TECHNICAL FIELD
[0001] The present invention relates to a spherical compressor.
BACKGROUND
[0002] A spherical compressor is a newly invented variable-volume mechanism with a novel
structure. The spherical compressor requires no intake/exhaust valve, few moving parts,
and has the advantages of small vibration, high mechanical efficiency, reliable sealing
performance, etc. There are many patents of spherical compressors, such as
Chinese Patent No. 03114505.1 (titled "Variable-volume Mechanism for Compressor"),
CN200610104569.8 (titled "Spherical Compressor Capable of Multi-stage Compression"), and
CN201010264211.8 (titled "Hinge Sealing Automatic Compensation Mechanism for Spherical Compressor").
The application and development of spherical compressors have made steady progress
in recent years. Spherical compressors can be widely used in various fields such as
gas compressors, refrigerator and refrigeration air-conditioning compressors and pump
machinery. Various power machines based on spherical compressors are undergoing industrialization.
[0003] Since the rotation of a piston of an existing spherical compressor is powered by
an eccentric main shaft, when the main shaft rotates to the point where the axis of
a turntable coincides with the axis of the piston, the resultant force of the main
shaft acting on the turntable perpendicularly intersects with the axis of the piston
and the axis of the turntable, so that the torque of the piston rotating around the
axis of the piston is zero and the piston cannot rotate, thus causing clamping stagnation
of the mechanism, which is the dead center of the mechanism. The
Chinese Patent No. 201410100390.X titled "Anti-Locking Mechanism for Rotor of Spherical Compressor" aims to solve the
problem of locking at a dead center of a spherical compressor. Specifically, a pin
boss is added to a turntable shaft; a guide sleeve is arranged on the pin boss; a
concave sliding chute is arranged on a base spherical surface of a cylinder body or
a lower spherical surface of the cylinder body; and the concave sliding chute is distributed
on the sliding track of the guide sleeve on the corresponding base spherical surface
of the cylinder body or the lower spherical surface of the cylinder body during the
rotation of a turntable. At the moment when the rotating torque of the turntable is
zero, when the main shaft drives the turntable, the contact force generated by the
guide sleeve and the concave sliding chute can still keep the turntable moving, so
that the turntable is not prone to clamping stagnation, fundamentally solving the
dead center problem during the movement of the spherical compressor mechanism. However,
high precision of the concave sliding chute is required to ensure a good fit between
the guide sleeve and the concave sliding chute, and a cooling mechanism is needed
to prevent heat generation caused by friction of the guide sleeve and the concave
sliding chute during the movement of the anti-locking mechanism, thus increasing manufacturing
and operation costs.
Chinese Patent Application No. 201310100697.5 discloses a mechanism synchronous with the rotation of a turntable in a spherical
compressor, which can effectively overcome the problem that when the piston axis is
coincident or approximately coincident with the turntable axis, the main shaft fails
to drive the rotation of the piston. However, in this mechanism, the steel ball is
required to be highly matched with the cross section of the concave sliding chute,
and the abrasion will occur at the contact surface between the steel ball and the
sliding chute.
SUMMARY
[0004] The objective of the present invention is to design a novel spherical compressor
based on the existing spherical compressor so that the spherical compressor is a mechanism
without dead center.
[0005] The spherical compressor of the present invention includes:
a cylinder body having a hemispherical inner cavity and a turntable shaft hole are
in communication with an outside of the cylinder body;
a cylinder head having a hemispherical inner cavity, wherein the cylinder head is
combined with the cylinder body to form a spherical inner cavity; an intake passage,
an exhaust passage and a piston shaft hole are provided on an inner spherical surface
of the cylinder head; the intake passage and the exhaust passage on the cylinder head
are respectively arranged in an annular space perpendicular to an axis of the piston
shaft hole; the intake passage and the exhaust passage communicate with an intake
hole and an exhaust hole on the cylinder head in communication with the outside of
the cylinder body, respectively;
a piston having a spherical top surface, two side faces which form an angle and a
piston pin boss at a lower part of the two side faces, wherein the spherical top surface
of the piston and the spherical inner cavity have the same center and form a sealed
loose fit; the piston pin boss is a semi-cylindrical; a middle part of the semi-cylinder
is provided with a groove; a piston pin hole which penetrates is provided on a central
axis of the semi-cylinder; a piston shaft protrudes from a center of the spherical
top surface of the piston; and an axis of the piston shaft passes through the center
of the spherical top surface of the piston;
a turntable having a turntable pin boss corresponding to the piston pin boss; wherein
the turntable pin boss is arranged at an upper part of the turntable; an outer peripheral
surface between the upper part and a lower end face of the turntable is a turntable
spherical surface; the turntable spherical surface has the same center with the spherical
inner cavity and is closely attached to the spherical inner cavity to form a sealed
loose fit; two ends of the turntable pin boss are provided with semi-cylindrical grooves;
a middle part of the turntable pin boss is provided with a protruding semi-cylinder;
a turntable pin hole which penetrates is formed on a central axis of the protruding
semi-cylinder; a turntable shaft protrudes from a center of a lower end of the turntable;
and the turntable shaft passes through the center of the turntable spherical surface;
and
a center pin inserted into a pin hole formed by matching the turntable pin boss with
the piston pin boss to form a cylindrical hinge; where matching surfaces of the cylindrical
hinge form a sealed loose fit;
wherein the axis of the piston shaft hole and the axis of the turntable shaft hole
both pass through the spherical center of the spherical inner cavity; and an included
angle between the axis of the piston shaft hole and the axis of the turntable shaft
hole is α; a sliding chute swinging mechanism is arranged between the piston shaft
and the piston shaft hole; the sliding chute swinging mechanism between the piston
shaft and the piston shaft hole allows the piston to swing along a sliding chute relative
to the axis of the piston shaft hole; the turntable shaft is driven to rotate so that
the piston and the turntable relatively swing around the center pin; and a V1 working
chamber and a V2 working chamber with alternatively variable volumes are formed between
an upper end face of the turntable, the two side faces of the piston and the spherical
inner cavity.
[0006] Further, a rotary sleeve in a cylindrical shape is arranged in the piston shaft hole
on the cylinder head. An outer cylinder of the rotary sleeve is coaxial with the piston
shaft hole, and the rotary sleeve can rotate around the axis of the piston shaft hole.
A rotary sleeve sliding chute in a direction of an axis of the center pin is arranged
on an end face of the rotary sleeve, and two side faces of the rotary sleeve sliding
chute are symmetrically arranged on both sides of a plane of the axis of the center
pin and the axis of the piston shaft hole. A piston shoe is fixedly arranged at an
end of the piston shaft, and the piston shoe is arranged in the rotary sleeve sliding
chute. Two side faces of the piston shoe are attached to the two side faces of the
rotary sleeve sliding chute and slide along the two side faces of the rotary sleeve
sliding chute to form a loose fit, and the rotary sleeve sliding chute on the rotary
sleeve and the piston shoe on the piston shaft form the sliding chute swinging mechanism.
The turntable shaft is inserted into the turntable shaft hole on the cylinder body
to form a rotating pair with the cylinder body, and a sealing plug is arranged at
an end of the piston shaft hole on the cylinder head.
[0007] A piston shaft pin hole is provided at the end of the piston shaft. A piston shoe
shaft hole and a piston shoe pin hole matched with the piston shaft pin hole are provided
at a center of the piston shoe, and the piston shaft is inserted into the piston shoe
shaft hole after passing through a via hole through which the piston shaft hole communicates
with the spherical inner cavity. A fixing pin is inserted into a pin hole formed by
matching the piston shoe pin hole with the piston shaft pin hole to fix the piston
shoe at the end of the piston shaft. The two side faces of the piston shoe are parallel
planes, and the two side faces of the piston shoe are attached to the two side faces
of the rotary sleeve sliding chute respectively to form a loose fit.
[0008] The turntable shaft extends out of the cylinder body and is connected to a power
mechanism to serve as a power input end of the compressor.
[0009] Further, a spherical compressor, comprising a cylinder body having a hemispherical
inner cavity, wherein the cylinder body is provided with a turntable shaft hole in
communication with an outside of the cylinder body;
a cylinder head having a hemispherical inner cavity, wherein the cylinder head is
combined with the cylinder body to form a spherical inner cavity; an intake passage,
an exhaust passage and a piston shaft hole are provided on an inner spherical surface
of the cylinder head; the intake passage and the exhaust passage on the cylinder head
are respectively arranged in an annular space perpendicular to an axis of the piston
shaft hole; the intake passage and the exhaust passage communicate with an intake
hole and an exhaust hole on the cylinder head in communication with the outside of
the cylinder body, respectively;
a piston comprising a spherical top surface, two side faces which form an angle, and
a piston pin boss at a lower part of the two side faces, wherein the spherical top
surface of the piston and the spherical inner cavity have the same center and form
a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided on
a middle part of the semi-cylinder; a piston pin hole which penetrates is provided
on a central axis of the semi-cylinder; a piston shaft protrudes from a center of
the spherical top surface of the piston; and an axis of the piston shaft passes through
the center of the spherical top surface of the piston;
a turntable having a turntable pin boss at an upper part of the turntable corresponding
to the piston pin boss; wherein an outer peripheral surface between the upper part
and a lower end face of the turntable is a turntable spherical surface; the turntable
spherical surface has the same center with the spherical inner cavity and is closely
attached to the spherical inner cavity to form a sealed loose fit; two ends of the
turntable pin boss are semi-cylindrical grooves; a middle part of the turntable pin
boss is a protruding semi-cylinder; a turntable pin hole which penetrates is formed
on a central axis of the protruding semi-cylinder; a turntable shaft protrudes from
a center of a lower end of the turntable; and the turntable shaft passes through the
center of the turntable spherical surface; and
a center pin inserted into a pin hole formed by matching the turntable pin boss with
the piston pin boss to form a cylindrical hinge; wherein matching surfaces of the
cylindrical hinge form a sealed loose fit;
wherein the axis of the piston shaft hole and the axis of the turntable shaft hole
both pass through the center of the spherical inner cavity; and an included angle
between the axis of the piston shaft hole and the axis of the turntable shaft hole
is α; a sliding chute swinging mechanism is arranged between the turntable shaft and
the turntable shaft hole; the sliding chute swinging mechanism between the turntable
shaft and the turntable shaft hole allows the turntable to swing along the sliding
chute relative to the axis of the turntable shaft hole at a swing angle of 2α; the
turntable shaft is driven to rotate so that the piston and the turntable relatively
swing around the center pin; and a V1 working chamber and a V2 working chamber that
alternatively change volumes are formed between an upper end face of the turntable,
the two side faces of the piston and the spherical inner cavity; a lower end of the
cylinder body is connected to a main shaft through a main shaft support. An upper
end of the main shaft is placed in the turntable shaft hole, and an outer cylinder
at the upper end of the main shaft is coaxial with the turntable shaft hole. The main
shaft rotates around the turntable shaft hole. A main shaft sliding chute is provided
on an upper end face of the main shaft in a direction of an axis of the center pin,
and two side faces of the main shaft sliding chute are symmetrically arranged on both
sides of a plane of the axis of the turntable shaft hole and the axis of the center
pin. A piston shoe is fixedly arranged at an end of the turntable shaft, and the piston
shoe is arranged in the main shaft sliding chute. Two side faces of the piston shoe
are attached to the two side faces of the main shaft sliding chute and slide along
the two side faces of the main shaft sliding chute to form a loose fit, and the main
shaft sliding chute on the main shaft and the piston shoe on the turntable shaft form
the sliding chute swinging mechanism.
