(19)
(11) EP 3 447 293 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
22.09.2021 Bulletin 2021/38

(21) Application number: 17785310.8

(22) Date of filing: 29.03.2017
(51) International Patent Classification (IPC): 
F04C 3/06(2006.01)
F04C 21/00(2006.01)
F04C 29/00(2006.01)
(52) Cooperative Patent Classification (CPC):
F04C 2240/80; F04C 2240/20; F04C 21/005
(86) International application number:
PCT/CN2017/078509
(87) International publication number:
WO 2017/181825 (26.10.2017 Gazette 2017/43)

(54)

SPHERICAL COMPRESSOR

KUGELVERDICHTER

COMPRESSEUR SPHÉRIQUE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 20.04.2016 CN 201610243847
20.04.2016 CN 201620333567 U

(43) Date of publication of application:
27.02.2019 Bulletin 2019/09

(73) Proprietor: Shenzhen Zhongke Zheng'an Science & Technology Partnership Enterprise (Limited Partnership)
Kong Cooperation Zone Shenzhen, Guangdong Guangdong (CN)

(72) Inventors:
  • WANG, Luyi
    Xi'an Shaanxi 710043 (CN)
  • LI, Zhengping
    Xi'an Shaanxi 710043 (CN)

(74) Representative: Vitina, Maruta et al
Agency TRIA ROBIT P.O. Box 22
1010 Riga
1010 Riga (LV)


(56) References cited: : 
CN-A- 103 147 991
CN-A- 103 835 955
CN-A- 104 314 808
CN-A- 105 756 932
CN-U- 205 559 282
GB-A- 403 914
CN-A- 103 147 991
CN-A- 103 835 955
CN-A- 105 179 197
CN-U- 203 742 997
DE-A1- 4 325 166
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a spherical compressor.

    BACKGROUND



    [0002] A spherical compressor is a newly invented variable-volume mechanism with a novel structure. The spherical compressor requires no intake/exhaust valve, few moving parts, and has the advantages of small vibration, high mechanical efficiency, reliable sealing performance, etc. There are many patents of spherical compressors, such as Chinese Patent No. 03114505.1 (titled "Variable-volume Mechanism for Compressor"), CN200610104569.8 (titled "Spherical Compressor Capable of Multi-stage Compression"), and CN201010264211.8 (titled "Hinge Sealing Automatic Compensation Mechanism for Spherical Compressor"). The application and development of spherical compressors have made steady progress in recent years. Spherical compressors can be widely used in various fields such as gas compressors, refrigerator and refrigeration air-conditioning compressors and pump machinery. Various power machines based on spherical compressors are undergoing industrialization.

    [0003] Since the rotation of a piston of an existing spherical compressor is powered by an eccentric main shaft, when the main shaft rotates to the point where the axis of a turntable coincides with the axis of the piston, the resultant force of the main shaft acting on the turntable perpendicularly intersects with the axis of the piston and the axis of the turntable, so that the torque of the piston rotating around the axis of the piston is zero and the piston cannot rotate, thus causing clamping stagnation of the mechanism, which is the dead center of the mechanism. The Chinese Patent No. 201410100390.X titled "Anti-Locking Mechanism for Rotor of Spherical Compressor" aims to solve the problem of locking at a dead center of a spherical compressor. Specifically, a pin boss is added to a turntable shaft; a guide sleeve is arranged on the pin boss; a concave sliding chute is arranged on a base spherical surface of a cylinder body or a lower spherical surface of the cylinder body; and the concave sliding chute is distributed on the sliding track of the guide sleeve on the corresponding base spherical surface of the cylinder body or the lower spherical surface of the cylinder body during the rotation of a turntable. At the moment when the rotating torque of the turntable is zero, when the main shaft drives the turntable, the contact force generated by the guide sleeve and the concave sliding chute can still keep the turntable moving, so that the turntable is not prone to clamping stagnation, fundamentally solving the dead center problem during the movement of the spherical compressor mechanism. However, high precision of the concave sliding chute is required to ensure a good fit between the guide sleeve and the concave sliding chute, and a cooling mechanism is needed to prevent heat generation caused by friction of the guide sleeve and the concave sliding chute during the movement of the anti-locking mechanism, thus increasing manufacturing and operation costs. Chinese Patent Application No. 201310100697.5 discloses a mechanism synchronous with the rotation of a turntable in a spherical compressor, which can effectively overcome the problem that when the piston axis is coincident or approximately coincident with the turntable axis, the main shaft fails to drive the rotation of the piston. However, in this mechanism, the steel ball is required to be highly matched with the cross section of the concave sliding chute, and the abrasion will occur at the contact surface between the steel ball and the sliding chute.

    SUMMARY



    [0004] The objective of the present invention is to design a novel spherical compressor based on the existing spherical compressor so that the spherical compressor is a mechanism without dead center.

    [0005] The spherical compressor of the present invention includes:

    a cylinder body having a hemispherical inner cavity and a turntable shaft hole are in communication with an outside of the cylinder body;

    a cylinder head having a hemispherical inner cavity, wherein the cylinder head is combined with the cylinder body to form a spherical inner cavity; an intake passage, an exhaust passage and a piston shaft hole are provided on an inner spherical surface of the cylinder head; the intake passage and the exhaust passage on the cylinder head are respectively arranged in an annular space perpendicular to an axis of the piston shaft hole; the intake passage and the exhaust passage communicate with an intake hole and an exhaust hole on the cylinder head in communication with the outside of the cylinder body, respectively;

    a piston having a spherical top surface, two side faces which form an angle and a piston pin boss at a lower part of the two side faces, wherein the spherical top surface of the piston and the spherical inner cavity have the same center and form a sealed loose fit; the piston pin boss is a semi-cylindrical; a middle part of the semi-cylinder is provided with a groove; a piston pin hole which penetrates is provided on a central axis of the semi-cylinder; a piston shaft protrudes from a center of the spherical top surface of the piston; and an axis of the piston shaft passes through the center of the spherical top surface of the piston;

    a turntable having a turntable pin boss corresponding to the piston pin boss; wherein the turntable pin boss is arranged at an upper part of the turntable; an outer peripheral surface between the upper part and a lower end face of the turntable is a turntable spherical surface; the turntable spherical surface has the same center with the spherical inner cavity and is closely attached to the spherical inner cavity to form a sealed loose fit; two ends of the turntable pin boss are provided with semi-cylindrical grooves; a middle part of the turntable pin boss is provided with a protruding semi-cylinder; a turntable pin hole which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable shaft protrudes from a center of a lower end of the turntable; and the turntable shaft passes through the center of the turntable spherical surface; and

    a center pin inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge; where matching surfaces of the cylindrical hinge form a sealed loose fit;

    wherein the axis of the piston shaft hole and the axis of the turntable shaft hole both pass through the spherical center of the spherical inner cavity; and an included angle between the axis of the piston shaft hole and the axis of the turntable shaft hole is α; a sliding chute swinging mechanism is arranged between the piston shaft and the piston shaft hole; the sliding chute swinging mechanism between the piston shaft and the piston shaft hole allows the piston to swing along a sliding chute relative to the axis of the piston shaft hole; the turntable shaft is driven to rotate so that the piston and the turntable relatively swing around the center pin; and a V1 working chamber and a V2 working chamber with alternatively variable volumes are formed between an upper end face of the turntable, the two side faces of the piston and the spherical inner cavity.



    [0006] Further, a rotary sleeve in a cylindrical shape is arranged in the piston shaft hole on the cylinder head. An outer cylinder of the rotary sleeve is coaxial with the piston shaft hole, and the rotary sleeve can rotate around the axis of the piston shaft hole. A rotary sleeve sliding chute in a direction of an axis of the center pin is arranged on an end face of the rotary sleeve, and two side faces of the rotary sleeve sliding chute are symmetrically arranged on both sides of a plane of the axis of the center pin and the axis of the piston shaft hole. A piston shoe is fixedly arranged at an end of the piston shaft, and the piston shoe is arranged in the rotary sleeve sliding chute. Two side faces of the piston shoe are attached to the two side faces of the rotary sleeve sliding chute and slide along the two side faces of the rotary sleeve sliding chute to form a loose fit, and the rotary sleeve sliding chute on the rotary sleeve and the piston shoe on the piston shaft form the sliding chute swinging mechanism. The turntable shaft is inserted into the turntable shaft hole on the cylinder body to form a rotating pair with the cylinder body, and a sealing plug is arranged at an end of the piston shaft hole on the cylinder head.

    [0007] A piston shaft pin hole is provided at the end of the piston shaft. A piston shoe shaft hole and a piston shoe pin hole matched with the piston shaft pin hole are provided at a center of the piston shoe, and the piston shaft is inserted into the piston shoe shaft hole after passing through a via hole through which the piston shaft hole communicates with the spherical inner cavity. A fixing pin is inserted into a pin hole formed by matching the piston shoe pin hole with the piston shaft pin hole to fix the piston shoe at the end of the piston shaft. The two side faces of the piston shoe are parallel planes, and the two side faces of the piston shoe are attached to the two side faces of the rotary sleeve sliding chute respectively to form a loose fit.

    [0008] The turntable shaft extends out of the cylinder body and is connected to a power mechanism to serve as a power input end of the compressor.

