

(11) EP 3 450 458 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.03.2019 Bulletin 2019/10

40000505.5

(21) Application number: **18200535.5**

(22) Date of filing: 21.08.2013

(51) Int Cl.:

C07K 16/28 (2006.01) A61K 39/395 (2006.01) A61P 29/00 (2006.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 22.08.2012 US 201261692029 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 13753402.0 / 2 888 280

(71) Applicant: Regeneron Pharmaceuticals, Inc. Tarrytown, NY 10591 (US)

(72) Inventors:

 CROLL, Susan, D. Putnam, NY 10579 (US)

 MACDONALD, Lynn White Plains, NY 10605 (US)

MURPHY, Andrew, J.
 Croton-on-Hudson, NY 10520 (US)

(74) Representative: J A Kemp 14 South Square Gray's Inn

London WC1R 5JJ (GB)

Remarks:

This application was filed on 15-10-2018 as a divisional application to the application mentioned under INID code 62.

(54) HUMAN ANTIBODIES TO GFR 3 AND METHODS OF USE THEREOF

(57) The present disclosure provides antibodies that bind to human GFR α 3 and methods of using same. According to certain embodiments, the antibodies are fully human antibodies that bind to human GFR α 3. The antibodies described herein are useful for the treatment of

diseases and disorders associated with one or more GFR $\alpha 3$ biological activities, including the treatment of acute or chronic pain conditions, or inflammatory conditions

EP 3 450 458 A1

Description

10

20

30

35

40

45

50

55

FIELD OF THE INVENTION

[0001] The present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind to human glial cell-line derived neurotrophic factor (GDNF) family receptor alpha 3 (GFR α 3), and therapeutic methods of using those antibodies.

STATEMENT OF RELATED ART

[0002] The glial cell line-derived neurotrophic factor related family is composed of glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN). Each member of the GDNF family binds to a glycosylphosphatidylinositol (GPI)-anchored receptor associated with the plasma membrane. This family of receptors is referred to as the GDNF-family receptor alphas (GFR α s). This receptor family is composed of four different GFR α receptors, GFR α 1-4. GDNF binds preferentially to GFR α 1, NRTN binds preferentially to GFR α 2, ARTN binds preferentially to GFR α 3, and PSPN binds preferentially to GFR α 4. Each GDNF family ligand signals through the RET ("rearranged during transfection") receptor tyrosine kinase, which was first discovered as a proto-oncogene. RET is activated by GDNF family members only if the ligand is first bound to its GFR α receptor (Airaksinen, M.S., et al. Nature Reviews Neuroscience (2002), 3:383-394).

[0003] Both ARTN and GFR α 3 are highly expressed during development and are involved in sympathetic nervous system development. In adult, GFR α 3 expression is largely restricted to the sensory neurons of the dorsal root ganglia (DRG) (Orozco, O.E., et al., European J. Neuroscience, (2001), 13:2177-2182). In adult mouse, artemin is expressed in testis, uterus, thyroid, prostate, and epididymis, as well as in olfactory bulbs and arterioles in the intestine and mesentery (Airaksinen, M.S., et al. Nature Reviews Neuroscience (2002), 3:383-394; Airaksinen, M.S. et al., Brain, Behavior and Evolution, (2006), 68:181-190).

[0004] A possible role for GFR α 3 and artemin in hyperalgesia has been shown in several studies. For example, it has been demonstrated that an injection of the artemin protein into the hindpaw of a rodent caused thermal hyperalgesia and this nociception was enhanced when artemin was co-injected with NGF (Malin, S.A., et al., J. Neuroscience, (2006), 26(33): 8588-8599). Other studies showed that artemin mRNA expression was upregulated in a murine inflammatory model (Elitt, C.M., et al., J. Neuroscience, (2006), 26(33): 8578-8587). Furthermore, other studies showed that artemin transgenic mice have elevated expression of TRPV1 and TRPA1 and have increased behavioral sensitivity to heat and cold (Elitt, C.M., et al., J. Neuroscience, (2006), 26(33): 8578-8587). In addition, a possible role for GFR α 3 in visceral hypersensitivity has been shown by studies in GFR α 3 knockout mice, whereby these mice showed attenuation of visceral hypersensitivity after intracolonic treatment with TNBS

[0005] (2,4,6-trinitrobenzene sulfonic acid) relative to wild type C57BL/6 mice (Tanaka, T., et al., Am. J. Physiol. Gastrointest. Liver Physiol. (2011), 300:G418-G424). A possible role for artemin and its receptor GFR α 3 in pain associated with pancreatitis has also been shown by a study done in patients undergoing pancreatic head resection (Ceyhan, G.O., et al., Gut, (2007), 56:534-544). Based on the foregoing, further studies are warranted to determine whether patients suffering from pain/hyperalgesia and/or hypersensitivity could benefit by treatment with an inhibitor of GFR α 3 activity.

[0006] Antibodies that bind GFR α 3 are described in US 6,861,509. In addition, US 6,677,135 discloses a full length GFR α 3 sequence, whereas splice variants of the GFR α 3 molecule are described in US 7,026,138; US2007/0232535 and US2006/0216289. US 7,138,251 discloses sequences that have 99% identity to full length GFR α 3 and the preparation of humanized monoclonal antibodies to this molecule is described in this patent.

BRIEF SUMMARY OF THE INVENTION

[0007] In a first aspect, the invention provides fully human monoclonal antibodies (mAbs) and antigen-binding fragments thereof that bind to human GFR α 3 and inhibit or block its activity, for example, block the binding of GFR α 3 to the glial cell line-derived neurotrophic factor, artemin, and possibly blocking the subsequent activation of the RET receptor tyrosine kinase and/or blocking signaling through RET and/or blocking signaling through a mediator other than RET. The antibodies or antigen binding fragments thereof may be useful for treating hyperalgesia, allodynia and/or hypersensitivity to any sensory stimulus, including, but not limited to pressure, heat and/or cold. The antibodies may also be used to treat pain/hypersensitivity associated with a wide range of conditions and disorders in which blocking the interaction of GFR α 3 with artemin is desired. The antibodies may also be used to inhibit tumor cell growth, proliferation and/or metastasis. [0008] In one embodiment, the invention provides an isolated antibody or an antigen-binding fragment thereof that specifically binds to human GFR α 3 and has one or more of the following characteristics:

- (i) exhibits a K_D ranging from about 10^{-8} M to about 10^{-13} M as measured by surface plasmon resonance;
- (ii) demonstrates the ability to block about 50-100% of the binding of GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 15 nM;
- (iii) demonstrates the ability to block about 20% to about 100% of the binding of GFR α 3 to a solid support coated with a mixture of artemin and RET;
- (iv) blocks or inhibits artemin-dependent activation of RET with an IC_{50} ranging from about 200 pM to about 50 nM;
- (v) inhibits or reduces one or more nociceptive responses in an in vivo model of bone cancer pain;
- (vi) inhibits or reduces artemin-sensitized thermal hyperalgesia in vivo;
- (vii) inhibits or reduces allodynia in an in vivo model of osteoarthritis;
- (viii) does not cross-react with other GFR co-receptors for RET;

5

10

15

30

35

45

50

55

- (ix) comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; or
- (x) comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.

[0009] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof is selected from the group consisting of a murine, chimeric, humanized and a human antibody.

[0010] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof does not cross-react with human GFR α 1 or human GFR α 2.

[0011] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises (a) a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397 and (b) a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.

[0012] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof demonstrates the ability to block about 50-95% of the binding of human GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 750 pM.

[0013] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof blocks about 75-100% of the binding of human GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 400 pM to about 15 nM.

[0014] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of human RET with an IC_{50} ranging from about 300 pM to about 5 nM.

[0015] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of cynomolgus RET with an IC₅₀ ranging from about 0.7 nM to about 2.5 nM.

[0016] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises the three heavy chain CDRs (HCDR1, HCDR2 and HCDR3) contained within a HCVR amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194,210, 226,242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; and the three light chain CDRs (LCDR1, LCDR2 and LCDR3) contained within a LCVR amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.

[0017] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397. [0018] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405. [0019] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: SEQ ID NO: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346, 354/362, 381/389 and 397/405.

[0020] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NO: 50/58, 146/154, 210/218 and 290/298.

[0021] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof comprises:

(a) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 276, 292, 308, 324, 340, 356, 383 and 399; (b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 278, 294, 310, 326, 342, 358, 385 and 401; (c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 387 and 403; (d) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 391 and 407; (e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 393 and 409; and (f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 395 and 411.

5

10

15

30

35

40

45

50

55

[0022] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof competes for specific binding to human GFR α 3 with an antibody or antigen-binding fragment comprising heavy and light chain sequence pairs selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346 and 354/362, 381/389 and 397/405.

[0023] In one embodiment, the isolated monoclonal antibody or an antigen-binding fragment thereof binds the same epitope on human GFR α 3 that is recognized by an antibody comprising heavy and light chain sequence pairs selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346 and 354/362, 381/389 and 397/405.

[0024] The antibodies of the invention can be full-length (for example, an IgG1 or IgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F(ab')₂ or scFv fragment), and may be modified to affect functionality, e.g., to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164:1925-1933).

[0025] In one embodiment, the isolated antibody or antigen-binding fragment thereof that binds specifically to human GFRα3, comprises a HCVR comprising the three heavy chain CDRs (HCDR1, HCDR2 and HCDR3) contained within the HCVR amino acid sequences selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; and/or a LCVR comprising the three light chain CDRs (LCDR1, LCDR2 and LCDR3) contained within the LCVR amino acid sequences selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405. Methods and techniques for identifying CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein. Exemplary conventions that can be used to identify the boundaries of CDRs include, e.g., the Kabat definition, the Chothia definition, and the AbM definition. In general terms, the Kabat definition is based on sequence variability, the Chothia definition is based on the location of the structural loop regions, and the AbM definition is a compromise between the Kabat and Chothia approaches. See, e.g., Kabat, "Sequences of Proteins of Immunological Interest," National Institutes of Health, Bethesda, Md. (1991); Al-Lazikani et al., J. Mol. Biol. 273:927-948 (1997); and Martin et al., Proc. Natl. Acad. Sci. USA 86:9268-9272 (1989). Public databases are also available for identifying CDR sequences within an antibody.

[0026] In one embodiment, the isolated antibody or antigen-binding fragment that specifically binds human GFR α 3 comprises:

(a) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 387 and 403; and (b) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 395 and 411.

[0027] In one embodiment, the isolated antibody or antigen-binding fragment that specifically binds human GFR α 3, as described in (a) and (b) above, further comprises:

(c) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 276, 292, 308, 324, 340, 356, 383 and 399; (d) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 278, 294, 310, 326, 342, 358, 385 and 401; (e) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 391 and 407; and

(f) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 393 and 409.

[0028] In one embodiment, the invention provides a fully human monoclonal antibody or antigen-binding fragment thereof that binds specifically to human GFRa3, wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210,226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405; (iii) comprises a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 387 and 403, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 395 and 411 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iv) comprises a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 276, 292, 308, 324, 340, 356, 383 and 399 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 278, 294, 310, 326, 342, 358, 385 and 401 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 391 and 407 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 393 and 409 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (v) exhibits a K_D ranging from about 10⁻⁸ M to about 10⁻¹³ M as measured by surface plasmon resonance; (vi) demonstrates the ability to block about 50-100% of the binding of GFR α 3 to its ligand, artemin, with an IC $_{50}$ value ranging from about 40 pM to about 15 nM; (vii) demonstrates the ability to block about 20% to about 100% of the binding of GFRα3 to a solid support coated with a mixture of artemin and RET; (viii) blocks or inhibits artemin-dependent activation of RET with an IC₅₀ ranging from about 200 pM to about 50 nM; (ix) inhibits or reduces one or more nociceptive responses in an in vivo model of bone cancer pain; (x) inhibits or reduces artemin-sensitized thermal hyperalgesia in vivo; (xi) inhibits or reduces allodynia in an in vivo model of osteoarthritis; (xii) does not cross-react with other GFR co-receptors for RET.

[0029] In one embodiment, the present invention provides an antibody or antigen-binding fragment of an antibody comprising a HCDR3 domain having an amino acid sequence selected from any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain having an amino acid sequence selected from any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

30

35

45

50

55

[0030] In one embodiment, the invention provides an antibody or fragment thereof further comprising a HCDR1 domain having an amino acid sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain having an amino acid sequence of any of those shown on Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain having an amino acid sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 98% or at least 99% sequence identity; and a LCDR2 domain having an amino acid sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 98% or at least 99% sequence identity.

[0031] In certain embodiments, the antibody or antigen-binding portion of an antibody that specifically binds to human GFR α 3 comprises a HCDR3/LCDR3 amino acid sequence pair selected from any of the HCDR3/LCDR3 amino acid sequences shown in Table 1. According to certain embodiments, the antibody or antigen-binding portion of an antibody comprises a HCDR3/LCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOs: 8/16, 24/32, 40/48, 56/64, 72/80, 88/96, 104/112, 120/128, 136/144, 152/160, 168/176, 184/192, 200/208, 216/224, 232/240, 248/256, 264/272, 280/288, 296/304, 312/320, 328/336, 344/352, 360/368, 387/395 and 403/411.

[0032] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 4, 6 and 8, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 12, 14 and 16, respectively.

[0033] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and

HCDR3 sequences of SEQ ID NOs: 20, 22 and 24, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 28, 30 and 32, respectively.

[0034] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 36, 38 and 40, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 44, 46 and 48, respectively.

[0035] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 52, 54 and 56, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 60, 62 and 64, respectively.

[0036] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 68, 70 and 72, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 76, 78 and 80, respectively.

[0037] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 84, 86 and 88, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 92, 94 and 96, respectively.

[0038] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 100, 102 and 104, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 108, 110 and 112, respectively.

[0039] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 116, 118 and 120, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 124, 126 and 128, respectively.

[0040] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 132, 134 and 136, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 140, 142 and 144, respectively.

[0041] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 148, 150 and 152, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 156, 158 and 160, respectively.

[0042] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 164, 166 and 168, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 172, 174 and 176, respectively.

[0043] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 180, 182 and 184, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 188, 190 and 192, respectively.

35

50

[0044] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 196, 198 and 200, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 204, 206 and 208, respectively.

[0045] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 212, 214 and 216, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 220, 222 and 224, respectively.

[0046] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 228, 230 and 232, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 236, 238 and 240, respectively.

[0047] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 244, 246 and 248, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 252, 254 and 256, respectively.

[0048] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 260, 262 and 264, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 268, 270 and 272, respectively.

[0049] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 276, 278 and 280, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 284, 286 and 288, respectively.

[0050] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 292, 294 and 296, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 300, 302 and 304, respectively.

[0051] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 308, 310 and 312, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 316, 318 and 320, respectively.

[0052] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 324, 326 and 328, respectively and LCDR1, LCDR2 and LCDR3 sequences of

SEQ ID NOs: 332, 334 and 336, respectively.

30

35

45

50

55

nations as shown in Table 2.

[0053] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 340, 342 and 344, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 348, 350 and 352, respectively.

[0054] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 356, 358 and 360, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 364, 366 and 368, respectively.

[0055] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 383, 385 and 387, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 391, 393 and 395, respectively.

[0056] In one embodiment, the antibody or antigen binding fragment thereof comprises the HCDR1, HCDR2 and HCDR3 sequences of SEQ ID NOs: 399, 401 and 403, respectively and LCDR1, LCDR2 and LCDR3 sequences of SEQ ID NOs: 407, 409 and 411, respectively.

[0057] Certain non-limiting, exemplary antibodies and antigen-binding fragments of the invention comprise HCDR1, HCDR2, HCDR3, LCDR1, LCDR2 and LCDR3 domains, respectively, selected from any of the amino acid sequences shown in Table 1.

[0058] In a second aspect, the invention provides nucleic acid molecules encoding anti-GFRα3 antibodies or fragments thereof. Recombinant expression vectors carrying the nucleic acids of the invention, and host cells into which such vectors have been introduced, are also encompassed by the invention, as are methods of producing the antibodies by culturing the host cells under conditions permitting production of the antibodies, and recovering the antibodies produced. **[0059]** In one embodiment, the invention provides an antibody or fragment thereof comprising a HCVR encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353, 380 and 396 or a substantially identical sequence having at least 90%, at least 95%, at least 98%, or at least 99% homology thereof. In one embodiment, the HCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 49, 145, 209 and 289.

[0060] In one embodiment, the antibody or fragment thereof further comprises a LCVR encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 9, 25, 41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 249, 265, 281, 297, 313, 329, 345, 361, 388 and 404 or a substantially identical sequence having at least 90%, at least 95%, at least 98%, or at least 99% homology thereof. In one embodiment, the LCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 57, 153, 217 and 297.

[0061] In one embodiment, the invention also provides an antibody or antigen-binding fragment of an antibody comprising a HCDR3 domain encoded by a nucleotide sequence located within the variable regions from any of the antibodies shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain encoded by a nucleotide sequence selected from any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.

[0062] In one embodiment, the invention provides an antibody or fragment thereof further comprising a HCDR1 domain encoded by a nucleotide sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain encoded by a nucleotide sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain encoded by a nucleotide sequence of any of those shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR2 domain encoded by a nucleotide sequence shown in Table 1, or a substantially similar sequence thereof having at least 90%, at least 98% or at least 99% sequence identity. [0063] In a third aspect, the invention features a human anti-hGFR α 3 antibody or antigen-binding fragment of an antibody comprising a HCVR encoded by nucleotide sequence segments derived from V_H , D_H and J_H germline sequences, and a LCVR encoded by nucleotide sequence segments derived from V_K and J_K germline sequences, with combi-

[0064] The invention encompasses anti-hGFR α 3 antibodies having a modified glycosylation pattern. In some applications, modification to remove undesirable glycosylation sites may be useful, or e.g., removal of a fucose moiety to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277:26733). In other applications, modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC). [0065] In a fourth aspect, the invention features a pharmaceutical composition comprising a recombinant human antibody or fragment thereof, which specifically binds hGFR α 3 and a pharmaceutically acceptable carrier. In one embodiment, the invention features a composition, which is a combination of an antibody or antigen-binding fragment of an antibody of the invention, and a second therapeutic agent. The second therapeutic agent may be any agent that is advantageously combined with the antibody or fragment thereof of the invention, for example, an agent capable of reducing pain, such as, but not limited to, opioids, morphine, a COX-2 inhibitor, aspirin, or other non-steroidal anti-

inflammatories, acetaminophen, duloxetine, local anesthetics, NMDA modulators, cannabinoid receptor agonists, P2X family modulators, VR1 antagonists, and substance P antagonists. The second therapeutic agent may be an interleukin-1 (IL-1) inhibitor, for example, a fusion protein (US 6,927,044); or an antiepileptic/anticonvulsant drug, such as gabapentin, pregabalin, topiramate; or a tricyclic antidepressant, such as amitriptyline; a cytokine inhibitor or antagonist, such as an antagonist to IL-6, IL-18 or IL-18R, or an inhibitor of a voltage-gated sodium channel, such as a Na_v1.7 inhibitor, or a Na_v1.8 inhibitor, or a Na_v1.9 inhibitor; an inhibitor of a potassium channel or calcium channel; or a NGF inhibitor (a small molecule inhibitor or an anti-NGF antibody), or a second inhibitor or antagonist to $GFR\alpha3$, a tumor necrosis factor (TNF) or TNF receptor inhibitor, an inhibitor of TWEAK (TNF-related WEAK inducer of apoptosis), a RET inhibitor, an inhibitor of a GDNF family ligand, an inhibitor of GFR α 1, GFR α 2 or GFR α 4, an inhibitor of an acid sensing ion channel (e.g. ASIC1 or ASIC3), or a selective serotonin reuptake inhibitor (SSRI), or a serotonin norepinephrine reuptake inhibitor (SNRI), or an inhibitor of a prekineticin receptor (e.g. PROK1 and PROK2), or a caspase inhibitor, a p38 inhibitor, an IKK1/2 inhibitor, CTLA-4lg, or a corticosteroid. The second therapeutic agent may be a small molecule drug or a protein/polypeptide inhibitor. The second therapeutic agent may be synthetic or naturally derived. The second therapeutic agent may be a second antibody specific for $GFR\alpha 3$, a polypeptide antagonist, a siRNA or an antisense molecule specific for GFRα3. It will also be appreciated that the antibodies and pharmaceutically acceptable compositions of the present invention can be employed in combination therapies, that is, the antibodies and pharmaceutically acceptable compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an antibody may be administered concurrently with another agent used to treat the same disorder), or they may achieve different effects (e.g., control of any adverse effects). As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are appropriate for the disease, or condition, being treated.

10

20

30

35

40

45

50

55

[0066] In a fifth aspect, the invention features methods for inhibiting hGFR α 3 activity using an anti-hGFR α 3 antibody or antigen-binding portion of an antibody of the invention, wherein the methods comprise administering a therapeutically effective amount of one or more antibodies of the invention, or antigen binding fragments thereof, or a pharmaceutical composition comprising one or more antibodies of the invention or antigen-binding fragments thereof.

[0067] In a sixth aspect, the invention features a method for treating a GFR α 3-related condition or disease, or the pain associated with a GFR α 3-related condition or disease, the method comprising administering an anti-GFR α 3 antibody or antigen-binding portion of an antibody of the invention, or a composition comprising an anti-GFR α 3 antibody or a fragment thereof, to a patient in need thereof, wherein the GFR α 3-related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.

[0068] In one embodiment, the invention provides for the isolated antibody or antigen-binding fragment thereof, or a pharmaceutical composition comprising at least one antibody or antigen-binding fragment thereof of the invention for use in treating a $GFR\alpha3$ -related condition or disease, or the pain associated with the $GFR\alpha3$ -related condition or disease, wherein the $GFR\alpha3$ -related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.

[0069] In one embodiment, the invention provides for use of an isolated antibody or antigen-binding fragment thereof of the invention, or a pharmaceutical composition comprising at least one antibody of the invention in the manufacture of a medicament for treating a $GFR\alpha3$ -related condition or disease, or the pain associated with the $GFR\alpha3$ -related condition or disease, wherein the $GFR\alpha3$ -related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.

[0070] In one embodiment, the GFR α 3-related condition or disease is selected from the group consisting of acute pain, chronic pain, neuropathic pain, inflammatory pain, a functional pain syndrome, arthritis, pancreatitis, osteoarthritis, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, neurodegenerative disorders, movement disorders, neuroendocrine disorders, ataxia, visceral pain, acute gout, post-herpetic neuralgia, diabetic neuropathy, sciatica, back pain, head or neck pain, severe or intractable pain, breakthrough pain, post-surgical pain, hereditary erythromelalgia, dental pain, rhinitis, cancer pain, complex regional pain syndrome (CRPS), inflammatory bowel disease (e.g. Crohn's disease or ulcerative colitis) and bladder disorders.

[0071] In one embodiment, the functional pain syndrome is selected from the group consisting of chronic low back pain, irritable bowel syndrome (IBS), fibromyalgia (FM), chronic fatigue syndrome, abdominal pain, temporomandibular joint disorder (TMJD), painful bladder syndrome (interstitial cystitis), functional gastrointestinal disorders/syndromes, functional chest pain syndrome, migraines and tension type headaches, chronic pelvic pain syndrome, painful prostate syndrome (chronic prostatitis), multiple chemical sensitivity syndrome and Gulf War syndrome.

[0072] In one embodiment, the cancer pain is associated with a cancer selected from the group consisting of endometrial cancer, prostate cancer, breast cancer, cervical cancer, liver cancer, pancreatic cancer, colon cancer, stomach cancer, uterine cancer, ovarian cancer, kidney cancer, non-small cell lung cancer, brain cancer, a leukemia, a lymphoma, bone cancer and pain associated with metastasis of a cancer.

[0073] In one embodiment, the antibody or antigen-binding fragment is administered to the patient in combination with a second therapeutic agent.

[0074] In one embodiment, the second therapeutic agent is selected from the group consisting of an opioid, a COX-2 inhibitor, a local anesthetic, an NMDA modulator, a cannabinoid receptor agonist, a P2X family modulator, a VR1 antagonist, a substance P antagonist, a second GFR α 3 antagonist, a cytokine or cytokine receptor antagonist, a nerve growth factor (NGF) inhibitor (a small molecular inhibitor or an anti-NGF antibody), aspirin, a NSAID, a steroid, morphine, a selective serotonin reuptake inhibitor (SSRI), a serotonin norepinephrine reuptake inhibitor (SNRI), a tricyclic, an inhibitor of a voltage-gated sodium channel (Na $_{v}$), a calcium channel inhibitor, a potassium channel inhibitor, a tumor necrosis factor (TNF) or TNF receptor inhibitor, an inhibitor of TWEAK (TNF-related WEAK inducer of apoptosis), a RET inhibitor, an inhibitor of a GDNF family ligand, an inhibitor of an acid sensing ion channel (ASIC1 or ASIC3), an anticonvulsant (gabapentin or pregabalin), an inhibitor of a prekineticin receptor (PROK1 and PROK2), a caspase inhibitor, a p38 inhibitor, an IKK1/2 inhibitor, CTLA-4lg and a corticosteroid.

10

15

20

25

30

35

40

45

50

55

[0075] In one embodiment, the second GFR α 3 antagonist is a small organic molecule, a second antibody specific for GFR α 3, a polypeptide antagonist, a siRNA or an antisense molecule specific for GFR α 3.

[0076] In one embodiment, the cytokine or cytokine receptor antagonist is an interleukin-1 (IL-1) antagonist, an IL-6 antagonist, or an IL-18 antagonist.

[0077] The disorder treated is any disease or condition, which is improved, ameliorated, inhibited or prevented by removal, inhibition or reduction of hGFR α 3 activity. Specific populations treatable by the therapeutic methods of the invention include a disease, disorder, or condition selected from acute, chronic, ischemic, neuropathic, or inflammatory pain, hypersensitivity, such as visceral, thermal, or mechanical hypersensitivity, chronic pancreatitis, arthritis, migraine, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, epilepsy or epileptic conditions, myotonia, arrhythmia, movement disorders, neuroendocrine disorders, ataxia, inflammatory bowel disease, spleen inflammation, stomach pain, trigonitis, fibroids, peritonitis, faecal urgency, incontinence, rectal hypersensitivity, visceral pain, osteoarthritis pain, post-herpetic neuralgia, diabetic neuropathy, radicular pain, sciatica, back pain, head or neck pain, breakthrough pain, post-surgical pain, cancer pain, or chemotherapy-induced pain. Other conditions treatable by the therapeutic methods of the invention include Hirschsprung disease, hereditary erythromelalgia, bladder disorders, rhinitis, prostate cancer, breast cancer, cervical cancer, liver cancer, pancreatic cancer, colon cancer, stomach cancer, uterine cancer, ovarian cancer, kidney cancer, a hematologic (blood-borne) cancer, such as a leukemia or a lymphoma, bone cancer, or pain associated with metastasis of a cancer, for example, pain associated with metastasis of a cancer to the bone. The antibodies of the invention or antigen-binding fragments thereof may also be used to treat the following conditions: non-malignant acute, chronic, or fracture bone pain; rheumatoid arthritis, spinal stenosis; neuropathic low back pain; myofascial pain syndrome; pancreatic; chronic headache pain; tension headache; diabetic neuropathy; HIV-associated neuropathy; Charcot-Marie Tooth neuropathy; hereditary sensory neuropathies; peripheral nerve injury; painful neuromas; ectopic proximal and distal discharges; radiculopathy; chemotherapy induced neuropathic pain; radiotherapyinduced neuropathic pain; post-mastectomy pain; central pain; spinal cord injury pain; post-stroke pain; thalamic pain; complex regional pain syndrome (CRPS, also known as Reflex Sympathetic Dystrophy); phantom pain; intractable pain; acute musculoskeletal pain; joint pain; acute gout pain; mechanical low back pain; neck pain; tendonitis; injury/exercise pain; abdominal pain; pyelonephritis; appendicitis; cholecystitis; intestinal obstruction; hernias; etc; chest pain, including, cardiac pain; pelvic pain, renal colic pain, acute obstetric pain, including, labor pain; cesarean section pain; burn and trauma pain; endometriosis; herpes zoster pain; sickle cell anemia; acute pancreatitis; breakthrough pain; orofacial pain including sinusitis pain, dental pain; multiple sclerosis pain; leprosy pain; Behcet's disease pain; adiposis dolorosa; phlebitic pain; Guillain-Barre pain; painful legs and moving toes; Haglund syndrome; Fabry's disease pain; bladder and urogenital disease; and hyperactivity bladder. In one embodiment the antibodies of the invention may be used to treat a functional pain syndrome, wherein the functional pain syndrome is selected from the group consisting of chronic low back pain, irritable bowel syndrome (IBS), fibromyalgia (FM), chronic fatigue syndrome, abdominal pain, temporomandibular joint disorder (TMJD), painful bladder syndrome (interstitial cystitis), functional gastrointestinal disorders/syndromes, functional chest pain syndrome, migraines and tension type headaches, chronic pelvic pain syndrome, painful prostate syndrome (chronic prostatitis), multiple chemical sensitivity syndrome and Gulf War syndrome.