[0010] A lower end of the main shaft is connected to a power mechanism.
[0011] A turntable shaft pin hole is provided at the end of the turntable shaft. A a piston
shoe shaft hole and a piston shoe pin hole matched with the turntable shaft pin hole
are provided at a center of the piston shoe, and the turntable shaft is inserted into
the piston shoe shaft hole after passing through a via hole through which the turntable
shaft hole communicates with the spherical inner cavity. A fixing pin is inserted
into a pin hole formed by matching the piston shoe pin hole with the turntable shaft
pin hole to fix the piston shoe at the end of the turntable shaft. The two side faces
of the piston shoe are parallel planes, and the two side faces of the piston shoe
are attached to the two side faces of the main shaft sliding chute respectively to
form a loose fit.
[0012] The piston shaft hole on the cylinder head communicates with the outside of the cylinder
body, and the piston shaft extends out of the piston shaft hole and is connected to
the power mechanism to serve as the power input end of the compressor.
[0013] Further, the piston includes a piston insert. The piston insert is of a fan-shaped
block structure with two sides thicker than a middle, and is embedded in the groove
in the middle part of the piston pin boss of the piston. The shape of an inner cylindrical
surface of the piston insert is matched with the shape of a protruding semi-cylindrical
surface of the turntable to form a sealed loose fit. A protruding top surface of the
piston insert is an outer cylindrical surface which is matched with a bottom surface
of the groove of the piston pin boss of the piston. Two side faces of the piston insert
are flush with the two side faces of the piston, and two end faces of the piston insert
form a sealed loose fit with two side walls of the groove in the middle part of the
piston pin boss.
[0014] The invention has the following advantages:
- 1. the spherical compressor is a mechanism without dead center;
- 2. the spherical compressor requires a simple structure, a small number of parts and
low processing precision;
- 3. there is no power consumption loss caused by friction and heating when passing
through a dead-center mechanism, and there is no need to arrange a special cooling
mechanism; and
- 4. the spherical compressor can be widely used in refrigeration compressors, air conditioning
compressors, air compressors and pump machinery.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015]
Fig. 1 is a schematic diagram of a first embodiment of the present invention;
Fig. 2 is a cross-sectional view taken along an A-A line in Fig. 1;
Fig. 3 is a cross-sectional view taken along a B-B line in Fig. 2;
Fig. 4 is a schematic diagram of a cylinder head of the first embodiment of the present
invention;
Fig. 5 is a cross-sectional view taken along a C-C line in Fig. 4;
Fig. 6 is a cross-sectional view taken along a D-D line in Fig. 4;
Fig. 7 is a schematic diagram of a cylinder body of the first embodiment of the present
invention;
Fig. 8 is a cross-sectional view taken along an E-E line in Fig. 7;
Fig. 9 is a schematic diagram of a rotary sleeve;
Fig. 10 is a schematic diagram of a piston shoe;
Fig. 11 is a schematic diagram of a piston of the first embodiment of the present
invention;
Fig. 12 is a schematic diagram of a turntable of the first embodiment of the present
invention;
Fig. 13 is a schematic diagram of a piston insert;
Fig. 14 is a schematic diagram of a second embodiment of the present invention;
Fig. 15 is a cross-sectional view taken along a G-G line in Fig. 14;
Fig. 16 is a cross-sectional view taken along an F-F line in Fig. 14;
Fig. 17 is a schematic diagram of a piston of the second embodiment of the present
invention;
Fig. 18 is a schematic diagram of a turntable of the second embodiment of the present
invention;
Fig. 19 is a schematic diagram of a main shaft of the second embodiment of the present
invention;
Fig. 20 is a schematic diagram of a cylinder head of the second embodiment of the
present invention;
Fig. 21 is a cross-sectional view taken along an H-H line in Fig. 20;
Fig. 22 is a cross-sectional view taken along an I-I line in Fig. 20;
Fig. 23 is a schematic diagram of a cylinder body of the second embodiment of the
present invention;
[0016] Reference numerals: 1-cylinder head; 2-cylinder body; 3-piston; 4-center pin; 5-turntable;
6-rotary sleeve; 7-sealing ring; 8-bearing; 9-piston shaft sleeve; 10-fixing pin;
11-sealing plug; 12-main shaft; 13-main shaft support; 14-piston shoe; 15-needle bearing;
101-intake hole; 102-exhaust hole; 103-intake passage; 104-exhaust passage; 105-piston
shaft hole; 201-turntable shaft hole; 301-piston shaft; 302-piston pin hole; 303-piston
shaft pin hole; 304-piston insert; 501-turntable shaft; 502-turntable pin hole; 503-turntable
shaft pin hole; 601-rotary sleeve sliding chute; 141-piston shoe shaft hole; 142-piston
shoe pin hole; 121-main shaft sliding chute;
1001-VI working chamber; 1002-V2 working chamber.
DETAILED DESCRIPTION OF EMBODIMENTS
Example 1
[0017] Figs. 1-13 show the illustration of the first embodiment of the invention. As shown
in Figs. 1-8, the spherical compressor includes a cylinder head 1, a cylinder body
2, a piston 3, a center pin 4 and a turntable 5. The cylinder body 2 and the cylinder
head 1 have hemispherical inner cavities, and the cylinder body 2 and the cylinder
head 1 are fixedly connected by screws to form a casing of the spherical compressor
with a spherical inner cavity. An intake passage 103, an exhaust passage 104 and a
piston shaft hole 105 are provided on the inner spherical surface of the cylinder
head 1. The cylinder body 2 is provided with a turntable shaft hole 201 communicated
with the outside of the cylinder body. One side of the turntable shaft hole 201 communicates
with the spherical inner cavity, and the other side is provided with a bearing seat
hole which is coaxial with the turntable shaft hole 201. The axis of the piston shaft
hole 105 and the axis of the turntable shaft hole 201 both pass through the spherical
center of the spherical inner cavity, and the included angle between the axis of the
piston shaft hole 105 and the axis of the turntable shaft hole 201 is α. The intake
passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an
annular space perpendicular to the axis of the piston shaft hole 105 on the inner
spherical surface. An intake hole 101 and an exhaust hole 102 are further formed on
the outer surface of the cylinder head 1. The intake hole 101 communicates with the
intake passage 103, and the exhaust hole 102 communicates with the exhaust passage.
[0018] As shown in Figs. 9-12, the piston 3 has a spherical top surface, two side faces
which form an angle and a piston pin boss at the lower part of the two side faces.
The spherical top surface of the piston and the spherical inner cavity formed by the
cylinder body 2 and the cylinder head 1 have the same spherical center and form a
sealed loose fit. The piston pin boss is of a semi-cylindrical structure, and a piston
pin hole 302 which penetrates is provided on the central axis of the semi-cylinder.
The piston pin boss at the lower part of the piston 3 is provided with an opening
so as to form a fan-shaped cavity on the piston pin boss of the piston 3. The opening
of the piston 3 is located in the middle of the piston pin boss and perpendicular
to the axis of the piston pin hole 302 of the piston pin boss, and the width of the
opening of the piston 3 is matched with the width of the semi-cylinder of the turntable
pin boss. The turntable 5 has a turntable pin boss corresponding to the piston pin
boss, and the turntable pin boss is arranged at the upper part of the turntable 5.
The outer peripheral surface between the upper part and the lower end face of the
turntable 5 is a turntable spherical surface. The turntable spherical surface and
the spherical inner cavity have the same center and is closely attached to each other
to form a sealed loose fit. The two ends of the turntable pin boss are semi-cylindrical
grooves, and the middle part of the turntable pin boss is a protruding semi-cylinder,
and a turntable pin hole 502 which penetrates is formed at the center of the semi-cylinder.
A turntable shaft 501 matched with the turntable shaft hole 201 on the cylinder body
2 is fixedly provided at the center of the lower end of the turntable 5, and a piston
shaft 301 is fixedly provided with at the center of the spherical top surface of the
piston 3. The turntable shaft 501 is inserted into the turntable shaft hole 201 on
the cylinder body 2 to form a rotating pair with the cylinder body 2. The center pin
4 is inserted into a pin hole formed by matching the turntable pin boss with the piston
pin boss to form a cylindrical hinge, and the matching surfaces of the cylindrical
hinge form a sealed loose fit. The piston 3 and the turntable 5 form a sealed loose
connection through the cylindrical hinge, and the two ends of the cylindrical hinge
and the spherical inner cavity form a sealed loose fit.