    [0009] Further, a spherical compressor, comprising a cylinder body having a hemispherical inner cavity, wherein the cylinder body is provided with a turntable shaft hole in communication with an outside of the cylinder body;

    a cylinder head having a hemispherical inner cavity, wherein the cylinder head is combined with the cylinder body to form a spherical inner cavity; an intake passage, an exhaust passage and a piston shaft hole are provided on an inner spherical surface of the cylinder head; the intake passage and the exhaust passage on the cylinder head are respectively arranged in an annular space perpendicular to an axis of the piston shaft hole; the intake passage and the exhaust passage communicate with an intake hole and an exhaust hole on the cylinder head in communication with the outside of the cylinder body, respectively;

    a piston comprising a spherical top surface, two side faces which form an angle, and a piston pin boss at a lower part of the two side faces, wherein the spherical top surface of the piston and the spherical inner cavity have the same center and form a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided on a middle part of the semi-cylinder; a piston pin hole which penetrates is provided on a central axis of the semi-cylinder; a piston shaft protrudes from a center of the spherical top surface of the piston; and an axis of the piston shaft passes through the center of the spherical top surface of the piston;

    a turntable having a turntable pin boss at an upper part of the turntable corresponding to the piston pin boss; wherein an outer peripheral surface between the upper part and a lower end face of the turntable is a turntable spherical surface; the turntable spherical surface has the same center with the spherical inner cavity and is closely attached to the spherical inner cavity to form a sealed loose fit; two ends of the turntable pin boss are semi-cylindrical grooves; a middle part of the turntable pin boss is a protruding semi-cylinder; a turntable pin hole which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable shaft protrudes from a center of a lower end of the turntable; and the turntable shaft passes through the center of the turntable spherical surface; and

    a center pin inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of the cylindrical hinge form a sealed loose fit;

    wherein the axis of the piston shaft hole and the axis of the turntable shaft hole both pass through the center of the spherical inner cavity; and an included angle between the axis of the piston shaft hole and the axis of the turntable shaft hole is α; a sliding chute swinging mechanism is arranged between the turntable shaft and the turntable shaft hole; the sliding chute swinging mechanism between the turntable shaft and the turntable shaft hole allows the turntable to swing along the sliding chute relative to the axis of the turntable shaft hole at a swing angle of 2α; the turntable shaft is driven to rotate so that the piston and the turntable relatively swing around the center pin; and a V1 working chamber and a V2 working chamber that alternatively change volumes are formed between an upper end face of the turntable, the two side faces of the piston and the spherical inner cavity; a lower end of the cylinder body is connected to a main shaft through a main shaft support. An upper end of the main shaft is placed in the turntable shaft hole, and an outer cylinder at the upper end of the main shaft is coaxial with the turntable shaft hole. The main shaft rotates around the turntable shaft hole. A main shaft sliding chute is provided on an upper end face of the main shaft in a direction of an axis of the center pin, and two side faces of the main shaft sliding chute are symmetrically arranged on both sides of a plane of the axis of the turntable shaft hole and the axis of the center pin. A piston shoe is fixedly arranged at an end of the turntable shaft, and the piston shoe is arranged in the main shaft sliding chute. Two side faces of the piston shoe are attached to the two side faces of the main shaft sliding chute and slide along the two side faces of the main shaft sliding chute to form a loose fit, and the main shaft sliding chute on the main shaft and the piston shoe on the turntable shaft form the sliding chute swinging mechanism.



    [0010] A lower end of the main shaft is connected to a power mechanism.

    [0011] A turntable shaft pin hole is provided at the end of the turntable shaft. A a piston shoe shaft hole and a piston shoe pin hole matched with the turntable shaft pin hole are provided at a center of the piston shoe, and the turntable shaft is inserted into the piston shoe shaft hole after passing through a via hole through which the turntable shaft hole communicates with the spherical inner cavity. A fixing pin is inserted into a pin hole formed by matching the piston shoe pin hole with the turntable shaft pin hole to fix the piston shoe at the end of the turntable shaft. The two side faces of the piston shoe are parallel planes, and the two side faces of the piston shoe are attached to the two side faces of the main shaft sliding chute respectively to form a loose fit.

    [0012] The piston shaft hole on the cylinder head communicates with the outside of the cylinder body, and the piston shaft extends out of the piston shaft hole and is connected to the power mechanism to serve as the power input end of the compressor.

    [0013] Further, the piston includes a piston insert. The piston insert is of a fan-shaped block structure with two sides thicker than a middle, and is embedded in the groove in the middle part of the piston pin boss of the piston. The shape of an inner cylindrical surface of the piston insert is matched with the shape of a protruding semi-cylindrical surface of the turntable to form a sealed loose fit. A protruding top surface of the piston insert is an outer cylindrical surface which is matched with a bottom surface of the groove of the piston pin boss of the piston. Two side faces of the piston insert are flush with the two side faces of the piston, and two end faces of the piston insert form a sealed loose fit with two side walls of the groove in the middle part of the piston pin boss.

    [0014] The invention has the following advantages:
    1. 1. the spherical compressor is a mechanism without dead center;
    2. 2. the spherical compressor requires a simple structure, a small number of parts and low processing precision;
    3. 3. there is no power consumption loss caused by friction and heating when passing through a dead-center mechanism, and there is no need to arrange a special cooling mechanism; and
    4. 4. the spherical compressor can be widely used in refrigeration compressors, air conditioning compressors, air compressors and pump machinery.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    Fig. 1 is a schematic diagram of a first embodiment of the present invention;

    Fig. 2 is a cross-sectional view taken along an A-A line in Fig. 1;

    Fig. 3 is a cross-sectional view taken along a B-B line in Fig. 2;

    Fig. 4 is a schematic diagram of a cylinder head of the first embodiment of the present invention;

    Fig. 5 is a cross-sectional view taken along a C-C line in Fig. 4;

    Fig. 6 is a cross-sectional view taken along a D-D line in Fig. 4;

    Fig. 7 is a schematic diagram of a cylinder body of the first embodiment of the present invention;

    Fig. 8 is a cross-sectional view taken along an E-E line in Fig. 7;

    Fig. 9 is a schematic diagram of a rotary sleeve;

    Fig. 10 is a schematic diagram of a piston shoe;

    Fig. 11 is a schematic diagram of a piston of the first embodiment of the present invention;

    Fig. 12 is a schematic diagram of a turntable of the first embodiment of the present invention;

    Fig. 13 is a schematic diagram of a piston insert;

    Fig. 14 is a schematic diagram of a second embodiment of the present invention;

    Fig. 15 is a cross-sectional view taken along a G-G line in Fig. 14;

    Fig. 16 is a cross-sectional view taken along an F-F line in Fig. 14;

    Fig. 17 is a schematic diagram of a piston of the second embodiment of the present invention;

    Fig. 18 is a schematic diagram of a turntable of the second embodiment of the present invention;

    Fig. 19 is a schematic diagram of a main shaft of the second embodiment of the present invention;

    Fig. 20 is a schematic diagram of a cylinder head of the second embodiment of the present invention;

    Fig. 21 is a cross-sectional view taken along an H-H line in Fig. 20;

    Fig. 22 is a cross-sectional view taken along an I-I line in Fig. 20;

    Fig. 23 is a schematic diagram of a cylinder body of the second embodiment of the present invention;



    [0016] Reference numerals: 1-cylinder head; 2-cylinder body; 3-piston; 4-center pin; 5-turntable; 6-rotary sleeve; 7-sealing ring; 8-bearing; 9-piston shaft sleeve; 10-fixing pin; 11-sealing plug; 12-main shaft; 13-main shaft support; 14-piston shoe; 15-needle bearing; 101-intake hole; 102-exhaust hole; 103-intake passage; 104-exhaust passage; 105-piston shaft hole; 201-turntable shaft hole; 301-piston shaft; 302-piston pin hole; 303-piston shaft pin hole; 304-piston insert; 501-turntable shaft; 502-turntable pin hole; 503-turntable shaft pin hole; 601-rotary sleeve sliding chute; 141-piston shoe shaft hole; 142-piston shoe pin hole; 121-main shaft sliding chute;
    1001-VI working chamber; 1002-V2 working chamber.

    DETAILED DESCRIPTION OF EMBODIMENTS


    Example 1



    [0017] Figs. 1-13 show the illustration of the first embodiment of the invention. As shown in Figs. 1-8, the spherical compressor includes a cylinder head 1, a cylinder body 2, a piston 3, a center pin 4 and a turntable 5. The cylinder body 2 and the cylinder head 1 have hemispherical inner cavities, and the cylinder body 2 and the cylinder head 1 are fixedly connected by screws to form a casing of the spherical compressor with a spherical inner cavity. An intake passage 103, an exhaust passage 104 and a piston shaft hole 105 are provided on the inner spherical surface of the cylinder head 1. The cylinder body 2 is provided with a turntable shaft hole 201 communicated with the outside of the cylinder body. One side of the turntable shaft hole 201 communicates with the spherical inner cavity, and the other side is provided with a bearing seat hole which is coaxial with the turntable shaft hole 201. The axis of the piston shaft hole 105 and the axis of the turntable shaft hole 201 both pass through the spherical center of the spherical inner cavity, and the included angle between the axis of the piston shaft hole 105 and the axis of the turntable shaft hole 201 is α. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105 on the inner spherical surface. An intake hole 101 and an exhaust hole 102 are further formed on the outer surface of the cylinder head 1. The intake hole 101 communicates with the intake passage 103, and the exhaust hole 102 communicates with the exhaust passage.

    [0018] As shown in Figs. 9-12, the piston 3 has a spherical top surface, two side faces which form an angle and a piston pin boss at the lower part of the two side faces. The spherical top surface of the piston and the spherical inner cavity formed by the cylinder body 2 and the cylinder head 1 have the same spherical center and form a sealed loose fit. The piston pin boss is of a semi-cylindrical structure, and a piston pin hole 302 which penetrates is provided on the central axis of the semi-cylinder. The piston pin boss at the lower part of the piston 3 is provided with an opening so as to form a fan-shaped cavity on the piston pin boss of the piston 3. The opening of the piston 3 is located in the middle of the piston pin boss and perpendicular to the axis of the piston pin hole 302 of the piston pin boss, and the width of the opening of the piston 3 is matched with the width of the semi-cylinder of the turntable pin boss. The turntable 5 has a turntable pin boss corresponding to the piston pin boss, and the turntable pin boss is arranged at the upper part of the turntable 5. The outer peripheral surface between the upper part and the lower end face of the turntable 5 is a turntable spherical surface. The turntable spherical surface and the spherical inner cavity have the same center and is closely attached to each other to form a sealed loose fit. The two ends of the turntable pin boss are semi-cylindrical grooves, and the middle part of the turntable pin boss is a protruding semi-cylinder, and a turntable pin hole 502 which penetrates is formed at the center of the semi-cylinder. A turntable shaft 501 matched with the turntable shaft hole 201 on the cylinder body 2 is fixedly provided at the center of the lower end of the turntable 5, and a piston shaft 301 is fixedly provided with at the center of the spherical top surface of the piston 3. The turntable shaft 501 is inserted into the turntable shaft hole 201 on the cylinder body 2 to form a rotating pair with the cylinder body 2. The center pin 4 is inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge, and the matching surfaces of the cylindrical hinge form a sealed loose fit. The piston 3 and the turntable 5 form a sealed loose connection through the cylindrical hinge, and the two ends of the cylindrical hinge and the spherical inner cavity form a sealed loose fit.