[0078] The antibodies of the invention or antigen-binding fragments thereof may also be used to inhibit tumor cell growth/proliferation, or metastasis of tumor cells. In certain embodiments, the antibodies of the invention or antigen-binding fragments thereof, may be used to treat a cancer, or the "pain associated with a cancer" or "cancer-associated pain", including, for example, but not limited to, endometrial cancer, prostate cancer, breast cancer, cervical cancer, liver cancer, pancreatic cancer, colon cancer, stomach cancer, uterine cancer, ovarian cancer, kidney cancer, small cell lung cancer, brain cancer, a hematologic (blood-borne) cancer, such as a leukemia or a

lymphoma, bone cancer, or pain associated with metastasis of a cancer, for example, pain associated with metastasis of a cancer to the bone. "Cancer-associated pain" also includes pain more generally associated with cancerous conditions such as, e.g., renal cell carcinoma, pancreatic carcinoma, head and neck cancer, malignant gliomas, osteosarcoma, colorectal cancer, gastric cancer, malignant mesothelioma, multiple myeloma, synovial sarcoma, thyroid cancer, or melanoma. The antibodies of the present invention are also useful for treating or preventing pain caused by or associated with cancer therapy or anti-cancer medical treatments, e.g., chemotherapy-induced neuropathic pain such as pain caused by or associated with treatment with paclitaxel (TaxolTM), docetaxel (Taxotere®); nitrosourea, cyclophosphamide, doxorubicin, epirubicin, 5-fluorouracil, topotecan, irinotecan, carmustine, estramustine, and platinum-based chemotherapeutic compounds, such as cisplatin, carboplatin, and iproplatin.

[0079] Other embodiments will become apparent from a review of the ensuing detailed description.

BRIEF DESCRIPTION OF THE FIGURES

[0800]

15

20

25

30

35

40

50

55

Figure 1. Inhibition of artemin-sensitized capsaicin thermal hyperalgesia in animals injected with mouse GFRα3 antibodies (indirect blocker M1M6977N or direct blocker M1M6986N, n=8 each) or isotype (negative) control antibody (M2M180N, n=8) at 30mg/kg s.c. 2 days before receiving capsaicin (1 day before receiving 0.5μg artemin).

Figure 2A and 2B. Tactile allodynia measured by von Frey Hairs in animals from two experiments (A & B) injected with fibrosarcoma and treated with isotype (negative) control antibody (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=8-11 per group). *p<.05, **p<.01, or ***p<.001 compared to isotype control at the same time point.

Figure 3A and 3B. Percent ipsilateral weight bearing in animals from two experiments (A & B) injected with fibrosarcoma and treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=8-11 per group).

Figure 4A and 4B. Guarding scores in animals from two experiments (A & B) injected with fibrosarcoma cells and treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=8-11 per group). **p<.01 compared to isotype control at the same time point.

Figure 5. Tactile allodynia measured by von Frey Hairs in animals injected with carcinoma and treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=9-10 per group). *p<.05, **p<.01, or ***p<.001 compared to isotype (negative) control at the same time point.

Figure 6A and 6B. Percent ipsilateral weight bearing at two time points (A=11 days & B=18 days) injected with carcinoma and treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=9-10 per group). *p<.05 compared to isotype control antibody by post hoc Dunnett's analysis.

Figure 7. Guarding scores in animals injected with carcinoma and treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=9-10 per group). *p<.05, ***p<.001 compared to isotype control at the same time point.

Figure 8. Tactile allodynia measured by von Frey Hairs in animals with DMM treated with isotype (negative) control (M2M180N) or M1M6977N or M1M6986N anti-mouse GFR α 3 antibodies (n=10 per group). **p<.01 or ***p<.001 compared to isotype control at the same time point.

Figure 9. Cross-Competition Analysis of anti-GFRα3 Antibodies for Binding to Biotin-hGFRα3-mmH.

DETAILED DESCRIPTION

[0081] Before the present methods are described, it is to be understood that this invention is not limited to particular methods, and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

[0082] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are now described.

Definitions

[0083] "GFR α 3," or "hGFR α 3", as used herein, refers to the glycosylphosphatidylinositol (GPI)-anchored protein receptor for artemin, which belongs to the family of glial cell line derived neurotrophic factors (GDNF). It is one of the GDNF family receptor alpha proteins that, once bound to its ligand, artemin, mediates activation of the receptor tyrosine kinase

RET ("rearranged during transfection"). Four members of the GFR α family have been recognized to date, GFR α -1-4 (Lindsay RM et al., Neuron, (1996), 17:571-574; Airaksinen, MS, et al., Mol. Cell Neurosci., (1999), 13:313-325). GFR α 3 is also known in the art as GDNF family receptor alpha 3 GPI-linked receptor, or glial cell line-derived neurotrophic factor receptor alpha-3. The expression "GFR α 3," or "hGFR α 3", or fragments thereof, as used herein, refers to the human GFR α 3 protein or fragment thereof, unless specified as being from a non-human species, e.g. "mouse GFR α 3", "rat GFR α 3", or "monkey GFR α 3". Moreover, "GFR α 3," or "hGFR α 3", as used herein, refers to human GFR α 3 encoded by the nucleic acid sequence shown in SEQ ID NO: 374 (Genbank accession number NM_001496) and has the amino acid sequence as shown in SEQ ID NO: 375 (Genbank accession number NP_001487.2), or a biologically active fragment thereof. The signal sequence spans amino acid residues 1-31 of SEQ ID NO: 375, the mature protein spans amino acid residues 32-382 of SEQ ID NO: 375, whereas the C-terminal Pro region spans amino acid residues 383-400 of SEQ ID NO: 375. The GPI cleavage site is found at amino acid residue 374 of SEQ ID NO: 375 (asparagine). The amino acid sequence of human artemin is found in Genbank as accession number Q5T4W7 and the amino acid sequence of human artemin (from amino acids A108-G220 of accession number Q5T4W7) with a myc-myc-hexahistidine tag is shown as SEQ ID NO: 369 (with amino acid residues 114-141 of SEQ ID NO: 369 being the myc-myc hexahistidine tag).

[0084] Although GFR α 3 is structurally and functionally similar to the other members of the GFR α family, GFR α 3 is the most distantly related of the four family members. GFR α 1 and GFR α 2 share about 50% identity (Sanicola, M. et al., PNAS, USA, (1997), 94:6238-43; Klein, RD, et al., (1997), Nature, 387:717-21; Buj-Bello, A. et al., Nature (1997), 387:721-4; Baloh, RH, et al., Neuron, (1997), 18:793-802), while GFR α 3 has only 32 and 37% identity, respectively, with these proteins (Masure, S. et al., Eur. J. Biochem., (1998), 251:622-30; Nomoto, S. et al., BBRC, (1998), 244:849-53). The amino acid sequence of mouse GFR α 3 has the following Genbank Accession Number: NP_034410.3. The amino acid sequence of human GFR α 1 has the following Genbank Accession Number: NP_005255.1 and is also found as SEQ ID NO: 376. The amino acid sequence of cynomolgus GFR α 3 is shown in SEQ ID NO: 377 and the amino acid sequence of cynomolgus RET is shown in SEQ ID NO: 378.

20

30

35

45

50

55

[0085] The term "antibody", as used herein, is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds (*i.e.*, "full antibody molecules"), as well as multimers thereof (e.g. IgM) or antigen-binding fragments thereof. Each heavy chain is comprised of a heavy chain variable region ("HCVR" or " V_H ") and a heavy chain constant region (comprised of domains C_H 1, C_H 2 and C_H 3). Each light chain is comprised of a light chain variable region ("LCVR or " V_L ") and a light chain constant region (C_L). The V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In certain embodiments of the invention, the FRs of the anti-GFR α 3 antibody (or antigen binding fragment thereof) may be identical to the human germline sequences, or may be naturally or artificially modified. An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs.

[0086] Substitution of one or more CDR residues or omission of one or more CDRs is also possible. Antibodies have been described in the scientific literature in which one or two CDRs can be dispensed with for binding. Padlan et al. (1995 FASEB J. 9:133-139) analyzed the contact regions between antibodies and their antigens, based on published crystal structures, and concluded that only about one fifth to one third of CDR residues actually contact the antigen. Padlan also found many antibodies in which one or two CDRs had no amino acids in contact with an antigen (see also, Vajdos et al. 2002 J Mol Biol 320:415-428).

[0087] CDR residues not contacting antigen can be identified based on previous studies (for example residues H60-H65 in CDRH2 are often not required), from regions of Kabat CDRs lying outside Chothia CDRs, by molecular modeling and/or empirically. If a CDR or residue(s) thereof is omitted, it is usually substituted with an amino acid occupying the corresponding position in another human antibody sequence or a consensus of such sequences. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically. Empirical substitutions can be conservative or non-conservative substitutions.

[0088] The fully-human anti-hGFR α 3 antibodies disclosed herein may comprise one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains as compared to the corresponding germline sequences. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to germline sequences available from, for example, public antibody sequence databases. The present invention includes antibodies, and antigen-binding fragments thereof, which are derived from any of the amino acid sequences disclosed herein, wherein one or more amino acids within one or more framework and/or CDR regions are back-mutated to the corresponding germline residue(s) or to a conservative amino acid substitution (natural or non-natural) of the corresponding germline residue(s) (such sequence changes are referred to herein as "germline back-mutations"). A person of ordinary skill in the art, starting with the heavy and light chain variable region sequences disclosed herein, can easily produce numerous antibodies and antigen-binding fragments which comprise one or more individual germline back-mutations or combinations thereof. In certain embodiments, all of the framework and/or CDR residues within the V_H and/or V_L domains are mutated back to the germline sequence. In other embodiments,

only certain residues are mutated back to the germline sequence, e.g., only the mutated residues found within the first 8 amino acids of FR1 or within the last 8 amino acids of FR4, or to germline back-mutations within all framework regions FR1, FR2, FR3, FR4, or only the mutated residues found within CDR1, CDR2 or CDR3. Furthermore, the antibodies of the present invention may contain any combination of two or more germline back-mutations within the framework and/or CDR regions, *i.e.*, wherein certain individual residues are mutated back to the germline sequence while certain other residues that differ from the germline sequence are maintained. Once obtained, antibodies and antigen-binding fragments that contain one or more germline back-mutations can be easily tested for one or more desired properties such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc. Antibodies and antigen-binding fragments obtained in this general manner are encompassed within the present invention.

10

20

30

35

40

45

50

55

[0089] The term "human antibody", as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human mAbs of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis *in vitro* or by somatic mutation *in vivo*), for example in the CDRs and in particular CDR3. However, the term "human antibody", as used herein, is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences. The anti-human GFR α 3 antibodies of the invention may be designated as "anti-hGFR α 3" or "anti-GFR α 3".

[0090] The term "specifically binds," or the like, means that an antibody or antigen-binding fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about $1x10^{-6}$ M or less (e.g., a smaller K_D denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. An isolated antibody that specifically binds hGFR α 3 may, however, exhibit cross-reactivity to other antigens such as GFR α 3 molecules from other species. Moreover, multi-specific antibodies that bind to hGFR α 3 and one or more additional antigens or a bi-specific that binds to two different regions of hGFR α 3 are nonetheless considered antibodies that "specifically bind" hGFR α 3, as used herein.

[0091] As used herein, the term "does not bind" to a specified target molecule (e.g. a particular GFR α 3 peptide) means that the antibody, when tested for binding to the target molecule at 25°C in a Plasmon resonance assay, exhibits a K_D of greater than 500 nM, or if tested for binding to the target molecule at 25°C in an enzyme linked immunosorbent assay (ELISA) exhibits an EC₅₀ of greater than 50 nM, or fails to exhibit any binding in either type of assay or equivalent thereof. [0092] The term "high affinity" antibody refers to those mAbs having a binding affinity to hGFR α 3 of at least 10⁻⁹ M; preferably 10⁻¹⁰ M; more preferably 10⁻¹¹ M, even more preferably 10⁻¹²M, as measured by surface plasmon resonance, e.g., BIACORETM or solution-affinity ELISA.

[0093] By the term "slow off rate", "Koff" or "kd" is meant an antibody that dissociates from hGFR α 3 with a rate constant of 1 x 10⁻³ s⁻¹ or less, preferably 1 x 10⁻⁴ s⁻¹ or less, as determined by surface plasmon resonance, e.g., BIACORETM. [0094] The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. The terms "antigen-binding portion" of an antibody, or "antibody fragment", as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to hGFR α 3.

[0095] The specific embodiments, antibody or antibody fragments of the invention may be conjugated to a therapeutic moiety ("immunoconjugate"), such as an opioid, a COX-2 inhibitor, a local anesthetic, a cytokine antagonist, such as an IL-1 or IL-6 inhibitor, a second GFRα3 inhibitor, an NMDA modulator, a cannabinoid receptor agonist, a P2X family modulator, a VR1 antagonist, a substance P antagonist, a chemotherapeutic agent, or a radioisotope.

[0096] An "isolated antibody", as used herein, is intended to refer to an antibody that is substantially free of other antibodies (Abs) having different antigenic specificities (e.g., an isolated antibody that specifically binds hGFR α 3, or a fragment thereof, is substantially free of Abs that specifically bind antigens other than hGFR α 3).

[0097] A "neutralizing antibody", as used herein (or an "antibody that neutralizes $GFR\alpha3$ activity"), is intended to refer to an antibody whose binding to $hGFR\alpha3$ results in inhibition of at least one biological activity of $GFR\alpha3$. This inhibition of the biological activity of $GFR\alpha3$ can be assessed by measuring one or more indicators of $GFR\alpha3$ biological activity by one or more of several standard *in vitro* or *in vivo* assays known in the art (see examples below).

[0098] The term "surface plasmon resonance", as used herein, refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). [0099] The term "K_D", as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.

[0100] The term "epitope" refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. The term "epitope"

also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids. In certain embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, in certain embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics.

[0101] The term "substantial identity" or "substantially identical," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.

10

30

35

45

50

[0102] As applied to polypeptides, the term "substantial similarity" or "substantially similar" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity. Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art (See, e.g., Pearson (1994) Methods Mol. Biol. 24: 307-331). Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatichydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al., (See Gonnet et al., Science, (1992), 256:1443 45). A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix. [0103] Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. (See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403 410 and (1997) Nucleic Acids Res. 25:3389 402).

[0104] In specific embodiments, the antibody or antibody fragment for use in the method of the invention may be monospecific, bi-specific, or multi-specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide. An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) C_H3 domain and a second Ig C_H3 domain, wherein the first and second Ig C_H3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig C_H3 domain binds Protein A and the second Ig C_H3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering). The second C_H3 may further comprise an Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second C_H3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of IgG1 mAbs; N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of IgG4 mAbs. Variations on the bi-specific antibody format described above are

contemplated within the scope of the present invention.

[0105] By the phrase "therapeutically effective amount" is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).

[0106] The term "functional pain syndrome(s)", refers to chronic symptom-based syndromes that affect up to 15% of the population worldwide. They are characterized by chronic pain and discomfort referred to in different regions of the body. No generally agreed-upon structural, inflammatory, or biochemical abnormalities have been identified that could fully explain the symptoms. Patients show a greatly reduced quality of life, yet treatment options are limited, and the development of novel therapeutic approaches has been disappointing. Some of the common disorders, which fall into this category, include chronic low back pain, irritable bowel syndrome (IBS), fibromyalgia (FM), chronic fatigue syndrome, functional abdominal pain syndrome, temporomandibular joint disorder (TMJD), painful bladder syndrome (interstitial cystitis), functional gastrointestinal disorders/syndromes, functional rectal pain syndrome, functional chest pain syndrome, migraines and tension type headaches, chronic pelvic pain syndrome, painful prostate syndrome (chronic prostatitis), multiple chemical sensitivity syndrome, and Gulf War syndrome.

General Description

10

15

20

25

30

35

40

45

50

55

[0107] The glial cell line-derived neurotrophic factor related family includes glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), persephin (PSPN), and artemin (ARTN). GDNF family proteins are differentially involved in the development and maintenance of sensory, enteric, sympathetic and parasympathetic neurons and a variety of nonneural tissues (Henderson, C.E., et al., (1994), Science 266:1062-1064; Kotzbauer, P.T. et al., (1996), Nature 384:467-470; Springer, J.E., et al. (1994), Exp. Neurol. 127:167-170; Schaar. D.G., et al., (1993), Exp. Neurol. 124:368-371). GDNF is an especially potent survival factor for dopaminergic, noradrenergic and spinal motor neurons (Yan, Q. et al. (1995), Nature, 373:341-344; Henderson, C.E., et al., (1994), Science, 266:1062-1064; Buj-Bello, A. et al., (1995), Neuron, 15:821-828). Other GDNF family growth members have functions outside the nervous system (Trupp, M. et al., (1995), J. Cell Biol. 130:137-148; Kotzbauer, P.T. et al., (1996), Nature 384:467-470; Springer, J.E., et al. (1994), Exp. Neurol. 127:167-170; Schaar. D.G., et al., (1993), Exp. Neurol. 124:368-371). For example, NRTN, ARTN, and PSPN are also expressed in the developing kidney. GDNF also has critical roles outside the nervous system in the regulation of kidney morphogenesis and spermatogenesis (Airaksinen, M.S. et al., (2002), Nature Reviews 3:383-392). [0108] Each member of the GDNF family binds preferentially to (ie, is a ligand for) a glycosylphosphatidylinositol (GPI)-anchored protein receptor dynamically associated with the plasma membrane. The GDNF-family receptor alpha family is composed of four different receptors: GFRalpha1 (GFR α 1, GDNFR-alpha); GFRalpha2 (GFR α 2/TrnR2/GDNFRbeta/NTNR-alpha/RETL2); GFRalpha3 (GFR α 3); and GFRalpha4 (GFR α 4). GDNF binds preferentially to GFR α 1, NRTN binds preferentially to GFR α 2, ARTN binds preferentially to GFR α 3 and PSPN binds preferentially to GFR α 4 (Airaksinen, M.S., et al. Nature Reviews Neuroscience (2002), 3:383-394).

[0109] GFR α 2 is highly expressed in cortex, basal forebrain, and specific layers of the olfactory bulb, and poorly expressed in substantia nigra, cerebellum, and motor nuclei. GFR α 3 is expressed in fetal and adult mouse nerves, sympathetic and sensory ganglia, intestine, heart, brain, lung and kidney. GFR α 4 is expressed at low levels in different brain areas in the adult as well as in some peripheral tissues including testis and heart. While the GDNF family member binding preferences are shown above to be GDNF to GFR α 1; neurturin to GFR α 2; artemin to GFR α 3; and persephin to GFR α 4, the ligand receptor pairing is not stringent (Airaksinen, M.S., et al. Nature Reviews Neuroscience (2002), 3:383-394). For example, GDNF binds to GFR α 2 and GFR α 3 with lower efficiencies than it binds to GFR α 1.

[0110] The GDNF family ligands, typically but not exclusively, transmit their signals through multi-component complexes composed of a ligand, its GFR alpha receptor and the receptor tyrosine kinase, c-Ret. Ret is a common element of these ligand signaling complexes. Ret is a proto-oncogene that strongly activates anti-apoptotic signals through the activation of the phosphoinositol-3 kinases (PI3-K)/PDK/AKT(PKB) and the Ras/Raf/MEK/ERK pathways. Ret is also able to activate phospholipase C gamma (PLCgamma) which elevates intracellular calcium and facilitates activation of members of the conventional and novel protein kinase C (PKC) family. GDNF family ligand receptor complexes are not restricted to signaling through Ret. GDNF:GFRalpha1 can bind to NCAM in cells lacking RET and activate Fyn and FAK. Under some conditions GDNF:GFRalpha complexes directly activate src kinase.

[0111] In certain embodiments of the present invention, any one or more of the three globular cysteine-rich domains (1, 2, or 3) of $\mathsf{GFR}\alpha3$, or a fragment thereof, may be used to prepare antibodies that bind $\mathsf{GFR}\alpha3$ and inhibit its function, or inhibit its ability to bind its ligand, such as, artemin. In certain embodiments, an antibody of the invention specific for $\mathsf{GFR}\alpha3$ may bind to a ligand-binding domain on $\mathsf{GFR}\alpha3$, and as such, may block the binding of the ligand (artemin)- $\mathsf{GFR}\alpha3$ complex to RET. The full-length amino acid sequence of human $\mathsf{GFR}\alpha3$ is shown as SEQ ID NO: 375. The nucleic acid encoding human $\mathsf{GFR}\alpha3$ is shown in SEQ ID NO: 374. Domain 1 spans residues 44-124 of SEQ ID NO: 375; domain 2 spans residues 162-239 of SEQ ID NO: 375; domain 3 spans residues 248-340 of SEQ ID NO: 375. (See either SEQ

ID NO. 375 or Genbank NP_001487.2).

10

25

30

35

45

50

[0112] Any of these domains, 1, 2, or 3, or fragments derived therefrom, may be used to prepare antibodies that bind specifically to GFR α 3 and inhibit its activity, or at least one function associated with GFR α 3. In certain embodiments, the antibodies of the invention bind specifically to GFRa3 and may prevent signaling mediated by GFRa3. In certain embodiments, the antibodies that bind specifically to GFR α 3 may prevent binding of GFR α 3 to its ligand, such as artemin (Wang, X. et al. Structure, (2006), 14:1083-1092). In certain embodiments, the antibodies that bind specifically to $GFR\alpha 3$ may prevent activation of the RET receptor tyrosine kinase. In certain embodiments, the antibodies of the invention may bind specifically to GFRα3 without preventing activation of the RET receptor tyrosine kinase. In certain embodiments, the antibodies of the invention may bind specifically to GFR \alpha 3 and prevent signaling through RET, or through a mediator other than RET. In certain embodiments, the antibodies of the invention may be used to inhibit tumor cell growth/proliferation and as such, may be useful for treating certain cancers/malignancies, or the pain associated with such cancers/malignancies, or the pain associated with metastasis of such cancers/malignancies (See Tang, J-Z, et al. Mol Cancer Ther (2010), 9(6): 1697-1708; Kang, J. et al. Oncogene, (2009), 28:2034-2045; Ceyhan, G.O. et al. Annals of Surgery, (2006), 244(2):274-281; Banerjee, A., et al. Breast Cancer Res (2011), 13:R112; Pandey, V. et al., Endocrinology, (2010), 151(3):909-920; Kang, J. et al., Oncogene, (2010), 29:3228-3240; Li, S. et al. J Biomed Sci (2011), 18:24). In certain embodiments, antibodies that bind specifically to GFRa3 may be prepared using fragments of the above-noted regions, or peptides that extend beyond the designated regions by about 10 to about 50 amino acid residues from either, or both, the N or C terminal ends of the regions described herein. In certain embodiments, any combination of the abovenoted regions or fragments thereof may be used in the preparation of GFRα3 specific antibodies. As noted above, the length, or the number of amino acid residues encompassing the three domains of hGFRa3 may vary by about ten to fifty amino acid residues extending from either, or both, the N terminal or C terminal end of the full length domain, or a fragment thereof, for preparation of anti-hGFRα3 specific antibodies.

Antigen-Binding Fragments of Antibodies

[0113] Unless specifically indicated otherwise, the term "antibody," as used herein, shall be understood to encompass antibody molecules comprising two immunoglobulin heavy chains and two immunoglobulin light chains (*i.e.*, "full antibody molecules") as well as antigen-binding fragments thereof. The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. The terms "antigen-binding portion" of an antibody, or "antibody fragment", as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to hGFRα3. An antibody fragment may include a Fab fragment, a F(ab')₂ fragment, a Fv fragment, a dAb fragment, a fragment containing a CDR, or an isolated CDR. Antigen-binding fragments of an antibody may be derived, e.g., from full antibody molecules using any suitable standard techniques such as proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and (optionally) constant domains. Such DNA is known and/or is readily available from, e.g., commercial sources, DNA libraries (including, e.g., phage-antibody libraries), or can be synthesized. The DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.

[0114] Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) $F(ab')_2$ fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (e.g., an isolated complementarity determining region (CDR)). Other engineered molecules, such as diabodies, triabodies, tetrabodies and minibodies, are also encompassed within the expression "antigen-binding fragment," as used herein.

[0115] An antigen-binding fragment of an antibody will typically comprise at least one variable domain. The variable domain may be of any size or amino acid composition and will generally comprise at least one CDR, which is adjacent to or in frame with one or more framework sequences. In antigen-binding fragments having a V_H domain associated with a V_L domain, the V_H and V_L domains may be situated relative to one another in any suitable arrangement. For example, the variable region may be dimeric and contain $V_H - V_H - V_L$ or $V_L - V_L$ dimers. Alternatively, the antigenbinding fragment of an antibody may contain a monomeric V_H or V_L domain.

(viii) V_L - C_H 1; (ix) V_L - C_H 2; (x) V_L - C_H 3; (xi) V_L - C_H 1- C_H 2; (xii) V_L - C_H 1- C_H 2- C_H 3; (xiii) V_L - C_H 3; and (xiv) V_L - C_L . In any configuration of variable and constant domains, including any of the exemplary configurations listed above, the variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker

region. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids, which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule. Moreover, an antigen-binding fragment of an antibody of the present invention may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric V_H or V_L domain (e.g., by disulfide bond(s)).

[0117] As with full antibody molecules, antigen-binding fragments may be mono-specific or multi-specific (e.g., bi-specific). A multi-specific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen. Any multi-specific antibody format, including the exemplary bi-specific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an antibody of the present invention using routine techniques available in the art.

Preparation of Human Antibodies

[0118] Methods for generating human antibodies in transgenic mice are known in the art. Any such known methods can be used in the context of the present invention to make human antibodies that specifically bind to human GFRα3. [0119] Using VELOCIMMUNE™ technology or any other known method for generating monoclonal antibodies, high affinity chimeric antibodies to GFRα3 are initially isolated having a human variable region and a mouse constant region. As in the experimental section below, the antibodies are characterized and selected for desirable characteristics, including affinity, selectivity, epitope, etc. The mouse constant regions are replaced with a desired human constant region to generate the fully human antibody of the invention, for example wild-type or modified IgG1 or IgG4. While the constant region selected may vary according to specific use, high affinity antigen-binding and target specificity characteristics reside in the variable region.

[0120] In general, the antibodies of the instant invention possess very high affinities, typically possessing K_D of from about 10^{-13} through about 10^{-13} th

Bioequivalents

10

30

35

40

45

50

55

[0121] The anti-GFR α 3 antibodies and antibody fragments of the present invention encompass proteins having amino acid sequences that vary from those of the described antibodies, but that retain the ability to bind human GFR α 3. Such variant antibodies and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described antibodies. Likewise, the anti-GFR α 3 antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an anti-GFR α 3 antibody or antibody fragment that is essentially bioequivalent to an anti-GFR α 3 antibody or antibody fragment of the invention.

