members 10 at the two distal ends have the shortest first lateral sides 11. The length of the first lateral side 11 ranges between 1.5 to 3.5 millimeters. In the embodiment, the length of the first lateral sides 11 of each radiation member 10 is chosen from a combination including 1.8 millimeters, 2 millimeters, 2.5 millimeters, and 3 millimeters.

[0024] Referring to Fig. 2, in an embodiment of the present invention, the string array 30 includes six radiation members 10 provided with two notches 13 and one radiation member 10a provided with one notch 13. As shown in the figure and counted from the top of the string array 30, the first radiation member 10a has only one notch 13, and the length of the first lateral sides 11 thereof is 1.8 millimeters; the fourth radiation member 10 is disposed at the center of the string array 30, and the length of the first lateral side 11 thereof is 3 millimeters; the length of the first lateral sides 11 of the second and the sixth radiation members 10 is 2 millimeters; the length of the first lateral sides 11 of the third and the fifth radiation members 10 is 2.5 millimeters; and the length of the first lateral sides 11 of the seventh radiation member 10 is 1.8 millimeters.

[0025] Therefore, referring to Fig. 1 and Fig. 5, with the specific sizes of the radiation member 10 and the two notches 13, when the reflection coefficient curve lowers to -10dB(Return Loss 10dB), the impedance bandwidth F1 of the frequency difference around the operational frequency of 24GHz is wider, as shown by Fig. 5. In an embodiment of the present invention, the impedance bandwidth **F1** ranges from 23.9592GHz to 24.4017GHz. [0026] Furthermore, Fig. 6 shows the comparison between the reflection coefficient frequency response diagram of the dual-notch antenna array and a conventional antenna array. Clearly, the impedance bandwidth F1 of the dual-notch antenna array in accordance with the present invention is wider than the impedance bandwidth F2 of the conventional antenna array. Therefore, the dual-notch antenna array efficiently increases the impedance bandwidth to achieve an optimal antenna frequency pattern

[0027] Therefore, the two notches 13 of the radiation member 10 allows the microstrip lines 20 to be inserted into the notches 13 with a proper length and electrically connected with the feeding side 131, achieving an optimal impedance match and preventing signal reflections. Also, the two notches 13 of the radiation member 10 adjust the feeding impedance of each radiation members 10, efficiently increasing the effective bandwidth.

[0028] Additionally, the dual-notch antenna is allowed to be applied as an antenna array, so as to efficiently lower the square measure demand, and achieve various antenna functions through the adjustment. By connecting radiation members **10** in series to form a string array **30**, external frequency bandwidth is improved to acquire an optimal impedance match.

[0029] Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.

Claims

1. A dual-notch antenna, comprising:

a radiation member (10) formed in a rectangular shape, with two first lateral sides (11) disposed in opposite, and two second lateral sides (12) disposed on two ends of the two first sides (11), respectively, so as to form the rectangular shape, a middle section of each first lateral (11) side concavely provided with a notch (13), each of the two notches (13) provided with a feeding side (131) and two cove sides (132), the feeding side (131) disposed in parallel to the two first lateral sides (11), the two cove sides (132) connected with two ends of the feeding side (131); and

two microstrip lines (20), with one end of each microstrip line (20) electrically connected with the feeding side (131) of the two notches (130), respectively.

- 2. The dual-notch antenna of claim 1, wherein a length of each first lateral side (11) ranges between 1.5 millimeters to 3.5 millimeters.
- 3. The dual-notch antenna of claim 1, wherein a length of each first lateral side (11) ranges from 2.5 times to 5.5 times a length of each feeding side (131).
- 4. The dual-notch antenna of claim 1, wherein a length of each feeding side (131) ranges from 2.5 times to 3.5 times a width of each microstrip line (20).