    [0019] The piston shaft hole 105 on the cylinder head 1 communicates with the spherical inner cavity of the cylinder head 1 through a via hole, and the radial dimension of the via hole is smaller than the diameter of the piston shaft hole 105. An annular positioning surface is formed at the lower end of the piston shaft hole 105. The piston shaft hole 105 on the cylinder head 1 is provided with a rotary sleeve 6 in a cylindrical shape which is placed in the piston shaft hole 105. The end face of the rotary sleeve 6 is attached to the annular positioning surface. The outer cylinder of the rotary sleeve 6 is coaxial with the piston shaft hole 105. The rotary sleeve 6 can rotate around the axis of the piston shaft hole 105. As shown in Fig. 9, a rotary sleeve sliding chute 601 which can slide in the direction of the axis of the center pin 4 is arranged on the end face of the rotary sleeve 6. The two side faces of the rotary sleeve sliding chute 601 serve as sliding working surfaces and are symmetrically arranged on both sides of a plane of the axis of the center pin 4 and the axis of the piston shaft hole 105 in the cylinder head 1. A piston shoe shaft hole 141 is provided at the center of the piston shoe 14. As shown in Fig. 10, the two side faces of the piston shoe 14 are parallel planes. A piston shaft pin hole 303 is provided at the end of the piston shaft 301, and a piston shoe pin hole 142 is formed in the corresponding position of the piston shoe 14. After the piston shaft 301 passes through the via hole through which the piston shaft hole 301 communicates with the spherical inner cavity, the end of the piston shaft 301 is inserted into the piston shoe shaft hole 141. A fixing pin 10 is inserted into a fixing pin hole formed by the piston shaft pin hole 303 and the piston shoe pin hole 142, and the piston shoe 14 is fixed to the end of the piston shaft 301 by the fixing pin 10. The two side faces of the piston shoe 14 are attached to the two side faces of the rotary sleeve sliding chute 601 respectively, and a loose fit is formed along the two side faces of the rotary sleeve sliding chute 601 in a sliding manner. The two side faces of the piston shoe 14 are parallel to the plane of the axis of the piston shaft hole 105 and the axis of the center pin 4. The rotary sleeve sliding chute 601 on the rotary sleeve 6 and the piston shoe 14 on the piston shaft 301 form a sliding chute swinging mechanism. The turntable shaft 501 is inserted into the turntable shaft hole 201 in the cylinder body 2 to form a rotating pair with the cylinder body 2. The turntable shaft 501 is driven to rotate such that the turntable 5 drives the piston 3 to move through the cylindrical hinge. The movement of the piston 3 is rotation around the axis of the piston shaft hole 105 and swings relative to the turntable 5 around the center pin 4. Meanwhile, the piston 3 swings along the two side faces of the rotary sleeve sliding chute 601 on the rotary sleeve 6 through the piston shoe 14 at the end of the piston shaft 301 relative to the axis of the piston shaft hole 301 on the cylinder head 1 with a swing amplitude of 2α. The length of the two side faces of the rotary sleeve sliding chute 601 in the direction of the axis of the center pin 4 should be long enough to ensure that the swing of the piston shoe 14 is not interfered. In this embodiment, the sliding chute swinging mechanism is used to provide the piston 3 with a degree of freedom to swing along the two side faces of the rotary sleeve sliding chute 601.

    [0020] The piston 3 swings relative to the turntable 5 around the axis of the center pin 4, and a V1 working chamber 1001 and a V2 working chamber 1002 with alternatively variable volumes are formed between the upper end face of the turntable 5, the two side faces of the piston 3 and the spherical inner cavity. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105, and the intake passage 103 and the exhaust passage 104 communicate with an intake hole 101 and an exhaust hole 102 in the cylinder head 1 in communication with the outside of the cylinder body 2, respectively. The air intake and discharge control is realized by the rotation of the piston 3, and when the working chambers need to perform air discharge or air intake, the corresponding working chamber communicates with the intake passage 103 or the exhaust passage 104.

    [0021] As shown in Fig. 3, in this embodiment, the turntable shaft 501 extends out of the cylinder body 2 and is connected to a power mechanism to serve as a power input end of the compressor. A sealing ring 7 is arranged on the inner side of the portion, engaged with the turntable shaft hole 201 on the cylinder body 2, of the turntable shaft 501, and a bearing 8 is arranged at the end of the engagement portion. The power mechanism drives the turntable shaft 501 to rotate, and the volumes of the V1 working chamber 1001 and the V2 working chamber 1002 change constantly and alternately. In Fig. 2, the V1 working chamber 1001 and the V2 working chamber 1002 are in the ultimate state. The V1 working chamber 1001 is in a state that the air intake of the spherical compressor has completed, so the theoretical volume of the V1 working chamber 1001 in the figure is maximum, and the V2 working chamber 1002 is in a state of starting the air intake of the next cycle after discharging the air, so the theoretical volume of the V2 working chamber 1002 in the figure is zero. Each time the turntable shaft 501 drives the turntable 5 to rotate by one cycle, the piston 3 rotates around the axis of the piston shaft hole 105 by one cycle, and at the same time, the piston 3 swings once along the two side faces of the rotary sleeve sliding chute 601 relative to the axis of the piston shaft hole 105 on the cylinder head 1 at a swing angle of 2α. Since the piston 3 swings once around the axis of the center pin 4 relative to the turntable 5, the V1 working chamber 1001 and the V2 working chamber 1002 undergo a complete intake or compression exhaust process, respectively.

    [0022] A sealing plug 11 is provided at the end of the piston shaft hole 105 on the cylinder head 1, and an internal thread is provided on the inner hole in the outer end of the piston shaft hole 105. The sealing plug 11 is provided with an external thread matched with the internal thread, and the sealing plug 11 is arranged at the end of the piston shaft hole 105 by the threads in a blocking mode, so that compression media and lubricating oil cannot leak from the piston shaft hole 105.

    [0023] In order to improve the manufacturability of the piston 3, as shown in Fig. 13, a piston insert 304 is arranged at the fan-shaped cavity at the opening of the piston 3. The piston insert 304 is matched with the opening of the piston 3 in size, and the top surface of the piston insert 304 is matched with the top surface of the opening of the piston 3. The two side faces of the piston insert 304 are matched with the two side faces of the piston 3. The two end faces of the piston insert 304 are matched with the two side faces of the opening of the piston 3. The lower end of the piston insert 304 is an arc of the same radius and coaxial with the piston pin hole 302 in the lower end of the piston 3. By making the top surface and the two end faces of the piston insert 304 and the top surface and the two side faces of the opening of the piston 3 into mutually matched planes, machining is convenient, and the machining precision and the matching precision after assembly are improved.

    [0024] Inspired by this embodiment, those skilled in the art can perform the following deformation treatment on the turntable 5 and the cylinder body 2 without creative labor, and can also achieve the technical effect of the present invention: since the movement of the turntable 5 is rotation around the axis of the turntable shaft hole 201 on the cylinder body 2, the turntable spherical surface can be deformed into various forms of rotating surfaces around the axis of the turntable shaft hole 201 on the cylinder body 2, and the rotating surface can be spherical, cylindrical, conical and other forms. The inner spherical surface of the cylinder body 2 is also deformed into a rotating surface matched with the rotating surface of the turntable 5. The end faces of the two ends of the cylindrical hinge formed by the piston pin boss, the center pin 4 and the turntable pin boss and the inner surface of the cylinder body 2 are attached to each other and form a sealed loose fit during the movement of the piston 3 and the turntable 4. For this reason, the above-mentioned deformation scheme of the turntable and the cylinder body is also protected by this patent, and any technical scheme adopting the above-mentioned deformation treatment also falls within the scope of protection of the present invention.

    Example 2



    [0025] Figs. 14-23 show the drawings of the second embodiment of the invention. A center pin 4, a piston insert 304 and a piston shoe 14 in this embodiment are the structurally same as those in the first embodiment as described above. As shown in Figs. 14-16 and 20-23, a spherical compressor in this embodiment includes a cylinder head 1, a cylinder body 2, a piston 3, a center pin 4 and a turntable 5. The cylinder body 2 and the cylinder head 1 have hemispherical inner cavities, and the cylinder body 2 and the cylinder head 1 are fixedly connected by screws to form a casing of the spherical compressor with a spherical inner cavity. An intake passage 103, an exhaust passage 104 and a piston shaft hole 105 are provided on the inner spherical surface of the cylinder head 1. The cylinder body 2 is provided with a turntable shaft hole 201 communicated with the outside of the cylinder body. The turntable shaft hole 201 in the cylinder body 2 communicates with the spherical inner cavity of the cylinder body 2 through a via hole, and the radial dimension of the via hole is smaller than the diameter of the turntable shaft hole 201. An annular positioning surface is formed at the upper end of the turntable shaft hole 201. The axis of the piston shaft hole 105 and the axis of the turntable shaft hole 201 both pass through the spherical center of the spherical inner cavity, and the included angle between the axis of the piston shaft hole 105 and the axis of the turntable shaft hole 201 is α. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105 on the inner spherical surface, and an intake hole 101 and an exhaust hole 102 are further formed in the outer surface of the cylinder head 1. The intake hole 101 communicates with the intake passage 103, and the exhaust hole 102 communicates with the exhaust passage.

    [0026] As shown in Figs. 17-19, the piston 3 has a spherical top surface, two side faces which form an angle and a piston pin boss at the lower part of the two side faces. The spherical top surface of the piston and the spherical inner cavity formed by the cylinder body 2 and the cylinder head 1 have the same spherical center and form a sealed loose fit. The piston pin boss is of a semi-cylindrical structure, and a piston pin hole 302 which penetrates is provided on the central axis of the semi-cylinder. The piston pin boss at the lower part of the piston 3 is provided with an opening so as to form a fan-shaped cavity on the piston pin boss of the piston 3, the opening of the piston 3 is located in the middle of the piston pin boss and perpendicular to the axis of the piston pin hole 302 of the piston pin boss, and the width of the opening of the piston 3 is matched with the width of the semi-cylinder of the turntable pin boss. The turntable 5 has a turntable pin boss corresponding to the piston pin boss, and the turntable pin boss is arranged at the upper part of the turntable 5. The outer peripheral surface between the upper part and the lower end face of the turntable 5 is a turntable spherical surface, and the turntable spherical surface and the spherical inner cavity have the same center and closely adhere to each other to form a sealed loose fit. The two ends of the turntable pin boss are semi-cylindrical grooves, and the middle part of the turntable pin boss is a protruding semi-cylinder. A turntable pin hole 502 which penetrates is formed at the center of the semi-cylinder. A turntable shaft 501 is provided at the lower end of the turntable 5, and a turntable shaft pin hole 503 is formed in the turntable shaft 501. A piston shaft 301 matched with the piston shaft hole 105 in the cylinder head 1 protrudes from the center of the spherical top surface of the piston 3, and the piston shaft 301 is inserted into the piston shaft hole 105 in the cylinder head 1 to form a rotating pair with the cylinder head 1. The center pin 4 is inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge, and the matching surfaces of the cylindrical hinge form a sealed loose fit. The piston 3 and the turntable 5 form a sealed loose connection through the cylindrical hinge, and the two ends of the cylindrical hinge and the spherical inner cavity form a sealed loose fit.