[0019] The piston shaft hole 105 on the cylinder head 1 communicates with the spherical
inner cavity of the cylinder head 1 through a via hole, and the radial dimension of
the via hole is smaller than the diameter of the piston shaft hole 105. An annular
positioning surface is formed at the lower end of the piston shaft hole 105. The piston
shaft hole 105 on the cylinder head 1 is provided with a rotary sleeve 6 in a cylindrical
shape which is placed in the piston shaft hole 105. The end face of the rotary sleeve
6 is attached to the annular positioning surface. The outer cylinder of the rotary
sleeve 6 is coaxial with the piston shaft hole 105. The rotary sleeve 6 can rotate
around the axis of the piston shaft hole 105. As shown in Fig. 9, a rotary sleeve
sliding chute 601 which can slide in the direction of the axis of the center pin 4
is arranged on the end face of the rotary sleeve 6. The two side faces of the rotary
sleeve sliding chute 601 serve as sliding working surfaces and are symmetrically arranged
on both sides of a plane of the axis of the center pin 4 and the axis of the piston
shaft hole 105 in the cylinder head 1. A piston shoe shaft hole 141 is provided at
the center of the piston shoe 14. As shown in Fig. 10, the two side faces of the piston
shoe 14 are parallel planes. A piston shaft pin hole 303 is provided at the end of
the piston shaft 301, and a piston shoe pin hole 142 is formed in the corresponding
position of the piston shoe 14. After the piston shaft 301 passes through the via
hole through which the piston shaft hole 301 communicates with the spherical inner
cavity, the end of the piston shaft 301 is inserted into the piston shoe shaft hole
141. A fixing pin 10 is inserted into a fixing pin hole formed by the piston shaft
pin hole 303 and the piston shoe pin hole 142, and the piston shoe 14 is fixed to
the end of the piston shaft 301 by the fixing pin 10. The two side faces of the piston
shoe 14 are attached to the two side faces of the rotary sleeve sliding chute 601
respectively, and a loose fit is formed along the two side faces of the rotary sleeve
sliding chute 601 in a sliding manner. The two side faces of the piston shoe 14 are
parallel to the plane of the axis of the piston shaft hole 105 and the axis of the
center pin 4. The rotary sleeve sliding chute 601 on the rotary sleeve 6 and the piston
shoe 14 on the piston shaft 301 form a sliding chute swinging mechanism. The turntable
shaft 501 is inserted into the turntable shaft hole 201 in the cylinder body 2 to
form a rotating pair with the cylinder body 2. The turntable shaft 501 is driven to
rotate such that the turntable 5 drives the piston 3 to move through the cylindrical
hinge. The movement of the piston 3 is rotation around the axis of the piston shaft
hole 105 and swings relative to the turntable 5 around the center pin 4. Meanwhile,
the piston 3 swings along the two side faces of the rotary sleeve sliding chute 601
on the rotary sleeve 6 through the piston shoe 14 at the end of the piston shaft 301
relative to the axis of the piston shaft hole 301 on the cylinder head 1 with a swing
amplitude of 2α. The length of the two side faces of the rotary sleeve sliding chute
601 in the direction of the axis of the center pin 4 should be long enough to ensure
that the swing of the piston shoe 14 is not interfered. In this embodiment, the sliding
chute swinging mechanism is used to provide the piston 3 with a degree of freedom
to swing along the two side faces of the rotary sleeve sliding chute 601.
[0020] The piston 3 swings relative to the turntable 5 around the axis of the center pin
4, and a V1 working chamber 1001 and a V2 working chamber 1002 with alternatively
variable volumes are formed between the upper end face of the turntable 5, the two
side faces of the piston 3 and the spherical inner cavity. The intake passage 103
and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space
perpendicular to the axis of the piston shaft hole 105, and the intake passage 103
and the exhaust passage 104 communicate with an intake hole 101 and an exhaust hole
102 in the cylinder head 1 in communication with the outside of the cylinder body
2, respectively. The air intake and discharge control is realized by the rotation
of the piston 3, and when the working chambers need to perform air discharge or air
intake, the corresponding working chamber communicates with the intake passage 103
or the exhaust passage 104.
[0021] As shown in Fig. 3, in this embodiment, the turntable shaft 501 extends out of the
cylinder body 2 and is connected to a power mechanism to serve as a power input end
of the compressor. A sealing ring 7 is arranged on the inner side of the portion,
engaged with the turntable shaft hole 201 on the cylinder body 2, of the turntable
shaft 501, and a bearing 8 is arranged at the end of the engagement portion. The power
mechanism drives the turntable shaft 501 to rotate, and the volumes of the V1 working
chamber 1001 and the V2 working chamber 1002 change constantly and alternately. In
Fig. 2, the V1 working chamber 1001 and the V2 working chamber 1002 are in the ultimate
state. The V1 working chamber 1001 is in a state that the air intake of the spherical
compressor has completed, so the theoretical volume of the V1 working chamber 1001
in the figure is maximum, and the V2 working chamber 1002 is in a state of starting
the air intake of the next cycle after discharging the air, so the theoretical volume
of the V2 working chamber 1002 in the figure is zero. Each time the turntable shaft
501 drives the turntable 5 to rotate by one cycle, the piston 3 rotates around the
axis of the piston shaft hole 105 by one cycle, and at the same time, the piston 3
swings once along the two side faces of the rotary sleeve sliding chute 601 relative
to the axis of the piston shaft hole 105 on the cylinder head 1 at a swing angle of
2α. Since the piston 3 swings once around the axis of the center pin 4 relative to
the turntable 5, the V1 working chamber 1001 and the V2 working chamber 1002 undergo
a complete intake or compression exhaust process, respectively.
[0022] A sealing plug 11 is provided at the end of the piston shaft hole 105 on the cylinder
head 1, and an internal thread is provided on the inner hole in the outer end of the
piston shaft hole 105. The sealing plug 11 is provided with an external thread matched
with the internal thread, and the sealing plug 11 is arranged at the end of the piston
shaft hole 105 by the threads in a blocking mode, so that compression media and lubricating
oil cannot leak from the piston shaft hole 105.
[0023] In order to improve the manufacturability of the piston 3, as shown in Fig. 13, a
piston insert 304 is arranged at the fan-shaped cavity at the opening of the piston
3. The piston insert 304 is matched with the opening of the piston 3 in size, and
the top surface of the piston insert 304 is matched with the top surface of the opening
of the piston 3. The two side faces of the piston insert 304 are matched with the
two side faces of the piston 3. The two end faces of the piston insert 304 are matched
with the two side faces of the opening of the piston 3. The lower end of the piston
insert 304 is an arc of the same radius and coaxial with the piston pin hole 302 in
the lower end of the piston 3. By making the top surface and the two end faces of
the piston insert 304 and the top surface and the two side faces of the opening of
the piston 3 into mutually matched planes, machining is convenient, and the machining
precision and the matching precision after assembly are improved.
[0024] Inspired by this embodiment, those skilled in the art can perform the following deformation
treatment on the turntable 5 and the cylinder body 2 without creative labor, and can
also achieve the technical effect of the present invention: since the movement of
the turntable 5 is rotation around the axis of the turntable shaft hole 201 on the
cylinder body 2, the turntable spherical surface can be deformed into various forms
of rotating surfaces around the axis of the turntable shaft hole 201 on the cylinder
body 2, and the rotating surface can be spherical, cylindrical, conical and other
forms. The inner spherical surface of the cylinder body 2 is also deformed into a
rotating surface matched with the rotating surface of the turntable 5. The end faces
of the two ends of the cylindrical hinge formed by the piston pin boss, the center
pin 4 and the turntable pin boss and the inner surface of the cylinder body 2 are
attached to each other and form a sealed loose fit during the movement of the piston
3 and the turntable 4. For this reason, the above-mentioned deformation scheme of
the turntable and the cylinder body is also protected by this patent, and any technical
scheme adopting the above-mentioned deformation treatment also falls within the scope
of protection of the present invention.
Example 2
[0025] Figs. 14-23 show the drawings of the second embodiment of the invention. A center
pin 4, a piston insert 304 and a piston shoe 14 in this embodiment are the structurally
same as those in the first embodiment as described above. As shown in Figs. 14-16
and 20-23, a spherical compressor in this embodiment includes a cylinder head 1, a
cylinder body 2, a piston 3, a center pin 4 and a turntable 5. The cylinder body 2
and the cylinder head 1 have hemispherical inner cavities, and the cylinder body 2
and the cylinder head 1 are fixedly connected by screws to form a casing of the spherical
compressor with a spherical inner cavity. An intake passage 103, an exhaust passage
104 and a piston shaft hole 105 are provided on the inner spherical surface of the
cylinder head 1. The cylinder body 2 is provided with a turntable shaft hole 201 communicated
with the outside of the cylinder body. The turntable shaft hole 201 in the cylinder
body 2 communicates with the spherical inner cavity of the cylinder body 2 through
a via hole, and the radial dimension of the via hole is smaller than the diameter
of the turntable shaft hole 201. An annular positioning surface is formed at the upper
end of the turntable shaft hole 201. The axis of the piston shaft hole 105 and the
axis of the turntable shaft hole 201 both pass through the spherical center of the
spherical inner cavity, and the included angle between the axis of the piston shaft
hole 105 and the axis of the turntable shaft hole 201 is α. The intake passage 103
and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space
perpendicular to the axis of the piston shaft hole 105 on the inner spherical surface,
and an intake hole 101 and an exhaust hole 102 are further formed in the outer surface
of the cylinder head 1. The intake hole 101 communicates with the intake passage 103,
and the exhaust hole 102 communicates with the exhaust passage.
[0026] As shown in Figs. 17-19, the piston 3 has a spherical top surface, two side faces
which form an angle and a piston pin boss at the lower part of the two side faces.
The spherical top surface of the piston and the spherical inner cavity formed by the
cylinder body 2 and the cylinder head 1 have the same spherical center and form a
sealed loose fit. The piston pin boss is of a semi-cylindrical structure, and a piston
pin hole 302 which penetrates is provided on the central axis of the semi-cylinder.
The piston pin boss at the lower part of the piston 3 is provided with an opening
so as to form a fan-shaped cavity on the piston pin boss of the piston 3, the opening
of the piston 3 is located in the middle of the piston pin boss and perpendicular
to the axis of the piston pin hole 302 of the piston pin boss, and the width of the
opening of the piston 3 is matched with the width of the semi-cylinder of the turntable
pin boss. The turntable 5 has a turntable pin boss corresponding to the piston pin
boss, and the turntable pin boss is arranged at the upper part of the turntable 5.
The outer peripheral surface between the upper part and the lower end face of the
turntable 5 is a turntable spherical surface, and the turntable spherical surface
and the spherical inner cavity have the same center and closely adhere to each other
to form a sealed loose fit. The two ends of the turntable pin boss are semi-cylindrical
grooves, and the middle part of the turntable pin boss is a protruding semi-cylinder.
A turntable pin hole 502 which penetrates is formed at the center of the semi-cylinder.
A turntable shaft 501 is provided at the lower end of the turntable 5, and a turntable
shaft pin hole 503 is formed in the turntable shaft 501. A piston shaft 301 matched
with the piston shaft hole 105 in the cylinder head 1 protrudes from the center of
the spherical top surface of the piston 3, and the piston shaft 301 is inserted into
the piston shaft hole 105 in the cylinder head 1 to form a rotating pair with the
cylinder head 1. The center pin 4 is inserted into a pin hole formed by matching the
turntable pin boss with the piston pin boss to form a cylindrical hinge, and the matching
surfaces of the cylindrical hinge form a sealed loose fit. The piston 3 and the turntable
5 form a sealed loose connection through the cylindrical hinge, and the two ends of
the cylindrical hinge and the spherical inner cavity form a sealed loose fit.