[0122] Two antigen-binding proteins, or antibodies, are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either as a single dose or as multiple doses. Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied

[0123] In one embodiment, two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, and potency.

[0124] In one embodiment, two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.

[0125] In one embodiment, two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.

[0126] Bioequivalence may be demonstrated by *in vivo* and/or *in vitro* methods. Bioequivalence measures include, e.g., (a) an *in vivo* test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an *in vitro* test that has been

correlated with and is reasonably predictive of human *in vivo* bioavailability data; (c) an *in vivo* test in humans or other mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.

[0127] Bioequivalent variants of anti-GFR α 3 antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. In other contexts, bioequivalent antibodies may include anti-GFR α 3 antibody variants comprising amino acid changes, which modify the glycosylation characteristics of the antibodies, e.g., mutations which eliminate or remove glycosylation.

Anti-GFRlpha3 Antibodies Comprising Fc Variants

15

30

35

40

45

50

55

[0128] According to certain embodiments of the present invention, anti-GFR α 3 antibodies are provided comprising an Fc domain comprising one or more mutations, which enhance or diminish antibody binding to the FcRn receptor, e.g., at acidic pH as compared to neutral pH. For example, the present invention includes anti-GFR α 3 antibodies comprising a mutation in the C_H2 or a C_H3 region of the Fc domain, wherein the mutation(s) increases the affinity of the Fc domain to FcRn in an acidic environment (e.g., in an endosome where pH ranges from about 5.5 to about 6.0). Such mutations may result in an increase in serum half-life of the antibody when administered to an animal. Non-limiting examples of such Fc modifications include, e.g., a modification at position 250 (e.g., E or Q); 250 and 428 (e.g., L or F); 252 (e.g., L/Y/F/W or T), 254 (e.g., S or T), and 256 (e.g., S/R/Q/E/D or T); or a modification at position 428 and/or 433 (e.g., H/L/R/S/P/Q or K) and/or 434 (e.g., H/F or Y); or a modification at position 250 and/or 428; or a modification at position 307 or 308 (e.g., 308F, V308F), and 434. In one embodiment, the modification comprises a 428L (e.g., M428L) and 434S (e.g., N434S) modification; a 428L, 259I (e.g., V259I), and 308F (e.g., V308F) modification; a 433K (e.g., H433K) and a 434 (e.g., 434Y) modification; a 252, 254, and 256 (e.g., 252Y, 254T, and 256E) modification; a 250Q and 428L modification (e.g., 7250Q and M428L); and a 307 and/or 308 modification (e.g., 308F).

[0129] For example, the present invention includes anti-GFRα3 antibodies comprising an Fc domain comprising one or more pairs or groups of mutations selected from the group consisting of: 250Q and 248L (e.g., T250Q and M248L); 252Y, 254T and 256E (e.g., M252Y, S254T and T256E); 428L and 434S (e.g., M428L and N434S); and 433K and 434F (e.g., H433K and N434F). All possible combinations of the foregoing Fc domain mutations, and other mutations within the antibody variable domains disclosed herein, are contemplated within the scope of the present invention.

Biological Characteristics of the Antibodies

[0130] In general, the antibodies of the present invention may function by binding to any one or more of the three globular cysteine-rich domains (1, 2, or 3) of hGFRa3. In certain embodiments, the antibodies of the present invention may bind to an epitope located on at least one of the cysteine-rich domains of hGFRa3. In certain embodiments, an antibody of the invention may bind to amino acid residues of domain 1 of GFRa3, ranging from about residue 44 to about residue 124 of SEQ ID NO: 375. In certain embodiments, an antibody of the invention may bind to amino acid residues of domain 2 of GFRα3, ranging from about residue 162 to about residue 239 of SEQ ID NO: 375. In certain embodiments, an antibody of the invention may bind to amino acid residues of domain 3 of GFRα3, ranging from about residue 248 to about residue 340 of SEQ ID NO: 375. In certain embodiments, the antibodies of the present invention may function by blocking or inhibiting GFRα3 activity by binding to a region in any one of the domains that acts as the ligand binding domain, thus preventing binding of the ligand, such as, artemin, to that site. In certain embodiments, an antibody of the invention may bind to the ligand binding site on one of the domains of GFR α 3 and prevent subsequent binding of the artemin-GFR α 3 complex to RET. In one embodiment, an antibody of the invention may bind to any one or more of the epitopes in the artemin-GFR α 3 complex that may determine or play a role in the specificity between ligand and GFR α 3, such as in the region ranging from residues 167-184 of SEQ ID NO: 375. In certain embodiments, an antibody of the invention may bind to one or more of the residues of domain 2 that are responsible for the specificity between artemin and GFRa3, for example, the amino acid residues at positions 167 (met), 176 (asp) and/or position 184 (glu), of SEQ ID NO: 375 and in so binding, may prevent ligand binding to its receptor, and subsequently may prevent signaling through the RET receptor tyrosine kinase, or through a signaling mediator or modulator other than RET. In certain embodiments, the antibodies of the invention may bind to the membrane bound form of GFRa3 or to the soluble form of GFR α 3. In certain embodiments, the antibodies of the invention may bind GFR α 3, but do not cross react with $GFR\alpha 1$, $GFR\alpha 2$, or $GFR\alpha 4$. In certain embodiments, the antibodies of the present invention may be bi-specific antibodies. The bi-specific antibodies of the invention may bind one epitope in one cysteine rich region of one domain and may also bind one cysteine-rich region in a second domain of hGFRα3. In certain embodiments, the bi-specific antibodies of the invention may bind to two different regions within the same domain. In certain embodiments, one arm

of a bi-specific antibody of the invention may bind to one cysteine rich region of one domain of hGFR α 3 and the other arm may bind to RET, or to a modulator other than RET. In certain embodiments, the bispecific antibodies may bind one domain in GFR α 3 and one domain in GFR α 4 or GFR α 2.

[0131] More specifically, the anti-GFR α 3 antibodies of the invention may exhibit one or more of the following characteristics:

- (i) exhibits a K_D ranging from about 10⁻⁸ M to about 10⁻¹³ M as measured by surface plasmon resonance;
- (ii) demonstrates the ability to block about 50-100% of the binding of GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 15 nM;
- (iii) demonstrates the ability to block about 20% to about 100% of the binding of GFR α 3 to a solid support coated with a mixture of artemin and RET;
 - (iv) blocks or inhibits artemin-dependent activation of RET with an IC_{50} ranging from about 200 pM to about 50 nM;
 - (v) inhibits or reduces one or more nociceptive responses in an in vivo model of bone cancer pain;
- (vi) inhibits or reduces artemin-sensitized thermal hyperalgesia in vivo;
- (vii) inhibits or reduces allodynia in an in vivo model of osteoarthritis;
- (viii) does not cross-react with other GFR co-receptors for RET;

10

15

20

25

30

35

40

45

50

55

- (ix) comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; or
- (x) comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.
- [0132] Certain anti-GFR α 3 antibodies of the present invention are able to inhibit or attenuate GFR α 3 activity in an *in vitro* assay. The ability of the antibodies of the invention to bind to and inhibit the binding of GFR α 3 to its ligand artemin alone or in the presence of RET may be measured using any standard method known to those skilled in the art, including binding assays, or assays to determine if the antibodies block the activation of RET by inhibiting the binding of GFR α 3 to its receptor artemin, such as those described herein. Non-limiting, exemplary *in vitro* assays for measuring GFR α 3 activity are illustrated in Examples 4 and 5, below.
- **[0133]** The present invention includes anti-GFR α 3 antibodies and antigen binding fragments thereof which bind to one or more of the cysteine rich globular domains of GFR α 3, as shown in SEQ ID NO: 375, or to a fragment thereof. The antibodies specific for GFR α 3 may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety. In one embodiment, the label or moiety is biotin. In a binding assay, the location of a label (if any) may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C-terminal portion of the peptide will be distal to the surface.
- [0134] In one embodiment, the invention provides a fully human monoclonal antibody or antigen-binding fragment thereof that specifically binds hGFR α 3 and neutralizes hGFR α 3 activity, wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405; (iii) comprises any one or more of the heavy or light chain CDR1, CDR2, and CDR3 sequences depicted in Table 1 and combinations thereof; (iv) is specific for binding to and/or blocking GFR α 3 activity without binding to and/or blocking other GFR alpha receptors, including GFR α 1, GFR α 2 and GFR α 4; (v) demonstrates binding specificity for any one or more of the cysteine-rich globular domains of GFR α 3; (vi) blocks activation of and signaling through the RET receptor tyrosine kinase; (vii) inhibits or reduces artemin-sensitized thermal hyperalgesia *in vivo*; (viii) inhibits or reduces allodynia in an *in vivo* model of osteoarthritis; or inhibits or reduces one or more nociceptive responses in an *in vivo* model of bone cancer pain.

Epitope Mapping and Related Technologies

[0135] Various techniques known to persons of ordinary skill in the art can be used to determine whether an antibody "interacts with one or more amino acids" within a polypeptide or protein. Exemplary techniques include, for example, a routine cross-blocking assay such as that described Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harb., NY) can be performed. Other methods include alanine scanning mutational analysis, peptide blot analysis (Reineke (2004) Methods Mol Biol 248:443-63), peptide cleavage analysis crystallographic studies and NMR analysis. In addition, methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed

(Tomer (2000) Protein Science 9: 487-496). Another method that can be used to identify the amino acids within a polypeptide with which an antibody interacts is hydrogen/deuterium exchange detected by mass spectrometry. In general terms, the hydrogen/deuterium exchange method involves deuterium-labeling the protein of interest, followed by binding the antibody to the deuterium-labeled protein. Next, the protein/antibody complex is transferred to water and exchangeable protons within amino acids that are protected by the antibody complex undergo deuterium-to-hydrogen backexchange at a slower rate than exchangeable protons within amino acids that are not part of the interface. As a result, amino acids that form part of the protein/antibody interface may retain deuterium and therefore exhibit relatively higher mass compared to amino acids not included in the interface. After dissociation of the antibody, the target protein is subjected to protease cleavage and mass spectrometry analysis, thereby revealing the deuterium-labeled residues that correspond to the specific amino acids with which the antibody interacts. See, e.g., Ehring (1999) Analytical Biochemistry 267(2):252-259; Engen and Smith (2001) Anal. Chem. 73:256A-265A.

10

20

30

35

45

50

55

[0136] The term "epitope" refers to a site on an antigen to which B and/or T cells respond. B-cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.

[0137] Modification-Assisted Profiling (MAP), also known as Antigen Structure-based Antibody Profiling (ASAP) is a method that categorizes large numbers of monoclonal antibodies (mAbs) directed against the same antigen according to the similarities of the binding profile of each antibody to chemically or enzymatically modified antigen surfaces (See, e.g., US 2004/0101920). Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category. This technology allows rapid filtering of genetically identical antibodies, such that characterization can be focused on genetically distinct antibodies. When applied to hybridoma screening, MAP may facilitate identification of rare hybridoma clones that produce mAbs having the desired characteristics. MAP may be used to sort the antibodies of the invention into groups of antibodies binding different epitopes.

[0138] In certain embodiments, the anti-GFR α 3 antibody or antigen-binding fragment of an antibody binds an epitope within at least one of the GFR α 3 cysteine rich domains 1, 2, or 3, or a fragment thereof, wherein domain 1 ranges from about residue number 44 to about residue number 124 of SEQ ID NO: 375; domain 2 ranges from about residue number 162 to about residue number 239 of SEQ ID NO: 375; domain 3 ranges from about residue number 248 to about residue number 340 of SEQ ID NO: 375.

[0139] In certain embodiments, the anti-GFR α 3 antibody or antigen-binding fragment of an antibody binds an epitope within domain 1, or a fragment thereof, of human GFR α 3.

[0140] In certain embodiments, the anti-GFR α 3 antibody or antigen-binding fragment of an antibody binds an epitope within domain 2, or a fragment thereof, of human GFR α 3.

[0141] In certain embodiments, the anti-GFR α 3 antibody or antigen-binding fragment of an antibody binds an epitope within domain 3, or a fragment thereof, of human GFR α 3.

[0142] In certain embodiments, the antibody or antibody fragment binds an epitope, which includes more than one of the enumerated epitopes of $GFR\alpha 3$ within domain 1, 2, or 3, and/or within two different domains (for example, epitopes within the 1 and 2 domains, or within the 2 and 3 domains, or within the 1 and 3 domains).

[0143] In certain embodiments, the antibody is a bi-specific antibody that binds one epitope within one domain of $GFR\alpha3$ and another epitope within a different domain of $GFR\alpha3$. In one embodiment, the antibody is a bi-specific antibody that binds one epitope in domain 1 of $GFR\alpha3$ and another epitope in domain 2 of $GFR\alpha3$. In one embodiment, the antibody is a bi-specific antibody that binds one epitope in domain 1 of $GFR\alpha3$ and another epitope within domain 3 of $GFR\alpha3$. In one embodiment, the antibody is a bi-specific antibody that binds one epitope in domain 2 of $GFR\alpha3$ and another epitope within domain 3 of $GFR\alpha3$.

[0144] The present invention includes anti-GFR α 3 antibodies that bind to the same epitope as any of the specific exemplary antibodies described herein (e.g., H4H2207N, H4H2212N, H4H2236N3, H4H2243N2, H4H2210N, H4H2234N, H4H2291S, H4H2292S, H4H2293P, H4H2294S, H4H2295S, H4H2296S, H4H2341S, H4H2342P, H4H2344S, H4H2345S, H4H2346S, H4H2350P, H4H2352S, H4H2354S, H4H2355S, H4H2357S, H4H2364S, H1M2243N and H1M2236N). Likewise, the present invention also includes anti-GFR α 3 antibodies that compete for binding to GFR α 3 or a GFR α 3 fragment with any of the specific exemplary antibodies described herein.

[0145] One can easily determine whether an antibody binds to the same epitope as, or competes for binding with, a reference anti-GFR α 3 antibody by using routine methods known in the art. For example, to determine if a test antibody binds to the same epitope as a reference anti-GFR α 3 antibody of the invention, the reference antibody is allowed to bind to a GFR α 3 protein or peptide under saturating conditions. Next, the ability of a test antibody to bind to the GFR α 3 molecule is assessed. If the test antibody is able to bind to GFR α 3 following saturation binding with the reference anti-GFR α 3 antibody, it can be concluded that the test antibody binds to a different epitope than the reference anti-GFR α 3 antibody. On the other hand, if the test antibody is not able to bind to the GFR α 3 molecule following saturation binding with the reference anti-GFR α 3 antibody, then the test antibody may bind to the same epitope as the epitope bound by

the reference anti-GFR α 3 antibody of the invention.

[0146] To determine if an antibody competes for binding with a reference anti-GFR α 3 antibody, the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a GFR α 3 molecule under saturating conditions followed by assessment of binding of the test antibody to the GFR α 3 molecule. In a second orientation, the test antibody is allowed to bind to a GFR α 3 molecule under saturating conditions followed by assessment of binding of the reference antibody to the GFR α 3 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the GFR α 3 molecule, then it is concluded that the test antibody and the reference antibody compete for binding to GFR α 3. As will be appreciated by a person of ordinary skill in the art, an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.

[0147] Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1-, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et al., Cancer Res. 1990 50:1495-1502). Alternatively, two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other. Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.

[0148] Additional routine experimentation (e.g., peptide mutation and binding analyses) can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding. Experiments of this sort can be performed using ELISA, RIA, surface plasmon resonance, flow cytometry or any other quantitative or qualitative antibody-binding assay available in the art.

Species Selectivity and Species Cross-Reactivity

[0149] According to certain embodiments of the invention, the anti-GFR α 3 antibodies bind to human GFR α 3 but not to GFR α 3 from other species. Alternatively, the anti-GFR α 3 antibodies of the invention, in certain embodiments, bind to human GFR α 3 and to GFR α 3 from one or more non-human species. For example, the anti-GFR α 3 antibodies of the invention may bind to human GFR α 3 and may bind or not bind, as the case may be, to one or more of mouse, rat, guinea pig, hamster, gerbil, pig, cat, dog, rabbit, goat, sheep, cow, horse, camel, cynomolgus, marmoset, rhesus or chimpanzee GFR α 3.

Immunoconjugates

10

25

30

35

40

45

50

55

[0150] The invention encompasses a human anti-GFR α 3 monoclonal antibody conjugated to a therapeutic moiety ("immunoconjugate"), such as an agent that is capable of reducing pain and/or inflammation, a chemotherapeutic drug, or a radioisotope. The type of therapeutic moiety that may be conjugated to the anti-GFR α 3 antibody will take into account the condition to be treated and the desired therapeutic effect to be achieved. For example, for treating acute or chronic pain, an agent such as an NSAID, an opioid, or a Cox-2 inhibitor, or a local anesthetic agent, or a second GFR α 3 inhibitor may be conjugated to the GFR α 3 antibody. Alternatively, if the desired therapeutic effect is to treat the inflammation associated with a painful condition, it may be advantageous to conjugate an anti-inflammatory agent to the anti-GFR α 3 antibody, such as, but not limited to, celecoxib, or a cytokine antagonist, such as an IL-1 or an IL-6 inhibitor. If the condition to be treated is a cancerous condition, it may be beneficial to conjugate a chemotherapeutic drug, or a radioisotope to the GFR α 3 antibody. Examples of suitable agents for forming immunoconjugates are known in the art, see for example, WO 05/103081.

Multi-specific Antibodies

[0151] The antibodies of the present invention may be mono-specific, bi-specific, or multi-specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et al., 1991, J. Immunol. 147:60-69; Kufer et al., 2004, Trends Biotechnol. 22:238-244. The anti- $GFR\alpha3$ antibodies of the present invention can be linked to or co-expressed with another functional molecule, e.g., another peptide or protein. For example, an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody or antibody fragment to produce a bi-specific or a multi-specific antibody with a second binding specificity. For example, the present invention includes bi-specific antibodies wherein one arm of an immunoglobulin is specific for human $GFR\alpha3$ or a fragment thereof, and the other arm of the immunoglobulin

is specific for a second therapeutic target or is conjugated to a therapeutic moiety. In certain embodiments of the invention, one arm of an immunoglobulin is specific for an epitope on one domain of hGFR α 3 or a fragment thereof, and the other arm of the immunoglobulin is specific for an epitope on a second domain of hGFR α 3. In certain embodiments, one arm of an immunoglobulin is specific for one epitope on one domain of hGFR α 3 and the other arm is specific for a second epitope on the same domain of hGFR α 3.

[0152] An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) C_H3 domain and a second Ig C_H3 domain, wherein the first and second Ig C_H3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig C_H3 domain binds Protein A and the second Ig C_H3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering). The second C_H3 may further comprise a Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second C_H3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of IgG1 antibodies; N44S, K52N, and V82I (IMGT; N384S, K392N, and V422I by EU) in the case of IgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of IgG4 antibodies. Variations on the bi-specific antibody format described above are contemplated within the scope of the present invention.

Therapeutic Administration and Formulations

10

20

30

35

40

45

50

55

[0153] The invention provides therapeutic compositions comprising the anti-GFRα3 antibodies or antigen-binding fragments thereof of the present invention. The administration of therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTIN™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-311.

[0154] The dose of antibody may vary depending upon the age and the size of a subject to be administered, target disease, conditions, route of administration, and the like. When the antibody of the present invention is used for treating pain associated with $GFR\alpha 3$ activity in various conditions and diseases, wherein the condition or disease results in acute or chronic pain, inflammatory pain, neuropathic pain, and the like, in an adult patient, it is advantageous to intravenously administer the antibody of the present invention normally at a single dose of about 0.01 to about 20 mg/kg body weight, more preferably about 0.02 to about 7, about 0.03 to about 5, or about 0.05 to about 3 mg/kg body weight. Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted.

[0155] Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.

[0156] The pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see, for example, Langer (1990) Science 249:1527-1533).

[0157] In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used. In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.

[0158] The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80,

HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.

[0159] A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.

[0160] Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, IN), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, NJ), OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (sanofi-aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (sanofi-aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousands Oaks, CA), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.) and the HUMIRA™ Pen (Abbott Labs, Abbott Park, IL), to name only a few.

[0161] Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the aforesaid antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the aforesaid antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.

Therapeutic Uses of the Antibodies

10

30

35

40

45

50

55

[0162] The antibodies of the invention are useful for the treatment, prevention and/or amelioration of any disease, disorder, or condition associated with GFR α 3 activity, or for amelioration of at least one symptom associated with the disease, disorder, or condition, or for alleviating the pain associated with such disease, disorder, or condition. Exemplary conditions, diseases and/or disorders, and/or the pain associated with such conditions, diseases, or disorders, that can be treated with the anti-GFR α 3 antibodies of the present invention include acute, chronic, neuropathic, or inflammatory pain, arthritis, interstitial cystitis, pancreatitis, migraine, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, epilepsy or epileptic conditions, myotonia, arrhythmia, movement disorders, neuroendocrine disorders, ataxia, irritable bowel syndrome, inflammatory bowel syndrome, fecal urgency, incontinence, rectal hypersensitivity, visceral pain, osteoarthritis pain, gout, post-herpetic neuralgia, diabetic neuropathy, radicular pain, sciatica, back pain, head or neck pain, breakthrough pain, post-surgical pain, cancer pain, including pain associated with bone cancer or pancreatic cancer.

[0163] Other conditions treatable by the therapeutic methods of the invention included hereditary erythromelalgia, rhinitis, prostate cancer, breast cancer, bone cancer, cervical cancer, or bladder disorders. The antibodies of the invention or antigen-binding fragments thereof may also be used to treat the following conditions: non-malignant acute, chronic, or fracture bone pain; rheumatoid arthritis, spinal stenosis; neuropathic low back pain; myofascial pain syndrome; fibromyalgia; temporomandibular joint pain; visceral pain, including, abdominal; pancreatic; chronic headache pain; tension headache, including, cluster headaches; diabetic neuropathy; HIV-associated neuropathy; Charcot-Marie Tooth neuropathy; hereditary sensory neuropathies; peripheral nerve injury; painful neuromas; ectopic proximal and distal discharges; radiculopathy; chemotherapy induced neuropathic pain; radiotherapy-induced neuropathic pain; post-mastectomy pain; central pain; spinal cord injury pain; post-stroke pain; thalamic pain; complex regional pain syndrome (CRPS); phantom pain; intractable pain; musculoskeletal pain; joint pain; acute gout pain; mechanical low back pain; neck pain; tendonitis; injury/exercise pain; abdominal pain; pyelonephritis; appendicitis; cholecystitis; intestinal obstruction; hernias; etc; chest pain, including, cardiac pain; pelvic pain, renal colic pain, acute obstetric pain, including, labor pain; cesarean section pain; burn and trauma pain; endometriosis; herpes zoster pain; sickle cell anemia; acute pancreatitis; breakthrough pain; orofacial pain including sinusitis pain, dental pain; multiple sclerosis pain; leprosy pain; Behcet's disease

pain; adiposis dolorosa; phlebitic pain; Guillain-Barre pain; painful legs and moving toes; Haglund syndrome; Fabry's disease pain; bladder and urogenital disease; hyperactivity bladder.

[0164] In one embodiment the antibodies of the invention may be used to treat a functional pain syndrome, wherein the functional pain syndrome is selected from the group consisting of chronic low back pain, irritable bowel syndrome (IBS), fibromyalgia (FM), chronic fatigue syndrome (CFS), abdominal pain, temporomandibular joint disorder (TMJD), painful bladder syndrome (interstitial cystitis), functional gastrointestinal disorders/syndromes, functional chest pain syndrome, migraines and tension type headaches, chronic pelvic pain syndrome, painful prostate syndrome (chronic prostatitis), multiple chemical sensitivity syndrome and Gulf War syndrome.

[0165] The antibodies of the invention or antigen-binding fragments thereof may also be used to inhibit tumor cell growth/proliferation or metastasis of tumor cells. Accordingly, in certain embodiments, the antibodies of the invention or antigen-binding fragments thereof, may be used to treat a cancer, including, but not limited to, endometrial cancer, prostate cancer, breast cancer, cervical cancer, liver cancer, pancreatic cancer, colon cancer, stomach cancer, uterine cancer, ovarian cancer, kidney cancer, non-small cell lung cancer, brain cancer, a leukemia, a lymphoma, bone cancer, or pain associated with metastasis of a cancer, for example, metastasis of a cancer to the bone. (See Tang, J-Z, et al. Mol Cancer Ther (2010), 9(6): 1697-1708; Kang, J. et al. Oncogene, (2009), 28:2034-2045; Ceyhan, G.O. et al. Annals of Surgery, (2006), 244(2):274-281; Banerjee, A., et al. Breast Cancer Res (2011), 13:R112; Pandey, V. et al., Endocrinology, (2010), 151(3):909-920; Kang, J. et al., Oncogene, (2010), 29:3228-3240; Li, S. et al. J Biomed Sci (2011), 18:24).

[0166] The antibodies of the present invention are also useful for treating or preventing cancer-associated pain. "Cancer-associated pain" includes, e.g., bone cancer pain, including pain from cancer that has metastasized to bone (e.g., breast cancer, prostate cancer, lung cancer, sarcoma, kidney cancer, multiple myeloma, etc.). "Cancer-associated pain" also includes pain more generally associated with cancerous conditions such as, e.g., renal cell carcinoma, pancreatic carcinoma, breast cancer, head and neck cancer, prostate cancer, malignant gliomas, osteosarcoma, colorectal cancer, gastric cancer, malignant mesothelioma, multiple myeloma, ovarian cancer, small cell lung cancer, non-small cell lung cancer, synovial sarcoma, thyroid cancer, or melanoma. The antibodies of the present invention are also useful for treating or preventing pain caused by or associated with cancer therapy or anti-cancer medical treatments, e.g., chemotherapy-induced neuropathic pain such as pain caused by or associated with treatment with paclitaxel (TaxolTM), docetaxel (Taxotere®); nitrosourea, cyclophosphamide, doxorubicin, epirubicin, 5-fluorouracil, topotecan, irinotecan, carmustine, estramustine, and platinum-based chemotherapeutic compounds, such as cisplatin, carboplatin, and iproplatin.

Combination Therapies

30

35

40

45

50

55

[0167] Combination therapies may include an anti-hGFRa3 antibody of the invention and, for example, another GFRa3 antagonist (e.g., anti-GFRa3 antibody or small molecule inhibitor of GFRa3); a COX-2 inhibitor; a local anesthetic; an NMDA modulator; a cannabinoid receptor agonist; a P2X family modulator; a VR1 antagonist; a substance P antagonist; an inhibitor of a voltage-gated sodium channel (Na_v), for example, a Na_v1.7 antagonist, or a Na_v1.8 antagonist (e.g., anti-Na_v1.7 or anti-Na_v1.8 antibody or small molecule inhibitor), a Na_v1.9 antagonist (e.g., anti-Na_v1.9 antibody or small molecule inhibitor of Na, 1.9); a calcium channel inhibitor; a potassium channel inhibitor; a cytokine inhibitor or cytokine receptor antagonist (e.g., an interleukin-1 (IL-1) inhibitor (such as rilonacept ("IL-1 trap"; Regeneron) or anakinra (KIN-ERET®, Amgen), a small molecule IL-1 antagonist, or an anti-IL-1 antibody); an IL-18 inhibitor (such as a small molecule IL-18 antagonist or an anti-IL-18 antibody); an IL-6 or IL-6R inhibitor (such as a small molecule IL-6 antagonist, an anti-IL-6 antibody or an anti-IL-6 receptor antibody); an antiepileptic/anti-convulsant drug (e.g., gabapentin, pregabalin); a nerve growth factor (NGF) inhibitor (e.g., a small molecule NGF antagonist or an anti-NGF antibody); an inhibitor of BDNF, TrkA, TrkB or p75; an opioid; morphine; low dose cochicine; aspirin or another NSAID; steroids (e.g., prednisone, methotrexate, etc.); low dose cyclosporine A; a selective serotonin reuptake inhibitor (SSRI); a serotonin norepinephrine reuptake inhibitor (SNRI); a tricyclic; a tumor necrosis factor (TNF) or TNF receptor inhibitor (e.g., a small molecule TNF or TNFR antagonist or an anti-TNF or TNFR antibody); an inhibitor of TWEAK (TNF-related WEAK inducer of apoptosis); a RET inhibitor; an inhibitor of a GDNF family ligand; an inhibitor of GFR α 1, GFR α 2 or GFR α 4; an inhibitor of an acid sensing ion channel (e.g. ASIC1 or ASIC3; uric acid synthesis inhibitors (e.g., allopurinol); uric acid excretion promoters (e.g., probenecid, sulfinpyrazone, benzbromarone, etc.); an inhibitor of a prekineticin receptor (PROK1 and PROK2); other inflammatory inhibitors (e.g., inhibitors of caspase-1, p38, IKK1/2, CTLA-4lg, etc.); and/or corticosteroids.