    [0027] The lower end of the cylinder body 2 is connected to a main shaft 12 through a main shaft support 13, and the main shaft support 13 is fixedly connected to the lower end of the cylinder body 2 through screws to provide support for the rotation of the main shaft 12. The upper end of the main shaft 12 is placed in the turntable shaft hole 201. The outer cylinder at the upper end of the main shaft 12 is coaxial with the turntable shaft hole 201, and the main shaft 12 can rotate around the turntable shaft hole 201. A main shaft sliding chute 121 is provided on the upper end face of the main shaft 12 in the direction of the axis of the center pin 4, and the two side faces of the main shaft sliding chute 121 serve as sliding working surfaces and are symmetrically arranged on both sides of a plane of the axis of the turntable shaft hole 201 in the cylinder body 2 and the axis of the center pin 4. Similar to the structure of the piston shoe 14 in the first embodiment, a piston shoe shaft hole 141 is provided at the center of the piston shoe 14. As shown in Figs. 10, 15, 16 and 18, the two side faces of the piston shoe 14 are parallel planes. A turntable shaft pin hole 503 is provided at the end of the turntable shaft 501, and a piston shoe pin hole 142 is formed in the corresponding position of the piston shoe 14. After the turntable shaft 501 passes through the via hole through which the turntable shaft hole 201 communicates with the spherical inner cavity, the end of the turntable shaft 501 is inserted into the piston shoe shaft hole 141. A fixing pin 10 is inserted into a fixing pin hole formed by the turntable shaft pin hole 503 and the piston shoe pin hole 142, and the piston shoe 14 is fixed to the end of the turntable shaft 501 by the fixing pin 10. The piston shoe 14 is arranged in the main shaft sliding chute 121 in the end of the main shaft 12, and the two side faces of the piston shoe 14 are attached to the two side faces of the main shaft sliding chute 121 and slide along the two side faces of the main shaft sliding chute 121 to form a loose fit, and the main shaft sliding chute 121 on the main shaft 12 and the piston shoe 14 on the turntable shaft 501 form a sliding chute swinging mechanism.

    [0028] The lower end of the main shaft 12 extends out of a shaft hole of the main shaft support 13 and is connected to a power mechanism. The main shaft 12 drives the turntable shaft 501 to rotate through the two side faces of the main shaft sliding chute 121. The turntable 5 drives the piston 3 to move through the cylindrical hinge. The movement of the piston 3 is rotation around the axis of the piston shaft hole 105. The movement of the turntable 5 is rotation around the axis of the turntable shaft hole 201 and swings around the center pin 4 relative to the piston 3. Meanwhile, the turntable 5 swings along the two side faces of the main shaft sliding chute 121 through the piston shoe 14 relative to the axis of the turntable shaft hole 201 in the cylinder body 2 at a swing angle of 2α. The length of the two side faces of the main shaft sliding chute 121 in the direction of the axis of the center pin 4 should be long enough to ensure that the swing of the piston shoe 14 is not interfered. In this embodiment, the sliding chute swinging mechanism is used to provide the turntable 5 with a degree of freedom to swing along the two side faces of the main shaft sliding chute 121.

    [0029] The turntable 5 swings around the center pin 4 relative to the piston 3, and a V1 working chamber 1001 and a V2 working chamber 1002 with alternatively variable volumes are formed between the upper end face of the turntable 5, the two side faces of the piston 3 and the spherical inner cavity. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105. The intake passage 103 and the exhaust passage 104 communicate with an intake hole 101 and an exhaust hole 102 in the cylinder head 1 in communication with the outside of the cylinder body 2, respectively. The air intake and discharge control is realized by the rotation of the piston 3, and when the working chambers need to perform air discharge or air intake, the corresponding working chamber communicates with the intake passage 103 or the exhaust passage 104.

    [0030] The power mechanism drives the main shaft 12 to rotate, and the main shaft 12 drives the turntable shaft 501 to rotate through the two side faces of the main shaft sliding chute 121. The volumes of the V1 working chamber 1001 and the V2 working chamber 1002 change constantly. In Fig. 15, the V1 working chamber 1001 and the V2 working chamber 1002 are in the ultimate state, the V1 working chamber 1001 is in a state that the air intake of the spherical compressor has completed, so the theoretical volume of the V1 working chamber 1001 in the figure is maximum, and the V2 working chamber 1002 is in a state of starting the air intake of the next cycle after discharging the air, so the theoretical volume of the V2 working chamber 1002 in the figure is zero. Each time the turntable shaft 501 drives the turntable 5 to rotate by one cycle, the piston 3 rotates around the axis of the piston shaft hole 105 by one cycle, and at the same time, the turntable 5 swings once along the two side faces of the main shaft sliding chute 121 relative to the axis of the turntable shaft hole 201 on the cylinder body 2 at a swing angle of 2α. Since the turntable 5 swings once around the axis of the center pin 4 relative to the piston 3, the V1 working chamber 1001 and the V2 working chamber 1002 undergo a complete intake or compression exhaust process, respectively.

    [0031] A needle bearing is arranged on the portion, matched with the turntable shaft hole 201 on the cylinder body 2, of the upper cylindrical part of the main shaft 12. A sealing ring 7 is arranged on the inner side of the portion, engaged with the main shaft support 13, of the main shaft 12, and a bearing 8 is arranged at the end of the engagement portion. A piston shaft sleeve 9 is arranged on the portion, matched with the piston shaft hole 105 on the cylinder head 1, of the piston shaft 301.

    [0032] As an application extension of this embodiment, the piston shaft hole 105 on the cylinder head 1 communicates with the outside of the cylinder body, and the piston shaft 301 extends out of the piston shaft hole 105 on the cylinder head 1 and is connected to a power mechanism to serve as the power input end of the compressor, or power may be input from the piston shaft.

    [0033] In order to improve the manufacturability of the piston 3, as shown in Fig. 14, a piston insert 304 is arranged at the fan-shaped cavity at the opening of the piston 3. The piston insert 304 is matched with the opening of the piston 3 in size, and the top surface of the piston insert 304 is matched with the top surface of the opening of the piston 3. The two side faces of the piston insert 304 are matched with the two side faces of the piston 3. The two end faces of the piston insert 304 are matched with the two side faces of the opening of the piston 3. The lower end of the piston insert 304 is an arc of the same radius and coaxial with the piston pin hole 302 in the lower end of the piston 3. By making the top surface and the two end faces of the piston insert 304 and the top surface and the two side faces of the opening of the piston 3 into mutually matched planes, machining is convenient, and the machining precision and the matching precision after assembly are improved.

    [0034] According to the invention, the sliding chute swinging mechanism is arranged between the piston shaft 301 and the piston shaft hole 105 or between the turntable shaft 501 and the turntable shaft hole 201. In the first embodiment, the sliding chute swinging mechanism between the piston shaft 301 and the piston shaft hole 105 allows the piston 3 to swing along the two side faces of the rotary sleeve sliding chute 601 relative to the axis of the piston shaft hole 105, so that the piston 3 obtains a degree of freedom in the direction of the axis of the center pin 4. In the second embodiment, the sliding chute swinging mechanism between the turntable shaft 501 and the turntable shaft hole 201 allows the turntable 5 to swing along the two side faces of the main shaft sliding chute 121 relative to the axis of the turntable shaft hole 201, so that the turntable 5 obtains a degree of freedom in the direction of the axis of the center pin 4.


    Claims

    1. A spherical compressor, comprising:

    a cylinder body (2) having a hemispherical inner cavity, wherein the cylinder body (2) is provided with a turntable shaft hole (201) in communication with an outside of the cylinder body (2);

    a cylinder head (1) having a hemispherical inner cavity, wherein the cylinder head (1) is combined with the cylinder body (2) to form a spherical inner cavity; an intake passage (103), an exhaust passage (104) and a piston shaft hole (105) are provided on an inner spherical surface of the cylinder head (1); the intake passage (103) and the exhaust passage (104) on the cylinder head (1) are respectively arranged in an annular space perpendicular to an axis of the piston shaft hole (105); the intake passage (103) and the exhaust passage (104) communicate with an intake hole (101) and an exhaust hole (102) on the cylinder head (1) in communication with the outside of the cylinder body (2), respectively;

    a piston (3) comprising a spherical top surface, two side faces which form an angle, and a piston pin boss at a lower part of the two side faces, wherein the spherical top surface of the piston (3) and the spherical inner cavity have the same center and form a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided on a middle part of the semi-cylinder; a piston pin hole (302) which penetrates is provided on a central axis of the semi-cylinder; a piston shaft (301) protrudes from a center of the spherical top surface of the piston (3); and an axis of the piston shaft (301) passes through the center of the spherical top surface of the piston (3);

    a turntable (5) having a turntable pin boss at an upper part of the turntable (5) corresponding to the piston pin boss; wherein an outer peripheral surface between the upper part and a lower end face of the turntable (5) is a turntable spherical surface; the turntable spherical surface has the same center with the spherical inner cavity and is closely attached to the spherical inner cavity to form a sealed loose fit; two ends of the turntable pin boss are semi-cylindrical grooves; a middle part of the turntable pin boss is a protruding semi-cylinder; a turntable pin hole (502) which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable shaft (501) protrudes from a center of a lower end of the turntable (5); and the turntable shaft (501) passes through the center of the turntable spherical surface; and

    a center pin (4) inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of the cylindrical hinge form a sealed loose fit;

    wherein the axis of the piston shaft hole (105) and the axis of the turntable shaft hole (201) both pass through the center of the spherical inner cavity; and an included angle between the axis of the piston shaft hole (105) and the axis of the turntable shaft hole (201) is α; a sliding chute swinging mechanism is arranged between the piston shaft (301) and the piston shaft hole (105); and the sliding chute swinging mechanism between the piston shaft (301) and the piston shaft hole (105) allows the piston (3) to swing along a sliding chute relative to the axis of the piston shaft hole (105); the turntable shaft (501) is driven to rotate so that the piston (3) and the turntable (5) relatively swing around the center pin (4); and a V1 working chamber (1001) and a V2 working chamber (1002) that alternatively change volumes are formed between an upper end face of the turntable (5), the two side faces of the piston (3) and the spherical inner cavity; a rotary sleeve (6) in a cylindrical shape is arranged in the piston shaft hole (105) on the cylinder head (1); an outer cylinder of the rotary sleeve (6) is coaxial with the piston shaft hole (105); the rotary sleeve (6) rotates around the axis of the piston shaft hole (105); a rotary sleeve sliding chute (601) in a direction of an axis of the center pin (4) is arranged on an end face of the rotary sleeve (6); and two side faces of the rotary sleeve sliding chute (601) are symmetrically arranged on both sides of a plane of the axis of the center pin (4) and the axis of the piston shaft hole (105); a piston shoe (14) is fixedly arranged at an end of the piston shaft (301); the piston shoe (14) is arranged in the rotary sleeve sliding chute (601); two side faces of the piston shoe (14) are attached to the two side faces of the rotary sleeve sliding chute (601) and slide along the two side faces of the rotary sleeve sliding chute (601) to form a loose fit; and the rotary sleeve sliding chute (601) on the rotary sleeve (6) and the piston shoe (14) on the piston shaft (501) form the sliding chute swinging mechanism; the turntable shaft (501) is inserted into the turntable shaft hole (201) on the cylinder body (2) to form a rotating pair with the cylinder body (2); and a sealing plug (11) is arranged at an end of the piston shaft hole (105) on the cylinder head (1).