[0027] The lower end of the cylinder body 2 is connected to a main shaft 12 through a main
shaft support 13, and the main shaft support 13 is fixedly connected to the lower
end of the cylinder body 2 through screws to provide support for the rotation of the
main shaft 12. The upper end of the main shaft 12 is placed in the turntable shaft
hole 201. The outer cylinder at the upper end of the main shaft 12 is coaxial with
the turntable shaft hole 201, and the main shaft 12 can rotate around the turntable
shaft hole 201. A main shaft sliding chute 121 is provided on the upper end face of
the main shaft 12 in the direction of the axis of the center pin 4, and the two side
faces of the main shaft sliding chute 121 serve as sliding working surfaces and are
symmetrically arranged on both sides of a plane of the axis of the turntable shaft
hole 201 in the cylinder body 2 and the axis of the center pin 4. Similar to the structure
of the piston shoe 14 in the first embodiment, a piston shoe shaft hole 141 is provided
at the center of the piston shoe 14. As shown in Figs. 10, 15, 16 and 18, the two
side faces of the piston shoe 14 are parallel planes. A turntable shaft pin hole 503
is provided at the end of the turntable shaft 501, and a piston shoe pin hole 142
is formed in the corresponding position of the piston shoe 14. After the turntable
shaft 501 passes through the via hole through which the turntable shaft hole 201 communicates
with the spherical inner cavity, the end of the turntable shaft 501 is inserted into
the piston shoe shaft hole 141. A fixing pin 10 is inserted into a fixing pin hole
formed by the turntable shaft pin hole 503 and the piston shoe pin hole 142, and the
piston shoe 14 is fixed to the end of the turntable shaft 501 by the fixing pin 10.
The piston shoe 14 is arranged in the main shaft sliding chute 121 in the end of the
main shaft 12, and the two side faces of the piston shoe 14 are attached to the two
side faces of the main shaft sliding chute 121 and slide along the two side faces
of the main shaft sliding chute 121 to form a loose fit, and the main shaft sliding
chute 121 on the main shaft 12 and the piston shoe 14 on the turntable shaft 501 form
a sliding chute swinging mechanism.
[0028] The lower end of the main shaft 12 extends out of a shaft hole of the main shaft
support 13 and is connected to a power mechanism. The main shaft 12 drives the turntable
shaft 501 to rotate through the two side faces of the main shaft sliding chute 121.
The turntable 5 drives the piston 3 to move through the cylindrical hinge. The movement
of the piston 3 is rotation around the axis of the piston shaft hole 105. The movement
of the turntable 5 is rotation around the axis of the turntable shaft hole 201 and
swings around the center pin 4 relative to the piston 3. Meanwhile, the turntable
5 swings along the two side faces of the main shaft sliding chute 121 through the
piston shoe 14 relative to the axis of the turntable shaft hole 201 in the cylinder
body 2 at a swing angle of 2α. The length of the two side faces of the main shaft
sliding chute 121 in the direction of the axis of the center pin 4 should be long
enough to ensure that the swing of the piston shoe 14 is not interfered. In this embodiment,
the sliding chute swinging mechanism is used to provide the turntable 5 with a degree
of freedom to swing along the two side faces of the main shaft sliding chute 121.
[0029] The turntable 5 swings around the center pin 4 relative to the piston 3, and a V1
working chamber 1001 and a V2 working chamber 1002 with alternatively variable volumes
are formed between the upper end face of the turntable 5, the two side faces of the
piston 3 and the spherical inner cavity. The intake passage 103 and the exhaust passage
104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis
of the piston shaft hole 105. The intake passage 103 and the exhaust passage 104 communicate
with an intake hole 101 and an exhaust hole 102 in the cylinder head 1 in communication
with the outside of the cylinder body 2, respectively. The air intake and discharge
control is realized by the rotation of the piston 3, and when the working chambers
need to perform air discharge or air intake, the corresponding working chamber communicates
with the intake passage 103 or the exhaust passage 104.
[0030] The power mechanism drives the main shaft 12 to rotate, and the main shaft 12 drives
the turntable shaft 501 to rotate through the two side faces of the main shaft sliding
chute 121. The volumes of the V1 working chamber 1001 and the V2 working chamber 1002
change constantly. In Fig. 15, the V1 working chamber 1001 and the V2 working chamber
1002 are in the ultimate state, the V1 working chamber 1001 is in a state that the
air intake of the spherical compressor has completed, so the theoretical volume of
the V1 working chamber 1001 in the figure is maximum, and the V2 working chamber 1002
is in a state of starting the air intake of the next cycle after discharging the air,
so the theoretical volume of the V2 working chamber 1002 in the figure is zero. Each
time the turntable shaft 501 drives the turntable 5 to rotate by one cycle, the piston
3 rotates around the axis of the piston shaft hole 105 by one cycle, and at the same
time, the turntable 5 swings once along the two side faces of the main shaft sliding
chute 121 relative to the axis of the turntable shaft hole 201 on the cylinder body
2 at a swing angle of 2α. Since the turntable 5 swings once around the axis of the
center pin 4 relative to the piston 3, the V1 working chamber 1001 and the V2 working
chamber 1002 undergo a complete intake or compression exhaust process, respectively.
[0031] A needle bearing is arranged on the portion, matched with the turntable shaft hole
201 on the cylinder body 2, of the upper cylindrical part of the main shaft 12. A
sealing ring 7 is arranged on the inner side of the portion, engaged with the main
shaft support 13, of the main shaft 12, and a bearing 8 is arranged at the end of
the engagement portion. A piston shaft sleeve 9 is arranged on the portion, matched
with the piston shaft hole 105 on the cylinder head 1, of the piston shaft 301.
[0032] As an application extension of this embodiment, the piston shaft hole 105 on the
cylinder head 1 communicates with the outside of the cylinder body, and the piston
shaft 301 extends out of the piston shaft hole 105 on the cylinder head 1 and is connected
to a power mechanism to serve as the power input end of the compressor, or power may
be input from the piston shaft.
[0033] In order to improve the manufacturability of the piston 3, as shown in Fig. 14, a
piston insert 304 is arranged at the fan-shaped cavity at the opening of the piston
3. The piston insert 304 is matched with the opening of the piston 3 in size, and
the top surface of the piston insert 304 is matched with the top surface of the opening
of the piston 3. The two side faces of the piston insert 304 are matched with the
two side faces of the piston 3. The two end faces of the piston insert 304 are matched
with the two side faces of the opening of the piston 3. The lower end of the piston
insert 304 is an arc of the same radius and coaxial with the piston pin hole 302 in
the lower end of the piston 3. By making the top surface and the two end faces of
the piston insert 304 and the top surface and the two side faces of the opening of
the piston 3 into mutually matched planes, machining is convenient, and the machining
precision and the matching precision after assembly are improved.
[0034] According to the invention, the sliding chute swinging mechanism is arranged between
the piston shaft 301 and the piston shaft hole 105 or between the turntable shaft
501 and the turntable shaft hole 201. In the first embodiment, the sliding chute swinging
mechanism between the piston shaft 301 and the piston shaft hole 105 allows the piston
3 to swing along the two side faces of the rotary sleeve sliding chute 601 relative
to the axis of the piston shaft hole 105, so that the piston 3 obtains a degree of
freedom in the direction of the axis of the center pin 4. In the second embodiment,
the sliding chute swinging mechanism between the turntable shaft 501 and the turntable
shaft hole 201 allows the turntable 5 to swing along the two side faces of the main
shaft sliding chute 121 relative to the axis of the turntable shaft hole 201, so that
the turntable 5 obtains a degree of freedom in the direction of the axis of the center
pin 4.
1. A spherical compressor, comprising:
a cylinder body (2) having a hemispherical inner cavity, wherein the cylinder body
(2) is provided with a turntable shaft hole (201) in communication with an outside
of the cylinder body (2);
a cylinder head (1) having a hemispherical inner cavity, wherein the cylinder head
(1) is combined with the cylinder body (2) to form a spherical inner cavity; an intake
passage (103), an exhaust passage (104) and a piston shaft hole (105) are provided
on an inner spherical surface of the cylinder head (1); the intake passage (103) and
the exhaust passage (104) on the cylinder head (1) are respectively arranged in an
annular space perpendicular to an axis of the piston shaft hole (105); the intake
passage (103) and the exhaust passage (104) communicate with an intake hole (101)
and an exhaust hole (102) on the cylinder head (1) in communication with the outside
of the cylinder body (2), respectively;
a piston (3) comprising a spherical top surface, two side faces which form an angle,
and a piston pin boss at a lower part of the two side faces, wherein the spherical
top surface of the piston (3) and the spherical inner cavity have the same center
and form a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided
on a middle part of the semi-cylinder; a piston pin hole (302) which penetrates is
provided on a central axis of the semi-cylinder; a piston shaft (301) protrudes from
a center of the spherical top surface of the piston (3); and an axis of the piston
shaft (301) passes through the center of the spherical top surface of the piston (3);
a turntable (5) having a turntable pin boss at an upper part of the turntable (5)
corresponding to the piston pin boss; wherein an outer peripheral surface between
the upper part and a lower end face of the turntable (5) is a turntable spherical
surface; the turntable spherical surface has the same center with the spherical inner
cavity and is closely attached to the spherical inner cavity to form a sealed loose
fit; two ends of the turntable pin boss are semi-cylindrical grooves; a middle part
of the turntable pin boss is a protruding semi-cylinder; a turntable pin hole (502)
which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable
shaft (501) protrudes from a center of a lower end of the turntable (5); and the turntable
shaft (501) passes through the center of the turntable spherical surface; and
a center pin (4) inserted into a pin hole formed by matching the turntable pin boss
with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of
the cylindrical hinge form a sealed loose fit;
wherein the axis of the piston shaft hole (105) and the axis of the turntable shaft
hole (201) both pass through the center of the spherical inner cavity; and an included
angle between the axis of the piston shaft hole (105) and the axis of the turntable
shaft hole (201) is α; a sliding chute swinging mechanism is arranged between the
piston shaft (301) and the piston shaft hole (105); and the sliding chute swinging
mechanism between the piston shaft (301) and the piston shaft hole (105) allows the
piston (3) to swing along a sliding chute relative to the axis of the piston shaft
hole (105); the turntable shaft (501) is driven to rotate so that the piston (3) and
the turntable (5) relatively swing around the center pin (4); and a V1 working chamber
(1001) and a V2 working chamber (1002) that alternatively change volumes are formed
between an upper end face of the turntable (5), the two side faces of the piston (3)
and the spherical inner cavity; a rotary sleeve (6) in a cylindrical shape is arranged
in the piston shaft hole (105) on the cylinder head (1); an outer cylinder of the
rotary sleeve (6) is coaxial with the piston shaft hole (105); the rotary sleeve (6)
rotates around the axis of the piston shaft hole (105); a rotary sleeve sliding chute
(601) in a direction of an axis of the center pin (4) is arranged on an end face of
the rotary sleeve (6); and two side faces of the rotary sleeve sliding chute (601)
are symmetrically arranged on both sides of a plane of the axis of the center pin
(4) and the axis of the piston shaft hole (105); a piston shoe (14) is fixedly arranged
at an end of the piston shaft (301); the piston shoe (14) is arranged in the rotary
sleeve sliding chute (601); two side faces of the piston shoe (14) are attached to
the two side faces of the rotary sleeve sliding chute (601) and slide along the two
side faces of the rotary sleeve sliding chute (601) to form a loose fit; and the rotary
sleeve sliding chute (601) on the rotary sleeve (6) and the piston shoe (14) on the
piston shaft (501) form the sliding chute swinging mechanism; the turntable shaft
(501) is inserted into the turntable shaft hole (201) on the cylinder body (2) to
form a rotating pair with the cylinder body (2); and a sealing plug (11) is arranged
at an end of the piston shaft hole (105) on the cylinder head (1).