Administration Regimens

[0168] According to certain embodiments of the present invention, multiple doses of an anti-GFR α 3 antibody may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-GFR α 3 antibody. As used herein, "sequentially administering" means that each dose of anti-GFR α 3 antibody is administered to the subject at a different point in time, e.g.,

on different days separated by a predetermined interval (e.g., hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-GFR α 3 antibody, followed by one or more secondary doses of the anti-GFR α 3 antibody, and optionally followed by one or more tertiary doses of the anti-GFR α 3 antibody.

[0169] The terms "initial dose," "secondary doses," and "tertiary doses," refer to the temporal sequence of administration of the anti-GFR α 3 antibody. Thus, the "initial dose" is the dose which is administered at the beginning of the treatment regimen (also referred to as the "baseline dose"); the "secondary doses" are the doses which are administered after the initial dose; and the "tertiary doses" are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of anti-GFR α 3 antibody, but generally may differ from one another in terms of frequency of administration. In certain embodiments, however, the amount of anti-GFR α 3 antibody contained in the initial, secondary and/or tertiary doses varies from one another (e.g., adjusted up or down as appropriate) during the course of treatment. In certain embodiments, two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as "loading doses" followed by subsequent doses that are administered on a less frequent basis (e.g., "maintenance doses").

[0170] In one exemplary embodiment of the present invention, each secondary and/or tertiary dose is administered 1 to 26 (e.g., 1, $1\frac{1}{2}$, 2, $2\frac{1}{2}$, 3, $3\frac{1}{2}$, 4, $4\frac{1}{2}$, 5, $5\frac{1}{2}$, 6, $6\frac{1}{2}$, 7, $7\frac{1}{2}$, 8, $8\frac{1}{2}$, 9, $9\frac{1}{2}$, 10, $10\frac{1}{2}$, 11, $11\frac{1}{2}$, 12, $12\frac{1}{2}$, 13, $13\frac{1}{2}$, 14, $14\frac{1}{2}$, 15, $15\frac{1}{2}$, 16, $16\frac{1}{2}$, 17, $17\frac{1}{2}$, 18, $18\frac{1}{2}$, 19, $19\frac{1}{2}$, 20, $20\frac{1}{2}$, 21, $21\frac{1}{2}$, 22, $22\frac{1}{2}$, 23, $23\frac{1}{2}$, 24, $24\frac{1}{2}$, 25, $25\frac{1}{2}$, 26, $26\frac{1}{2}$, or more) weeks after the immediately preceding dose. The phrase "the immediately preceding dose," as used herein, means, in a sequence of multiple administrations, the dose of anti- GFR α 3 antibody, which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.

[0171] The methods according to this aspect of the invention may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-GFR α 3 antibody. For example, in certain embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, in certain embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.

[0172] In embodiments involving multiple secondary doses, each secondary dose may be administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 4 weeks after the immediately preceding dose. Alternatively, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient.

Diagnostic Uses of the Antibodies

10

25

30

35

40

45

50

55

[0173] The anti-GFR α 3 antibodies of the present invention may also be used to detect and/or measure GFR α 3 in a sample, *e.g.*, for diagnostic purposes. For example, an anti-GFR α 3 antibody, or fragment thereof, may be used to diagnose a condition or disease characterized by aberrant expression (*e.g.*, over-expression, under-expression, lack of expression, etc.) of GFR α 3. Exemplary diagnostic assays for GFR α 3 may comprise, *e.g.*, contacting a sample, obtained from a patient, with an anti-GFR α 3 antibody of the invention, wherein the anti-GFR α 3 antibody is labeled with a detectable label or reporter molecule. Alternatively, an unlabeled anti-GFR α 3 antibody can be used in diagnostic applications in combination with a secondary antibody which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as 3 H, 14 C, 32 P, 35 S, or 125 I; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β -galactosidase, horseradish peroxidase, or luciferase. Specific exemplary assays that can be used to detect or measure GFR α 3 in a sample include enzymelinked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence-activated cell sorting (FACS).

[0174] Samples that can be used in GFR α 3 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of GFR α 3 protein, or fragments thereof, under normal or pathological conditions. Generally, levels of GFR α 3 in a particular sample obtained from a healthy patient (e.g., a patient not afflicted with a disease or condition associated with abnormal GFR α 3 levels or activity) will be measured to initially establish a baseline, or standard, level of GFR α 3. This baseline level of GFR α 3 can then be compared against the levels of GFR α 3 measured in samples obtained from individuals suspected of having a GFR α 3 related disease or condition, or pain associated with such disease or condition.

EXAMPLES

15

20

30

35

[0175] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

Example 1. Generation of Human Antibodies to Human GFR α 3

[0176] An immunogen comprising any one of the GFR α 3 peptides having amino acid sequences shown as SEQ ID NOS: 370, 371, 372 and 373, or fragments thereof, may be utilized to generate antibodies to human GFR α 3. These peptides are conjugated to a carrier, for example, KLH, then administered with an adjuvant to stimulate the immune response, to a VELOCIMMUNE® mouse comprising DNA encoding human Immunoglobulin heavy and kappa light chain variable regions. The antibody immune response is monitored by a GFR α 3-specific immunoassay. When a desired immune response is achieved, splenocytes are harvested and fused with mouse myeloma cells to preserve their viability and form hybridoma cell lines. The hybridoma cell lines are screened and selected to identify cell lines that produce GFR α 3-specific antibodies. Using this technique several anti-GFR α 3 chimeric antibodies (*i.e.*, antibodies possessing human variable domains and mouse constant domains) were obtained. The anti-GFR α 3 antibodies generated using this method were designated H1M2207N, H1M2212N, H1M2236N, H1M2236N3, H1M2243N, H1M2243N2, H1M2210N and H1M2234N.

[0177] Anti-GFR α 3 antibodies were also isolated directly from antigen-positive B cells without fusion to myeloma cells, as described in U.S. 2007/0280945A1. Using this method, several fully human anti-GFR α 3 antibodies (*i.e.*, antibodies possessing human variable domains and human constant domains) were obtained; exemplary antibodies generated in this manner were designated as follows: H4H2207N, H4H2212N, H4H2236N, H4H2243N, H4H2210N, H4H2291S, H4H2292S, H4H2293P, H4H2294S, H4H2295S, H4H2296S, H4H2341S, H4H2342P, H4H2344S, H4H2345S, H4H2346S, H4H2350P, H4H2352S, H4H2354S, H4H2355S, H4H2357S and H4H2364S.

[0178] The biological properties of the exemplary anti-GFR α 3 antibodies generated in accordance with the methods of this Example are described in detail in the Examples set forth below.

Example 2. Heavy and Light Chain Variable Region Amino Acid Sequences

[0179] Table 1 sets forth the heavy and light chain variable region amino acid sequence pairs of selected anti-GFR α 3 antibodies and their corresponding antibody identifiers. Antibodies are typically referred to herein according to the following nomenclature: Fc prefix (e.g. "H4H", "H1M, "H2M"), followed by a numerical identifier (e.g. "2207" as shown in Table 1), followed by a "P", "S", or "N" suffix. Thus, according to this nomenclature, an antibody may be referred to as, e.g. "H4H2207N". The H4H, H1M, and H2M prefixes on the antibody designations used herein indicate the particular Fc region of the antibody. For example, an "H2M" antibody has a mouse IgG2 Fc, whereas an "H4H" antibody has a human IgG4 Fc. As will be appreciated by a person of ordinary skill in the art, an H1M or H2M antibody can be converted to an H4H antibody, and vice versa, but in any event, the variable domains (including the CDRs), which are indicated by the numerical identifiers shown in Table 1, will remain the same. Antibodies having the same numerical antibody designation, but differing by a letter suffix of N, B, S or P refer to antibodies having heavy and light chains with identical CDR sequences but with sequence variations in regions that fall outside of the CDR sequences (i.e., in the framework regions). Thus, N, B, S and P variants of a particular antibody have identical CDR sequences within their heavy and light chain variable regions but differ from one another within their framework regions.

Table 1

				Table	•					
		AMINO ACID SEQ ID NOs:								
Antik	body Designation	HCVR	HCDR1	HCDR2	HCDR3	LCVR	LCDR1	LCDR2	LCDR3	
	H4H2207N	2	4	6	8	10	12	14	16	
	H4H2212N	18	20	22	24	26	28	30	32	
	H4H2236N3	34	36	38	40	42	44	46	48	
	H4H2243N2	50	52	54	56	58	60	62	64	

55

50

45

(continued)

			AN	IINO ACID	SEQ ID N	Os:		
Antibody Designation	HCVR	HCDR1	HCDR2	HCDR3	LCVR	LCDR1	LCDR2	LCDR3
H4H2210N	66	68	70	72	74	76	78	80
H4H2234N	82	84	86	88	90	92	94	96
H4H2291S	98	100	102	104	106	108	110	112
H4H2292S	114	116	118	120	122	124	126	128
H4H2293P	130	132	134	136	138	140	142	144
H4H2294S	146	148	150	152	154	156	158	160
H4H2295S	162	164	166	168	170	172	174	176
H4H2296S	178	180	182	184	186	188	190	192
H4H2341S	194	196	198	200	202	204	206	208
H4H2342P	210	212	214	216	218	220	222	224
H4H2344S	226	228	230	232	234	236	238	240
H4H2345S	242	244	246	248	250	252	254	256
H4H2346S	258	260	262	264	266	268	270	272
H4H2350P	274	276	278	280	282	284	286	288
H4H2352S	290	292	294	296	298	300	302	304
H4H2354S	306	308	310	312	314	316	318	320
H4H2355S	322	324	326	328	330	332	334	336
H4H2357S	338	340	342	344	346	348	350	352
H4H2364S	354	356	358	360	362	364	366	368
H1M2243N	381	383	385	387	389	391	393	395
H1M2236N	397	399	401	403	405	407	409	411

Example 2. Variable Gene Utilization Analysis

[0180] To analyze the structure of antibodies produced, the nucleic acids encoding antibody variable regions were cloned and sequenced. From the nucleic acid sequence and predicted amino acid sequence of the antibodies, gene usage was identified for each Heavy Chain Variable Region (HCVR) and Light Chain Variable Region (LCVR). Table 2 sets forth the gene usage for selected antibodies in accordance with the invention.

Table 2

		HCVR		LCVR		
AbPID	V_{H}	D _H	J _H	V_{K}	J _K	
kH1M2207N	3-9	6-6	4	1-5	2	
H1M2212N	3-23	1-26	4	4-1	1	
H1M2236N	3-23	3-3	6	1-16	4	
H4H2236N3	3-23	3-3	6	1-16	4	
H1M2243N	1-18	6-6	6	1-16	3	
H4H2243N2	1-18	6-6	6	1-16	3	
H2M2210N	3-23	1-20	3	3-20	4	

(continued)

		HCVR		LCV	R
AbPID	V_{H}	D _H	J_{H}	V _K	J _K
H2M2234N	3-23	5-18	4	4-1	1
H4H2291S	3-23	6-6	6	1D-12	4
H4H2292S	3-33	1-7	3	1-39	3
H4H2293P	3-33	2-15	3	1-39	2
H4H2294S	3-23	6-6	6	1D-12	3
H4H2295S	3-23	6-6	6	1D-12	3
H4H2296S	3-23	6-6	6	1D-12	3
H4H2341S	1-69	3-10	5	1-39	5
H4H2342P	3-23	1-26	4	1-27	3
H4H2344S	3-33	2-15	3	1-39	2
H4H2345S	3-9	1-26	4	1-27	4
H4H2346S	3-33	2-15	3	1-39	2
H4H2350P	4-59	2-21	4	1-9	1
H4H2352S	1-18	3-3	3	3-20	2
H4H2354S	3-33	2-15	3	1-39	2
H4H2355S	3-23	6-6	4	1-5	4
H4H2357S	3-23	3-10	6	1-12	4
H4H2364S	3-23	6-6	6	1D-12	3

Example 3. Binding Affinities of GFRa3 Antibodies

5

10

15

20

25

30

35

50

55

[0181] Binding associative and dissociative rate constants (ka and kd, respectively) and calculated equilibrium dissociation constants and dissociative half-lives (K_D and $t_{1/2}$, respectively) for antigen binding to anti-GFR α 3 antibodies were determined using a real-time surface plasmon resonance biosensor (Biacore T200) assay at 25°C and 37°C. Antibodies were tested for binding to human GFR α 3 expressed with either a C-terminal myc-myc-hexahistidine tag (hGFR α 3-mmh; SEQ ID: 370, a C-terminal hFc tag (hGFRα3-hFc; SEQ ID:371), or a C-terminal mFc tag (hGFRα3-mFc; SEQ ID:372), as well as monkey GFRa3 expressed with a C-terminal myc-myc-hexahistidine tag (MfGFRα3-mmh; SEQ ID:373). Anti-GFRα3 antibodies were captured on either a goat anti-mouse IgG polyclonal antibody (GE Healthcare, #BR-1008-38) or a mouse anti-human IgG monoclonal antibody (GE Healthcare, #BR-1008-39) surface created through direct amine coupling to a Biacore CM5 sensor chip. Kinetic experiments were carried out using HBS-EP (10mM HEPES, 150mM NaCl, 3mM EDTA, 0.05% Surfactant P20, at pH 7.4) or PBS buffer containing 0.05% v/v surfactant P20 as both the running buffer and the sample buffer. Binding to human GFR α 3-mmh or monkey GFR α 3-mmh was evaluated by injecting several concentrations ranging from 200 to 7.4 nM (3-fold dilutions) across the captured antibody surface. Binding to human GFRα3-mFc or human GFRα3-hFc was evaluated by injecting several concentrations ranging from 100 to 3.7 nM (3-fold dilutions) across the captured antibody surface. Antibody-antigen association was monitored for up to 4 minutes, while dissociation in buffer was monitored for up to 20 minutes. Kinetic association (k_a) and dissociation (k_d) rate constants were determined by processing and fitting the data to a 1:1 binding model using Scrubber 2.0c curve fitting software. Binding dissociation equilibrium constants (K_D) and dissociative half-lives ($t_{1/2}$) were calculated from the kinetic rate constants as: K_D (M) = k_d / k_a and $t_{1/2}$ (min) = [In2/(60* k_d)].

[0182] As shown in Table 3, at 25°C, all 25 anti-GFR α 3 antibodies bound to hGFR α 3-mmh with K $_D$ values ranging from 82.0pM to 29.7nM. At 37°C, all 25 anti-GFR α 3 antibodies bound to hGFR α 3-mmh with K $_D$ values ranging from 118pM to 47.3nM. As shown in Table 4, at 25°C, all 23 anti-GFR α 3 antibodies bound to MfGFR α 3-mmh with K $_D$ values ranging from 2.90pM to 97.2nM. At 37°C, all 23 anti-GFR α 3 antibodies bound to MfGFR α 3-mmh with K $_D$ values ranging from 11.7pM to 145nM. As shown in Table 5, at 25°C and 37°C, 6 of the 23 anti-GFR α 3 antibodies were tested for binding to hGFR α 3-mFc. At 25°C, the 6 anti-

GFR α 3 antibodies tested for binding to hGFR α 3-hFc bound with K_D values ranging from 7.50pM to 220pM. At 37°C, the 6 anti-GFR α 3 antibodies tested for binding to hGFR α 3-hFc bound with K_D values ranging from 41.3pM to 531 pM. At 25°C, the 17 anti-GFR α 3 antibodies tested for binding to hGFR α 3-mFc bound with K_D values ranging from 0.467pM to 58.4pM. At 37°C, the 17 anti-GFR α 3 antibodies tested for binding to hGFR α 3-mFc bound with K_D values ranging from 13.2pM to 106pM.

Table 3: Kinetics of hGFRα3-mmH binding to different anti-GFRα3 antibodies at 25°C and at 37°C

			25°	С			37°	C	
i	AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)
•	H4H2291 S	4.18E+05	1.64E-04	3.93E-10	70	5.58E+05	3.23E-04	5.80E-10	36
Ī	H4H2292S	1.08E+05	5.19E-05	4.83E-10	223	1.28E+05	2.49E-04	1.94E-09	46
Ī	H4H2293P	5.81E+05	1.27E-04	2.19E-10	91	7.81E+05	2.44E-04	3.13E-10	47
	H4H2294S	5.63E+05	7.99E-05	1.42E-10	145	7.73E+05	2.61 E-04	3.38E-10	44
	H4H2295S	4.75E+05	2.56E-04	5.40E-10	45	6.69E+05	1.19E-03	1.77E-09	10
	H4H2296S	5.63E+05	1.87E-04	3.32E-10	62	7.65E+05	6.14E-04	8.02E-10	19
	H4H2341 S	1.59E+05	2.67E-04	1.68E-09	43	2.48E+05	7.37E-04	2.98E-09	16
	H4H2342P	1.86E+05	2.04E-04	1.10E-09	57	3.30E+05	6.71E-04	2.03E-09	17
	H4H2344S	1.83E+05	2.40E-04	1.31E-09	48	2.80E+05	7.24E-04	2.58E-09	16
Ī	H4H2345S	1.09E+05	3.23E-03	2.97E-08	4	1.84E+05	8.70E-03	4.73E-08	1
	H4H2346S	1.86E+05	7.99E-05	4.30E-10	145	4.19E+05	5.89E-04	1.41E-09	20
	H4H2350P	1.03E+05	2.07E-04	2.01E-09	56	1.34E+05	1.28E-03	9.61E-09	9
Ī	H4H2352S	7.09E+05	5.81E-05	8.20E-11	199	1.18E+06	1.39E-04	1.18E-10	83
	H4H2354S	2.00E+05	1.10E-04	5.48E-10	105	2.81 E+05	6.49E-04	2.31E-09	18
	H4H2355S	1.86E+05	1.52E-04	8.21E-10	76	2.81 E+05	1.23E-03	4.37E-09	9
	H4H2357S	2.30E+05	5.57E-04	2.42E-09	21	2.95E+05	2.10E-03	7.12E-09	6
	H4H2364S	3.53E+05	3.67E-05	1.04E-10	315	3.38E+05	2.73E-04	8.09E-10	42
	H1M2207N	5.61E+04	9.00E-04	1.60E-08	13	1.33E+05	1.44E-03	1.08E-08	8
	H2aM2210N	6.73E+04	8.63E-04	1.28E-08	13	2.12E+05	3.35E-03	1.58E-08	3
	H1M2212N	8.00E+05	1.58E-04	1.97E-10	73	1.02E+06	3.03E-04	2.97E-10	38
	H2aM2234N	6.57E+05	7.11E-04	1.08E-09	16	7.93E+05	2.72E-03	3.43E-09	4
	H1M2236N	7.60E+05	2.08E-04	2.75E-10	56	1.03E+06	5.50E-04	5.32E-10	21
	H4H2236N3	9.22E+05	2.33E-04	2.53E-10	50	1.96E+06	7.48E-04	3.82E-10	15
	H4H2243N2	2.67E+05	7.80E-04	2.92E-09	15	4.69E+05	2.44E-03	5.20E-09	5
	H1 M2243N	1.28E+05	2.61E-04	2.04E-09	44	1.37E+05	5.95E-04	4.35E-09	19

Table 4: Kinetics of MfGFRα3-mmH binding to different anti-GFRα3 antibodies at 25°C and at 37°C

		25°	C		37°C			
AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)
H4H2291	1.51E+05	2.79E-04	1.85E-09	41	3.57E+05	6.93E-04	1.94E-09	17
H4H22925	7.76E+04	1.22E-04	1.57E-09	95	8.95E+04	1.95E-04	2.18E-09	59
H4H2293F	2.90E+05	4.17E-05	1.44E-10	277	4.41E+05	1.58E-04	3.58E-10	73

(continued)

		25°	С			37°	С	
AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)	k _a (1/Ms)	k _d (1/s)	K _D (M)	t _½ (min)
H4H2294S	3.25E+05	2.04E-04	6.27E-10	57	4.33E+05	9.74E-04	2.25E-09	12
H4H2295S	1.83E+05	9.73E-04	5.32E-09	12	2.76E+05	5.61 E-03	2.04E-08	2
H4H2296S	1.93E+05	6.51E-04	3.37E-09	18	2.77E+05	2.85E-03	1.03E-08	4
H4H2341 S	9.38E+04	1.30E-04	1.39E-09	89	1.44E+05	5.08E-04	3.53E-09	23
H4H2342P	9.37E+04	5.50E-04	5.87E-09	21	1.50E+05	1.66E-03	1.11 E-08	7
H4H2344S	1.04E+05	1.15E-04	1.10E-09	101	1.61E+05	5.75E-04	3.57E-09	20
H4H2345S	9.75E+04	2.79E-03	2.87E-08	4	1.34E+05	3.53E-03	2.63E-08	3
H4H2346S	1.08E+05	5.98E-05	5.56E-10	193	1.53E+05	5.11E-04	3.34E-09	23
H4H2350P	6.47E+04	1.11E-04	1.71E-09	104	7.48E+04	8.96E-04	1.20E-08	13
H4H2352S	3.45E+05	1.00E-06	2.90E-12	11550	5.57E+05	6.53E-05	1.17E-10	177
H4H2354S	1.09E+05	6.23E-05	5.74E-10	185	1.57E+05	4.35E-04	2.78E-09	27
H4H2355S	1.05E+05	6.78E-05	6.49E-10	170	1.73E+05	9.13E-04	5.29E-09	13
H4H2357S	1.40E+05	3.15E-04	2.26E-09	37	1.72E+05	1.35E-03	7.86E-09	9
H4H2364S	1.22E+05	1.30E-04	1.06E-09	89	1.68E+05	8.61E-04	5.14E-09	13
H1M2207N	3.99E+04	3.88E-03	9.72E-08	3	4.58E+04	6.63E-03	1.45E-07	2
H2aM2210N	4.16E+04	1.20E-03	2.89E-08	10	8.09E+04	6.18E-03	7.64E-08	2
H1M2212N	3.84E+05	1.12E-04	2.93E-10	103	8.84E+05	2.60E-04	2.94E-10	44
H2aM2234N	4.27E+05	5.71E-04	1.34E-09	20	4.29E+05	2.11E-03	4.91 E-09	5
H1M2236N	2.96E+05	2.86E-04	9.70E-10	40	4.34E+05	1.12E-03	2.58E-09	10
H1 M2243N	6.46E+04	6.58E-04	1.02E-08	18	5.02E+04	2.75E-03	5.47E-08	4

Table 5: Kinetics of hGFR α 3-hFc or hGFR α 3-mFc binding to different anti-GFR α 3 antibodies at 25°C and at 37°C

		25°	С			37°	C	
AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t½ (min)	k _a (1/Ms)	k _d (1/s)	K _D (M)	t½ (min)
H4H2291S	1.03E+06	4.78E-06	4.63E-12	2417	1.33E+06	3.84E-05	2.89E-11	301
H4H2292S	5.34E+05	1.00E-06	1.87E-12	11550	5.96E+05	2.57E-05	4.32E-11	449
H4H2293P	1.22E+06	1.93E-06	1.59E-12	5988	1.71E+06	5.13E-05	2.99E-11	225
H4H2294S	1.22E+06	5.63E-06	4.63E-12	2052	1.66E+06	3.46E-05	2.09E-11	334
H4H2295S	1.08E+06	1.69E-06	1.57E-12	6822	1.62E+06	4.88E-05	3.01E-11	237
H4H2296S	1.24E+06	4.17E-06	3.37E-12	2770	1.61 E+06	4.74E-05	2.94E-11	244
H4H2341S	5.96E+05	1.00E-06	1.68E-12	11550	9.61E+05	7.58E-05	7.89E-11	152
H4H2342P	6.61 E+05	1.00E-06	1.51E-12	11550	1.21E+06	4.28E-05	3.54E-11	270
H4H2344S	5.79E+05	1.56E-06	2.69E-12	7409	1.01E+06	8.96E-05	8.91E-11	129
H4H2345S	5.16E+05	3.01E-05	5.84E-11	384	7.00E+05	7.44E-05	1.06E-10	155
H4H2346S	6.47E+05	1.44E-05	2.22E-11	803	1.75E+06	1.37E-04	7.81E-11	84
H4H2350P	5.09E+05	2.12E-05	4.16E-11	545	2.56E+06	1.26E-04	4.92E-11	92

(continued)

5

10

15

20

25

30

35

45

50

55

		25°	С			37°	C	
AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t½ (min)	k _a (1/Ms)	k _d (1/s)	K _D (M)	t½ (min)
H4H2352S	2.14E+06	1.00E-06	4.67E-13	11550	2.28E+06	3.00E-05	1.32E-11	385
H4H2354S	5.80E+05	1.09E-05	1.89E-11	1056	1.02E+06	9.11E-05	8.95E-11	127
H4H2355S	6.11E+05	1.00E-06	1.64E-12	11550	1.10E+06	3.39E-05	3.10E-11	341
H4H2357S	7.79E+05	2.52E-05	3.24E-11	458	1.19E+06	9.40E-05	7.93E-11	123
H4H2364S	7.71 E+05	1.00E-06	1.30E-12	11550	1.26E+06	4.14E-05	3.28E-11	279
H1M2207N*	1.59E+05	2.60E-05	1.63E-10	444	2.03E+05	1.08E-04	5.31E-10	107
H2aM2210N*	1.68E+05	3.69E-05	2.20E-10	313	3.16E+05	7.66E-05	2.42E-10	151
H1M2212N*	1.12E+06	1.44E-05	1.28E-11	800	1.49E+06	6.17E-05	4.13E-11	187
H2aM2234N*	9.50E+05	9.60E-05	1.01E-10	120	1.26E+06	1.46E-04	1.16E-10	79
H1M2236N*	1.28E+06	1.76E-05	1.37E-11	658	1.58E+06	9.65E-05	6.10E-11	120
H1M2243N*	1.34E+05	1.00E-06	7.50E-12	11550	1.86E+05	2.18E-05	1.17E-10	529
*Tested for bindi	ng to hGFR $lpha$ 3	3-hFc, all oth	ner antibodie	s tested for	binding to hG	FRα3-mFc		

Example 4. Blocking of Human GFRa3 Binding to Human ARTEMIN by anti-GFRα3 Antibodies

[0183] The ability of anti-GFR α 3 antibodies to block human GFR α 3 binding to human ARTEMIN in the presence or absence of co-receptor human RET was determined using two different blocking ELISA formats.