     
    2. The spherical compressor according to claim 1, characterized in that a piston shaft pin hole (303) is provided at the end of the piston shaft (301); a piston shoe shaft hole (141) and a piston shoe pin hole (142) matched with the piston shaft pin hole (303) are provided at a center of the piston shoe (14); and the piston shaft (301) is inserted into the piston shoe shaft hole (141) after passing through a via hole through which the piston shaft hole (105) communicates with the spherical inner cavity; and a fixing pin (10) is inserted into a pin hole formed by matching the piston shoe pin hole (142) with the piston shaft pin hole (303) to fix the piston shoe (14) at the end of the piston shaft (301); the two side faces of the piston shoe (14) are parallel planes; and the two side faces of the piston shoe (14) are respectively attached to the two side faces of the rotary sleeve sliding chute (601) to form a loose fit.
     
    3. The spherical compressor according to claim 1 or 2, characterized in that the turntable shaft (501) extends out of the cylinder body (2) and is connected to a power mechanism.
     
    4. A spherical compressor comprising a cylinder body (2) having a hemispherical inner cavity, wherein the cylinder body (2) is provided with a turntable shaft hole (201) in communication with an outside of the cylinder body (2);

    a cylinder head (1) having a hemispherical inner cavity, wherein the cylinder head (1) is combined with the cylinder body (2) to form a spherical inner cavity; an intake passage (103), an exhaust passage (104) and a piston shaft hole (105) are provided on an inner spherical surface of the cylinder head (1); the intake passage (103) and the exhaust passage (104) on the cylinder head (1) are respectively arranged in an annular space perpendicular to an axis of the piston shaft hole (105); the intake passage (103) and the exhaust passage (104) communicate with an intake hole (101) and an exhaust hole (102) on the cylinder head (1) in communication with the outside of the cylinder body (2), respectively;

    a piston (3) comprising a spherical top surface, two side faces which form an angle, and a piston pin boss at a lower part of the two side faces, wherein the spherical top surface of the piston (3) and the spherical inner cavity have the same center and form a sealed loose fit; the piston pin boss is a semi-cylinder; a groove is provided on a middle part of the semi-cylinder; a piston pin hole (302) which penetrates is provided on a central axis of the semi-cylinder; a piston shaft (301) protrudes from a center of the spherical top surface of the piston (3); and an axis of the piston shaft (301) passes through the center of the spherical top surface of the piston (3);

    a turntable (5) having a turntable pin boss at an upper part of the turntable (5) corresponding to the piston pin boss; wherein an outer peripheral surface between the upper part and a lower end face of the turntable (5) is a turntable spherical surface; the turntable spherical surface has the same center with the spherical inner cavity and is closely attached to the spherical inner cavity to form a sealed loose fit; two ends of the turntable pin boss are semi-cylindrical grooves; a middle part of the turntable pin boss is a protruding semi-cylinder; a turntable pin hole (502) which penetrates is formed on a central axis of the protruding semi-cylinder; a turntable shaft (501) protrudes from a center of a lower end of the turntable (5); and the turntable shaft (501) passes through the center of the turntable spherical surface; and

    a center pin (4) inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of the cylindrical hinge form a sealed loose fit;

    wherein the axis of the piston shaft hole (105) and the axis of the turntable shaft hole (201) both pass through the center of the spherical inner cavity; and an included angle between the axis of the piston shaft hole (105) and the axis of the turntable shaft hole (201) is α; a sliding chute swinging mechanism is arranged between the turntable shaft (501) and the turntable shaft hole (201); the sliding chute swinging mechanism between the turntable shaft (501) and the turntable shaft hole (201) allows the turntable (5) to swing along the sliding chute relative to the axis of the turntable shaft hole (201) at a swing angle of 2α; the turntable shaft (501) is driven to rotate so that the piston (3) and the turntable (5) relatively swing around the center pin (4); and a V1 working chamber (1001) and a V2 working chamber (1002) that alternatively change volumes are formed between an upper end face of the turntable (5), the two side faces of the piston (3) and the spherical inner cavity; a lower end of the cylinder body (2) is connected to a main shaft (12) through a main shaft support (13); an upper end of the main shaft (12) is positioned in the turntable shaft hole (201); an outer cylinder at the upper end of the main shaft (12) is coaxial with the turntable shaft hole (201); and the main shaft (12) rotates around the turntable shaft hole (201); a main shaft sliding chute (121) is provided on an upper end face of the main shaft (12) in a direction of an axis of the center pin (4); and two side faces of the main shaft sliding chute (121) are symmetrically arranged on both sides of a plane of the axis of the turntable shaft hole (201) and the axis of the center pin (4); a piston shoe (14) is fixedly arranged at an end of the turntable shaft (501); the piston shoe (14) is arranged in the main shaft sliding chute (121); two side faces of the piston shoe (14) are attached to the two side faces of the main shaft sliding chute (121) and slide along the two side faces of the main shaft sliding chute (121) to form a loose fit; and the main shaft sliding chute (121) on the main shaft (12) and the piston shoe (14) at the end of the turntable shaft (501) form the sliding chute swinging mechanism.


     
    5. The spherical compressor according to claim 4, characterized in that a lower end of the main shaft (12) is connected to a power mechanism.
     
    6. The spherical compressor according to claim 4, characterized in that a turntable shaft pin hole (503) is provided at the end of the turntable shaft (501); a piston shoe shaft hole (141) and a piston shoe pin hole (142) matched with the turntable shaft pin hole (503) are provided at a center of the piston shoe (14); and the turntable shaft (501) is inserted into the piston shoe shaft hole (141) after passing through a via hole through which the turntable shaft hole (201) communicates with the spherical inner cavity; and a fixing pin (10) is inserted into a pin hole formed by matching the piston shoe pin hole (142) with the turntable shaft pin hole (503) to fix the piston shoe (14) at the end of the turntable shaft (501); the two side faces of the piston shoe (14) are parallel planes; and the two side faces of the piston shoe (14) are respectively attached to the two side faces of the main shaft sliding chute (121) to form a loose fit.
     
    7. The spherical compressor according to claim 4 or 6, characterized in that the piston shaft hole (105) on the cylinder head (1) is in communication with the outside of the cylinder body; and the piston shaft (501) protrudes from the piston shaft hole (105) and is connected to a power mechanism.
     
    8. The spherical compressor according to claim 1, 2, 4 or 6, characterized in that the piston (3) comprises a piston insert (304); the piston insert (304) is of a fan-shaped block structure with two sides thicker than a middle and is embedded in the groove in the middle part of the piston pin boss of the piston (3); and the shape of an inner cylindrical surface of the piston insert (304) is fitted with the shape of a semi-cylindrical surface protruding from the turntable (5) to form a sealed loose fit; and a top surface protruding from the piston insert (304) is an outer cylindrical surface which is fitted with a bottom surface of the groove of the piston pin boss of the piston (3); two side faces of the piston insert (304) are flush with the two side faces of the piston (3); and two end faces of the piston insert (304) form a sealed loose fit with two side walls of the groove in the middle part of the piston pin boss.
     


    Ansprüche

    1. Kugelförmiger Kompressor, umfassend:

    einen Zylinderkörper (2) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkörper (2) mit einem Drehteller-Schaftloch (201) versehen ist, das mit einer Außenseite des Zylinderkörpers (2) in Verbindung steht;

    einen Zylinderkopf (1) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkopf (1) mit dem Zylinderkörper (2) kombiniert ist, um einen kugelförmigen inneren Hohlraum zu bilden; ein Einlasskanal (103), ein Auslasskanal (104) und ein Kolbenschaftloch (105) an einer inneren Kugeloberfläche des Zylinderkopfs (1) vorgesehen sind, wobei der Einlasskanal (103) und der Auslasskanal (104) am Zylinderkopf (1) jeweils in einem ringförmigen Raum senkrecht zu einer Achse des Kolbenschaftlochs (105) angeordnet sind; und wobei der Einlasskanal (103) und der Auslasskanal (104) mit einer Einlassöffnung (101) bzw. einer Auslassöffnung (102) am Zylinderkopf (1) in Verbindung stehen, die mit der Außenseite des Zylinderkörpers (2) in Verbindung stehen;

    einen Kolben (3), der eine kugelförmige obere Fläche, zwei Seitenflächen, die einen Winkel bilden, und einen Kolbenbolzenvorsprung an einem unteren Teil der beiden Seitenflächen umfasst, wobei die kugelförmige obere Fläche des Kolbens (3) und der kugelförmige innere Hohlraum denselben Mittelpunkt haben und eine abgedichtete lose Passung bilden, wobei der Kolbenbolzenvorsprung ein Halbzylinder ist und eine Nut in einem mittleren Teil des Halbzylinders vorgesehen ist; ein Kolbenbolzenloch (302), das auf einer zentralen Achse des Halbzylinders vorgesehen ist, wobei ein Kolbenschaft (301) von einer Mitte der kugelförmigen oberen Fläche des Kolbens (3) vorsteht; und eine Achse des Kolbenschafts (301) durch die Mitte der kugelförmigen oberen Fläche des Kolbens (3) verläuft;