- 5. The dual-notch antenna of claim 1, wherein a length of each cove side (132) is larger than a length of each feeding side (131).
- **6.** The dual-notch antenna of claim 1, wherein a length of each second lateral side (12) ranges from 3.5 times to 5 times of a length of each cove side (132).
- 7. The dual-notch antenna of claim 1, wherein a plurality of radiation members (10) and microstrip lines (20) are provided, each microstrip line (20) is electrically connected with one of the corresponding feeding sides (131) of the radiation member (10), such that the plurality of radiation members (10) are connected in series to form a string array (30).
- 8. The dual-notch antenna of claim 7, wherein a length of the first lateral sides (11) of the two radiation members (10) disposed on two distal ends of the string array (30) is smaller than a length of the first lateral sides (11) of the radiation members (10) disposed between the two distal ends of the string array (30).
- 9. The dual-notch antenna of claim 7, wherein lengths of the first lateral sides (11) between each radiation member (10) from a center of the string array (30) toward the two radiation members (10) at two distal ends of the string array (30) are gradually decreased, such that the radiation member (10) at the center of the string array (30) has the longest first lateral sides (11), and the radiation members (10) at the two distal ends of the string array (30) have the shortest first lateral sides (11).
- **10.** The dual-notch antenna of claim 7, wherein a length of each first lateral side (11) ranges between 1.5 millimeters to 3.5 millimeters.
- **11.** The dual-notch antenna of claim 7, wherein a length of each feeding side (131) ranges from 2.5 times to 3.5 times a width of each microstrip line (20).
- **12.** The dual-notch antenna of claim 7, wherein a length of each second lateral side (12) ranges from 3.5 times to 5 times of a length of each cove side (132).