2. The spherical compressor according to claim 1, characterized in that a piston shaft pin hole (303) is provided at the end of the piston shaft (301); a
piston shoe shaft hole (141) and a piston shoe pin hole (142) matched with the piston
shaft pin hole (303) are provided at a center of the piston shoe (14); and the piston
shaft (301) is inserted into the piston shoe shaft hole (141) after passing through
a via hole through which the piston shaft hole (105) communicates with the spherical
inner cavity; and a fixing pin (10) is inserted into a pin hole formed by matching
the piston shoe pin hole (142) with the piston shaft pin hole (303) to fix the piston
shoe (14) at the end of the piston shaft (301); the two side faces of the piston shoe
(14) are parallel planes; and the two side faces of the piston shoe (14) are respectively
attached to the two side faces of the rotary sleeve sliding chute (601) to form a
loose fit.
3. The spherical compressor according to claim 1 or 2, characterized in that the turntable shaft (501) extends out of the cylinder body (2) and is connected to
a power mechanism.
4. A spherical compressor comprising a cylinder body (2) having a hemispherical inner
cavity, wherein the cylinder body (2) is provided with a turntable shaft hole (201)
in communication with an outside of the cylinder body (2);
a cylinder head (1) having a hemispherical inner cavity, wherein the cylinder head
(1) is combined with the cylinder body (2) to form a spherical inner cavity; an intake
passage (103), an exhaust passage (104) and a piston shaft hole (105) are provided
on an inner spherical surface of the cylinder head (1); the intake passage (103) and
the exhaust passage (104) on the cylinder head (1) are respectively arranged in an
annular space perpendicular to an axis of the piston shaft hole (105); the intake
passage (103) and the exhaust passage (104) communicate with an intake hole (101)
and an exhaust hole (102) on the cylinder head (1) in communication with the outside
of the cylinder body (2), respectively;
a piston (3) comprising a spherical top surface, two side faces which form an angle,
and a piston pin boss at a lower part of the two side faces, wherein the spherical
top surface of the piston (3) and the spherical inner cavity have the same center
and form a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided
on a middle part of the semi-cylinder; a piston pin hole (302) which penetrates is
provided on a central axis of the semi-cylinder; a piston shaft (301) protrudes from
a center of the spherical top surface of the piston (3); and an axis of the piston
shaft (301) passes through the center of the spherical top surface of the piston (3);
a turntable (5) having a turntable pin boss at an upper part of the turntable (5)
corresponding to the piston pin boss; wherein an outer peripheral surface between
the upper part and a lower end face of the turntable (5) is a turntable spherical
surface; the turntable spherical surface has the same center with the spherical inner
cavity and is closely attached to the spherical inner cavity to form a sealed loose
fit; two ends of the turntable pin boss are semi-cylindrical grooves; a middle part
of the turntable pin boss is a protruding semi-cylinder; a turntable pin hole (502)
which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable
shaft (501) protrudes from a center of a lower end of the turntable (5); and the turntable
shaft (501) passes through the center of the turntable spherical surface; and
a center pin (4) inserted into a pin hole formed by matching the turntable pin boss
with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of
the cylindrical hinge form a sealed loose fit;
wherein the axis of the piston shaft hole (105) and the axis of the turntable shaft
hole (201) both pass through the center of the spherical inner cavity; and an included
angle between the axis of the piston shaft hole (105) and the axis of the turntable
shaft hole (201) is α; a sliding chute swinging mechanism is arranged between the
turntable shaft (501) and the turntable shaft hole (201); the sliding chute swinging
mechanism between the turntable shaft (501) and the turntable shaft hole (201) allows
the turntable (5) to swing along the sliding chute relative to the axis of the turntable
shaft hole (201) at a swing angle of 2α; the turntable shaft (501) is driven to rotate
so that the piston (3) and the turntable (5) relatively swing around the center pin
(4); and a V1 working chamber (1001) and a V2 working chamber (1002) that alternatively
change volumes are formed between an upper end face of the turntable (5), the two
side faces of the piston (3) and the spherical inner cavity; a lower end of the cylinder
body (2) is connected to a main shaft (12) through a main shaft support (13); an upper
end of the main shaft (12) is positioned in the turntable shaft hole (201); an outer
cylinder at the upper end of the main shaft (12) is coaxial with the turntable shaft
hole (201); and the main shaft (12) rotates around the turntable shaft hole (201);
a main shaft sliding chute (121) is provided on an upper end face of the main shaft
(12) in a direction of an axis of the center pin (4); and two side faces of the main
shaft sliding chute (121) are symmetrically arranged on both sides of a plane of the
axis of the turntable shaft hole (201) and the axis of the center pin (4); a piston
shoe (14) is fixedly arranged at an end of the turntable shaft (501); the piston shoe
(14) is arranged in the main shaft sliding chute (121); two side faces of the piston
shoe (14) are attached to the two side faces of the main shaft sliding chute (121)
and slide along the two side faces of the main shaft sliding chute (121) to form a
loose fit; and the main shaft sliding chute (121) on the main shaft (12) and the piston
shoe (14) at the end of the turntable shaft (501) form the sliding chute swinging
mechanism.
5. The spherical compressor according to claim 4, characterized in that a lower end of the main shaft (12) is connected to a power mechanism.
6. The spherical compressor according to claim 4, characterized in that a turntable shaft pin hole (503) is provided at the end of the turntable shaft (501);
a piston shoe shaft hole (141) and a piston shoe pin hole (142) matched with the turntable
shaft pin hole (503) are provided at a center of the piston shoe (14); and the turntable
shaft (501) is inserted into the piston shoe shaft hole (141) after passing through
a via hole through which the turntable shaft hole (201) communicates with the spherical
inner cavity; and a fixing pin (10) is inserted into a pin hole formed by matching
the piston shoe pin hole (142) with the turntable shaft pin hole (503) to fix the
piston shoe (14) at the end of the turntable shaft (501); the two side faces of the
piston shoe (14) are parallel planes; and the two side faces of the piston shoe (14)
are respectively attached to the two side faces of the main shaft sliding chute (121)
to form a loose fit.
7. The spherical compressor according to claim 4 or 6, characterized in that the piston shaft hole (105) on the cylinder head (1) is in communication with the
outside of the cylinder body; and the piston shaft (501) protrudes from the piston
shaft hole (105) and is connected to a power mechanism.
8. The spherical compressor according to claim 1, 2, 4 or 6, characterized in that the piston (3) comprises a piston insert (304); the piston insert (304) is of a fan-shaped
block structure with two sides thicker than a middle and is embedded in the groove
in the middle part of the piston pin boss of the piston (3); and the shape of an inner
cylindrical surface of the piston insert (304) is fitted with the shape of a semi-cylindrical
surface protruding from the turntable (5) to form a sealed loose fit; and a top surface
protruding from the piston insert (304) is an outer cylindrical surface which is fitted
with a bottom surface of the groove of the piston pin boss of the piston (3); two
side faces of the piston insert (304) are flush with the two side faces of the piston
(3); and two end faces of the piston insert (304) form a sealed loose fit with two
side walls of the groove in the middle part of the piston pin boss.