    einen Drehteller (5) mit einem Drehteller-Bolzenvorsprung an einem oberen Teil des Drehtellers (5), der dem Kolbenbolzenvorsprung entspricht; wobei eine äußere Umfangsfläche zwischen dem oberen Teil und einer unteren Endfläche des Drehtellers (5) eine kugelförmige Drehtellerfläche ist; wobei die kugelförmige Drehtellerfläche die gleiche Mitte wie der kugelförmige innere Hohlraum hat und eng an dem kugelförmigen inneren Hohlraum angebracht ist, um eine abgedichtete lose Passung zu bilden; wobei zwei Enden des Drehteller-Bolzenvorsprungs halbzylindrische Nuten sind und ein mittlerer Teil des Drehteller-Bolzenvorsprungs ein vorstehender Halbzylinder ist; ein Drehteller-Stiftloch (502), das auf einer Mittelachse des vorstehenden Halbzylinders ausgebildet ist; wobei eine Drehtellerschaft (501) von einer Mitte eines unteren Endes des Drehtellers (5) vorsteht und die Drehtellerwelle (501) durch die Mitte der Drehteller-Kugeloberfläche hindurchgeht; und

    einen Mittelbolzen (4), der in ein Bolzenloch eingesetzt wird, das durch Zusammenpassen des Drehteller-Bolzenvorsprungs mit dem Kolbenbolzenvorsprung gebildet wird, um ein zylindrisches Scharnier zu bilden; wobei zusammenpassende Oberflächen des zylindrischen Scharniers eine abgedichtete lose Passung bilden;

    wobei die Achse des Kolbenschaftlochs (105) und die Achse des Drehteller-Schaftlochs (201) beide durch die Mitte des kugelförmigen inneren Hohlraums verlaufen; und ein eingeschlossener Winkel zwischen der Achse des Kolbenschaftlochs (105) und der Achse des Drehteller-Schaftlochs (201) α ist; wobei ein Gleitrutschen-Schwingmechanismus zwischen dem Kolbenschaft (301) und dem Kolbenschaftloch (105) angeordnet ist, und wobei der Gleitrutschen-Schwingmechanismus zwischen dem Kolbenschaft (301) und dem Kolbenschaftloch (105) es dem Kolben (3) ermöglicht, entlang einer Gleitrutsche relativ zu der Achse des Kolbenschaftlochs (105) zu schwingen; wobei die Drehtellerwelle (501) angetrieben wird, um sich zu drehen, so dass der Kolben (3) und der Drehteller (5) relativ um den Mittelbolzen (4) schwingen; und wobei eine V1-Arbeitskammer (1001) und eine V2-Arbeitskammer (1002), die abwechselnd ihre Volumina ändern, zwischen einer oberen Endfläche des Drehtellers (5), den beiden Seitenflächen des Kolbens (3) und dem kugelförmigen inneren Hohlraum gebildet werden; wobei in das Kolbenschaftloch (105) am Zylinderkopf (1) eine Drehhülse (6) in zylindrischer Form angeordnet ist, wobei ein Außenzylinder der Drehhülse (6) koaxial zum Kolbenschaftloch (105) ist; wobei sich die Drehhülse (6) um die Achse der Kolbenschaftlochs (105) dreht; wobei eine Drehhülsen-Gleitrutsche (601) in einer Richtung einer Achse des Mittelbolzens (4) an einer Endfläche der Drehhülse (6) angeordnet ist; und zwei Seitenflächen der Drehhülsen-Gleitrutsche (601) symmetrisch auf beiden Seiten einer Ebene der Achse des Mittelbolzens (4) und der Achse des Kolbenschaftlochs (105) angeordnet sind; ein Kolbenschuh (14) fest an einem Ende des Kolbenschafts (301) angeordnet ist; der Kolbenschuh (14) in der Drehhülsen-Schieberutsche (601) angeordnet ist; zwei Seitenflächen des Kolbenschuhs (14) an den beiden Seitenflächen der Drehhülsen-Gleitrutsche (601) befestigt sind und entlang der beiden Seitenflächen der Drehhülsen-Schieberutsche (601) gleiten, um einen losen Sitz zu bilden; und die Drehhülsen-Gleitrutsche (601) auf der Drehhülse (6) und der Kolbenschuh (14) auf der Kolbenwelle (501) den Schieberutschen-Schwingmechanismus bilden; die Drehtellerwelle (501) in die Drehteller-Wellenloch (201) am Zylinderkörper (2) eingesetzt ist, um ein Drehpaar mit dem Zylinderkörper (2) zu bilden; und wobei ein Dichtungsstopfen (11) an einem Ende des Kolbenwellenlochs (105) am Zylinderkopf (1) angeordnet ist.


     
    2. Kugelförmiger Kompressor nach Anspruch 1, dadurch gekennzeichnet, dass ein Kolbenschaft-Bolzenloch (303) am Ende des Kolbenschafts (301) vorgesehen ist; ein Kolbenschuh-Schaftloch (141) und ein Kolbenschuh-Bolzenloch (142), das mit dem Kolbenschaft-Bolzenloch (303) zusammenpasst, in der Mitte des Kolbenschuhs (14) vorgesehen sind; und der Kolbenschaft (301) in das Kolbenschuh-Schaftloch (141) eingeführt wird, nachdem er durch ein Durchgangsloch hindurchgegangen ist, durch das das Kolbenschaftloch (105) mit dem kugelförmigen inneren Hohlraum in Verbindung steht; und ein Befestigungsstift (10) in ein Stiftloch eingesetzt wird, das durch Zusammenpassen des Kolbenschuh-Stiftlochs (142) mit dem Kolbenschaft-Bolzenloch (303) gebildet wird, um den Kolbenschuh (14) am Ende des Kolbenschafts (301) zu befestigen; die beiden Seitenflächen des Kolbenschuhs (14) parallele Ebenen sind; und die beiden Seitenflächen des Kolbenschuhs (14) jeweils an den beiden Seitenflächen der Drehhülsen-Gleitrutsche (601) angebracht sind, um einen losen Sitz zu bilden.
     
    3. Kugelförmiger Kompressor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Drehtellerwelle (501) aus dem Zylinderkörper (2) herausragt und mit einem Antriebsmechanismus verbunden ist.
     
    4. Kugelförmiger Kompressor, umfassend: einen Zylinderkörper (2) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkörper (2) mit einem Drehteller-Schaftloch (201) versehen ist, das mit einer Außenseite des Zylinderkörpers (2) in Verbindung steht;

    einen Zylinderkopf (1) mit einem halbkugelförmigen inneren Hohlraum, wobei der Zylinderkopf (1) mit dem Zylinderkörper (2) kombiniert ist, um einen kugelförmigen inneren Hohlraum zu bilden; ein Einlasskanal (103), ein Auslasskanal (104) und ein Kolbenschaftloch (105) an einer inneren Kugeloberfläche des Zylinderkopfs (1) vorgesehen sind, wobei der Einlasskanal (103) und der Auslasskanal (104) am Zylinderkopf (1) jeweils in einem ringförmigen Raum senkrecht zu einer Achse des Kolbenschaftlochs (105) angeordnet sind; und wobei der Einlasskanal (103) und der Auslasskanal (104) mit einer Einlassöffnung (101) bzw. einer Auslassöffnung (102) am Zylinderkopf (1) in Verbindung stehen, die mit der Außenseite des Zylinderkörpers (2) in Verbindung stehen;

    einen Kolben (3), der eine kugelförmige obere Fläche, zwei Seitenflächen, die einen Winkel bilden, und einen Kolbenbolzenvorsprung an einem unteren Teil der beiden Seitenflächen umfasst, wobei die kugelförmige obere Fläche des Kolbens (3) und der kugelförmige innere Hohlraum denselben Mittelpunkt haben und eine abgedichtete lose Passung bilden, wobei der Kolbenbolzenvorsprung ein Halbzylinder ist und eine Nut in einem mittleren Teil des Halbzylinders vorgesehen ist; ein Kolbenbolzenloch (302), das auf einer zentralen Achse des Halbzylinders vorgesehen ist, wobei ein Kolbenschaft (301) von einer Mitte der kugelförmigen oberen Fläche des Kolbens (3) vorsteht; und eine Achse des Kolbenschafts (301) durch die Mitte der kugelförmigen oberen Fläche des Kolbens (3) verläuft;

    einen Drehteller (5) mit einem Drehteller-Bolzenvorsprung an einem oberen Teil des Drehtellers (5), der dem Kolbenbolzenvorsprung entspricht; wobei eine äußere Umfangsfläche zwischen dem oberen Teil und einer unteren Endfläche des Drehtellers (5) eine kugelförmige Drehtellerfläche ist; wobei die kugelförmige Drehtellerfläche die gleiche Mitte wie der kugelförmige innere Hohlraum hat und eng an dem kugelförmigen inneren Hohlraum angebracht ist, um eine abgedichtete lose Passung zu bilden; wobei zwei Enden des Drehteller-Bolzenvorsprungs halbzylindrische Nuten sind und ein mittlerer Teil des Drehteller-Bolzenvorsprungs ein vorstehender Halbzylinder ist; ein Drehteller-Stiftloch (502), das auf einer Mittelachse des vorstehenden Halbzylinders ausgebildet ist; wobei eine Drehtellerschaft (501) von einer Mitte eines unteren Endes des Drehtellers (5) vorsteht und die Drehtellerwelle (501) durch die Mitte der Drehteller-Kugeloberfläche hindurchgeht; und

    einen Mittelbolzen (4), der in ein Bolzenloch eingesetzt wird, das durch Zusammenpassen des Drehteller-Bolzenvorsprungs mit dem Kolbenbolzenvorsprung gebildet wird, um ein zylindrisches Scharnier zu bilden; wobei zusammenpassende Oberflächen des zylindrischen Scharniers eine abgedichtete lose Passung bilden;