[0184] In the first format, recombinant human ARTEMIN protein with a C-terminal myc-myc-hexahistidine tag (hAR-TEMIN-mmH; SEQ ID:369) was coated at 2 ug/ml in 96-well microtiter plates in PBS buffer overnight at 4°C and then blocked with a solution of 0.5% (w/v) BSA. A constant amount of human GFRα3 fused with a C-terminal human Fc tag (hGFRα3-hFc; SEQ ID:371) at 120 pM was pre-mixed with varying amounts of antibodies, ranging from 0 to -10 nM in serial dilutions, followed by an 1 hour incubation at room temperature (RT) to allow antibody-hGFRα3-hFc binding to reach equilibrium. The equilibrated sample solutions were then transferred to the hARTEMIN-mmH-coated plate. After 1 hour of binding, the plate was washed, then the bound hGFRα3-hFc was detected using HRP-conjugated anti-human IgG Fc specific antibody (Jackson Immunochemical, #109-035-098), and colorimetric signals were developed using a TMB HRP substrate (BD Biosciences, #51-2606KC and #51-2607KC). Absorbance was recorded at 450nm on a Victor X5 plate reader (Perkin Elmer) to determine the amount of free hGFRα3-hFc in the pre-equilibrated hGFRα3-hFcantibody solutions that was able to bind to the plate coated with hARTEMIN-mmH. IC50 values, defined as the concentration of antibody required to reduce the signal from a constant concentration of hGFRa3-hFc by 50%, were calculated from the data using Prism software from GraphPad. The absorbance measured at the constant amount of 120pM hGFR α 3-hFc in the absence of anti-GFR α 3 antibody is defined as 0% blocking and the absorbance with no added hGFRα3-hFc is defined as 100% blocking. The observed absorbance in the wells containing the highest antibody concentration was used to calculate the maximum blocking percent shown in the table. The results are summarized in Table 6.

[0185] In the second ELISA format, the plates, samples and data were processed similarly as for the first format except both hARTEMIN-mmH and human RET with a C-terminal 10 histidine tag (hRET-10His; R&D Systems, # 1168-CR/CF) were coated for the blocking ELISA experiment. The 96-well microtiter plates were coated with a mixture of 1.2 ug/ml hARTEMIN-mmH and 6.9 ug/ml hRET-10His proteins in PBS overnight at 4°C and then blocked with a solution of 0.5% (w/v) BSA. A constant amount of biotinylated human GFR α 3 with a C-terminal myc-myc-hexahistidine tag (biotinhGFR α 3-mmH; SEQ ID:370) at 1nM was pre-mixed with varied amounts of anti-GFR α 3 antibodies, ranging from 0 to -100 nM in serial dilutions, followed by a 1 hour incubation at RT to allow antibody-biotin-hGFR α 3-mmH binding to reach equilibrium. The equilibrated samples were then transferred to the coated plate. After 1 hour of binding, the plate was washed, then the bound biotin-hGFR α 3-mmH was detected using HRP conjugated streptavidin (Pierce, #N200), and colorimetric signals were developed using TMB HRP substrates. IC $_{50}$ values and the maximal blocking by each antibody are shown in the Table 6.

[0186] As shown in Table 6, 9 of the 23 anti-GFR α 3 antibodies blocked 51-94% of the hGFR α 3-hFc binding to coated hARTEMIN-mmH with IC₅₀ values ranging from 43.8pM to 723pM in the first ELISA format. Eight of the 23 anti-GFR α 3 antibodies caused the hGFR α 3-hFc binding signal to increase ("enhancer" in Table 6) at many of the higher tested

antibody concentrations in the first ELISA format. Six of the 23 antibodies tested in the first ELISA format did not block or enhance the hGFR α 3-hFc binding signal to coated hARTEMIN-mmH. As shown in Table 6, for the second ELISA format, 17 of the 23 anti-GFR α 3 antibodies blocked 75-100% of the biotin-hGFR α 3-mmH binding to dual-coated hARTEMIN-mmH and hRET-10His with IC $_{50}$ values ranging from 403pM to 14.6nM. Also in the second ELISA format, five of the 23 anti-GFR α 3 antibodies caused the biotin-hGFR α 3-mmH binding signal to increase at lower antibody concentrations but blocked 28-95% of the biotin-hGFR α 3-mmH binding to hARTEMIN-mmH and hRET-10His at antibody concentrations 1nM and above ("enhancer" in Table 6). One anti-GFR α 3 antibody caused the biotin-hGFR α 3-mmH binding signal to increase ("enhancer" in Table 6) at the higher tested antibody concentrations, with no blocking at any concentration, in the second ELISA format.

Table 6: ELISA Blocking of human GFRα3 to human ARTEMIN alone or human ARTEMIN and human RET

	ELISA format 1: Al hGFRα3-hFc bin hARTEMI	iding to coated	mmH binding to coate	cking 1nM biotin-hGFRa ed hARTEMIN-mmH an T-10His
AbPID	IC ₅₀ (M)	% max blocking	IC ₅₀ (M)	% max blocking
H4H2207N	enhancer	NB	7.30E-09	85
H4H2210N	enhancer	NB	enhancer	NB
H4H2212N	4.38E-11	81	4.03E-10	99
H4H2234N	8.29E-11	70	3.42E-09	97
H4H2236N3	enhancer	NB	enhancer	68
H4H2243N2	enhancer	NB	1.12E-09	95
H4H2291S	NB	NB	enhancer	28
H4H2292S	7.23E-10	89	1.76E-09	100
H4H2293P	2.60E-10	93	7.38E-09	95
H4H2294S	NB	NB	9.52E-10	95
H4H2295S	enhancer	NB	enhancer	44
H4H2296S	NB	NB	enhancer	91
H4H2341S	enhancer	NB	1.62E-09	98
H4H2342P	enhancer	NB	1.08E-09	97
H4H2344S	1.33E-10	94	4.59E-10	100
H4H2345S	enhancer	NB	1.46E-08	75
H4H2346S	9.78E-11	92	7.971E-10	99
H4H2350P	4.96E-10	93	1.29E-09	91
H4H2352S	6.58E-11	51	7.61E-10	100
H4H2354S	1.16E-10	92	1.32E-09	97
H4H2355S	NB	NB	enhancer	95
H4H2357S	NB	NB	3.28E-09	86
H4H2364S	NB	NB	1.45E-09	100

Example 5. Measuring the Ability of Anti-GFRa3 Antibodies to Block Activation of GFRa3 and RET by the Ligand ARTEMIN *in vitro*

[0187] The ability of anti-GFR α 3 antibodies to block activation of GFR α 3 and RET by its ligand ARTEMIN *in vitro* was determined using a cell-based assay. HEK293 cells modified to stably express both human GFR α 3 (amino acids 1-400 of accession number NP_001487.2) and human RET (amino acids 1-1072 of accession number NP_065681) were

generated and then transduced with a SRE responsive luciferase reporter (SRE-luc; Sabiosciences, CCS-010L) (HEK293/hGFR α 3/hRET cells).

[0188] Twenty thousand HEK293/hGFR α 3/hRET/SRE-luc cells were seeded into Poly D-Lysine coated 96 well plates (Greiner, #35-4620) in Optimem (GIBCO, #31985) containing 0.5% FBS and then grown overnight in 5% CO₂ at 37°C. The cells were then incubated for 1 hour at room temperature with serial dilutions of anti-GFR α 3 antibodies ranging from 5pM to 300nM. A constant dose (100pM) of human ARTEMIN expressed with a C-terminal myc myc hexahistidine tag (SEQ ID:369) was then added to the cells and incubated for an additional 6 hours. Luciferase activity was measured as relative light units (RLU) on a Victor luminometer (Perkin Elmer) after the addition of OneGlo reagent (Promega, #E6051). EC₅₀ and IC₅₀ values were calculated from a four-parameter logistic equation over a 12-point response curve using GraphPad Prism data analysis software.

[0189] Twenty-three anti-GFR α 3 antibodies were tested for their ability to inhibit ARTEMIN-dependent activation of the HEK293/hGFR α 3/hRET/SRE-luc cells. As shown in Table 7, all 23 antibodies tested blocked luciferase activity with IC $_{50}$ values ranging from 0.2nM to 48.3nM, and 19 of 23 antibodies blocked to the baseline at a concentration of 300nM. Four of the 23 antibodies (H4H2344S, H4H2345S, H4H2346S, and H4H2354S-1) did not block to baseline at any of the antibody concentrations tested.

Table 7: Inhibition of ARTEMIN-dependent stimulation of HEK293/hGFRα3/hRET/ SRE-luc cells by anti-GFRα3 antibodies

15

20	AbPID	IC ₅₀ (nM)
20	H4H2294S	0.27
	H4H2342P	1.0
	H4H2212N	0.80
25	H4H2292S	4.6
	H4H2243N2	0.30
	H4H2352S	0.92
30	H4H2207N	2.4
	H4H2210N	2.9
	H4H2234N	2.3
	H4H2236N3	1.5
35	H4H2291S	1.3
	H4H2293P	20
	H4H2294S	1.7
40	H4H2295S	1.5
	H4H2296S	1.4
	H4H2341S	7.1
	H4H2344S	48
45	H4H2345S	26
	H4H2346S	26
	H4H2354S	22
50	H4H2355S	2.3
	H4H2357S	4.9
	H4H2364S	2.3

55 Example 6. Inhibition of ARTEMIN-sensitized capsaicin thermal hyperalgesia

[0190] To induce ARTEMIN-sensitized thermal hyperalgesia in mice, each mouse was pretreated with an intra-plantar injection of 0.5 micrograms mouse recombinant ARTEMIN (R&D Systems, #1085-AR) 24 hours before administering

an intra-plantar injection of 0.5 micrograms capsaicin (a sub-optimal dose) from a 100 mM solution in DMSO (Sigma-Aldrich, #M-2028). Thermal hyperalgesia was evaluated using the Hargreaves' Test, in which a beam of light is directed at the injected paw until the animal withdraws its paw. The latency to withdraw is recorded as a behavioral measure of nociception. Thermal hyperalgesia is consistently ARTEMIN-sensitized at 3 days after capsaicin administration based on significantly decreased paw withdrawal latencies. For these studies, a baseline value for withdrawal latency was measured before dosing with either ARTEMIN or capsaicin followed by a second measurement three days after capsaicin treatment. The experimenter conducting these assays was blind to the treatment group of the animals.

[0191] For all experiments evaluating the efficacy of human anti-GFR α 3 antibodies in ARTEMIN-sensitized hyperalgesia, adult mice homozygous for the expression of human GFR α 3 in place of mouse GFR α 3 ("humanized GFR α 3") were used. Both male and female mice were used in each assay, with sex balanced across treatment groups (a total of 8 mice per treatment or control group). Humanized GFR α 3 mice were previously determined to have ARTEMIN-induced capsaicin thermal hyperalgesia latency responses similar to those observed in wild-type mice.

[0192] Six anti-GFR α 3 antibodies (H4H2212N, H4H2243N2, H4H2292S, H4H2294S, H4H2342P, and H4H2352S-1) were tested in the model. All antibodies were diluted in phosphate-buffered saline (PBS) and were administered subcutaneously at 25mg/kg in a 1ml/100g body weight volume 24 hours prior to ARTEMIN injection into the hindpaw. In each experiment, one group of animals received an isotype control antibody.

[0193] Pain sensitivity for each treatment or control group was defined as percentage of baseline withdrawal latency (%BWL), calculated as the fractional change for each animal's time-based withdrawal latency (WL) three days after capsaicin treatment compared to their baseline withdrawal latency without capsaicin treatment:

%BWL =
$$[(WL_{(capsaicin)} - WL_{(no capsaicin)})/WL_{(no capsaicin)}] \times 100$$

[0194] Using %BWL, larger negative values indicate greater thermal hyperalgesia.

10

15

20

25

30

35

40

45

50

55

[0195] Table 8 shows the summary of group means (in boldface type) and standard error of the means (in italics) for percentage of baseline withdrawal latency (%BWL) in the ARTEMIN-sensitized capsaicin thermal hyperalgesia model assessed at three days after capsaicin injection.

[0196] As shown in Table 8, mice treated with anti-hGFR α 3 antibodies exhibited increases in %BWL (smaller negative or positive values) compared to mice treated with the isotype control antibody. Four antibodies, H4H2352S, H4H2243N2, H4H2294S, and H4H2342P promoted the greatest resistance to thermal hyperalgesia across all experiments performed.

Table 8: Data Summary in the ARTEMIN-sensitized capsaicin thermal hyperalgesia model assessed at three days after capsaicin injection.

AbPID		%	BWL	
	Exp. 323	Exp. 361	Exp. 367	Exp. 380
Isotype control	-17 ± 7.6	-32 ± 6.8	-40 ± 4.8	-35 ± 3.5
H4H2292S	0.72 ± 19	nd	nd	-26 ± 5.9
H4H2352S	27 ± 15	nd	-5.6 ± 9.4**	nd
H4H2243N2	20 ± 18	nd	nd	21 ± 6.4**
H4H2294S	nd	-9.0 ± 12	2.3 ± 12**	nd
H4H2342P	nd	-12 ± 9.3	18 ± 8.3***	nd
H4H2212N	nd	-22 ± 6.9	nd	nd

Example 7. Testing of anti-GFRα3 Antibodies for Cross-Reactivity with GFRα1 and GFRα2

[0197] The ability of anti-GFR α 3 antibodies to bind to GDNF-family receptors was assessed using an Octet Red biosensor (Fortebio, Inc.). Antibodies were tested for binding to either human GFR α 1 expressed with a C-terminal human Fc tag and a hexahistidine tag (hGFR α 1-hFc-6His, R&D Systems # 714-GR), human GFR α 1 expressed with only a C-terminal human Fc tag (hGFR α 1-hFc; SEQ ID: 376), human GFR α 2 expressed with a C-terminal human Fc tag and a hexahistidine tag (hGFR α 2-hFc-6His, R&D Systems #613-FR), human GFR α 3 expressed with a C-terminal human Fc tag (hGFR α 3-hFc, SEQ ID:371), or an irrelevant human Fc tagged protein. Antigens were captured onto anti-human Fc sensor tips from 10 ug/mL solutions for 5 minutes. The coated sensor tips were then blocked with a 100 ug/mL solution

of irrelevant human Fc antibodies for 5 minutes. Blocked sensor tips were then submerged into wells containing 667uM of each anti-GFR α 3 antibody or buffer alone for 10 minutes. The experiment was performed at 25°C with a flow rate of 1000 rpm using HBST+BSA buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% w/v Surfactant P20, 0.1 mg/mL BSA, pH 7.4). The binding response (measured in units of nm) at each step of the experiment was monitored and recorded. **[0198]** All six of the tested anti-GFR α 3 antibodies showed binding above 1.0 nm to the hGFR α 3-hFc protein, but did not demonstrate any measurable binding to the other GDNF-family receptors or to the irrelevant human Fc tagged protein, as shown in Table 9.

Table 9. Reactivity of Anti-GFR α 3 Antibodies with GFR α 1, GFR α 2 and GFR α 3

10	Antigen	Capture Level (nm) +/- Std dev	100 ug/mL H4H229 4S Bound (nm)	100 ug/mL H4H2342 P Bound (nm)	100 ug/mL H4H224 3N2 Bound (nm)	100 ug/mL H4H221 2N Bound (nm)	100 ug/mL H4H235 2S Bound (nm)	100 ug/mL H4H229 2S Bound (nm)	Buffer
15	hGFRα1- hFc	1.89 ± 0.14	0.04	0.06	0.03	0.00	0.02	0.05	-0.07
	hGFRα1- hFc-6his	1.66 ± 0.10	0.03	0.08	0.03	-0.01	0.03	0.03	-0.07
20	hGFRα2- hFc-6his	1.49 ± 0.09	0.06	0.12	0.06	0.02	0.04	0.05	-0.06
	hGFRα3- hFc	1.68 ± 0.10	1.17	1.59	1.11	1.18	1.25	1.04	-0.09
25	Irrelevant hFc tagged protein	1.00 ± 0.06	0.03	0.07	0.03	0.00	0.03	0.02	-0.08

Example 8. Measuring the Ability of Anti-GFRa3 antibodies to block ARTEMIN stimulation in a HEK293/MfGFRa3/MfRet/SRE-Luc bioassay

[0199] The ability of anti-GFR α 3 antibodies to block activation of cynomolgus GFR α 3 and cynomolgus RET by its ligand ARTEMIN *in vitro* was determined using a cell-based assay. HEK293 cells modified to stably express both cynomolgus GFR α 3 (MfGFR α 3; SEQ ID: 377) and cynomolgus RET (MfRET; SEQ ID: 378) were generated and then transduced with a Cignal Lenti SRE Reporter (SA Biosciences, #CLS-010L) expressing the firefly luciferase gene under the control of a minimal CMV promoter and tandem repeats of the serum response element to generate the HEK293/MfGFR α 3/MfRet/SRE-Luc cell line.

[0200] For the bioassay, 20,000 HEK293/MfGFR α 3/MfRet/SRE-Luc cells were seeded onto Poly D-Lysine coated 96 well plates (Greiner, #35-4620) in Optimem (GIBCO, #31985) containing 0.5% FBS and then grown overnight at 5% CO₂ at 37°C. The cells were then incubated for 1 hour with serial dilutions of anti-GFR α 3 antibodies ranging from 5pM to 300nM. A constant dose (500pM) of human ARTEMIN expressed with a C-terminal myc-myc-hexahistidine tag (Human ARTEMIN-MMH; SEQ ID: 369) was then added to the cells and incubated for an additional 6 hours. To determine the EC₅₀ value of human ARTEMIN-MMH from dose response curves, serial dilutions of human ARTEMIN-MMH ranging from 0.5 pM to 10nM was added to the cells without antibodies and incubated for 6 hours at 37°C. Luciferase activity was measured as relative light units (RLU) on a Victor luminometer (Perkin Elmer) after the addition of OneGlo reagent (Promega, #E6051). EC₅₀ and IC₅₀ values were calculated from a four-parameter logistic equation over a 12-point response curve using GraphPad Prism data analysis software.

[0201] Six anti-GFR α 3 antibodies were tested for their ability to inhibit ARTEMIN-dependent activation of the HEK293/MfGFR α 3/MfRET/SRE-luc cells. As shown in Table 10, all six antibodies tested completely blocked luciferase activity with IC $_{50}$ values ranging from 0.7nM to 2.5nM. Human ARTEMIN-MMH stimulated SRE-dependent luciferase activity in the HEK293/mfGFR α 3/mfRet/SRE-LUC cell line with an EC $_{50}$ value of 70pM.

30

35

45

50

Table 10: Inhibition of ARTEMIN-dependent stimulation of HEK293/MfGFRa3/MfRET/ SRE-luc cells by anti-GFRa3 antibodies

Antibody	IC ₅₀ (nM)
H4H2294S	0.7
H4H2342P	2.5
H4H2212N	1.8
H4H2292S	1.5
H4H2243N2	0.8
H4H2352S	1.3

Example 9. Generation of a Bi-specific Anti-GFRa3 Antibody

5

10

15

20

25

35

50

55

[0202] Various bi-specific antibodies are generated for use in practicing the methods of the invention. For example, GFR α 3-specific antibodies are generated in a bi-specific format (a "bi-specific") in which variable regions binding to distinct epitopes on GFR α 3 are linked together to confer dual-epitope specificity within a single binding molecule. Appropriately designed bi-specifics may enhance overall GFR α 3 blocking efficacy through increasing both GFR α 3 specificity and binding avidity. Variable regions with specificity for individual different epitopes within any of the three cysteine repeats or that can bind to different regions within one epitope of any of the three cysteine repeats are paired on a structural scaffold that allows each variable region to bind simultaneously to the separate epitopes, or to different regions within one epitope. In one example for a bi-specific, heavy chain variable regions (V_H) from a binder with specificity for one epitope within one cysteine repeat are recombined with light chain variable regions (V_L) from a series of binders having specificity for a second epitope within any of the other two cysteine repeats to identify non-cognate V_L partners that can be paired with an original V_H without disrupting the original specificity for that V_H. In this way, a single V_L segment (e.g., V_L1) can be combined with two different V_H domains (e.g., V_H1 and V_H2) to generate a bi-specific comprised of two binding "arms" (V_H1- V_L1 and V_H2- V_L1). Use of a single V_L segment reduces the complexity of the system and thereby simplifies and increases efficiency in cloning, expression, and purification processes used to generate the bi-specific (See, for example, USSN13/022759 and US2010/0331527).

[0203] Alternatively, antibodies that bind both $GFR\alpha3$ and a second target, such as, but not limited to, for example, RET may be prepared in a bi-specific format using techniques described herein, or other techniques known to those skilled in the art. Antibody variable regions binding to distinct $GFR\alpha3$ regions that are extracellularly exposed are linked together with variable regions that bind to relevant sites on, for example, the ligand, artemin, other $GFR\alpha$ receptors, or to RET, to confer dual-antigen specificity within a single binding molecule. Variable regions with specificity for individual epitopes of $GFR\alpha3$, are combined with a variable region with specificity for, for example, artemin and are paired on a structural scaffold that allows each variable region to bind to the separate antigens.

[0204] The bi-specific binders are tested for binding and functional blocking of the target antigens, for example, $GFR\alpha3$ and/or artemin, other $GFR\alpha$ receptors, or RET, in any of the assays described above for antibodies. For example, standard methods to measure soluble protein binding are used to assess the bispecific interaction with its antigen(s), such as Biacore, ELISA, size exclusion chromatography, multi-angle laser light scattering, direct scanning calorimetry, and other methods. Binding of bi-specific antibodies to cells expressing $GFR\alpha3$ is determined through flow cytometry using a fluorescently labeled secondary antibody recognizing the target antigen on the cells. Binding experiments with peptides can also be conducted using surface plasmon resonance experiments, in which real-time binding interaction of peptide to antibody is measured by flowing a peptide or bi-specific across a sensor surface on which bi-specific or peptide, respectively, is captured. Functional *in vitro* blocking of the $GFR\alpha3$ receptor by a bi-specific is determined using any bioassay such as that described herein, or by *in vivo* determination of reaction to pain in appropriate animal models, such as those described herein. Functional *in vitro* blocking of $GFR\alpha3$ or its ligand, artemin, by a bi-specific is determined using any bioassay such as that described in WO2010/077854, or in US2010/0166768, or by *in vivo* determination of hypersensitivity to thermal stimuli in appropriate animal models, such as those described herein.

Example 10. Surface plasmon resonance derived binding affinities and kinetic constants of monoclonal antimouse $\mathsf{GFR}\alpha3$ antibodies

[0205] Binding associative and dissociative rate constants (k_a and k_d , respectively) and calculated equilibrium dissociation constants and dissociative half-lives (K_D and $t_{1/2}$, respectively) for antigen binding to anti-mouse GFR α 3 antibodies were determined using a real-time surface plasmon resonance biosensor (Biacore 3000) assay at 25°C. Antibodies

were tested for binding to mouse GFR α 3 expressed with myc-myc-hexahistidine tag (mGFR α 3-MMH; SEQ ID: 379,). Anti-mouse GFR α 3 antibodies were captured on a goat anti-mouse IgG polyclonal antibody (GE Healthcare, # BR-1008-38) surface created through direct amine coupling to a Biacore CM5 sensor chip. Kinetic experiments were carried out using HBS-EP

[0206] (10mM HEPES, 150mM NaCl, 3mM EDTA, 0.05% Surfactant P20, at pH 7.4) as both the running buffer and the sample buffer. Binding to mouse GFR α 3-MMH was evaluated by injecting several concentrations ranging from 100nM to 6.25 nM (2-fold dilutions) across the captured antibody surface. Antibody-antigen association was monitored for up to 5 minutes, while dissociation in buffer was monitored for up to 10 minutes. Kinetic association (k_a) and dissociation (k_d) rate constants were determined by processing and fitting the data to a 1:1 binding model using Scrubber 2.0c curve fitting software. Binding dissociation equilibrium constants (K_D) and dissociative half-lives ($t_{1/2}$) were calculated from the kinetic rate constants as: K_D (M) = k_d / k_a and $t_{1/a}$ (min) = [ln2/(60* k_d)].

[0207] As shown in Table 11, the two anti-mouse GFR α 3 antibodies tested, M1M6986N and M1M6977N, bound to mGFR α 3-MMH at 25°C with K_D values of 23.1pM and 107pM, respectively.

Table 11: Kinetics of mGFR α 3-MMH binding to different anti-mouse GFR α 3 antibodies at 25°C

AbPID	k _a (1/Ms)	k _d (1/s)	K _D (M)	t½ (min)	
M1M6986N	1.02E+06	2.35E-05	2.31E-11	491	
M1M6977N	3.84E+05	4.1E-05	1.07E-10	282	

Example 11. Mouse GFRa3 Blocking ELISA

10

15

20

25

30

35

45

50

55

[0208] The ability of anti-mouse GFR α 3 antibodies to block mouse GFR α 3 binding to mouse ARTEMIN in the presence or absence of co-receptor mouse RET was determined using two different blocking ELISA formats. In the first format, recombinant mouse ARTEMIN (R&D cat# 1085-AR/CF) protein was coated at 2ug/mL (166nM) in 96-well microtiter plates in PBS buffer overnight at 4°C and then blocked with a solution of 0.5% (w/v) BSA. A constant amount (3.5nM) of biotinylated mouse GFRα3 with a C-terminal myc-myc-hexahistidine tag (Biotin- mGFR 3-MMH, SEQ ID:379) was pre-mixed with varying amounts of antibodies, ranging from 100nM to 1.6 pM in serial dilutions, followed by 1 hour incubation at room temperature (RT) to allow antibody-biotin-mGFRα3-MMH binding to reach equilibrium. The equilibrated sample solutions were then transferred to the mARTEMIN-coated plate. After 1 hour of binding, the plate was washed, then the bound biotin-mGFRα3-MMH was detected using Streptavidin-HRP (Pierce, #N200) and colorimetric signals were developed using a TMB HRP substrate (BD Biosciences, #51-2606KC and #51-2607KC). Absorbance was recorded at 450nm on a Victor X5 plate reader (Perkin Elmer) to determine the amount of free biotin-mGFR α 3-MMH in the pre-equilibrated biotin-mGFR α 3-MMH-antibody solutions that was able to bind to the plate-coated mARTEMIN. IC₅₀ values, defined as the concentration of antibody required to reduce the signal from a constant concentration of biotinmGFRa3-MMH by 50%, were calculated from the data using Prism software from GraphPad. The absorbance measured at the constant amount of biotin-mGFR α 3-MMH in the absence of anti-mouse GFR α 3 antibody is defined as 0% blocking and the absorbance with no added biotin-mGFRα3-MMH is defined as 100% blocking. The observed absorbance in the wells containing the highest antibody concentration was used to calculate the maximum blocking percent shown in the table. The results are summarized in Table 12.

[0209] In the second ELISA format, the plates, samples and data were processed similarly as for the first format except both mouse RET expressed with C-terminal hFc and hexahistidine tags (mRET-hFc-6His; R&D cat# 482-RT/CF) and mARTEMIN (R&D cat# 1085-AR/CF) were coated for the blocking ELISA experiment. The 96-well microtiter plates were coated with a mixture of 1.2ug/mL (100nM) mARTEMIN and 9.5ug/mL (100nM) mRET-hFc-6His proteins in PBS overnight at 4°C and then blocked with a solution of 0.5% (w/v) BSA. A constant amount (350pM) of biotin-mGFR α 3-MMH was pre-mixed with varied amounts of anti-mouse GFR α 3 antibodies, ranging from 100nM to 1.6pM in serial dilutions, followed by a 1 hour incubation at RT to allow antibody- biotin-mGFR α 3-MMH binding to reach equilibrium. The equilibrated samples were then transferred to the coated plate. After 1 hour of binding, the plate was washed, then the bound biotin-mGFR α 3-MMH was detected using HRP conjugated streptavidin and colorimetric signals were developed using TMB HRP substrates. IC₅₀ values and the maximal blocking by each antibody are shown in the Table 12.