50

55

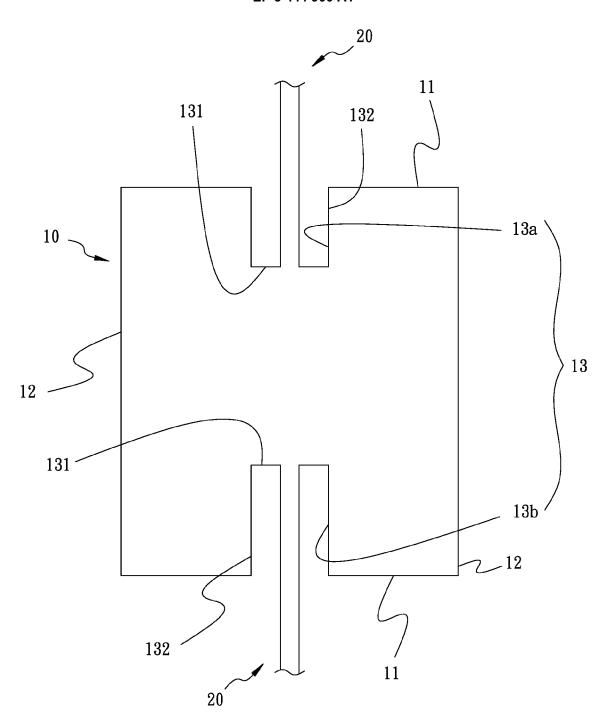


FIG. 1

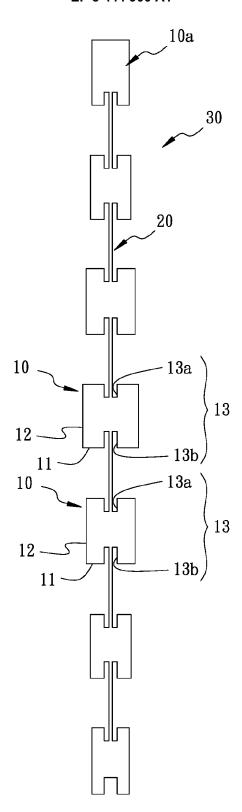


FIG. 2

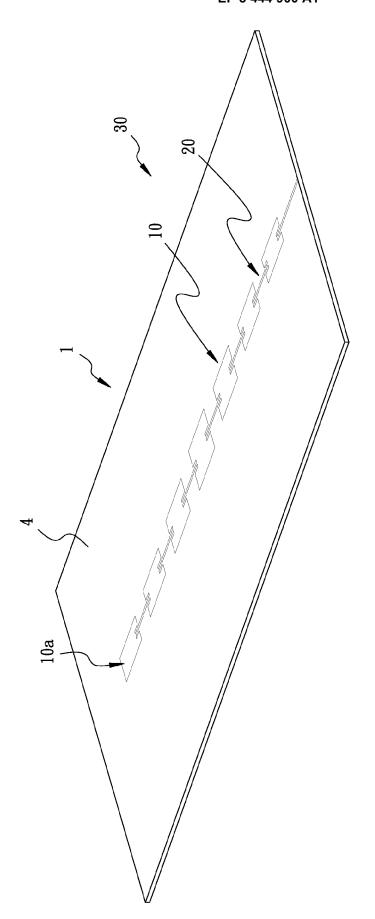


FIG. 3

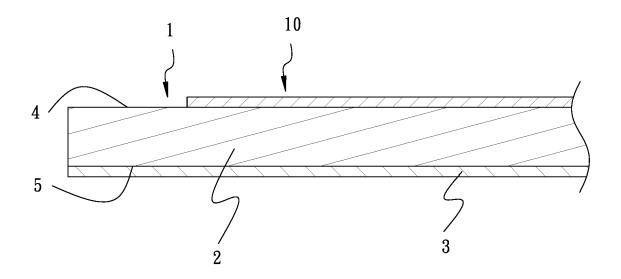


FIG. 4

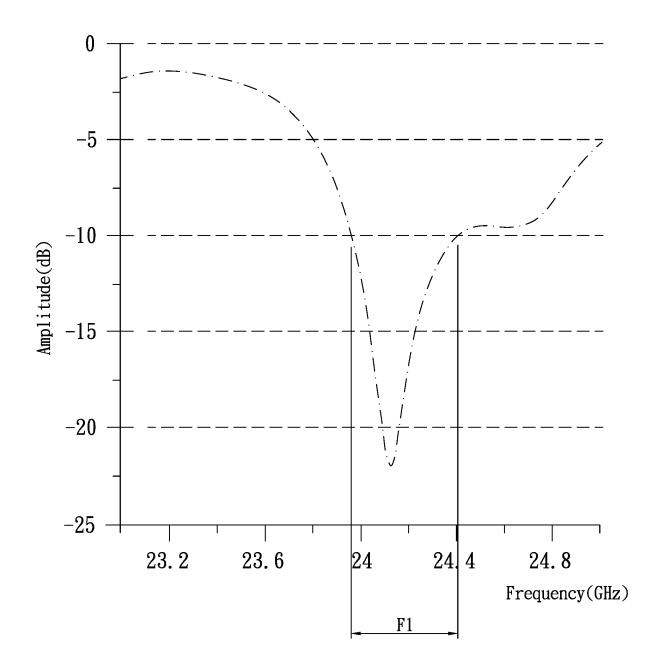


FIG. 5

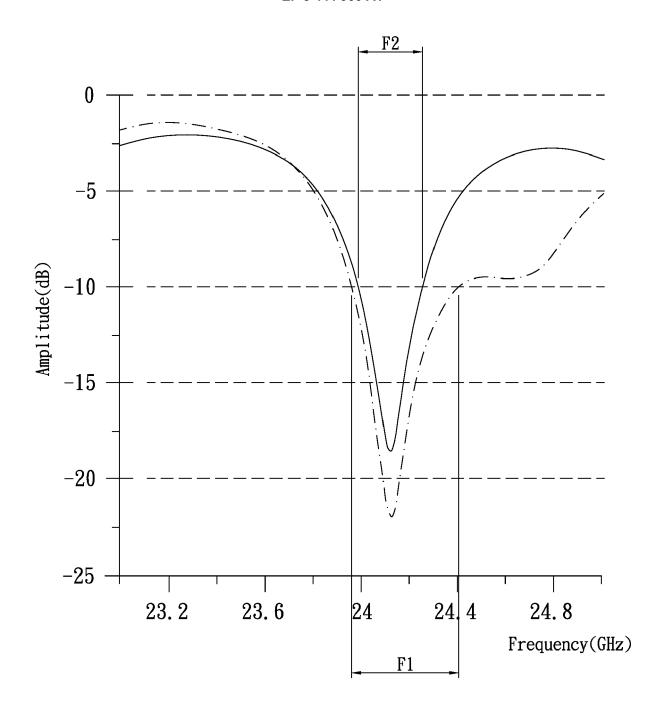


FIG. 6

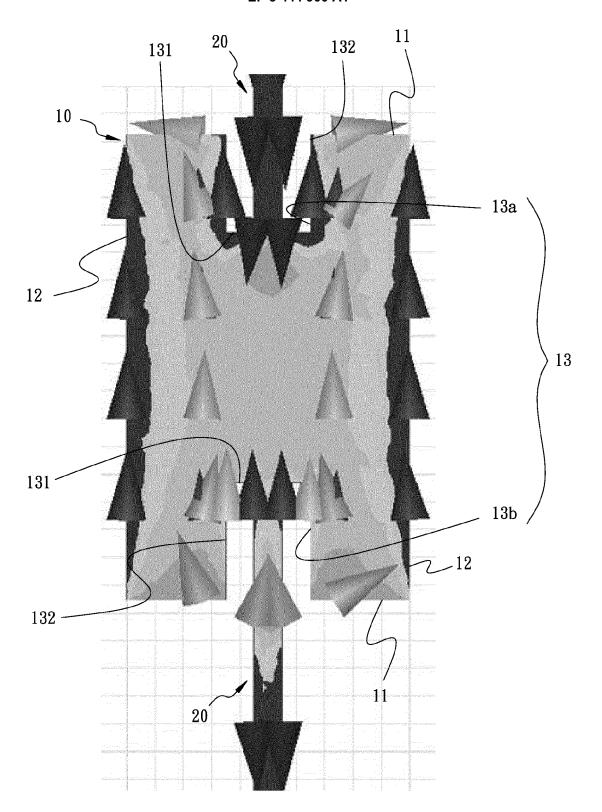


FIG. 7

EUROPEAN SEARCH REPORT

Application Number EP 17 18 6835

	DOCUMENTS CONSID	EKED TO BE K	ELEVANI				
Category	Citation of document with indication, where ap of relevant passages		propriate, Relevant to claim		CLASSIFICATION OF THE APPLICATION (IPC)		
X	YANG WANCHEN ET AL: series-fed patch ar system", 2016 IEEE INTERNATI ELECTROMAGNETICS: A INNOVATION COMPETIT 16 May 2016 (2016-6 XP032919574, DOI: 10.1109/IWEM.2 [retrieved on 2016-	tenna array 1 ONAL WORKSHOR APPLICATIONS A TION (IWEM), 1 D5-16), pages 2016.7505065	for radar ON AND STUDENT	1,2	2	INV. H01Q	9/04
Y	* figure 1 * * column 1 - column	-	3-6				
Y	YING HU ET AL: "A Inset-Fed Rectangul Antennas", ANTENNAS AND PROPAGINTERNATIONAL SYMPO ALBUQUERQUE, NM, US PISCATAWAY, NJ, USA USA, 9 July 2006 (2006-60 XP010944129, ISBN: 978-1-4244-01	GATION SOCIETY SSIUM 2006, IE SA 09-14 JULY A,IEEE, PISCAT 07-09), pages	o / EEE 2006, [AWAY, NJ,	3-6 12	5,11,		HNICAL FIELDS RCHED (IPC)
x	* figure 1 * * figure 2 * DEWAN R ET AL: "In tapering and througantenna",	 mproved desigr gh element ser	ries	1,2	2,7-10		
Y	WIRELESS TECHNOLOGY (ISWTA), 2012 IEEE 23 September 2012 (202-205, XP03227628 DOI: 10.1109/ISWTA. ISBN: 978-1-4673-22 * figure 1 * * table 1 *	, IEEE,					
			-/				
	The present search report has	•		<u> </u>			