    wobei die Achse des Kolbenschaftlochs (105) und die Achse des Drehteller-Schaftlochs (201) beide durch die Mitte des kugelförmigen inneren Hohlraums verlaufen; und ein eingeschlossener Winkel zwischen der Achse des Kolbenschaftlochs (105) und der Achse des Drehteller-Schaftlochs (201) α ist; wobei ein Gleitrutschen-Schwingmechanismus zwischen dem Drehtellerschaft (301) und dem Drehteller-Schaftloch (201) angeordnet ist, und wobei der Gleitrutschen-Schwingmechanismus zwischen dem Drehtellerschaft (301) und dem Drehteller-Schaftloch (201) es dem Drehteller (5) ermöglicht, entlang der Gleitrutsche relativ zu der Achse des Drehteller-Schaftloch (201) mit einem Schwenkwinkel von 2α zu schwingen; wobei die Drehtellerwelle (501) angetrieben wird, um sich zu drehen, so dass der Kolben (3) und der Drehteller (5) relativ um den Mittelbolzen (4) schwingen; und wobei eine V1-Arbeitskammer (1001) und eine V2-Arbeitskammer (1002), die abwechselnd ihre Volumina ändern, zwischen einer oberen Endfläche des Drehtellers (5), den beiden Seitenflächen des Kolbens (3) und dem kugelförmigen inneren Hohlraum gebildet werden; ein unteres Ende des Zylinderkörpers (2) mit einer Hauptschaft (12) durch eine Hauptschaft-Halterung (13) verbunden ist; ein oberes Ende der Hauptschaft (12) in dem Drehteller-Schaftloch (201) positioniert ist; ein Außenzylinder am oberen Ende der Hauptschaft (12) koaxial mit dem Drehteller-Schaftloch (201) ist; und die Hauptschaft (12) sich um das Drehteller-Schaftloch (201) dreht; eine Hauptschaft-Gleitrutsche (121) an einer oberen Endfläche der Hauptschaft (12) in einer Richtung einer Achse des Mittelbolzens (4) vorgesehen ist; und zwei Seitenflächen der Hauptschaft-Gleitrutsche (121) symmetrisch auf beiden Seiten einer Ebene der Achse des Drehteller-Schaftlochs (201) und der Achse des Mittelbolzens (4) angeordnet sind; ein Kolbenschuh (14) fest an einem Ende der Drehtellerschaft (501) angeordnet ist; der Kolbenschuh (14) in der Hauptschaft-Gleitrutsche (121) angeordnet ist; zwei Seitenflächen des Kolbenschuhs (14) an den beiden Seitenflächen der Hauptschaft-Gleitrutsche (121) befestigt sind und entlang der beiden Seitenflächen der Hauptschaft-Gleitrutsche (121) gleiten, um einen losen Sitz zu bilden; und die Hauptschaft -Gleitrutsche (121) auf der Hauptschaft (12) und der Kolbenschuh (14) am Ende der Drehtellerschaft (501) den Gleitrutschen-Schwingmechanismus bilden.


     
    5. Kugelförmiger Kompressor nach Anspruch 4, dadurch gekennzeichnet, dass ein unteres Ende der Hauptschaft (12) mit einem Antriebsmechanismus verbunden ist.
     
    6. Kugelförmiger Kompressor nach Anspruch 4, dadurch gekennzeichnet, dass ein Drehtellerschaft-Bolzenloch (503) am Ende des Drehtellerschafts (501) vorgesehen ist; ein Kolbenschuh-Schaftloch (141) und ein Kolbenschuh-Bolzenloch (142), das mit dem Drehtellerschaft-Bolzenloch (503) zusammenpasst, in der Mitte des Kolbenschuhs (14) vorgesehen sind; und der Drehtellerschaft (501) in das Kolbenschuh-Schaftloch (141) eingeführt wird, nachdem er durch ein Durchgangsloch hindurchgegangen ist, durch das das Kompressor nach (105) mit dem kugelförmigen inneren Hohlraum in Verbindung steht; und ein Befestigungsstift (10) in ein Stiftloch eingesetzt wird, das durch Zusammenpassen des Kolbenschuh-Stiftlochs (142) mit dem Drehtellerschaft-Bolzenloch (503) gebildet wird, um den Kolbenschuh (14) am Ende des Drehtellerschafts (501) zu befestigen; die beiden Seitenflächen des Kolbenschuhs (14) parallele Ebenen sind; und die beiden Seitenflächen des Kolbenschuhs (14) jeweils an den beiden Seitenflächen der Hauptschaft -Gleitrutsche (121) angebracht sind, um einen losen Sitz zu bilden.
     
    7. Kugelförmiger Kompressor nach Anspruch 4 oder 6, dadurch gekennzeichnet, dass das Kolbenschaftloch (105) am Zylinderkopf (1) mit der Außenseite des Zylinderkörpers in Verbindung steht und der Kolbenschaft (501) aus dem Kolbenschaftloch (105) herausragt und mit einem Antriebsmechanismus verbunden ist.
     
    8. Kugelförmiger Kompressor nach Anspruch 1, 2, 4 oder 6, dadurch gekennzeichnet, dass der Kolben (3) einen Kolbeneinsatz (304) umfasst; der Kolbeneinsatz (304) eine fächerförmige Blockstruktur mit zwei Seiten aufweist, die dicker als eine Mitte sind, und in die Nut im mittleren Teil des Kolbenbolzenvorsprungs des Kolbens (3) eingebettet ist; und die Form einer inneren zylindrischen Oberfläche des Kolbeneinsatzes (304) in die Form einer halbzylindrischen Oberfläche eingepasst ist, die von dem Drehteller (5) vorsteht, um eine abgedichtete lose Passung zu bilden; und eine obere Fläche, die von dem Kolbeneinsatz (304) vorsteht, eine äußere zylindrische Fläche ist, die an einer Bodenfläche der Nut des Kolbenbolzenvorsprungs des Kolbens (3) angepasst; zwei Seitenflächen des Kolbeneinsatzes (304) mit den zwei Seitenflächen des Kolbens (3) bündig sind; und zwei Endflächen des Kolbeneinsatzes (304) eine abgedichtete lose Passung mit zwei Seitenwänden der Nut in dem mittleren Teil des Kolbenbolzenvorsprungs bilden.
     


    Revendications

    1. Compresseur sphérique, comprenant:

    un corps de cylindre (2) ayant une cavité interne hémisphérique, dans lequel ledit corps de cylindre (2) est pourvu d'un trou d'arbre de plateau tournant (201) en communication avec un extérieur dudit corps de cylindre (2);

    une culasse (1) ayant une cavité intérieure hémisphérique, dans laquelle ladite culasse (1) est combinée avec ledit corps de cylindre (2) pour former une cavité intérieure sphérique; un passage d'admission (103), un passage d'échappement (104) et un trou d'arbre de piston (105) sont prévus sur une surface sphérique interne de ladite culasse (1); ledit passage d'admission (103) et ledit passage d'échappement (104) sur ladite culasse (1) sont respectivement agencés dans un espace annulaire perpendiculaire à un axe dudit trou d'arbre de piston (105); ledit passage d'admission (103) et ledit passage d'échappement (104) communiquent avec un trou d'admission (101) et un trou d'échappement (102) sur ladite culasse (1) en communication avec ledit extérieur dudit corps de cylindre (2), respectivement;

    un piston (3) comprenant une surface supérieure sphérique, deux faces latérales qui forment un angle, et un bossage d'axe de piston à une partie inférieure desdites deux faces latérales; dans lequel ladite surface supérieure sphérique dudit piston (3) et ladite cavité intérieure sphérique ont le même centre et forment un ajustement lâche scellé; ledit bossage d'axe de piston est un demi-cylindre; une rainure est prévue sur une partie médiane dudit demi-cylindre; un trou d'axe de piston (302) qui pénètre est prévu sur un axe central dudit demi-cylindre; un arbre de piston (301) fait saillie à partir d'un centre de ladite surface supérieure sphérique dudit piston (3); et un axe dudit arbre de piston (301) passe par ledit centre de ladite surface supérieure sphérique dudit piston (3);

    un plateau tournant (5) ayant un bossage d'axe de plateau tournant à une partie supérieure dudit plateau tournant (5) correspondant audit bossage d'axe de piston; dans lequel une surface périphérique externe entre ladite partie supérieure et une face d'extrémité inférieure dudit plateau tournant (5) est une surface sphérique de plateau tournant; ladite surface sphérique de plateau tournant a le même centre que ladite cavité interne sphérique et est étroitement attachée à ladite cavité interne sphérique pour former un ajustement lâche scellé; deux extrémités dudit bossage d'axe du plateau tournant sont de rainures semi-cylindriques; une partie médiane dudit bossage d'axe de plateau tournant est un demi-cylindre en saillie; un trou d'axe de plateau tournant (502) qui pénètre est formé sur un axe central dudit demi-cylindre en saillie; un arbre de plateau tournant (501) fait saillie à partir d'un centre d'une extrémité inférieure dudit plateau tournant (5); et ledit arbre de plateau tournant (501) traverse ledit centre de ladite surface sphérique de plateau tournant; et

    un axe central (4) inséré dans un trou d'axe formé en faisant correspondre ledit bossage d'axe de plateau tournant avec ledit bossage d'axe de piston pour former une charnière cylindrique; dans lequel surfaces correspondantes de ladite charnière cylindrique forment un ajustement lâche scellé;

    dans lequel ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre de plateau tournant (201) traversent tous les deux ledit centre de ladite cavité intérieure sphérique; et un angle inclus entre ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre de plateau tournant (201) est α; un mécanisme de basculement de goulotte coulissante est disposé entre ledit arbre de piston (301) et ledit trou d'arbre de piston (105); et ledit mécanisme de basculement de goulotte coulissante entre ledit arbre de piston (301) et ledit trou d'arbre de piston (105) permet audit piston (3) de se balancer le long d'une goulotte coulissante par rapport audit axe dudit trou d'arbre de piston (105); ledit arbre de plateau tournant (501) est entraîné en rotation de sorte que ledit piston (3) et ledit plateau tournant (5) pivotent relativement autour dudit axe central (4); et une chambre de travail V1 (1001) et une chambre de travail V2 (1002) qui changent alternativement de volume sont formées entre une face d'extrémité supérieure dudit plateau tournant (5), lesdites deux faces latérales dudit piston (3) et ladite cavité interne sphérique; un manchon rotatif (6) de forme cylindrique est disposé dans ledit trou d'arbre de piston (105) sur ladite culasse (1); un cylindre extérieur dudit manchon rotatif (6) est coaxial audit trou d'arbre de piston (105); ledit manchon rotatif (6) tourne autour dudit axe dudit trou d'arbre de piston (105); une goulotte coulissante à manchon rotatif (601) dans une direction d'un axe dudit axe central (4) est agencée sur une face d'extrémité dudit manchon rotatif (6); et deux faces latérales de ladite goulotte coulissante à manchon rotatif (601) sont disposées symétriquement des deux côtés d'un plan dudit axe dudit axe central (4) et dudit axe dudit trou d'arbre de piston (105); un sabot de piston (14) est agencé de manière fixe à une extrémité dudit arbre de piston (301); ledit sabot de piston (14) est agencé dans ladite goulotte coulissante à manchon rotatif (601); deux faces latérales dudit sabot de piston (14) sont fixées auxdites deux faces latérales de ladite goulotte coulissante à manchon rotatif (601) et coulissent le long desdites deux faces latérales de ladite goulotte coulissante à manchon rotatif (601) pour former un ajustement lâche; et ladite goulotte coulissante à manchon rotatif (601) sur ledit manchon rotatif (6) et ledit sabot de piston (14) sur ledit arbre de piston (501) forment ledit mécanisme de basculement de goulotte coulissante; ledit arbre de plateau tournant (501) est inséré dans ledit trou d'arbre de plateau tournant (201) sur ledit corps de cylindre (2) pour former une paire rotative avec ledit corps de cylindre (2); et un bouchon d'étanchéité (11) est disposé à une extrémité dudit trou d'arbre de piston (105) sur ladite culasse (1).