1. Kugelförmiger Kompressor, umfassend:
einen Zylinderkörper (2) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkörper
(2) mit einem Drehteller-Schaftloch (201) versehen ist, das mit einer Außenseite des
Zylinderkörpers (2) in Verbindung steht;
einen Zylinderkopf (1) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkopf
(1) mit dem Zylinderkörper (2) kombiniert ist, um einen kugelförmigen inneren Hohlraum
zu bilden; ein Einlasskanal (103), ein Auslasskanal (104) und ein Kolbenschaftloch
(105) an einer inneren Kugeloberfläche des Zylinderkopfs (1) vorgesehen sind, wobei
der Einlasskanal (103) und der Auslasskanal (104) am Zylinderkopf (1) jeweils in einem
ringförmigen Raum senkrecht zu einer Achse des Kolbenschaftlochs (105) angeordnet
sind; und wobei der Einlasskanal (103) und der Auslasskanal (104) mit einer Einlassöffnung
(101) bzw. einer Auslassöffnung (102) am Zylinderkopf (1) in Verbindung stehen, die
mit der Außenseite des Zylinderkörpers (2) in Verbindung stehen;
einen Kolben (3), der eine kugelförmige obere Fläche, zwei Seitenflächen, die einen
Winkel bilden, und einen Kolbenbolzenvorsprung an einem unteren Teil der beiden Seitenflächen
umfasst, wobei die kugelförmige obere Fläche des Kolbens (3) und der kugelförmige
innere Hohlraum denselben Mittelpunkt haben und eine abgedichtete lose Passung bilden,
wobei der Kolbenbolzenvorsprung ein Halbzylinder ist und eine Nut in einem mittleren
Teil des Halbzylinders vorgesehen ist; ein Kolbenbolzenloch (302), das auf einer zentralen
Achse des Halbzylinders vorgesehen ist, wobei ein Kolbenschaft (301) von einer Mitte
der kugelförmigen oberen Fläche des Kolbens (3) vorsteht; und eine Achse des Kolbenschafts
(301) durch die Mitte der kugelförmigen oberen Fläche des Kolbens (3) verläuft;
einen Drehteller (5) mit einem Drehteller-Bolzenvorsprung an einem oberen Teil des
Drehtellers (5), der dem Kolbenbolzenvorsprung entspricht; wobei eine äußere Umfangsfläche
zwischen dem oberen Teil und einer unteren Endfläche des Drehtellers (5) eine kugelförmige
Drehtellerfläche ist; wobei die kugelförmige Drehtellerfläche die gleiche Mitte wie
der kugelförmige innere Hohlraum hat und eng an dem kugelförmigen inneren Hohlraum
angebracht ist, um eine abgedichtete lose Passung zu bilden; wobei zwei Enden des
Drehteller-Bolzenvorsprungs halbzylindrische Nuten sind und ein mittlerer Teil des
Drehteller-Bolzenvorsprungs ein vorstehender Halbzylinder ist; ein Drehteller-Stiftloch
(502), das auf einer Mittelachse des vorstehenden Halbzylinders ausgebildet ist; wobei
eine Drehtellerschaft (501) von einer Mitte eines unteren Endes des Drehtellers (5)
vorsteht und die Drehtellerwelle (501) durch die Mitte der Drehteller-Kugeloberfläche
hindurchgeht; und
einen Mittelbolzen (4), der in ein Bolzenloch eingesetzt wird, das durch Zusammenpassen
des Drehteller-Bolzenvorsprungs mit dem Kolbenbolzenvorsprung gebildet wird, um ein
zylindrisches Scharnier zu bilden; wobei zusammenpassende Oberflächen des zylindrischen
Scharniers eine abgedichtete lose Passung bilden;
wobei die Achse des Kolbenschaftlochs (105) und die Achse des Drehteller-Schaftlochs
(201) beide durch die Mitte des kugelförmigen inneren Hohlraums verlaufen; und ein
eingeschlossener Winkel zwischen der Achse des Kolbenschaftlochs (105) und der Achse
des Drehteller-Schaftlochs (201) α ist; wobei ein Gleitrutschen-Schwingmechanismus
zwischen dem Kolbenschaft (301) und dem Kolbenschaftloch (105) angeordnet ist, und
wobei der Gleitrutschen-Schwingmechanismus zwischen dem Kolbenschaft (301) und dem
Kolbenschaftloch (105) es dem Kolben (3) ermöglicht, entlang einer Gleitrutsche relativ
zu der Achse des Kolbenschaftlochs (105) zu schwingen; wobei die Drehtellerwelle (501)
angetrieben wird, um sich zu drehen, so dass der Kolben (3) und der Drehteller (5)
relativ um den Mittelbolzen (4) schwingen; und wobei eine V1-Arbeitskammer (1001)
und eine V2-Arbeitskammer (1002), die abwechselnd ihre Volumina ändern, zwischen einer
oberen Endfläche des Drehtellers (5), den beiden Seitenflächen des Kolbens (3) und
dem kugelförmigen inneren Hohlraum gebildet werden; wobei in das Kolbenschaftloch
(105) am Zylinderkopf (1) eine Drehhülse (6) in zylindrischer Form angeordnet ist,
wobei ein Außenzylinder der Drehhülse (6) koaxial zum Kolbenschaftloch (105) ist;
wobei sich die Drehhülse (6) um die Achse der Kolbenschaftlochs (105) dreht; wobei
eine Drehhülsen-Gleitrutsche (601) in einer Richtung einer Achse des Mittelbolzens
(4) an einer Endfläche der Drehhülse (6) angeordnet ist; und zwei Seitenflächen der
Drehhülsen-Gleitrutsche (601) symmetrisch auf beiden Seiten einer Ebene der Achse
des Mittelbolzens (4) und der Achse des Kolbenschaftlochs (105) angeordnet sind; ein
Kolbenschuh (14) fest an einem Ende des Kolbenschafts (301) angeordnet ist; der Kolbenschuh
(14) in der Drehhülsen-Schieberutsche (601) angeordnet ist; zwei Seitenflächen des
Kolbenschuhs (14) an den beiden Seitenflächen der Drehhülsen-Gleitrutsche (601) befestigt
sind und entlang der beiden Seitenflächen der Drehhülsen-Schieberutsche (601) gleiten,
um einen losen Sitz zu bilden; und die Drehhülsen-Gleitrutsche (601) auf der Drehhülse
(6) und der Kolbenschuh (14) auf der Kolbenwelle (501) den Schieberutschen-Schwingmechanismus
bilden; die Drehtellerwelle (501) in die Drehteller-Wellenloch (201) am Zylinderkörper
(2) eingesetzt ist, um ein Drehpaar mit dem Zylinderkörper (2) zu bilden; und wobei
ein Dichtungsstopfen (11) an einem Ende des Kolbenwellenlochs (105) am Zylinderkopf
(1) angeordnet ist.
2. Kugelförmiger Kompressor nach Anspruch 1, dadurch gekennzeichnet, dass ein Kolbenschaft-Bolzenloch (303) am Ende des Kolbenschafts (301) vorgesehen ist;
ein Kolbenschuh-Schaftloch (141) und ein Kolbenschuh-Bolzenloch (142), das mit dem
Kolbenschaft-Bolzenloch (303) zusammenpasst, in der Mitte des Kolbenschuhs (14) vorgesehen
sind; und der Kolbenschaft (301) in das Kolbenschuh-Schaftloch (141) eingeführt wird,
nachdem er durch ein Durchgangsloch hindurchgegangen ist, durch das das Kolbenschaftloch
(105) mit dem kugelförmigen inneren Hohlraum in Verbindung steht; und ein Befestigungsstift
(10) in ein Stiftloch eingesetzt wird, das durch Zusammenpassen des Kolbenschuh-Stiftlochs
(142) mit dem Kolbenschaft-Bolzenloch (303) gebildet wird, um den Kolbenschuh (14)
am Ende des Kolbenschafts (301) zu befestigen; die beiden Seitenflächen des Kolbenschuhs
(14) parallele Ebenen sind; und die beiden Seitenflächen des Kolbenschuhs (14) jeweils
an den beiden Seitenflächen der Drehhülsen-Gleitrutsche (601) angebracht sind, um
einen losen Sitz zu bilden.
3. Kugelförmiger Kompressor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Drehtellerwelle (501) aus dem Zylinderkörper (2) herausragt und mit einem Antriebsmechanismus
verbunden ist.
4. Kugelförmiger Kompressor, umfassend: einen Zylinderkörper (2) mit einem halbkugelförmigen
inneren Hohlraum, wobei der Zylinderkörper (2) mit einem Drehteller-Schaftloch (201)
versehen ist, das mit einer Außenseite des Zylinderkörpers (2) in Verbindung steht;
einen Zylinderkopf (1) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkopf
(1) mit dem Zylinderkörper (2) kombiniert ist, um einen kugelförmigen inneren Hohlraum
zu bilden; ein Einlasskanal (103), ein Auslasskanal (104) und ein Kolbenschaftloch
(105) an einer inneren Kugeloberfläche des Zylinderkopfs (1) vorgesehen sind, wobei
der Einlasskanal (103) und der Auslasskanal (104) am Zylinderkopf (1) jeweils in einem
ringförmigen Raum senkrecht zu einer Achse des Kolbenschaftlochs (105) angeordnet
sind; und wobei der Einlasskanal (103) und der Auslasskanal (104) mit einer Einlassöffnung
(101) bzw. einer Auslassöffnung (102) am Zylinderkopf (1) in Verbindung stehen, die
mit der Außenseite des Zylinderkörpers (2) in Verbindung stehen;
einen Kolben (3), der eine kugelförmige obere Fläche, zwei Seitenflächen, die einen
Winkel bilden, und einen Kolbenbolzenvorsprung an einem unteren Teil der beiden Seitenflächen
umfasst, wobei die kugelförmige obere Fläche des Kolbens (3) und der kugelförmige
innere Hohlraum denselben Mittelpunkt haben und eine abgedichtete lose Passung bilden,
wobei der Kolbenbolzenvorsprung ein Halbzylinder ist und eine Nut in einem mittleren
Teil des Halbzylinders vorgesehen ist; ein Kolbenbolzenloch (302), das auf einer zentralen
Achse des Halbzylinders vorgesehen ist, wobei ein Kolbenschaft (301) von einer Mitte
der kugelförmigen oberen Fläche des Kolbens (3) vorsteht; und eine Achse des Kolbenschafts
(301) durch die Mitte der kugelförmigen oberen Fläche des Kolbens (3) verläuft;
einen Drehteller (5) mit einem Drehteller-Bolzenvorsprung an einem oberen Teil des
Drehtellers (5), der dem Kolbenbolzenvorsprung entspricht; wobei eine äußere Umfangsfläche
zwischen dem oberen Teil und einer unteren Endfläche des Drehtellers (5) eine kugelförmige
Drehtellerfläche ist; wobei die kugelförmige Drehtellerfläche die gleiche Mitte wie
der kugelförmige innere Hohlraum hat und eng an dem kugelförmigen inneren Hohlraum
angebracht ist, um eine abgedichtete lose Passung zu bilden; wobei zwei Enden des
Drehteller-Bolzenvorsprungs halbzylindrische Nuten sind und ein mittlerer Teil des
Drehteller-Bolzenvorsprungs ein vorstehender Halbzylinder ist; ein Drehteller-Stiftloch
(502), das auf einer Mittelachse des vorstehenden Halbzylinders ausgebildet ist; wobei
eine Drehtellerschaft (501) von einer Mitte eines unteren Endes des Drehtellers (5)
vorsteht und die Drehtellerwelle (501) durch die Mitte der Drehteller-Kugeloberfläche
hindurchgeht; und
einen Mittelbolzen (4), der in ein Bolzenloch eingesetzt wird, das durch Zusammenpassen
des Drehteller-Bolzenvorsprungs mit dem Kolbenbolzenvorsprung gebildet wird, um ein
zylindrisches Scharnier zu bilden; wobei zusammenpassende Oberflächen des zylindrischen
Scharniers eine abgedichtete lose Passung bilden;
wobei die Achse des Kolbenschaftlochs (105) und die Achse des Drehteller-Schaftlochs
(201) beide durch die Mitte des kugelförmigen inneren Hohlraums verlaufen; und ein
eingeschlossener Winkel zwischen der Achse des Kolbenschaftlochs (105) und der Achse
des Drehteller-Schaftlochs (201) α ist; wobei ein Gleitrutschen-Schwingmechanismus
zwischen dem Drehtellerschaft (301) und dem Drehteller-Schaftloch (201) angeordnet
ist, und wobei der Gleitrutschen-Schwingmechanismus zwischen dem Drehtellerschaft
(301) und dem Drehteller-Schaftloch (201) es dem Drehteller (5) ermöglicht, entlang
der Gleitrutsche relativ zu der Achse des Drehteller-Schaftloch (201) mit einem Schwenkwinkel
von 2α zu schwingen; wobei die Drehtellerwelle (501) angetrieben wird, um sich zu
drehen, so dass der Kolben (3) und der Drehteller (5) relativ um den Mittelbolzen
(4) schwingen; und wobei eine V1-Arbeitskammer (1001) und eine V2-Arbeitskammer (1002),
die abwechselnd ihre Volumina ändern, zwischen einer oberen Endfläche des Drehtellers
(5), den beiden Seitenflächen des Kolbens (3) und dem kugelförmigen inneren Hohlraum
gebildet werden; ein unteres Ende des Zylinderkörpers (2) mit einer Hauptschaft (12)
durch eine Hauptschaft-Halterung (13) verbunden ist; ein oberes Ende der Hauptschaft
(12) in dem Drehteller-Schaftloch (201) positioniert ist; ein Außenzylinder am oberen
Ende der Hauptschaft (12) koaxial mit dem Drehteller-Schaftloch (201) ist; und die
Hauptschaft (12) sich um das Drehteller-Schaftloch (201) dreht; eine Hauptschaft-Gleitrutsche
(121) an einer oberen Endfläche der Hauptschaft (12) in einer Richtung einer Achse
des Mittelbolzens (4) vorgesehen ist; und zwei Seitenflächen der Hauptschaft-Gleitrutsche
(121) symmetrisch auf beiden Seiten einer Ebene der Achse des Drehteller-Schaftlochs
(201) und der Achse des Mittelbolzens (4) angeordnet sind; ein Kolbenschuh (14) fest
an einem Ende der Drehtellerschaft (501) angeordnet ist; der Kolbenschuh (14) in der
Hauptschaft-Gleitrutsche (121) angeordnet ist; zwei Seitenflächen des Kolbenschuhs
(14) an den beiden Seitenflächen der Hauptschaft-Gleitrutsche (121) befestigt sind
und entlang der beiden Seitenflächen der Hauptschaft-Gleitrutsche (121) gleiten, um
einen losen Sitz zu bilden; und die Hauptschaft -Gleitrutsche (121) auf der Hauptschaft
(12) und der Kolbenschuh (14) am Ende der Drehtellerschaft (501) den Gleitrutschen-Schwingmechanismus
bilden.