[0210] As shown in Table 12, only one anti-mouse GFR α 3 antibody tested, M1M6986N, demonstrated the ability to block biotin-mGFR α 3-MMH from binding to the coated mARTEMIN plate with an IC $_{50}$ value of 69.1pM. The other anti-mouse GFR α 3 antibody tested, M1M6977N, did not demonstrate any measurable blockade in this ELISA format. Both anti-mouse GFR α 3 antibodies tested, M1M6986N and M1M6977N, demonstrated the ability to completely block biotin-mGFR α 3-MMH from binding to the plates coated with both mARTEMIN and mRET-hFc-6His, with IC $_{50}$ values of 47.2pM and 366pM, respectively.

Table 12: ELISA Blocking of mouse GFRα3 to mouse ARTEMIN alone or mouse ARTEMIN and mouse RET

	biotin- mGFR $lpha$ 3-M	tibody blocking 3.5nM MH binding to coated TEMIN	ELISA format 2: Antibody blocking 350pM biotin- mGFRα3-MMH binding to coated mARTEMIN and mRET-hFc-6His					
AbPID	IC ₅₀ (M)	% max blocking	IC ₅₀ (M)	% max blocking				
M1M6986N	6.91E-11	100%	4.72E-11	100%				
M1M6977N	NB		3.66E-10	100%				
NB = non-bloc	ker							

Example 12. Cell based Luciferase bioassay

5

10

15

20

25

30

35

40

45

50

55

[0211] The ability of anti-mouse GFR α 3 antibodies to block activation of mouse GFR α 3 and mouse RET by its ligand mouse ARTEMIN *in vitro* was determined using a cell-based assay. HEK293 cells modified to stably express both mouse GFR α 3 (amino acids 1-397 of accession number AAH66202.1) and mouse RET (amino acids 1-1115 of accession number NP_033076.2) were generated and then transduced with a SRE responsive luciferase reporter (SRE-luc; Sabiosciences, CCS-010L) (293/mGFR α 3/mRET/SRE-luc cells).

[0212] Twenty thousand 293/mGFR α 3/mRET/SRE-luc cells were seeded into Poly D-Lysine coated 96 well plates (Greiner, #35-4620) in Optimem (GIBCO, #31985) containing 0.5% FBS and then grown overnight in 5% CO $_2$ at 37°C. The cells were then incubated for 1 hour at room temperature with serial dilutions of anti-mouse GFR α 3 antibodies ranging from 3 nM to 44 nM. A constant dose (100 pM) of mouse ARTEMIN (R&D, # 1085-AR/CF) was then added to the cells and incubated for an additional 6 hours. Luciferase activity was measured as relative light units (RLU) on a Victor luminometer (Perkin Elmer) after the addition of OneGlo reagent (Promega, #E6051). EC $_{50}$ and IC $_{50}$ values were calculated from a four-parameter logistic equation over a 12-point response curve using GraphPad Prism data analysis software.

[0213] As shown in Table 13, both anti-mouse GFR α 3 antibodies tested, M1M6986N and M1M6977N demonstrated the ability to inhibit mouse ARTEMIN-dependent stimulation of 293/mGFR α 3/mRET/SRE-luc cells with IC₅₀ values of approximately 44nM and 3nM, respectively.

Table 13: Inhibition of ARTEMIN-dependent stimulation of 293/mGFR α 3/mRET/SRE-luc cells by anti-mouse GFR α 3 antibodies

Antibody	IC ₅₀ (nM)
M1M6986N	44 ± 3 (n=2)
M1M6977N	3 ± 1 (n=3)

Examples 13, 14 and 15: The effect of anti-mouse GFRa3 antibodies in animal models of bone cancer pain and osteoarthritic pain

[0214] The antibodies described herein are high affinity human antibodies to the GPI-linked alpha receptor for artemin, GFR α 3. Since these antibodies to human GFR α 3 do not cross-react with mouse GFR α 3, *in vivo* assays with these antibodies can only be conducted in mice genetically altered to replace the mouse GFR α 3 sequence with that of human GFR α 3. Initial *in vivo* experiments in these GFR α 3^{hu/hu} mice using pharmacological inhibition of artemin-sensitized capsaicin revealed efficacy of four human antibodies in this *in vivo* assay. In order to expedite the generation of efficacy data, mouse GFR α 3 antibodies were generated to serve as surrogates to the human antibodies. Mice of a mixed C57BL6/129Sv strain that were homozygous for deletion of the endogenous GFR α 3 gene were immunized with recombinant mouse GFR α 3 extracellular domain expressed in Chinese hamster ovary cells. A specific immune response to GFR α 3 was confirmed by immunoassays of serum from the immunized mice. Spleens were collected from mice exhibiting a high specific immune response, and antibody-producing hybridoma cells were generated by fusion of the isolated splenocytes with mouse myeloma cells following standard hybridoma procedures. Hybridoma supernatants were further screened in immunoassays for binding to GFR α 3 and for their ability to block binding of GFR α 3 to either artemin or artemin/Ret coated on a solid surface in an immunoassay format. Supernatants were also screened for their ability to block artemin stimulation of the GFR α 3/Ret co-receptor pathway in a cell-based bioassay. Variable-region antibody sequences were obtained by PCR amplification of selected hybridoma clones whose antibody proteins exhibited potent

blocking in the cell-based assay, and these sequences were used to produce full-length recombinant anti-mouse $GFR\alpha3$ antibodies with a mouse IgG1 isotype. Two antibodies were selected for *in vivo* testing that potently inhibited artemin signaling in the cell-based assay. In the *in vitro* binding immunoassay, antibody M1M6986N blocked binding of $GFR\alpha3$ to both artemin or artemin/Ret coated on a solid surface and is referred to here as a direct blocker. Antibody M1M6977N blocked binding of $GFR\alpha3$ to coated artemin/Ret but not to artemin alone in the *in vitro* immunoassay and is referred to here as an indirect blocker. These two mouse antibodies, M1M6986N and M1M6977N, were selected for testing in the artemin-sensitized capsaicin thermal analgesia model (described in Example 6), since these two antibodies demonstrated similar binding and blocking profiles to the efficacious human antibodies. These two antibodies were screened for their ability to block artemin-induced sensitization of hyperalgesia *in vivo* in wild type mice. Like their human antibody counterparts, both antibodies significantly inhibited artemin's sensitizing effect on capsaicin thermal hyperalgesia three days after capsaicin injection (Figure 1).

Example 13: Fibrosarcoma Model of Bone Cancer Pain

Methodology

10

15

20

35

40

45

50

55

Subjects

[0215] Adult male mice on a C57Bl6 background strain were used for two fibrosarcoma experiments at approximately 12 weeks of age. The experimenters measuring outcome data for this experiment were blind to treatment group of the animals throughout data collection, compilation, and analysis.

Bone Cancer Model

[0216] To induce bone cancer pain, the mice were anesthetized and then injected intrafemorally with 1.0x10⁶ MC57G fibrosarcoma cells. These cells are derived from a C57BI/6 mouse fibrosarcoma tumor line. Tumors typically grow aggressively in this model, such that bone destruction is evident by 14 days after tumor implantation. Radiographs were taken at days 7, and 10, and 14 after implantation to verify tumor growth and bone destruction. Bone destruction was scored on a three-point scale such that 0 represented no destruction and 3 represented complete destruction of the femur in the region of the tumor.

Antibody Treatment

[0217] Each animal received 30mg/kg s.c. antibody injections administered the day before cancer cell implantation and again on day 7. Animals were pseudo-randomly assigned to one of two or three treatment groups: 1) M2M180N isotype (negative) control antibody in two separate experiments, 2) M1M6977N anti-mouse GFR α 3 antibody in two separate experiments or 3) M1M6986N anti-mouse GFR α 3 antibody in the second experiment only. M1M6986 blocks artemin's interaction with GFR α 3, and is thereby considered a "direct" blocker of artemin's action. In contrast, M1M6977N inhibits artemin's action through the GFR α 3/RET complex, and is therefore considered an "indirect" inhibitor.

Measures of Nociception

[0218] Nociceptive responses to the bone tumor were measured using the von Frey Hair test for evoked mechanical (tactile) allodynia, the dynamic weight bearing (DWB) test for willingness to bear weight on a limb, and guarding behavior. Von Frey test results are expressed as grams of pressure required for paw withdrawal. Weight bearing results are expressed as percent body weight placed on the ipsilateral limb. Guarding behavior is expressed as time spent guarding the limb over a two-minute period.

Results

Bone Destruction

[0219] There was no significant effect of antibody treatment on bone destruction score in either experiment suggesting that the antibody treatment had no impact on the severity of the bone cancer itself (data not shown).

Nociceptive Behavior

[0220] There was a statistically significant decrease in tactile allodynia with GFRα3 antibody treatment after fibrosa-

rcoma injection in the first experiment (F(1,20)=9.189, p=.007, Figure 2A) and a statistical trend toward efficacy overall in the second experiment (F(2,29)=3.069, p<.062, Figure 2B), with individual comparisons sometimes achieving significance in the second study (Figure 2B).

[0221] There was no statistically significant effect of GFR α 3 antibodies on dynamic weight bearing on the ipsilateral limb measured 14 days after implantation of bone with fibrosarcoma cells in either experiment, although the first experiment revealed a statistical trend toward efficacy with M1M6977N treatment (t(10)=2.047, p=.068, Figure 3A; F(2,28)=1.598, p=.220, Figure 3B).

[0222] GFR α 3 antibodies significantly reduced limb guarding after bone cancer implantation in both fibrosarcoma experiments (F(1,20)=12.270, p=.002, Figure 4A; F(2,29)=3.576, p=.041, Figure 4B).

Conclusion

10

15

20

25

30

35

40

45

50

55

[0223] Treatment with anti-mouse GFR α 3 antibodies significantly reduced nociceptive behaviors in this bone cancer pain model as measured by evaluation of guarding and the von Frey Test of tactile allodynia. In addition, there was a statistical trend toward efficacy of the M1M6977N antibody in weight bearing differential in one experiment. Bone destruction scores were not different in groups receiving anti-mouse GFR α 3 antibodies, suggesting that differences in pain-related measures could not be accounted for by differences in cancer severity. Therefore, our data suggest that neutralizing antibodies against GFR α 3 could be efficacious against bone cancer pain. Because sarcoma cells are more often primary tumors than metastases in bone, and because most bone cancers derive from metastases of primary tumors from other sites, these antibodies were also tested in a model of breast (mammary) carcinoma-induced bone cancer pain. Breast and prostate tumors are among the most common tumors found to metastasize to bone.

Example 14: Breast Carcinoma Model of Bone Cancer Pain

Methodology

Subjects

[0224] Adult male mice on a Balb/c background strain were used for a mammary carcinoma bone cancer experiment at approximately 12 weeks of age. The experimenters measuring outcome data for this experiment were blind to treatment group of the animals throughout data collection, compilation, and analysis.

Bone Cancer Model

[0225] To induce bone cancer pain, the mice were anesthetized and then injected intrafemorally with 10,000 4T-1 mammary carcinoma cells. These cells are derived from a Balb/c mammary carcinoma tumor line. Tumors typically grow aggressively in this model, such that tumors are severe by 18 days after implantation. Radiographs were taken at days 10, 14, and 19 after implantation to verify tumor growth and bone destruction. Bone destruction was scored on a three-point scale such that 0 represented no destruction and 3 represented complete destruction of the femur in the region of the tumor.

Antibody Treatment

[0226] Each animal received 30mg/kg s.c. antibody injections administered the day before cancer cell implantation and two times per week thereafter. Animals were pseudo-randomly assigned to one of three treatment groups: 1) M2M180N isotype (negative) control antibody, 2) M1M6977N anti-mouse GFR α 3 antibody, or 3) M1M6986N anti-mouse GFR α 3 antibody. M1M6986N blocks artemin's interaction with GFR α 3, and is thereby considered a "direct" blocker of artemin's action. In contrast, M1M6977N inhibits artemin's action through the GFR α 3/RET complex, and is therefore considered an "indirect" inhibitor.

Measures of Nociception

[0227] Nociceptive responses to the bone tumor were measured using the von Frey Hair test for evoked mechanical (tactile) allodynia, the dynamic weight bearing (DWB) test for willingness to bear weight on a limb, and guarding behavior. Von Frey test results are expressed as grams of pressure required for paw withdrawal. Weight bearing results are expressed as percent body weight placed on the ipsilateral limb. Guarding behavior is expressed as time spent guarding the limb over a two-minute period.

Results

Bone Destruction

[0228] There was no significant effect of antibody treatment on bone destruction score in this model, suggesting that the antibody treatment had no impact on the severity of the bone cancer itself.

Nociceptive Behavior

[0229] There was a statistically significant decrease in tactile allodynia with GFR α 3 antibody treatment after carcinoma (F(2, 25)=8.626, p=.001, Figure 5).

[0230] There were no statistically significant overall effects of $GFR\alpha3$ antibodies on dynamic weight bearing on the ipsilateral limb, although the overall effect of treatment achieved a statistical trend and M1M6977N achieved significant efficacy on post hoc comparison at 11 days (A), but not 18 days (B), after implantation of bone with carcinoma cells (11 day F(2,25)=2.939, p=.071, Figure 6A; 18 day F(2,25)=0.149, p=.862, Figure 6B).

[0231] GFR α 3 antibodies significantly reduced limb guarding after bone cancer implantation in this model (F(2,25)=4.222, p=.026, Figure 7).

Conclusion

15

20

25

35

40

[0232] Treatment with anti-mouse GFR α 3 antibodies significantly reduced nociceptive behaviors in this bone cancer pain model as measured by evaluation of guarding and the von Frey Test of tactile allodynia. In addition, there was evidence of efficacy of the REGN1967 antibody in weight bearing differential at one time point. Bone destruction scores were not different in groups receiving anti-mouse GFR α 3 antibodies, suggesting that differences in pain-related measures could not be accounted for by differences in cancer severity. Therefore, our data suggest that neutralizing antibodies against GFR α 3 could be efficacious against bone cancer pain in this model of metastatic bone cancer pain.

Example 15. Destabilization of the Medial Meniscus (DMM) Model of Osteoarthritic Pain Methodology

30 Subjects

[0233] Adult male mice on a C57BI6 background strain were used for the DMM experiment starting at approximately 12 weeks of age. The experimenters measuring outcome data for this experiment were blind to treatment group of the animals throughout data collection, compilation, and analysis.

DMM Model

[0234] In the DMM model, the medial meniscus of one knee is destabilized and the animal is allowed to develop disease for 16 weeks. During the 16 week period, animals develop tactile allodynia and increases in bone volume and bone mineral content in the injured knee resembling early human osteoarthritis. Tactile allodynia was verified in animals by von Frey Test at 16 weeks before the initiation of antibody treatment.

Antibody Treatment

[0235] Each animal received 30mg/kg s.c. antibody injections administered weekly starting 16 weeks after DMM surgery. Animals were pseudo-randomly assigned to one of three treatment groups: 1) M2M180N isotype (negative) control antibody, 2) M1M6977N anti-mouse GFRα3 antibody, or 3) M1M6986N anti-mouse GFRα3 antibody. M1M6986N blocks artemin's interaction with GFRα3, and is thereby considered a "direct" blocker of artemin's action. In contrast, M1M6977N inhibits artemin's action through the GFRα3/RET complex, and is therefore considered an "indirect" inhibitor.

Measures of Nociception

[0236] Nociceptive responses to the knee pathology were measured using the von Frey Hair test for evoked mechanical (tactile) allodynia.

55

Results

Nociceptive Behavior

[0237] There was a statistically significant decrease in tactile allodynia with GFR α 3 antibody treatment after DMM (F(2, 27)=21.68, p=.0001, Figure 8).

Conclusion

20

30

35

40

50

55

[0238] Treatment with mouse GFRα3 antibodies had a statistically significant effect on tactile allodynia such that the groups treated with the two GFRα3 antibodies consistently showed less allodynia than the isotype control starting 14 days after the initiation of weekly treatment. These data suggest the possibility that GFRα3 antibodies will be efficacious against chronic human osteoarthritic pain.

15 Example 16. Cross-Competition Analysis of anti-GFRa3 Antibodies

[0239] A cross-competition assay was conducted to assess the ability of select antibodies to compete with one another for binding to human GFR α 3 using an Octet RED384 biosensor (Fortebio Inc.). The entire experiment was performed at 25°C with the flow rate of 1000rpm in Octet HBST buffer (0.01 M HEPES pH7.4, 0.15M NaCl, 3 mM EDTA, 0.05% v/v Surfactant P20, 0.1mg/mL BSA). To assess whether 2 antibodies were able to compete with one another for binding to their respective epitopes on biotinylated recombinant human GFR α 3 expressed with a C-terminal myc-myc-hexahistidine tag (biotin-hGFR α 3-mmH; SEQ ID:370), around ~1.2nm of biotin-hGFR α 3-mmH was first captured onto streptavidin-coated Octet sensor tips (Fortebio Inc, # 18-5019) by submerging the tips for 1 minute into a 10 μ g/mL solution of biotin-hGFR α 3-mmH. The antigen coated sensor tips were then placed into wells containing 25 μ g/mL solution of a first anti-GFR α 3 monoclonal antibody for 4 minutes to saturate the biotin-hGFR α 3-mmH surface. The sensor tips were then subsequently dipped into wells containing 25 μ g/mL solution of a second anti-GFR α 3 monoclonal antibody. The sensor tips were washed in Octet HBST buffer in between every step of the experiment. The real-time binding response was monitored during the course of the experiment and the binding response at the end of every step was recorded as shown in Figure 9. The response of mAb-2 binding to biotin-hGFR α 3 monoclonal antibodies was determined.

[0240] As shown in Figure 9, dark grey boxes with black font represent binding response for self-competition. Antibodies competing in both directions, independent of the order of binding are represented with black boxes and white font. No competition between antibodies that suggest distinct binding epitope is represented as white box with black font.

[0241] Nine antibodies (H4H2236N3, H4H2342P, H4H2295S, H4H2294S, H4H2291S, H4H2357S, H4H2355S, H4H2296S, and H4H2243N2) bi-directionally compete with each other for binding to biotin-hGFR α 3-mmH. Eight of the 9 (H4H2236N3, H4H2342P, H4H2295S, H4H2294S, H4H2291S, H4H2357S, H4H2355S, and H4H2296S) do not compete with any other anti-GFR α 3 antibody tested, while H4H2243N2 also bi-directionally competes with two additional anti-GFR α 3 antibodies tested (H4H2212N and H4H2352S). H4H2212N and H4H2352S bi-directionally compete with each other and H4H2243N2 for binding to biotin-hGFR α 3-mmH, but while H4H2212N does not compete with any other anti-GFR α 3 antibodies tested, H4H2352S also bi-directionally competes with an additional anti-GFR α 3 antibody tested (H4H2292S). One anti-GFR α 3 antibody tested, H4H2350P, does not compete with any of the anti-GFR α 3 antibodies tested for binding to biotin-hGFR α 3-mmH.

[0242] Aspects of the Invention:

- 45 1. An isolated monoclonal antibody or an antigen-binding fragment thereof that specifically binds to GFRα3, having one or more of the following characteristics:
 - (i) exhibits a K_D ranging from about 10⁻⁸ M to about 10⁻¹³ M as measured by surface plasmon resonance;
 - (ii) demonstrates the ability to block about 50-100% of the binding of GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 15 nM;
 - (iii) demonstrates the ability to block about 20% to about 100% of the binding of GFR α 3 to a solid support coated with a mixture of artemin and RET;
 - (iv) blocks or inhibits artemin-dependent activation of RET with an IC $_{50}$ ranging from about 200 pM to about 50 nM;
 - (v) inhibits or reduces one or more nociceptive responses in an in vivo model of bone cancer pain;
 - (vi) inhibits or reduces artemin-sensitized thermal hyperalgesia in vivo;
 - (vii) inhibits or reduces allodynia in an in vivo model of osteoarthritis;
 - (viii) does not cross-react with other GFR co-receptors for RET;
 - (ix) comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group

5

10

20

30

35

- consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226,242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; or
- (x) comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.
- 2. The isolated monoclonal antibody or an antigen-binding fragment thereof of aspect 1, wherein the antibody is selected from the group consisting of a murine antibody, a chimeric antibody, a humanized antibody and a human antibody.
- 3. The isolated monoclonal antibody or an antigen-binding fragment thereof of either aspects 1 or 2, wherein the antibody does not cross-react with human GFR α 1 or human GFR α 2
- 4. The isolated monoclonal antibody or an antigen-binding fragment thereof of any one of aspects 1-3, wherein the antibody is a human monoclonal antibody comprising (a) a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397 and (b) a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.
 - 5. The isolated monoclonal antibody or an antigen-binding fragment thereof of any one of aspects 1-4, wherein the antibody demonstrates the ability to block about 50-95% of the binding of human GFR α 3 to its ligand, artemin, with an IC $_{50}$ value ranging from about 40 pM to about 750 pM.
- 25 6. The isolated monoclonal antibody or an antigen-binding fragment thereof of any of aspects 1-4, wherein the antibody or the antigen-binding fragment thereof blocks about 75-100% of the binding of human GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 400 pM to about 15 nM.
 - 7. The isolated monoclonal antibody or an antigen-binding fragment thereof of any one of aspects 1-4, wherein the antibody or the antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of human RET with an IC₅₀ ranging from about 300 pM to about 5 nM.
 - 8. The isolated monoclonal antibody or an antigen-binding fragment thereof of any one of aspects 1-4, wherein the antibody or the antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of cynomolgus RET with an IC₅₀ ranging from about 0.7 nM to about 2.5 nM.
 - 9. An isolated antibody or antigen-binding fragment thereof that binds specifically to human $GFR\alpha3$, wherein the antibody comprises the three heavy chain CDRs (HCDR1, HCDR2 and HCDR3) contained within a HCVR amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397; and the three light chain CDRs (LCDR1, LCDR2 and LCDR3) contained within a LCVR amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.
- 45 10. The isolated antibody or antigen-binding fragment thereof of aspect 9, wherein the antibody or antigen-binding fragment comprises a heavy chain variable region (HCVR) having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 258, 274, 290, 306, 322, 338, 354, 381 and 397.
- 11. The isolated antibody or antigen-binding fragment thereof of either aspect 9 or 10, wherein the antibody or antigen-binding fragment comprises a light chain variable region (LCVR) having an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 389 and 405.
- 55 12. The isolated antibody or antigen-binding fragment of any one of aspects 9-11, comprising a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: SEQ ID NO: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346, 354/362, 381/389 and 397/405.

- 13. The isolated antibody or antigen-binding fragment of aspect 12, comprising a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NO: 50/58, 146/154, 210/218 and 290/298.
- 14. The isolated antibody or antigen-binding fragment of any one of aspects 9-12, comprising:

5

10

15

20

30

35

40

- (a) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 260, 276, 292, 308, 324, 340, 356, 383 and 399;
- (b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 262, 278, 294, 310, 326, 342, 358, 385 and 401:
- (c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 387 and 403:
- (d) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 391 and 407:
- (e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 393 and 409; and
- (f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 395 and 411.
- 15. An isolated antibody or antigen-binding fragment thereof that competes for specific binding to human $GFR\alpha3$ with an antibody or antigen-binding fragment comprising heavy and light chain sequence pairs selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346 and 354/362, 381/389 and 397/405.
 - 16. An isolated antibody or antigen-binding fragment thereof that binds the same epitope on human GFR α 3 that is recognized by an antibody comprising heavy and light chain sequence pairs selected from the group consisting of SEQ ID NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 114/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/218, 226/234, 242/250, 258/266, 274/282, 290/298, 306/314, 322/330, 338/346 and 354/362, 381/389 and 397/405.
 - 17. An isolated nucleic acid molecule encoding the antibody or antigen-binding fragment of any of aspects 9-14.
 - 18. An expression vector comprising the nucleic acid molecule of aspect 17.
 - 19. A method of producing an anti-GFR α 3 antibody or antigen-binding fragment thereof comprising the steps of introducing the expression vector of aspect 18 into an isolated host cell, growing the cell under conditions permitting production of the antibody or fragment thereof, and recovering the antibody so produced.
- ⁴⁵ 20. A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof according to any one of aspects 1 through 16 and a pharmaceutically acceptable carrier or diluent.
 - 21. A method for treating a GFR α 3-related condition or disease, or the pain associated with the GFR α 3-related condition or disease, the method comprising administering the antibody or antigen-binding fragment of any of aspects 1-16, to a patient in need thereof, wherein the GFR α 3-related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.
- 22. The method of aspect 21, wherein the GFRα3-related condition or disease is selected from the group consisting of acute pain, chronic pain, neuropathic pain, inflammatory pain, a functional pain syndrome, arthritis, pancreatitis, osteoarthritis, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, neurodegenerative disorders, movement disorders, neuroendocrine disorders, ataxia, visceral pain, gout, post-herpetic neuralgia, diabetic neuropathy, sciatica, back pain, head or neck pain, severe or intractable pain, breakthrough pain, post-surgical

pain, hereditary erythromelalgia, dental pain, rhinitis, cancer pain, complex regional pain syndrome (CRPS), inflammatory bowel disease (e.g. Crohn's disease or ulcerative colitis) and bladder disorders.

23. The method of aspect 22, wherein the functional pain syndrome is selected from the group consisting of chronic low back pain, irritable bowel syndrome (IBS), fibromyalgia (FM), chronic fatigue syndrome, abdominal pain, temporomandibular joint disorder (TMJD), painful bladder syndrome (interstitial cystitis), functional gastrointestinal disorders/syndromes, functional chest pain syndrome, migraines and tension type headaches, chronic pelvic pain syndrome, painful prostate syndrome (chronic prostatitis), multiple chemical sensitivity syndrome and Gulf War syndrome.

5

10

15

20

25

30

35

40

45

50

- 24. The method of aspect 22, wherein the cancer pain is associated with a cancer selected from the group consisting of endometrial cancer, prostate cancer, breast cancer, cervical cancer, liver cancer, pancreatic cancer, colon cancer, stomach cancer, uterine cancer, ovarian cancer, kidney cancer, non-small cell lung cancer, brain cancer, a leukemia, a lymphoma, bone cancer and pain associated with metastasis of a cancer.
- 23. The method of aspect 21, wherein the antibody or antigen-binding fragment is administered to the patient in combination with a second therapeutic agent.
- 24. The method of aspect 23, wherein the second therapeutic agent is selected from the group consisting of an opioid, a COX-2 inhibitor, a local anesthetic, an NMDA modulator, a cannabinoid receptor agonist, a P2X family modulator, a VR1 antagonist, a substance P antagonist, a second GFRα3 antagonist, a cytokine or cytokine receptor antagonist, a nerve growth factor (NGF) inhibitor (a small molecular inhibitor or an anti-NGF antibody), an inhibitor of BDNF, TrkA, TrkB or p75, aspirin, a NSAID, a steroid, morphine, a selective serotonin reuptake inhibitor (SSRI), a serotonin norepinephrine reuptake inhibitor (SNRI), a tricyclic, an inhibitor of a voltage-gated sodium channel (Na_V), a calcium channel inhibitor, a potassium channel inhibitor, a tumor necrosis factor (TNF) or TNF receptor inhibitor, an inhibitor of TWEAK (TNF-related WEAK inducer of apoptosis), a RET inhibitor, an inhibitor of a GDNF family ligand, an inhibitor of GFRα1, GFRα2 or GFRα4, an inhibitor of an acid sensing ion channel (ASIC1 or ASIC3), an anti-convulsant (gabapentin or pregabalin), an inhibitor of a prekineticin receptor (PROK1 and PROK2), a caspase inhibitor, a p38 inhibitor, an IKK1/2 inhibitor, CTLA-4lg and a corticosteroid.
 - 25. The method of aspect 24, wherein the second GFR α 3 antagonist is a small organic molecule, a polypeptide antagonist, a second antibody specific for GFR α 3, a siRNA or an antisense molecule specific for GFR α 3.
 - 26. The method of aspect 24, wherein the cytokine or cytokine receptor antagonist is an interleukin-1 (IL-1) antagonist, an IL-18 antagonist.
 - 27. A pharmaceutical composition comprising an antibody or antigen-binding fragment thereof according to any one of aspects 1 through 16 and a second therapeutic agent according to aspect 24 and a pharmaceutically acceptable carrier or diluent.
 - 28. The isolated antibody or antigen-binding fragment thereof according to any one of aspects 1 through 16, or the pharmaceutical composition of either aspect 20 or 27, for use in treating a GFR α 3-related condition or disease, or the pain associated with the GFR α 3-related condition or disease, wherein the GFR α 3-related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.
 - 29. The isolated antibody or antigen-binding fragment thereof for use according to aspect 28, wherein the GFR α 3-related condition or disease is selected from the group consisting of acute pain, chronic pain, neuropathic pain, inflammatory pain, a functional pain syndrome, arthritis, pancreatitis, osteoarthritis, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, neurodegenerative disorders, movement disorders, neuroendocrine disorders, ataxia, visceral pain, gout, post-herpetic neuralgia, diabetic neuropathy, sciatica, back pain, head or neck pain, severe or intractable pain, breakthrough pain, post-surgical pain, hereditary erythromelalgia, dental pain, rhinitis, cancer pain, complex regional pain syndrome (CRPS), inflammatory bowel disease (e.g. Crohn's disease or ulcerative colitis) and bladder disorders.
 - 30. Use of the isolated antibody or antigen-binding fragment thereof according to any one of aspects 1 through 16, or the pharmaceutical composition of either of aspect 20 or 27, in the manufacture of a medicament for treating a $GFR\alpha3$ -related condition or disease, or the pain associated with the $GFR\alpha3$ -related condition or disease, wherein

the GFR α 3-related condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence, or the pain associated with the condition or disease is prevented, ameliorated, or reduced in severity or frequency of occurrence.