     
    2. Ledit compresseur sphérique selon la revendication 1, caractérisé en ce qu'un trou d'axe d'arbre de piston (303) est prévu à ladite extrémité dudit arbre de piston (301); un trou d'axe de sabot de piston (141) et un trou d'arbre de sabot de piston (142) apparié avec ledit trou d'axe d'arbre de piston (303) sont prévus au centre dudit sabot de piston (14); et ledit arbre de piston (301) est inséré dans ledit trou d'axe de sabot de piston (141) après avoir traversé un trou traversant à travers lequel ledit trou d'arbre de piston (105) communique avec ladite cavité intérieure sphérique; et une broche de fixation (10) est insérée dans un trou d'axe formé en faisant correspondre ledit trou d'arbre de sabot de piston (142) avec ledit trou d'axe d'arbre de piston (303) pour fixer ledit sabot de piston (14) à ladite extrémité de ledit arbre de piston (301); lesdites deux faces latérales dudit sabot de piston (14) sont de plans parallèles; et lesdites deux faces latérales dudit sabot de piston (14) sont respectivement fixées auxdites deux faces latérales de ladite goulotte coulissante à manchon rotatif (601) pour former un ajustement lâche.
     
    3. Ledit compresseur sphérique selon la revendication 1 ou 2, caractérisé en ce que ledit arbre de plateau tournant (501) s'étend hors dudit corps de cylindre (2) et est relié à un mécanisme de puissance.
     
    4. Compresseur sphérique comprenant un corps de cylindre (2) ayant une cavité interne hémisphérique, dans lequel ledit corps de cylindre (2) est pourvu d'un trou d'arbre de plateau tournant (201) en communication avec un extérieur dudit corps de cylindre (2);

    une culasse (1) ayant une cavité intérieure hémisphérique, dans laquelle ladite culasse (1) est combinée avec ledit corps de cylindre (2) pour former une cavité intérieure sphérique; un passage d'admission (103), un passage d'échappement (104) et un trou d'arbre de piston (105) sont prévus sur une surface sphérique interne de ladite culasse (1); ledit passage d'admission (103) et ledit passage d'échappement (104) sur ladite culasse (1) sont respectivement agencés dans un espace annulaire perpendiculaire à un axe dudit trou d'arbre de piston (105); ledit passage d'admission (103) et ledit passage d'échappement (104) communiquent avec un trou d'admission (101) et un trou d'échappement (102) sur ladite culasse (1) en communication avec ledit extérieur dudit corps de cylindre (2), respectivement;

    un piston (3) comprenant une surface supérieure sphérique, deux faces latérales qui forment un angle, et un bossage d'axe de piston à une partie inférieure desdites deux faces latérales; dans lequel ladite surface supérieure sphérique dudit piston (3) et ladite cavité intérieure sphérique ont le même centre et forment un ajustement lâche scellé; ledit bossage d'axe de piston est un demi-cylindre; une rainure est prévue sur une partie médiane dudit demi-cylindre; un trou d'axe de piston (302) qui pénètre est prévu sur un axe central dudit demi-cylindre; un arbre de piston (301) fait saillie à partir d'un centre de ladite surface supérieure sphérique dudit piston (3); et un axe dudit arbre de piston (301) passe par ledit centre de ladite surface supérieure sphérique dudit piston (3);

    un plateau tournant (5) ayant un bossage d'axe de plateau tournant à une partie supérieure dudit plateau tournant (5) correspondant audit bossage d'axe de piston; dans lequel une surface périphérique externe entre ladite partie supérieure et une face d'extrémité inférieure dudit plateau tournant (5) est une surface sphérique de plateau tournant; ladite surface sphérique de plateau tournant a le même centre que ladite cavité interne sphérique et est étroitement attachée à ladite cavité interne sphérique pour former un ajustement lâche scellé; deux extrémités dudit bossage d'axe du plateau tournant sont de rainures semi-cylindriques; une partie médiane dudit bossage d'axe de plateau tournant est un demi-cylindre en saillie; un trou d'axe de plateau tournant (502) qui pénètre est formé sur un axe central dudit demi-cylindre en saillie; un arbre de plateau tournant (501) fait saillie à partir d'un centre d'une extrémité inférieure dudit plateau tournant (5); et ledit arbre de plateau tournant (501) traverse ledit centre de ladite surface sphérique de plateau tournant; et

    un axe central (4) inséré dans un trou d'axe formé en faisant correspondre ledit bossage d'axe de plateau tournant avec ledit bossage d'axe de piston pour former une charnière cylindrique; dans lequel surfaces correspondantes de ladite charnière cylindrique forment un ajustement lâche scellé;

    dans lequel ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre de plateau tournant (201) traversent tous deux ledit centre de ladite cavité intérieure sphérique; et un angle inclus entre ledit axe dudit trou d'arbre de piston (105) et ledit axe dudit trou d'arbre de plateau tournant (201) est α; un mécanisme de basculement de goulotte coulissante est disposé entre ledit arbre de plateau tournant (501) et ledit trou d'arbre de plateau tournant (201); ledit mécanisme de basculement de la goulotte coulissante entre ledit arbre de plateau tournant (501) et ledit trou d'arbre de plateau tournant (201) permet audit plateau tournant (5) de se balancer le long de ladite goulotte coulissante par rapport audit axe dudit trou d'arbre de plateau tournant (201) à un angle de pivotement de 2α; ledit arbre de plateau tournant (501) est entraîné en rotation de sorte que ledit piston (3) et ledit plateau tournant (5) pivotent relativement autour dudit axe central (4); et une chambre de travail V1 (1001) et une chambre de travail V2 (1002) qui changent alternativement de volumes sont formées entre une face d'extrémité supérieure dudit plateau tournant (5), lesdites deux faces latérales dudit piston (3) et ladite cavité interne sphérique; une extrémité inférieure dudit corps de cylindre (2) est reliée à un arbre principal (12) par l'intermédiaire d'un support d'arbre principal (13); une extrémité supérieure dudit arbre principal (12) est positionnée dans ledit trou d'arbre de plateau tournant (201); un cylindre extérieur à ladite extrémité supérieure dudit arbre principal (12) est coaxial audit trou d'arbre de plateau tournant (201); et ledit arbre principal (12) tourne autour dudit trou d'arbre de plaque tournante (201); une goulotte coulissante d'arbre principal (121) est prévue sur une face d'extrémité supérieure dudit arbre principal (12) dans la direction d'un axe dudit axe central (4); et deux faces latérales de ladite goulotte coulissante d'arbre principal (121) sont disposées symétriquement des deux côtés d'un plan dudit axe dudit trou d'arbre de plaque tournante (201) et dudit axe dudit axe central (4); un sabot de piston (14) est agencé de manière fixe à une extrémité dudit arbre de plateau tournant (501); ledit sabot de piston (14) est agencé dans ladite goulotte coulissante d'arbre principal (121); deux faces latérales dudit sabot de piston (14) sont fixées auxdites deux faces latérales de ladite goulotte coulissante d'arbre principal (121) et coulissent le long desdites deux faces latérales de ladite goulotte coulissante d'arbre principal (121) pour former un ajustement lâche; et ladite goulotte coulissante d'arbre principal (121) sur ledit arbre principal (12) et ledit sabot de piston (14) à ladite extrémité dudit arbre de plateau tournant (501) forment ledit mécanisme de basculement de goulotte coulissante.


     
    5. Ledit compresseur sphérique selon la revendication 4, caractérisé en ce qu'une extrémité inférieure dudit arbre principal (12) est reliée à un mécanisme de puissance.
     
    6. Ledit compresseur sphérique selon la revendication 4, caractérisé en ce qu'un trou d'axe d'arbre de plaque tournante (503) est prévu à ladite extrémité dudit arbre de plaque tournante (501); un trou d'axe de sabot de piston (141) et un trou d'arbre de sabot de piston (142) apparié audit trou d'axe d'arbre de plateau tournant (503) sont prévus au centre dudit sabot de piston (14); et ledit arbre de plateau tournant (501) est inséré dans ledit trou d'axe de sabot de piston (141) après avoir traversé un trou traversant à travers lequel ledit trou d'arbre de plateau tournant (201) communique avec ladite cavité intérieure sphérique; et une broche de fixation (10) est insérée dans un trou d'axe formé en faisant correspondre ledit trou d'arbre de sabot de piston (142) avec ledit trou d'axe d'arbre de plateau tournant (503) pour fixer ledit sabot de piston (14) à ladite extrémité dudit arbre de plateau tournant (501); lesdites deux faces latérales dudit sabot de piston (14) sont des plans parallèles; et lesdites deux faces latérales dudit sabot de piston (14) sont respectivement fixées auxdites deux faces latérales de ladite goulotte coulissante d'arbre principal (121) pour former un ajustement lâche.
     
    7. Ledit compresseur sphérique selon la revendication 4 ou 6, caractérisé en ce que ledit trou d'arbre de piston (105) sur ladite culasse (1) est en communication avec ledit extérieur dudit corps de cylindre; et ledit arbre de piston (501) fait saillie dudit trou d'arbre de piston (105) et est connecté à un mécanisme de puissance.
     
    8. Ledit compresseur sphérique selon la revendication 1, 2, 4 ou 6, caractérisé en ce que ledit piston (3) comprend un insert de piston (304); ledit insert de piston (304) est d'une structure de bloc en forme d'éventail avec deux côtés plus épais qu'un milieu et est noyé dans ladite rainure dans ladite partie médiane dudit bossage d'axe de piston dudit piston (3); et une forme d'une surface cylindrique intérieure dudit insert de piston (304) est équipée d'une forme d'une surface semi-cylindrique faisant saillie dudit plateau tournant (5) pour former un ajustement lâche scellé; et une surface supérieure faisant saillie dudit insert de piston (304) est une surface cylindrique extérieure qui est équipée d'une surface inférieure de ladite rainure dudit bossage d'axe de piston dudit piston (3); deux faces latérales dudit insert de piston (304) affleurent lesdites deux faces latérales dudit piston (3); et deux faces d'extrémité dudit insert de piston (304) forment un ajustement lâche scellé avec deux parois latérales de ladite rainure dans ladite partie médiane dudit bossage d'axe de piston.
     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description