5. Kugelförmiger Kompressor nach Anspruch 4, dadurch gekennzeichnet, dass ein unteres Ende der Hauptschaft (12) mit einem Antriebsmechanismus verbunden ist.
6. Kugelförmiger Kompressor nach Anspruch 4, dadurch gekennzeichnet, dass ein Drehtellerschaft-Bolzenloch (503) am Ende des Drehtellerschafts (501) vorgesehen
ist; ein Kolbenschuh-Schaftloch (141) und ein Kolbenschuh-Bolzenloch (142), das mit
dem Drehtellerschaft-Bolzenloch (503) zusammenpasst, in der Mitte des Kolbenschuhs
(14) vorgesehen sind; und der Drehtellerschaft (501) in das Kolbenschuh-Schaftloch
(141) eingeführt wird, nachdem er durch ein Durchgangsloch hindurchgegangen ist, durch
das das Kompressor nach (105) mit dem kugelförmigen inneren Hohlraum in Verbindung
steht; und ein Befestigungsstift (10) in ein Stiftloch eingesetzt wird, das durch
Zusammenpassen des Kolbenschuh-Stiftlochs (142) mit dem Drehtellerschaft-Bolzenloch
(503) gebildet wird, um den Kolbenschuh (14) am Ende des Drehtellerschafts (501) zu
befestigen; die beiden Seitenflächen des Kolbenschuhs (14) parallele Ebenen sind;
und die beiden Seitenflächen des Kolbenschuhs (14) jeweils an den beiden Seitenflächen
der Hauptschaft -Gleitrutsche (121) angebracht sind, um einen losen Sitz zu bilden.
7. Kugelförmiger Kompressor nach Anspruch 4 oder 6, dadurch gekennzeichnet, dass das Kolbenschaftloch (105) am Zylinderkopf (1) mit der Außenseite des Zylinderkörpers
in Verbindung steht und der Kolbenschaft (501) aus dem Kolbenschaftloch (105) herausragt
und mit einem Antriebsmechanismus verbunden ist.
8. Kugelförmiger Kompressor nach Anspruch 1, 2, 4 oder 6, dadurch gekennzeichnet, dass der Kolben (3) einen Kolbeneinsatz (304) umfasst; der Kolbeneinsatz (304) eine fächerförmige
Blockstruktur mit zwei Seiten aufweist, die dicker als eine Mitte sind, und in die
Nut im mittleren Teil des Kolbenbolzenvorsprungs des Kolbens (3) eingebettet ist;
und die Form einer inneren zylindrischen Oberfläche des Kolbeneinsatzes (304) in die
Form einer halbzylindrischen Oberfläche eingepasst ist, die von dem Drehteller (5)
vorsteht, um eine abgedichtete lose Passung zu bilden; und eine obere Fläche, die
von dem Kolbeneinsatz (304) vorsteht, eine äußere zylindrische Fläche ist, die an
einer Bodenfläche der Nut des Kolbenbolzenvorsprungs des Kolbens (3) angepasst; zwei
Seitenflächen des Kolbeneinsatzes (304) mit den zwei Seitenflächen des Kolbens (3)
bündig sind; und zwei Endflächen des Kolbeneinsatzes (304) eine abgedichtete lose
Passung mit zwei Seitenwänden der Nut in dem mittleren Teil des Kolbenbolzenvorsprungs
bilden.
1. Compresseur sphérique, comprenant:
un corps de cylindre (2) ayant une cavité interne hémisphérique, dans lequel ledit
corps de cylindre (2) est pourvu d'un trou d'arbre de plateau tournant (201) en communication
avec un extérieur dudit corps de cylindre (2);
une culasse (1) ayant une cavité intérieure hémisphérique, dans laquelle ladite culasse
(1) est combinée avec ledit corps de cylindre (2) pour former une cavité intérieure
sphérique; un passage d'admission (103), un passage d'échappement (104) et un trou
d'arbre de piston (105) sont prévus sur une surface sphérique interne de ladite culasse
(1); ledit passage d'admission (103) et ledit passage d'échappement (104) sur ladite
culasse (1) sont respectivement agencés dans un espace annulaire perpendiculaire à
un axe dudit trou d'arbre de piston (105); ledit passage d'admission (103) et ledit
passage d'échappement (104) communiquent avec un trou d'admission (101) et un trou
d'échappement (102) sur ladite culasse (1) en communication avec ledit extérieur dudit
corps de cylindre (2), respectivement;
un piston (3) comprenant une surface supérieure sphérique, deux faces latérales qui
forment un angle, et un bossage d'axe de piston à une partie inférieure desdites deux
faces latérales; dans lequel ladite surface supérieure sphérique dudit piston (3)
et ladite cavité intérieure sphérique ont le même centre et forment un ajustement
lâche scellé; ledit bossage d'axe de piston est un demi-cylindre; une rainure est
prévue sur une partie médiane dudit demi-cylindre; un trou d'axe de piston (302) qui
pénètre est prévu sur un axe central dudit demi-cylindre; un arbre de piston (301)
fait saillie à partir d'un centre de ladite surface supérieure sphérique dudit piston
(3); et un axe dudit arbre de piston (301) passe par ledit centre de ladite surface
supérieure sphérique dudit piston (3);
un plateau tournant (5) ayant un bossage d'axe de plateau tournant à une partie supérieure
dudit plateau tournant (5) correspondant audit bossage d'axe de piston; dans lequel
une surface périphérique externe entre ladite partie supérieure et une face d'extrémité
inférieure dudit plateau tournant (5) est une surface sphérique de plateau tournant;
ladite surface sphérique de plateau tournant a le même centre que ladite cavité interne
sphérique et est étroitement attachée à ladite cavité interne sphérique pour former
un ajustement lâche scellé; deux extrémités dudit bossage d'axe du plateau tournant
sont de rainures semi-cylindriques; une partie médiane dudit bossage d'axe de plateau
tournant est un demi-cylindre en saillie; un trou d'axe de plateau tournant (502)
qui pénètre est formé sur un axe central dudit demi-cylindre en saillie; un arbre
de plateau tournant (501) fait saillie à partir d'un centre d'une extrémité inférieure
dudit plateau tournant (5); et ledit arbre de plateau tournant (501) traverse ledit
centre de ladite surface sphérique de plateau tournant; et
un axe central (4) inséré dans un trou d'axe formé en faisant correspondre ledit bossage
d'axe de plateau tournant avec ledit bossage d'axe de piston pour former une charnière
cylindrique; dans lequel surfaces correspondantes de ladite charnière cylindrique
forment un ajustement lâche scellé;
dans lequel ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre
de plateau tournant (201) traversent tous les deux ledit centre de ladite cavité intérieure
sphérique; et un angle inclus entre ledit axe dudit trou d'arbre de piston (105) et
ledit axe dudit trou d'arbre de plateau tournant (201) est α; un mécanisme de basculement
de goulotte coulissante est disposé entre ledit arbre de piston (301) et ledit trou
d'arbre de piston (105); et ledit mécanisme de basculement de goulotte coulissante
entre ledit arbre de piston (301) et ledit trou d'arbre de piston (105) permet audit
piston (3) de se balancer le long d'une goulotte coulissante par rapport audit axe
dudit trou d'arbre de piston (105); ledit arbre de plateau tournant (501) est entraîné
en rotation de sorte que ledit piston (3) et ledit plateau tournant (5) pivotent relativement
autour dudit axe central (4); et une chambre de travail V1 (1001) et une chambre de
travail V2 (1002) qui changent alternativement de volume sont formées entre une face
d'extrémité supérieure dudit plateau tournant (5), lesdites deux faces latérales dudit
piston (3) et ladite cavité interne sphérique; un manchon rotatif (6) de forme cylindrique
est disposé dans ledit trou d'arbre de piston (105) sur ladite culasse (1); un cylindre
extérieur dudit manchon rotatif (6) est coaxial audit trou d'arbre de piston (105);
ledit manchon rotatif (6) tourne autour dudit axe dudit trou d'arbre de piston (105);
une goulotte coulissante à manchon rotatif (601) dans une direction d'un axe dudit
axe central (4) est agencée sur une face d'extrémité dudit manchon rotatif (6); et
deux faces latérales de ladite goulotte coulissante à manchon rotatif (601) sont disposées
symétriquement des deux côtés d'un plan dudit axe dudit axe central (4) et dudit axe
dudit trou d'arbre de piston (105); un sabot de piston (14) est agencé de manière
fixe à une extrémité dudit arbre de piston (301); ledit sabot de piston (14) est agencé
dans ladite goulotte coulissante à manchon rotatif (601); deux faces latérales dudit
sabot de piston (14) sont fixées auxdites deux faces latérales de ladite goulotte
coulissante à manchon rotatif (601) et coulissent le long desdites deux faces latérales
de ladite goulotte coulissante à manchon rotatif (601) pour former un ajustement lâche;
et ladite goulotte coulissante à manchon rotatif (601) sur ledit manchon rotatif (6)
et ledit sabot de piston (14) sur ledit arbre de piston (501) forment ledit mécanisme
de basculement de goulotte coulissante; ledit arbre de plateau tournant (501) est
inséré dans ledit trou d'arbre de plateau tournant (201) sur ledit corps de cylindre
(2) pour former une paire rotative avec ledit corps de cylindre (2); et un bouchon
d'étanchéité (11) est disposé à une extrémité dudit trou d'arbre de piston (105) sur
ladite culasse (1).