31. The use of the isolated antibody or antigen-binding fragment thereof according to aspect 30, wherein the GFR α 3-related condition or disease is selected from the group consisting of acute pain, chronic pain, neuropathic pain, inflammatory pain, a functional pain syndrome, arthritis, pancreatitis, osteoarthritis, cluster headaches, trigeminal neuralgia, herpetic neuralgia, general neuralgias, neurodegenerative disorders, movement disorders, neuroendocrine disorders, ataxia, visceral pain, gout, post-herpetic neuralgia, diabetic neuropathy, sciatica, back pain, head or neck pain, severe or intractable pain, breakthrough pain, post-surgical pain, hereditary erythromelalgia, dental pain, rhinitis, cancer pain, complex regional pain syndrome (CRPS), inflammatory bowel disease (e.g. Crohn's disease or ulcerative colitis) and bladder disorders.

8300A SEOUENCE LISTING

```
<110> Regeneron Pharmaceuticals, Inc.
          <120> Human Antibodies to GFR-alpha-3 and Methods of Use Thereof
5
          <130> 8300A-WO
          <140> To be assigned
          <141>
10
          <150> 2012928029
          <160> 411
          <170> FastSEQ for Windows Version 4.0
15
          <210> 1
          <211> 360
          <212> DNA
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 1
          gaagtgcagc tggtggagtc tgggggaggc ttggtacagc ctggcaggtc cctgagactc 60
         tcctgtgcag cctctggatt cacctttaat gattatgcca tgcactgggt ccggcaagct 120
          ccagggaagg gcctggagtg ggtctcaggt attagttgga atagtggtaa cataggctat 180
          geggaetetg tgaagggeeg atteaceate teeagagaea aegeeaagaa eteeetgtat 240
          ctacagatga acagtctgag agctgaggac acggccttgt atttctgtgc aagagatacc 300
         cgtatggcaa ctcgtccctt tgactactgg ggccagggaa ccctggtcac cgtctcctca 360
30
          <210> 2
          <211> 120
          <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 2
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
40
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Asp Tyr
                      20
                                           25
          Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                       40
          Ser Gly Ile Ser Trp Asn Ser Gly Asn Ile Gly Tyr Ala Asp Ser Val
45
              50
                                                       60
         Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
                              70
         Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Phe Cys
                                               90
50
         Ala Arg Asp Thr Arg Met Ala Thr Arg Pro Phe Asp Tyr Trp Gly Gln
                      100
                                           105
         Gly Thr Leu Val Thr Val Ser Ser
                  115
                                      120
55
          <210> 3
          <211> 24
```

```
<212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
5
           <400> 3
                                                                                 24
           ggattcacct ttaatgatta tgcc
           <210> 4
10
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 4
           Gly Phe Thr Phe Asn Asp Tyr Ala
                            5
20
           <210> 5
           <211> 24
           <212> DNA
           <213> Artificial Sequence
25
           <220>
           <223> Synthetic
           <400> 5
           attagttgga atagtggtaa cata
                                                                                 24
30
           <210> 6
           <211> 8
           <212> PRT
           <213> Artificial Sequence
35
           <220>
           <223> Synthetic
           <400> 6
           Ile Ser Trp Asn Ser Gly Asn Ile
40
           <210> 7
           <211> 39
           <212> DNA
45
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           gcaagagata cccgtatggc aactcgtccc tttgactac
                                                                                 39
           <210> 8
           <211> 13
           <212> PRT
           <213> Artificial Sequence
55
           <220>
```

```
<223> Synthetic
           <400> 8
           Ala Arg Asp Thr Arg Met Ala Thr Arg Pro Phe Asp Tyr
5
           <210> 9
           <211> 318
           <212> DNA
10
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 9
15
           gacatccaga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgcc gggccagtca gagtattagt aggtggttgg cctggtatca gcagaagcca 120
           gggaaagccc ctaagctcct gatctataag gcgtctagtt tagaaagtgg ggtcccatca 180
           aggttcagcg gcagtggatc tgggacagaa ttcactctca ccatcagcag cctgcagcct 240
           gatgattttg caagttatta ctgccaacag tataatagtt attcaacttt tggccagggg 300
                                                                               318
20
           accaagctgg agatcaaa
           <210> 10
           <211> 106
           <212> PRT
           <213> Artificial Sequence
25
           <220>
           <223> Synthetic
           <400> 10
           Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
30
                           5
                                                10
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Arg Trp
                                            25
           Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                                            45
                   35
                                       40
35
           Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
           Asp Asp Phe Ala Ser Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Ser Thr
                           85
40
           Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
                       100
           <210> 11
           <211> 18
45
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           <400> 11
           cagagtatta gtaggtgg
                                                                               18
           <210> 12
           <211> 6
55
           <212> PRT
           <213> Artificial Sequence
```

```
<220>
          <223> Synthetic
          <400> 12
          Gln Ser Ile Ser Arg Trp
5
          <210> 13
          <211> 9
10
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
15
          <400> 13
                                                                                9
          aaggcgtct
          <210> 14
          <211> 3
20
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 14
          Lys Ala Ser
           1
30
          <210> 15
          <211> 24
          <212> DNA
          <213> Artificial Sequence
          <220>
35
          <223> Synthetic
          <400> 15
                                                                                24
          caacagtata atagttattc aact
40
          <210> 16
          <211> 8
          <212> PRT
          <213> Artificial Sequence
          <220>
45
          <223> Synthetic
          <400> 16
          Gln Gln Tyr Asn Ser Tyr Ser Thr
                            5
50
          <210> 17
          <211> 360
          <212> DNA
          <213> Artificial Sequence
          <220>
```

	<223> Synthetic											
	<400> 17											
5	gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc tcctgtgcag cctctggatt cacctttagc agctatgcca tgagctgggt ccgccagggt ccagggaagg ggctggagtg ggtctcaggt attagtggta gtggtggcag cacatacaac gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat ttgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaagattct gggacctact ggtactactt tgactactgg ggccagggaa tcctggtcac cgtctcctca	120 180 240 300										
10												
	<210> 18 <211> 120 <212> PRT <213> Artificial Sequence											
15	<220> <223> Synthetic											
20	<pre><400> 18 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1</pre>											
	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr											
	20 25 30 Ala Met Ser Trp Val Arg Gln Gly Pro Gly Lys Gly Leu Glu Trp Val 35 40 45											
25	Ser Gly Ile Ser Gly Ser Gly Ser Thr Tyr Asn Ala Asp Ser Val 50 55 60											
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80											
	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95											
30	Ala Lys Asp Ser Gly Thr Tyr Trp Tyr Tyr Phe Asp Tyr Trp Gly Gln											
	Gly Ile Leu Val Thr Val Ser Ser 115 120											
35	<210> 19 <211> 24 <212> DNA <213> Artificial Sequence											
40	<220> <223> Synthetic											
	<400> 19 ggattcacct ttagcagcta tgcc	24										
45	<210> 20 <211> 8 <212> PRT <213> Artificial Sequence											
50	<220> <223> Synthetic											
	<400> 20 Gly Phe Thr Phe Ser Ser Tyr Ala 1 5											
55												
	<21.0> 21											

```
<211> 24
          <212> DNA
          <213> Artificial Sequence
         <220>
5
         <223> Synthetic
          <400> 21
                                                                              24
         attagtggta gtggtggcag caca
10
          <210> 22
          <211> 8
          <212> PRT
          <213> Artificial Sequence
         <220>
15
          <223> Synthetic
          <400> 22
          Ile Ser Gly Ser Gly Gly Ser Thr
20
          <210> 23
          <211> 39
          <212> DNA
          <213> Artificial Sequence
25
         <220>
         <223> Synthetic
          <400> 23
30
         gcgaaagatt ctgggaccta ctggtactac tttgactac
                                                                              39
          <210> 24
          <211> 13
          <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 24
40
         Ala Lys Asp Ser Gly Thr Tyr Trp Tyr Tyr Phe Asp Tyr
          <210> 25
          <211> 339
45
          <212> DNA
          <213> Artificial Sequence
         <220>
         <223> Synthetic
50
         gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctgggcga gagggccacc 60
          atcaactgca agtccagcca gaatatttta tacagctccg acaataagaa ctacttagct 120
         tggtaccaga agaaaccagg acagcctcct aagctgctca tttactgggc atctacccga 180
         gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc 240
55
         atcatcagcc tgcaggctga agatgtggca ttatattact gtcatcaata ttatactact 300
         cctccgacgt tcggccaagg gaccaaagtg gaaatcaaa
                                                                              339
```

```
<210> 26
           <211> 113
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 26
           Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
10
                                                 10
           Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Asn Ile Leu Tyr Ser
                       20
                                            25
           Ser Asp Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Lys Lys Pro Gly Gln
                                        40
           Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
15
                                    55
           Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
                                                     75
                                70
           Ile Ile Ser Leu Gl<br/>n Ala Glu Asp Val Ala Leu Tyr Tyr Cys His Gl<br/>n \,
                                                 90
           Tyr Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
20
                       100
                                            105
                                                                 110
           Lys
25
           <210> 27
           <211> 36
           <212> DNA
           <213> Artificial Sequence
           <220>
30
           <223> Synthetic
           <400> 27
           cagaatattt tatacagctc cgacaataag aactac
                                                                                36
35
           <210> 28
           <211> 12
           <212> PRT
           <213> Artificial Sequence
           <220>
40
           <223> Synthetic
           <400> 28
           Gln Asn Ile Leu Tyr Ser Ser Asp Asn Lys Asn Tyr
45
           <210> 29
           <211> 9
           <212> DNA
           <213> Artificial Sequence
50
           <220>
           <223> Synthetic
           <400> 29
                                                                                9
           tgggcatct
           <210> 30
```

```
<211> 3
           <212> PRT
           <213> Artificial Sequence
           <220>
5
           <223> Synthetic
           <400> 30
           Trp Ala Ser
            1
10
           <210> 31
           <211> 27
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 31
                                                                                   27
           catcaatatt atactactcc tccgacg
20
           <210> 32
           <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 32
           His Gln Tyr Tyr Thr Thr Pro Pro Thr
30
           <210> 33
           <211> 369
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           <400> 33
           gaggtgcagt tattggagtc tggggggaac ttggtacagc cgggggggtc cctgagactc 60
           tectgtgeag cetetggatt cacetttage agttatgeca tgacetgggt cegecagget 120
           ccagggaagg ggctggagtg ggtctcaact attagtggta gtggtaccag cacatattac 180
           {\tt gcagactccg} \ {\tt tgaagggccg} \ {\tt gttcaccatc} \ {\tt tccagggaca} \ {\tt attccaggga} \ {\tt cacggtgttt} \ 240
           ctacaaatga acagcctgag agccgaggac acggccgtat attactgttc gaaaccttct 300
45
           gcattacgat ttttacattg gttagctatg gacgtctggg gccaagggac cctggtcacc 360
           gtctcctca
                                                                                   369
           <210> 34
           <211> 123
50
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           Glu Val Gln Leu Leu Glu Ser Gly Gly Asn Leu Val Gln Pro Gly Gly
```

	1				5					10					15		
		Leu	Arg	Len		Cvs	Ala	Ala	Ser		Phe	Thr	Phe	Ser		Tvr	
			9	20		0,0			25	0-1				30		-1-	
	Δla	Met	Thr		Va1	Ara	Gln	Δla		G1v	T.178	G1 v	T. - 11		Trn	Va l	
F		1100	35		Vul	9	01	40		O-y	-y 5	O-y	45	014		vu_	
5	Ser	Thr	Ile	Ser	G1 v	Ser	G1 v		Ser	Thr	Тчг∽	Туг		Δεη	Ser	Va l	
	Der	50	116	Der	GLY	Der	55	1111	Der	1111	- y -	60	пта	лэр	Ser	Vai	
	T		Arg	Dho	πh∞	т1.		7 ~~	7 00	7.00	602		7 00	Πh ∞	17-1	Dho	
	65	GLY	ALG	FIIE	1111	70	Ser	ALG	АЗР	ASII	75	ALG	АЗР	1111	var	80	
		Cln	Mot	7 an	202		7 ~~	71-	C1	7 an		71-	37-1	Т	Т		
10	теп	GIII	Met	ASII	85	теп	ALG	Ата	GIU	90	TIIL	нта	vaı	тАт	95	Cys	
	800	T	Dwo	800		T 011	7	Dho	T 011		П~~	T 011	71-	Mot		37n 1	
	ser	цуб	Pro	100	Ата	теп	AIG	FIIE		пто	пр	ьеu	Ата		ASP	vaı	
		G1	C1-		mb	T	TT- 1	m1	105	C				110			
	тгр	стх	Gln	СТА	THE	ьeu	vaı		vaı	ser	ser						
			115					120									
15																	
	-01/		_														
)> 3!															
		L> 24															
		2> DI															
	<213	5> A	rtifi	icia.	L Sec	quen	ce										
20	-00/	٠.															
	<220																
	<223	5> S	ynthe	etic													
	-40/		_														
)> 3!															
25	ggat	tca	cct t	tage	cagt	ta to	gcc										24
20	.01/		_														
)> 3	Ь														
	<211																
		2> PI															
	<213	3> A:	rtifi	ıcıa.	L Sec	queno	ce										
30																	
	<220																
	<223	3> S	ynthe	etic													
	. 4 0 /		_														
)> 3		_,	_	_	_										
25	_	Pne	Thr	Phe		Ser	Tyr	Ата									
35	1				5												
	-01/		_														
)> 3.															
		L> 24															
40		2> DI		: - : - 1													
	<213	> A:	rtifi	LC1a.	L Sec	quen	сe										
	.00/	١.															
	<220																
	<223	5> S	ynthe	etic													
	-40/)> 3.	-														
45		_															24
	atta	igtg	gta q	grggt	acca	ag ca	aca										24
	-01/	. 2	0														
)> 3	В														
	<211		ь.														
50		2> PI															
	<213	> A:	rtifi	LC1a	L Sec	queno	ce										
	-004	1.															
	<220																
	<223	> S	ynthe	etic													
	-401		0														
55)> 38			~ 3	m1	a	m1									
		ser	Gly	ser	_	Thr	ser	Thr									
	1				5												

```
<210> 39
         <211> 48
         <212> DNA
         <213> Artificial Sequence
5
         <220>
         <223> Synthetic
         <400> 39
         tcgaaacctt ctgcattacg atttttacat tggttagcta tggacgtc
                                                                             48
10
         <210> 40
         <211> 16
         <212> PRT
         <213> Artificial Sequence
15
         <220>
         <223> Synthetic
         <400> 40
         Ser Lys Pro Ser Ala Leu Arg Phe Leu His Trp Leu Ala Met Asp Val
20
                                              10
         <210> 41
         <211> 321
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> Synthetic
30
         gacatccaga tgacccagtc tccatcctca ctgtctgcat ttgtaggaga cagagtcacc 60
         atcacttgtc gggcgagtca ggacattagg aattatttag actggtttca gcagaaacca 120
         gggaaagccc ctaagtccct gatctatgct gcatccaatt tgcaaagtgg ggtcccatca 180
         aggttcggcg gcagtggatc tgggacagat ttcactctca ccatcaacag cctgcagcct 240
35
         gaagattttg taacttatta ctgccagcag tataattctt accctcccac tttcggcgga 300
         gggaccaagg tggagatcaa a
         <210> 42
         <211> 107
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Synthetic
45
         <400> 42
         Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Phe Val Gly
                                              10
         Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg Asn Tyr
                                          25
50
         Leu Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu Ile
         Tyr Ala Ala Ser Asn Leu Gln Ser Gly Val Pro Ser Arg Phe Gly Gly
         Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro
                                                  75
55
         Glu Asp Phe Val Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Pro
                          85
                                              90
```

Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys

```
<210> 43
5
          <211> 18
          <212> DNA
          <213> Artificial Sequence
          <220>
10
          <223> Synthetic
          <400> 43
                                                                                 18
          caggacatta ggaattat
          <210> 44
15
          <211> 6
<212> PRT
          <213> Artificial Sequence
          <220>
20
          <223> Synthetic
          <400> 44
          Gln Asp Ile Arg Asn Tyr
25
          <210> 45
           <211> 9
           <212> DNA
           <213> Artificial Sequence
30
          <220>
          <223> Synthetic
           <400> 45
                                                                                 9
          gctgcatcc
35
           <210> 46
           <211> 3
           <212> PRT
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 46
          Ala Ala Ser
45
            1
           <210> 47
           <211> 27
           <212> DNA
50
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           <400> 47
                                                                                 27
           cagcagtata attettacce teccaet
```

```
<210> 48
           <211> 9
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 48
           Gln Gln Tyr Asn Ser Tyr Pro Pro Thr
10
           <210> 49
           <211> 372
           <212> DNA
15
           <213> Artificial Sequence
           <220>
           <223> Synthetic
20
           <400> 49
           caggttcaac tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60
          tcctgcaagg cttctggtta cacctttacc agctatggta tcatctgggt gcgacaggcc 120
           cctggacaag ggcttgagtg gatgggatgg atcagcggtt acaatggtaa cacaaactat 180
           gcacagaatc tccagggcag agtcaccatg accacagaca cttccacgac cacagcctac 240
           atggagctga ggagcctgag atctgacgac acggccgtgt attactgtgc gagatggggt 300
25
           atagcaactc gtccctacta ctactacggt atggacgtct ggggccaagg gaccacggtc 360
           accgtctcct ca
           <210> 50
           <211> 124
           <212> PRT
30
           <213> Artificial Sequence
           <220>
           <223> Synthetic
35
           <400> 50
          Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
           Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
                       20
                                            25
           Gly Ile Ile Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
40
                                       40
           Gly Trp Ile Ser Gly Tyr Asn Gly Asn Thr Asn Tyr Ala Gln Asn Leu
                                                        60
                                   55
           Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Thr Thr Ala Tyr
                               70
                                                    75
          Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
45
                           85
                                                                    95
                                                90
           Ala Arg Trp Gly Ile Ala Thr Arg Pro Tyr Tyr Tyr Gly Met Asp
                       100
                                            105
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                   115
                                       120
50
           <210> 51
           <211> 24
           <212> DNA
           <213> Artificial Sequence
55
           <220>
```

```
<223> Synthetic
           <400> 51
                                                                                24
           ggttacacct ttaccagcta tggt
5
           <210> 52
           <211> 8
           <212> PRT
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 52
           Gly Tyr Thr Phe Thr Ser Tyr Gly
15
           <210> 53
           <211> 24
           <212> DNA
           <213> Artificial Sequence
20
           <220>
           <223> Synthetic
           <400> 53
25
           atcagcggtt acaatggtaa caca
                                                                                24
           <210> 54
           <211> 8
           <212> PRT
           <213> Artificial Sequence
30
           <220>
           <223> Synthetic
           <400> 54
35
           Ile Ser Gly Tyr Asn Gly Asn Thr
           <210> 55
           <211> 51
40
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
45
           gcgagatggg gtatagcaac tcgtccctac tactactacg gtatggacgt c
                                                                                51
           <210> 56
           <211> 17
50
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           Ala Arg Trp Gly Ile Ala Thr Arg Pro Tyr Tyr Tyr Tyr Gly Met Asp
```