	Place of search	· ·	letion of the search		^ 7	Exam	
	The Hague	8 Febr	ruary 2018		Col	ıado	Garrido, Ar
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category nological background written disclosure mediate document	her	T: theory or principle E: earlier patent door after the filling date D: document cited in L: document cited for &: member of the sar document	ument the a r othe	t, but publis pplication r reasons	hed on, o	

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number EP 17 18 6835

CLASSIFICATION OF THE APPLICATION (IPC)

TECHNICAL FIELDS SEARCHED (IPC)

Relevant to claim

5

		DOCUMENTS CONSID	ERED TO I	BE RELEVANT	
	Category	Citation of document with i of relevant pass		appropriate,	Releva to clair
10	A	TAO YUAN ET AL: "A Antenna Array Desig IEEE ANTENNAS AND W LETTERS, IEEE, PISO vol. 7, 15 July 200 362-365, XP01133077	gn", WIRELESS P CATAWAY, N 08 (2008-0	PROPAGATION	1-12
15		ISSN: 1536-1225, DC 10.1109/LAWP.2008.9 * figure 3 * * page 362, column	OI: 928487	364, column 1	
20					
25					
30					
35					
40					
45			been drawn up	for all claims	I
45	1	The present search report has			<u> </u>
45		Place of search		of completion of the search	
45	P04C01)		8	of completion of the search February 2018 T: theory or principle	

ruary 2018 Collado Garrido, Ana T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filling date
D: document cited in the application
L: document oited for other reasons & : member of the same patent family, corresponding document

Examiner

55

page 2 of 2

EP 3 444 900 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20140145909 A1 [0004]