2. Ledit compresseur sphérique selon la revendication 1, caractérisé en ce qu'un trou d'axe d'arbre de piston (303) est prévu à ladite extrémité dudit arbre de
piston (301); un trou d'axe de sabot de piston (141) et un trou d'arbre de sabot de
piston (142) apparié avec ledit trou d'axe d'arbre de piston (303) sont prévus au
centre dudit sabot de piston (14); et ledit arbre de piston (301) est inséré dans
ledit trou d'axe de sabot de piston (141) après avoir traversé un trou traversant
à travers lequel ledit trou d'arbre de piston (105) communique avec ladite cavité
intérieure sphérique; et une broche de fixation (10) est insérée dans un trou d'axe
formé en faisant correspondre ledit trou d'arbre de sabot de piston (142) avec ledit
trou d'axe d'arbre de piston (303) pour fixer ledit sabot de piston (14) à ladite
extrémité de ledit arbre de piston (301); lesdites deux faces latérales dudit sabot
de piston (14) sont de plans parallèles; et lesdites deux faces latérales dudit sabot
de piston (14) sont respectivement fixées auxdites deux faces latérales de ladite
goulotte coulissante à manchon rotatif (601) pour former un ajustement lâche.
3. Ledit compresseur sphérique selon la revendication 1 ou 2, caractérisé en ce que ledit arbre de plateau tournant (501) s'étend hors dudit corps de cylindre (2) et
est relié à un mécanisme de puissance.
4. Compresseur sphérique comprenant un corps de cylindre (2) ayant une cavité interne
hémisphérique, dans lequel ledit corps de cylindre (2) est pourvu d'un trou d'arbre
de plateau tournant (201) en communication avec un extérieur dudit corps de cylindre
(2);
une culasse (1) ayant une cavité intérieure hémisphérique, dans laquelle ladite culasse
(1) est combinée avec ledit corps de cylindre (2) pour former une cavité intérieure
sphérique; un passage d'admission (103), un passage d'échappement (104) et un trou
d'arbre de piston (105) sont prévus sur une surface sphérique interne de ladite culasse
(1); ledit passage d'admission (103) et ledit passage d'échappement (104) sur ladite
culasse (1) sont respectivement agencés dans un espace annulaire perpendiculaire à
un axe dudit trou d'arbre de piston (105); ledit passage d'admission (103) et ledit
passage d'échappement (104) communiquent avec un trou d'admission (101) et un trou
d'échappement (102) sur ladite culasse (1) en communication avec ledit extérieur dudit
corps de cylindre (2), respectivement;
un piston (3) comprenant une surface supérieure sphérique, deux faces latérales qui
forment un angle, et un bossage d'axe de piston à une partie inférieure desdites deux
faces latérales; dans lequel ladite surface supérieure sphérique dudit piston (3)
et ladite cavité intérieure sphérique ont le même centre et forment un ajustement
lâche scellé; ledit bossage d'axe de piston est un demi-cylindre; une rainure est
prévue sur une partie médiane dudit demi-cylindre; un trou d'axe de piston (302) qui
pénètre est prévu sur un axe central dudit demi-cylindre; un arbre de piston (301)
fait saillie à partir d'un centre de ladite surface supérieure sphérique dudit piston
(3); et un axe dudit arbre de piston (301) passe par ledit centre de ladite surface
supérieure sphérique dudit piston (3);
un plateau tournant (5) ayant un bossage d'axe de plateau tournant à une partie supérieure
dudit plateau tournant (5) correspondant audit bossage d'axe de piston; dans lequel
une surface périphérique externe entre ladite partie supérieure et une face d'extrémité
inférieure dudit plateau tournant (5) est une surface sphérique de plateau tournant;
ladite surface sphérique de plateau tournant a le même centre que ladite cavité interne
sphérique et est étroitement attachée à ladite cavité interne sphérique pour former
un ajustement lâche scellé; deux extrémités dudit bossage d'axe du plateau tournant
sont de rainures semi-cylindriques; une partie médiane dudit bossage d'axe de plateau
tournant est un demi-cylindre en saillie; un trou d'axe de plateau tournant (502)
qui pénètre est formé sur un axe central dudit demi-cylindre en saillie; un arbre
de plateau tournant (501) fait saillie à partir d'un centre d'une extrémité inférieure
dudit plateau tournant (5); et ledit arbre de plateau tournant (501) traverse ledit
centre de ladite surface sphérique de plateau tournant; et
un axe central (4) inséré dans un trou d'axe formé en faisant correspondre ledit bossage
d'axe de plateau tournant avec ledit bossage d'axe de piston pour former une charnière
cylindrique; dans lequel surfaces correspondantes de ladite charnière cylindrique
forment un ajustement lâche scellé;
dans lequel ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre
de plateau tournant (201) traversent tous deux ledit centre de ladite cavité intérieure
sphérique; et un angle inclus entre ledit axe dudit trou d'arbre de piston (105) et
ledit axe dudit trou d'arbre de plateau tournant (201) est α; un mécanisme de basculement
de goulotte coulissante est disposé entre ledit arbre de plateau tournant (501) et
ledit trou d'arbre de plateau tournant (201); ledit mécanisme de basculement de la
goulotte coulissante entre ledit arbre de plateau tournant (501) et ledit trou d'arbre
de plateau tournant (201) permet audit plateau tournant (5) de se balancer le long
de ladite goulotte coulissante par rapport audit axe dudit trou d'arbre de plateau
tournant (201) à un angle de pivotement de 2α; ledit arbre de plateau tournant (501)
est entraîné en rotation de sorte que ledit piston (3) et ledit plateau tournant (5)
pivotent relativement autour dudit axe central (4); et une chambre de travail V1 (1001)
et une chambre de travail V2 (1002) qui changent alternativement de volumes sont formées
entre une face d'extrémité supérieure dudit plateau tournant (5), lesdites deux faces
latérales dudit piston (3) et ladite cavité interne sphérique; une extrémité inférieure
dudit corps de cylindre (2) est reliée à un arbre principal (12) par l'intermédiaire
d'un support d'arbre principal (13); une extrémité supérieure dudit arbre principal
(12) est positionnée dans ledit trou d'arbre de plateau tournant (201); un cylindre
extérieur à ladite extrémité supérieure dudit arbre principal (12) est coaxial audit
trou d'arbre de plateau tournant (201); et ledit arbre principal (12) tourne autour
dudit trou d'arbre de plaque tournante (201); une goulotte coulissante d'arbre principal
(121) est prévue sur une face d'extrémité supérieure dudit arbre principal (12) dans
la direction d'un axe dudit axe central (4); et deux faces latérales de ladite goulotte
coulissante d'arbre principal (121) sont disposées symétriquement des deux côtés d'un
plan dudit axe dudit trou d'arbre de plaque tournante (201) et dudit axe dudit axe
central (4); un sabot de piston (14) est agencé de manière fixe à une extrémité dudit
arbre de plateau tournant (501); ledit sabot de piston (14) est agencé dans ladite
goulotte coulissante d'arbre principal (121); deux faces latérales dudit sabot de
piston (14) sont fixées auxdites deux faces latérales de ladite goulotte coulissante
d'arbre principal (121) et coulissent le long desdites deux faces latérales de ladite
goulotte coulissante d'arbre principal (121) pour former un ajustement lâche; et ladite
goulotte coulissante d'arbre principal (121) sur ledit arbre principal (12) et ledit
sabot de piston (14) à ladite extrémité dudit arbre de plateau tournant (501) forment
ledit mécanisme de basculement de goulotte coulissante.
5. Ledit compresseur sphérique selon la revendication 4, caractérisé en ce qu'une extrémité inférieure dudit arbre principal (12) est reliée à un mécanisme de puissance.
6. Ledit compresseur sphérique selon la revendication 4, caractérisé en ce qu'un trou d'axe d'arbre de plaque tournante (503) est prévu à ladite extrémité dudit
arbre de plaque tournante (501); un trou d'axe de sabot de piston (141) et un trou
d'arbre de sabot de piston (142) apparié audit trou d'axe d'arbre de plateau tournant
(503) sont prévus au centre dudit sabot de piston (14); et ledit arbre de plateau
tournant (501) est inséré dans ledit trou d'axe de sabot de piston (141) après avoir
traversé un trou traversant à travers lequel ledit trou d'arbre de plateau tournant
(201) communique avec ladite cavité intérieure sphérique; et une broche de fixation
(10) est insérée dans un trou d'axe formé en faisant correspondre ledit trou d'arbre
de sabot de piston (142) avec ledit trou d'axe d'arbre de plateau tournant (503) pour
fixer ledit sabot de piston (14) à ladite extrémité dudit arbre de plateau tournant
(501); lesdites deux faces latérales dudit sabot de piston (14) sont des plans parallèles;
et lesdites deux faces latérales dudit sabot de piston (14) sont respectivement fixées
auxdites deux faces latérales de ladite goulotte coulissante d'arbre principal (121)
pour former un ajustement lâche.
7. Ledit compresseur sphérique selon la revendication 4 ou 6, caractérisé en ce que ledit trou d'arbre de piston (105) sur ladite culasse (1) est en communication avec
ledit extérieur dudit corps de cylindre; et ledit arbre de piston (501) fait saillie
dudit trou d'arbre de piston (105) et est connecté à un mécanisme de puissance.
8. Ledit compresseur sphérique selon la revendication 1, 2, 4 ou 6, caractérisé en ce que ledit piston (3) comprend un insert de piston (304); ledit insert de piston (304)
est d'une structure de bloc en forme d'éventail avec deux côtés plus épais qu'un milieu
et est noyé dans ladite rainure dans ladite partie médiane dudit bossage d'axe de
piston dudit piston (3); et une forme d'une surface cylindrique intérieure dudit insert
de piston (304) est équipée d'une forme d'une surface semi-cylindrique faisant saillie
dudit plateau tournant (5) pour former un ajustement lâche scellé; et une surface
supérieure faisant saillie dudit insert de piston (304) est une surface cylindrique
extérieure qui est équipée d'une surface inférieure de ladite rainure dudit bossage
d'axe de piston dudit piston (3); deux faces latérales dudit insert de piston (304)
affleurent lesdites deux faces latérales dudit piston (3); et deux faces d'extrémité
dudit insert de piston (304) forment un ajustement lâche scellé avec deux parois latérales
de ladite rainure dans ladite partie médiane dudit bossage d'axe de piston.