	Val											
5	<210> 57 <211> 321 <212> DNA <213> Artificial Sequence											
10	<220> <223> Synthetic											
15	<400> 57 gacatccaga tgacccagte tecatectea etgtetgeat etgtaggaga cagagteae ateaettgte gggegagtea ggacattaee aattatttag cetggtttea geagaaace gggaaagee etaagteeet gatetatget geatecagtt tgeaaagtgg ggteeeate aagtteageg geagtggate tgggacagat tteaetetea eeateageag eetgeagee gaagattttg eaaettatta etgeeaaeag tataatagtt acceteeeac ttteggeee gggaccaaag tggatateaa a											
20	<210> 58 <211> 107 <212> PRT <213> Artificial Sequence											
25	<220> <223> Synthetic											
	<400> 58 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15											
30	Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Thr Asn Tyr 20 25 30											
	Leu Ala Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu Ile 35 40 45 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Lys Phe Ser Gly											
35	50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80											
	Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Pro 85 90 95 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys											
40	100 105											
45	<210> 59 <211> 18 <212> DNA <213> Artificial Sequence											
	<220> <223> Synthetic											
50	<400> 59 caggacatta ccaattat 1	.8										
55	<210> 60 <211> 6 <212> PRT <213> Artificial Sequence											
	<220>											

```
<223> Synthetic
          <400> 60
          Gln Asp Ile Thr Asn Tyr
5
          <210> 61
          <211> 9
          <212> DNA
10
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 61
15
                                                                                9
          gctgcatcc
          <210> 62
          <211> 3
          <212> PRT
20
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 62
          Ala Ala Ser
           1
          <210> 63
30
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
35
          <400> 63
                                                                                27
          caacagtata atagttaccc tcccact
          <210> 64
40
           <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
          <223> Synthetic
45
          <400> 64
          Gln Gln Tyr Asn Ser Tyr Pro Pro Thr
           1
50
           <210> 65
           <211> 363
           <212> DNA
           <213> Artificial Sequence
55
           <220>
           <223> Synthetic
```

```
<400> 65
           qaqqtqcaqc tqttqqaqtc tqqqqqaqqc ttqqtacaqc cqqqqqqqtc cctqaqaqtc 60
           tectgtgeag cetetggatt cacetttage acetetgeca tgagetgggt cegecagget 120
           ccagggaagg ggcttgagtg ggtctcaggt attagtggta ttggaggtgg tagcacatac 180
           tacgcagact ccgtgaaggg ccggttcacc atctccagag acaattccaa gaacacgctg 240
5
           tatctgcaaa tgaacagcct gagagccgag gacacggccg tatatttctg tgcgaaattt 300 tataagtgga attcatatat ttttgatctc tggggccagg ggacaatggt caccgtctct 360
           tca
           <210> 66
10
           <211> 121
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 66
           Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
                            5
           1
                                                 10
                                                                       15
           Ser Leu Arg Val Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Ser
                        20
20
           Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                                               45
                                         40
           Ser Gly Ile Ser Gly Ile Gly Gly Ser Thr Tyr Tyr Ala Asp Ser
                                     55
                                                          60
           Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
                                70
                                                      75
           Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe
                            85
                                                  90
           Cys Ala Lys Phe Tyr Lys Trp Asn Ser Tyr Ile Phe Asp Leu Trp Gly
                                             105
                       100
           Gln Gly Thr Met Val Thr Val Ser Ser
30
           <210> 67
           <211> 24
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           <400> 67
           ggattcacct ttagcacctc tgcc
                                                                                  24
           <210> 68
           <211> 8
           <212> PRT
45
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           <400> 68
           Gly Phe Thr Phe Ser Thr Ser Ala
            1
           <210> 69
55
           <211> 27
           <212> DNA
```

```
<213> Artificial Sequence
           <220>
           <223> Synthetic
5
           <400> 69
                                                                               27
           attagtggta ttggaggtgg tagcaca
           <210> 70
           <211> 9
10
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 70
           Ile Ser Gly Ile Gly Gly Gly Ser Thr
           <210> 71
20
           <211> 39
           <212> DNA
           <213> Artificial Sequence
           <220>
25
           <223> Synthetic
           <400> 71
                                                                               39
           gcgaaatttt ataagtggaa ttcatatatt tttgatctc
           <210> 72
30
           <211> 13
           <212> PRT
           <213> Artificial Sequence
           <220>
35
           <223> Synthetic
           <400> 72
           Ala Lys Phe Tyr Lys Trp Asn Ser Tyr Ile Phe Asp Leu
40
           <210> 73
           <211> 321
           <212> DNA
           <213> Artificial Sequence
45
           <220>
           <223> Synthetic
           <400> 73
           gaaattgtgt tgacgcagtc tccagacacc ctatctttgt ctccagggga aagagccacc 60
50
           ctctcctgca gggccagtca gagtgttagt agcagctact ttgcctggta ccagcagaag 120
           cctggccagg ctcccaggct cctcatgtat agtgcatcca gcagggccac tggcatccca 180
           gacaggttca gtggcagtgg gtctgggaca gacttctctc tcaccatcag cagattggag 240
           cctgaagatt ttgcagtgta ttactgtcag cagtatggta ggtcactcac tttcggcgga 300
           gggaccaagg tggagatcaa g
55
           <210> 74
           <211> 107
```

```
<212> PRT
           <213> Artificial Sequence
          <220>
          <223> Synthetic
5
           <400> 74
          Glu Ile Val Leu Thr Gln Ser Pro Asp Thr Leu Ser Leu Ser Pro Gly
                                               10
           1
                           5
          Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
10
                       20
                                           25
          Tyr Phe Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
                                       40
                                                            45
          Met Tyr Ser Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
             50
                                   55
                                                        60
          Gly Ser Gly Ser Gly Thr Asp Phe Ser Leu Thr Ile Ser Arg Leu Glu
15
                               70
                                                    75
          Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Leu
                          85
                                               90
           Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
20
          <210> 75
           <211> 21
           <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 75
30
                                                                              21
          cagagtgtta gtagcagcta c
          <210> 76
          <211> 7
           <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 76
40
          Gln Ser Val Ser Ser Ser Tyr
          <210> 77
          <211> 9
45
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
           <400> 77
                                                                               9
          agtgcatcc
          <210> 78
          <211> 3
55
           <212> PRT
          <213> Artificial Sequence
```

```
<220>
           <223> Synthetic
           <400> 78
           Ser Ala Ser
5
           1
           <210> 79
           <211> 24
10
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 79
                                                                               24
           cagcagtatg gtaggtcact cact
           <210> 80
           <211> 8
           <212> PRT
20
           <213> Artificial Sequence
           <220>
           <223> Synthetic
25
           Gln Gln Tyr Gly Arg Ser Leu Thr
           1
          <210> 81
30
           <211> 360
           <212> DNA
           <213> Artificial Sequence
           <220>
35
           <223> Synthetic
           <400> 81
           gaggtgcagc tgttggagtc tgggggaggc ttggtacagt ctggggggtc actgagactc 60
           teetgtgeag cetetggatt eagetttaac aactatgeea tgagetgggt eegeeagget 120
           ccagggaagg ggctggagtg ggtctcattt attagtggta gtggtggtag tacatactac 180
40
           gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa tacgctgtat 240
           ctgcaaatga acagcctgag agtcgaggac acggccgttt tttactgtgc gaaagacaga 300
          tacaactatg gtaccttctt tgactactgg ggccagggaa ccctggtcac cgtctcctca 360
           <210> 82
45
           <211> 120
           <212> PRT
           <213> Artificial Sequence
           <220>
50
           <223> Synthetic
           <400> 82
          Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Ser Gly Gly
                                                10
           Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Asn Asn Tyr
55
          Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
```

```
40
                                                          45
           Ser Phe Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                                  55
                                                       60
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                               70
                                                   75
5
           Leu Gln Met Asn Ser Leu Arg Val Glu Asp Thr Ala Val Phe Tyr Cys
                                               90
                                                                   95
                           85
           Ala Lys Asp Arg Tyr Asn Tyr Gly Thr Phe Phe Asp Tyr Trp Gly Gln
                      100
           Gly Thr Leu Val Thr Val Ser Ser
10
           <210> 83
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 83
20
                                                                             24
           ggattcagct ttaacaacta tgcc
           <210> 84
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 84
30
           Gly Phe Ser Phe Asn Asn Tyr Ala
           1 5
           <210> 85
           <211> 24
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           <400> 85
                                                                             24
           attagtggta gtggtggtag taca
           <210> 86
           <211> 8
45
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           <400> 86
           Ile Ser Gly Ser Gly Gly Ser Thr
55
           <210> 87
           <211> 39
```

```
<212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
5
                                                                              39
          gcgaaagaca gatacaacta tggtaccttc tttgactac
          <210> 88
10
          <211> 13
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
15
          <400> 88
         Ala Lys Asp Arg Tyr Asn Tyr Gly Thr Phe Phe Asp Tyr
                           5
20
          <210> 89
          <211> 339
          <212> DNA
          <213> Artificial Sequence
25
          <220>
          <223> Synthetic
          <400> 89
         gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctgggcga gagggccacc 60
30
          atcaactgca aatccagcca gagtgtttta tacagctcca acaataagaa ctacttaact 120
         tggtaccagc agaaaccagg acagcctcct aaattgctca tttactgggc atctacccgg 180
         {\tt gaatccgggg\ tccctgaccg\ attcagtggc\ agcgggtctg\ ggacagattt\ cactctcacc\ 240}
          atcagcagcc tgcaggctga agatgtggca gtttattact gtcagcaata ttatagtact 300
          cctccgacgt tcggcctagg gaccaaggtg gaaatcaaa
                                                                               339
35
          <210> 90
          <211> 113
          <212> PRT
          <213> Artificial Sequence
          <220>
40
          <223> Synthetic
          <400> 90
         Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
                           5
                                               10
                                                                    15
45
         Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
                                           25
          Ser Asn Asn Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln
                                       40
                                                            45
         Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50
         Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
                                                   75
          Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
                          85
                                               90
          Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Leu Gly Thr Lys Val Glu Ile
55
         Lys
```

```
<210> 91
          <211> 36
          <212> DNA
          <213> Artificial Sequence
5
         <220>
          <223> Synthetic
          <400> 91
         cagagtgttt tatacagctc caacaataag aactac
                                                                               36
10
         <210> 92
          <211> 12
          <212> PRT
          <213> Artificial Sequence
15
          <220>
          <223> Synthetic
          <400> 92
          Gln Ser Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr
20
          <210> 93
          <211> 9
          <212> DNA
          <213> Artificial Sequence
         <220>
          <223> Synthetic
30
         <400> 93
         tgggcatct
                                                                               9
          <210> 94
          <211> 3
35
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
40
          <400> 94
          Trp Ala Ser
          1
45
          <210> 95
          <211> 27
          <212> DNA
         <213> Artificial Sequence
          <220>
50
          <223> Synthetic
          <400> 95
                                                                               27
          cagcaatatt atagtactcc tccgacg
55
          <210> 96
          <211> 9
```

```
<212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
5
          <400> 96
          Gln Gln Tyr Tyr Ser Thr Pro Pro Thr
                           5
10
          <210> 97
          <211> 372
          <212> DNA
          <213> Artificial Sequence
15
          <220>
          <223> Synthetic
          <400> 97
          gaagtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggagtc cctgagactc 60
20
          teetgtgeag cetetggatt eacetttage aactatgeea tgagetgggt eegeeagget 120
          ccagggaagg ggctggagtg ggtctcagtt attagtggta gtggtggtag cacatactac 180
          gcagactccg tgaagggccg gttcaccatg tccagagaca attccaagaa cacgctgtat 240
          ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaacccccg 300
          agtagagcag ctcgatactt caactacggt atggacgtct ggggccaagg gaccacggtc 360
          accgtctcct ca
                                                                              372
          <210> 98
          <211> 124
          <212> PRT
          <213> Artificial Sequence
30
          <220>
          <223> Synthetic
          <400> 98
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Glu
35
                           5
                                               10
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
          Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                       40
                                                           45
40
          Ser Val Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                                   55
                                                       60
          Lys Gly Arg Phe Thr Met Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
          65
                               70
                                                   75
                                                                        80
          Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                          85
                                               90
45
          Ala Lys Pro Pro Ser Arg Ala Ala Arg Tyr Phe Asn Tyr Gly Met Asp
                                           105
          Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                                       120
50
          <210> 99
          <211> 24
          <212> DNA
          <213> Artificial Sequence
55
          <220>
          <223> Synthetic
```

```
<400> 99
                                                                                24
           ggattcacct ttagcaacta tgcc
           <210> 100
           <211> 8
5
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
10
           <400> 100
           Gly Phe Thr Phe Ser Asn Tyr Ala
15
           <210> 101
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
20
           <223> Synthetic
           <400> 101
                                                                                24
           attagtggta gtggtggtag caca
25
           <210> 102
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
30
           <223> Synthetic
           <400> 102
           Ile Ser Gly Ser Gly Gly Ser Thr
            1
35
           <210> 103
           <211> 51
           <212> DNA
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 103
45
           gcgaaacccc cgagtagagc agctcgatac ttcaactacg gtatggacgt c
                                                                                51
           <210> 104
           <211> 17
           <212> PRT
           <213> Artificial Sequence
50
           <220>
           <223> Synthetic
           <400> 104
           Ala Lys Pro Pro Ser Arg Ala Ala Arg Tyr Phe Asn Tyr Gly Met Asp
55
                             5
                                                 10
            1
           Val
```

```
<210> 105
        <211> 321
        <212> DNA
        <213> Artificial Sequence
5
        <220>
        <223> Synthetic
        <400> 105
10
        gccatccgga tgacccagtc cccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
        atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120
        gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
        aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
        gaagattttg caacttacta ttgtcaacag gctaacagtt tcccgttcac tttcggcgga 300
        gggaccaagg tggagatcaa a
15
        <210> 106
        <211> 107
        <212> PRT
        <213> Artificial Sequence
20
        <220>
        <223> Synthetic
        <400> 106
        Ala Ile Arg Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
                         5
                                            10
        Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
                                         25
        Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                                          45
                                     40
30
        Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                 55
        Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                             70
                                                  75
        Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
35
        Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                     100
        <210> 107
40
        <211> 18
        <212> DNA
        <213> Artificial Sequence
        <220>
45
        <223> Synthetic
        <400> 107
                                                                             18
        cagggtatta gcagctgg
50
        <210> 108
        <211> 6
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Synthetic
```

```
<400> 108
           Gln Gly Ile Ser Ser Trp
5
           <210> 109
           <211> 9
           <212> DNA
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 109
                                                                                 9
           gctgcatcc
15
           <210> 110
           <211> 3
           <212> PRT
           <213> Artificial Sequence
           <220>
20
           <223> Synthetic
           <400> 110
           Ala Ala Ser
25
           <210> 111
           <211> 27
           <212> DNA
           <213> Artificial Sequence
30
           <220>
           <223> Synthetic
           <400> 111
                                                                                 27
35
           caacaggcta acagtttccc gttcact
           <210> 112
           <211> 9
           <212> PRT
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 112
           Gln Gln Ala Asn Ser Phe Pro Phe Thr
45
                             5
           <210> 113
           <211> 363
50
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           gaagtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
```

```
tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120
         ccgggcaagg ggctggagtg ggtgtcattt atatggtatg atggaagtaa taaatactat 180
          gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
          ctgcaaatga acagcctgac agccgaggac acggctgtat attattgtgc gagaagaggt 300
          atcctaactg gaactaccgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360
5
          <210> 114
          <211> 121
          <212> PRT
10
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 114
15
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
          1
                                               10
                                                                    15
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                      20
                                           25
         Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
20
                                      40
          Ser Phe Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
                                  55
                                                       60
         Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
          65
                              70
                                                   75
          Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Ala Val Tyr Tyr Cys
25
                          85
                                               90
                                                                    95
         Ala Arg Arg Gly Ile Leu Thr Gly Thr Thr Ala Phe Asp Ile Trp Gly
                      100
                                           105
                                                               110
          Gln Gly Thr Met Val Thr Val Ser Ser
                  115
                                      120
30
          <210> 115
          <211> 24
          <212> DNA
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 115
40
                                                                              24
         ggattcacct tcagtagcta tggc
          <210> 116
          <211> 8
          <212> PRT
          <213> Artificial Sequence
45
          <220>
          <223> Synthetic
          <400> 116
50
          Gly Phe Thr Phe Ser Ser Tyr Gly
          <210> 117
          <211> 24
55
          <212> DNA
          <213> Artificial Sequence
```

```
<220>
           <223> Synthetic
           <400> 117
                                                                               24
          atatggtatg atggaagtaa taaa
5
           <210> 118
           <211> 8
           <212> PRT
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 118
           Ile Trp Tyr Asp Gly Ser Asn Lys
15
           <210> 119
           <211> 42
           <212> DNA
20
           <213> Artificial Sequence
           <220>
           <223> Synthetic
                                                                               42
           gcgagaagag gtatcctaac tggaactacc gcttttgata tc
           <210> 120
           <211> 14
           <212> PRT
30
           <213> Artificial Sequence
           <220>
           <223> Synthetic
35
          Ala Arg Arg Gly Ile Leu Thr Gly Thr Thr Ala Phe Asp Ile
           1
           <210> 121
40
           <211> 321
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
45
           <400> 121
           gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtgggaga cagagtcacc 60
           atcacttgcc gggcaagtca gagcattagc agttatttga attggtatca gcagaaacca 120
           gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
50
           aggttcagtg gcagtggatc tgggacagat ttcactctca ccatccggag tctgatacct 240
          gaagattttg caacttacta ctgtcaacag acttacaata ccccattcac tttcggccct 300
          gggaccaagg tggaaatcaa a
           <210> 122
           <211> 107
55
           <212> PRT
           <213> Artificial Sequence
```

	<220> <223> Synthetic	
5	<400> 122 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly	
	1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30	
	Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	
10	Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60	
	Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Arg Ser Leu Ile Pro 65 70 75 80	
15	Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Tyr Asn Thr Pro Phe 85 90 95	
	Thr Phe Gly Pro Gly Thr Lys Val Glu Ile Lys 100 105	
20	<210> 123 <211> 18 <212> DNA <213> Artificial Sequence	
25	<220> <223> Synthetic	
	<400> 123 cagagcatta gcagttat	18
30	<210> 124 <211> 6 <212> PRT <213> Artificial Sequence	
35	<223> Synthetic	
	<400> 124 Gln Ser Ile Ser Ser Tyr 1 5	
40	<210> 125	
	<211> 9 <212> DNA <213> Artificial Sequence	
45	<220> <223> Synthetic	
50	<400> 125 gctgcatcc	9
	<210> 126 <211> 3 <212> PRT <213> Artificial Sequence	
55	<220> <223> Synthetic	

```
<400> 126
         Ala Ala Ser
          1
5
          <210> 127
          <211> 27
          <212> DNA
          <213> Artificial Sequence
10
          <220>
          <223> Synthetic
          <400> 127
         caacagactt acaatacccc attcact
                                                                              27
15
          <210> 128
          <211> 9
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 128
         Gln Gln Thr Tyr Asn Thr Pro Phe Thr
                           5
25
          <210> 129
          <211> 363
          <212> DNA
30
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 129
35
          caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
         tcctgtgcag cgtctggatt cagtttcagt gactatgtca tgcactgggt ccgccaggct 120
          ccaggcaagg ggctggagtg ggtggcatct atatggtttg atggaagtaa tgaactctat 180
         gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240
          ctgcaaatga acagtctgag agccgaggac acggctgtgt attactgtgc gaaaaaggga 300
40
         gttttggtag ctacctctgc ttttcatatc tggggccaag ggacaatggt caccgtctct 360
         tca
          <210> 130
          <211> 121
          <212> PRT
45
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
          <400> 130
         Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
                                               10
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Tyr
                      20
                                           25
         Val Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
55
         Ala Ser Ile Trp Phe Asp Gly Ser Asn Glu Leu Tyr Ala Asp Ser Val
```

```
55
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
                               70
                                                   75
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                                90
                           85
5
           Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe His Ile Trp Gly
                       100
                                            105
           Gln Gly Thr Met Val Thr Val Ser Ser
10
           <210> 131
           <211> 24
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 131
           ggattcagtt tcagtgacta tgtc
                                                                               24
20
           <210> 132
           <211> 8
           <212> PRT
           <213> Artificial Sequence
25
           <220>
           <223> Synthetic
           <400> 132
           Gly Phe Ser Phe Ser Asp Tyr Val
            1
30
           <210> 133
           <211> 24
           <212> DNA
35
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 133
40
                                                                               24
           atatggtttg atggaagtaa tgaa
           <210> 134
           <211> 8
           <212> PRT
           <213> Artificial Sequence
45
           <220>
           <223> Synthetic
           <400> 134
50
           Ile Trp Phe Asp Gly Ser Asn Glu
           <210> 135
           <211> 42
55
           <212> DNA
           <213> Artificial Sequence
```

```
<220>
          <223> Synthetic
          <400> 135
                                                                              42
         gcgaaaaagg gagttttggt agctacctct gcttttcata tc
5
          <210> 136
          <211> 14
          <212> PRT
          <213> Artificial Sequence
10
          <220>
          <223> Synthetic
          <400> 136
         Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe His Ile
15
          <210> 137
          <211> 324
20
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 137
         gccatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
          atcacttgcc gggcaagtca gaacattaac aactatttaa attggtatca tcagaaacca 120
         gggaaagccc ctaatctcct aatttatgct gcatccagtt tgcaaagtgg ggtcccatca 180
          aggttcagtg gcagtggatc tgggacagat tacactctca ccatcagcag tctgcaacct 240
30
         gaagattttg gaaattacta ctgtcaacag agttacagca cttccatgta cacttttggc 300
         caggggacca agctggagat caaa
                                                                              324
          <210> 138
          <211> 108
          <212> PRT
35
          <213> Artificial Sequence
          <220>
          <223> Synthetic
40
          <400> 138
         Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                          5
                                               10
         Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asn Ile Asn Asn Tyr
          Leu Asn Trp Tyr His Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile
45
          Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                  55
                                                       60
          Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
                              70
                                                   75
50
         Glu Asp Phe Gly Asn Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Ser Met
                          85
                                               90
          Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
55
          <210> 139
          <211> 18
```

	<212> DNA	
	<213> Artificial Sequence	
	-	
	<220>	
5	<223> Synthetic	
3		
	<400> 139	
		18
	Cagaacacaca	
	<210> 140	
10	<211> 6	
	<212> PRT	
	<213> Artificial Sequence	
	2000	
	<220>	
15	<223> Synthetic	
	400 440	
	<400> 140	
	Gln Asn Ile Asn Asn Tyr	
	1 5	
20		
	<210> 141	
	<211> 9	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Synthetic	
	_	
	<400> 141	
	gctgcatcc	9
30	J	
30	<210> 142	
	<211> 3	
	<212> PRT	
	<213> Artificial Sequence	
	V213/ AICTICIAL Dequence	
35	<220>	
	<223> Synthetic	
	12237 Synthetic	
	<400> 142	
	Ala Ala Ser	
	1	
40	1	
	.010: 140	
	<210> 143	
	<211> 30	
	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
	<223> Synthetic	
	<400> 143	
50	caacagagtt acagcacttc catgtacact	30
	<210> 144	
	<211> 10	
	<212> PRT	
55	<213> Artificial Sequence	
	<220>	

```
<223> Synthetic
           <400> 144
          Gln Gln Ser Tyr Ser Thr Ser Met Tyr Thr
5
          <210> 145
           <211> 372
           <212> DNA
10
          <213> Artificial Sequence
           <220>
           <223> Synthetic
          <400> 145
15
          gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
          tectgtgeag cetetggatt cacetttage agetatgeca tgagetgggt cegecagget 120
          ccagggaagg ggctggagtg ggtctcagtt attagtggta gtggaggtag cacatactac 180
          gcagacgccg tgaagggccg gttcaccatc tccagagaca attccaagca cacgctgtat 240
          ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtac gaaaccctca 300
           tettatagea gttegaaett etattatggt atggaegtet ggggeeaagg gteeaeggte 360
20
          accgtctcct ca
           <210> 146
           <211> 124
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 146
30
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
           1
                          5
                                               10
           Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                       20
          Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35
                                       40
                                                           45
           Ser Val Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ala Val
                                   55
          Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys His Thr Leu Tyr
                               70
                                                   75
          Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
40
                                               90
           Thr Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp
                                          105
                      100
                                                               110
           Val Trp Gly Gln Gly Ser Thr Val Thr Val Ser Ser
                                       120
45
           <210> 147
           <211> 24
           <212> DNA
           <213> Artificial Sequence
50
           <220>
          <223> Synthetic
          <400> 147
                                                                              24
          ggattcacct ttagcagcta tgcc
          <210> 148
```

```
<211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
5
           <223> Synthetic
           <400> 148
           Gly Phe Thr Phe Ser Ser Tyr Ala
                            5
10
           <210> 149
           <211> 24
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 149
                                                                                24
20
           attagtggta gtggaggtag caca
           <210> 150
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 150
           Ile Ser Gly Ser Gly Gly Ser Thr
30
                            5
           <210> 151
           <211> 51
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           acgaaaccct catcttatag cagttcgaac ttctattatg gtatggacgt c
                                                                                51
           <210> 152
           <211> 17
           <212> PRT
45
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           Thr Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp
            1
                             5
                                                 10
                                                                      15
           Val
55
           <210> 153
```

```
<211> 321
          <212> DNA
          <213> Artificial Sequence
         <220>
5
         <223> Synthetic
          <400> 153
         gacatccagt tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
         atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120
10
         gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
         aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
         gaagattttg caacttacta ttgtcagcag actaacagtt tcccattccc tttcggccct 300
         gggaccaaag tggatatcaa a
          <210> 154
15
          <211> 107
          <212> PRT
          <213> Artificial Sequence
          <220>
20
          <223> Synthetic
          <400> 154
         Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
          1
                  5
                                              10
                                                               15
         Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
25
         Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                  35
                                      40
                                                          45
          Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                  55
30
          Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                              70
                                                  75
         Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Ser Phe Pro Phe
                          85
                                             90
         Pro Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
35
          <210> 155
          <211> 18
          <212> DNA
40
          <213> Artificial Sequence
         <220>
          <223> Synthetic
          <400> 155
45
                                                                             18
         cagggtatta gcagctgg
          <210> 156
          <211> 6
          <212> PRT
50
         <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 156
55
         Gln Gly Ile Ser Ser Trp
```

```
<210> 157
          <211> 9
          <212> DNA
          <213> Artificial Sequence
5
          <223> Synthetic
          <400> 157
          gctgcatcc
                                                                               9
10
          <210> 158
          <211> 3
          <212> PRT
          <213> Artificial Sequence
15
          <220>
          <223> Synthetic
          <400> 158
          Ala Ala Ser
20
          <210> 159
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
30
          <400> 159
          cagcagacta acagtttccc attccct
                                                                              27
          <210> 160
          <211> 9
          <212> PRT
35
          <213> Artificial Sequence
          <220>
          <223> Synthetic
40
          <400> 160
          Gln Gln Thr Asn Ser Phe Pro Phe Pro
          <210> 161
45
          <211> 372
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
          <400> 161
          gaggtgcagc tggtggagtc tgggggaggc ttggtacagg ctggggggtc cctgagactc 60
          tcctgtgtag cctctggatt cacctttagc agctatgcca tgagctgggt ccgccaggct 120
          ccagggaagg ggctggagtg ggtctcagct attagtggta gtggtggtag cacatactcc 180
55
          gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
          ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtac gaaaccctca 300
```

```
tettatagea getegaactt etaetaeggt atggaegtet ggggeeaagg gaeeaeggte 360
           accgtctcct ca
           <210> 162
           <211> 124
5
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
10
           <400> 162
           Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
           Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                       20
                                            25
15
           Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                       40
                                                            45
           Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Ser Ala Asp Ser Val
                                   55
                                                        60
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
20
                               70
                                                    75
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                           85
                                                90
                                                                     95
           Thr Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp
                       100
                                           105
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
25
                                       120
           <210> 163
           <211> 24
           <212> DNA
30
           <213> Artificial Sequence
           <220>
           <223> Synthetic
35
           <400> 163
          ggattcacct ttagcagcta tgcc
                                                                               24
           <210> 164
           <211> 8
           <212> PRT
40
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 164
45
           Gly Phe Thr Phe Ser Ser Tyr Ala
           <210> 165
50
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 165
```

	attagtggta gtggtggtag caca	24
5	<210> 166 <211> 8 <212> PRT <213> Artificial Sequence	
	<220> <223> Synthetic	
10	<400> 166 Ile Ser Gly Ser Gly Ser Thr 1 5	
15	<210> 167 <211> 51 <212> DNA <213> Artificial Sequence	
20	<220> <223> Synthetic	
	<400> 167 acgaaaccct catcttatag cagctcgaac ttctactacg gtatggacgt c	51
25	<210> 168 <211> 17 <212> PRT <213> Artificial Sequence	
30	<220> <223> Synthetic	
	<400> 168 Thr Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp 1 5 10 15	
35	Val	
40	<210> 169 <211> 321 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic	
45	<pre><400> 169 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca gggaaagccc ctaagctcct gatctatact gcatccagtt tgcaaagtgg ggtcccatca aggttcagcg gcagtggatc taggacagat ttcactctca ccatcagcag cctgcagcct gaagattttg caacttacta ttgtcaacag actaacagtc tcccactcac tttcggccct gggaccaagg tggagatcaa a</pre>	120 180 240
55	<210> 170 <211> 107 <212> PRT <213> Artificial Sequence	
	<220>	

```
<223> Synthetic
           <400> 170
           Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
           1
                           5
                                                10
5
           Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
                       20
                                            25
                                                                30
           Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                        40
                                                            45
           Tyr Thr Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
10
                                   55
                                                        60
           Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
           Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Ser Leu Pro Leu
                           85
                                               90
           Thr Phe Gly Pro Gly Thr Lys Val Glu Ile Lys
15
                       100
           <210> 171
           <211> 18
           <212> DNA
20
           <213> Artificial Sequence
           <220>
           <223> Synthetic
25
           <400> 171
           cagggtatta gcagctgg
                                                                               18
           <210> 172
           <211> 6
           <212> PRT
30
           <213> Artificial Sequence
           <220>
           <223> Synthetic
35
           <400> 172
           Gln Gly Ile Ser Ser Trp
                            5
           <210> 173
40
           <211> 9
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
45
           <400> 173
           actgcatcc
                                                                               9
           <210> 174
50
           <211> 3
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           <400> 174
```

```
Thr Ala Ser
           <210> 175
5
           <211> 27
           <212> DNA
           <213> Artificial Sequence
           <220>
10
           <223> Synthetic
           <400> 175
           caacagacta acagtctccc actcact
                                                                               27
          <210> 176
15
           <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
20
           <400> 176
          Gln Gln Thr Asn Ser Leu Pro Leu Thr
25
           <210> 177
           <211> 372
           <212> DNA
           <213> Artificial Sequence
30
           <220>
           <223> Synthetic
           <400> 177
           gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
35
          tectgtgcag cetetggatt cacetttage agetatgcea tgagetgggt cegecagget 120
           ccagggaagg ggctggagtg ggtctcagtt attagtggta gtggtggtag cacatactac 180
           gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
           ctacaaatga acagcctgag agccgaggac acggccgttt attactgtgc gaaaccctca 300
           tettatagea getegaactt etaetaeggt atggaegtet ggggeeaagg gaeeaeggte 360
           accgtctcct ca
                                                                               372
40
           <210> 178
           <211> 124
           <212> PRT
           <213> Artificial Sequence
45
           <220>
           <223> Synthetic
           <400> 178
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
50
           1
                            5
                                                10
           Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
          Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                        40
           Ser Val Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
55
                                   55
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
```

```
65
                               70
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                          85
                                                90
                                                                    95
           Ala Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp
                       100
                                            105
5
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                   115
                                        120
           <210> 179
10
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 179
                                                                               24
           ggattcacct ttagcagcta tgcc
           <210> 180
20
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 180
           Gly Phe Thr Phe Ser Ser Tyr Ala
30
           <210> 181
           <211> 24
           <212> DNA
           <213> Artificial Sequence
35
           <220>
           <223> Synthetic
           <400> 181
                                                                               24
           attagtggta gtggtggtag caca
40
           <210> 182
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
45
           <223> Synthetic
           <400> 182
           Ile Ser Gly Ser Gly Gly Ser Thr
           1
50
           <210> 183
           <211> 51
           <212> DNA
           <213> Artificial Sequence
           <220>
```

```
<223> Synthetic
           <400> 183
           gcgaaaccct catcttatag cagctcgaac ttctactacg gtatggacgt c
                                                                               51
5
           <210> 184
           <211> 17
           <212> PRT
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 184
          Ala Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe Tyr Tyr Gly Met Asp
                            5
                                                10
15
           Val
           <210> 185
           <211> 321
20
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 185
           gacategtga tgacecagte tecatettee gtgtetgeat etgtaggaga cagagteace 60
           atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120
           gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcgaagtgg ggtcccatca 180
           aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcaccag cctgcagcct 240
30
           gaagattttg caacttacta ttgtcaacac actaacagtt tcccattcac tttcggccct 300
                                                                               321
           gggaccaagg tggagatcaa a
           <210> 186
           <211> 107
           <212> PRT
35
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           <400> 186
           Asp Ile Val Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
                            5
                                                10
                                                                    15
           Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
                       20
                                            25
                                                                30
           Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
45
                   35
                                        40
                                                            45
           Tyr Ala Ala Ser Ser Leu Arg Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Thr Ser Leu Gln Pro
                                                    75
           65
                               70
50
           Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Thr Asn Ser Phe Pro Phe
                           85
                                                90
           Thr Phe Gly Pro Gly Thr Lys Val Glu Ile Lys
                       100
                                            105
55
           <210> 187
           <211> 18
```

	<212> DNA <213> Artificial Sequence	
5	<220> <223> Synthetic	
	<400> 187 cagggtatta gcagctgg	18
10	<210> 188 <211> 6	
	<212> PRT <213> Artificial Sequence	
15	<220> <223> Synthetic	
	<400> 188 Gln Gly Ile Ser Ser Trp 1 5	
20	<210> 189	
	<211> 9	
	<212> DNA <213> Artificial Sequence	
25	<220>	
	<223> Synthetic	
	<400> 189	9
30	getgeatee	9
30	<210> 190	
	<211> 3	
	<212> PRT <213> Artificial Sequence	
35	<220>	
	<223> Synthetic	
	<400> 190 Ala Ala Ser	
40	1	
	<210> 191	
	<211> 27	
45	<212> DNA <213> Artificial Sequence	
40		
	<220> <223> Synthetic	
	<400> 191	
50	caacacacta acagtttccc attcact	27
	<210> 192	
	<211> 9 <212> PRT	
55	<213> Artificial Sequence	
	<220>	

```
<223> Synthetic
          <400> 192
          Gln His Thr Asn Ser Phe Pro Phe Thr
5
          <210> 193
          <211> 369
          <212> DNA
10
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 193
15
          gaggtgcagc tggtggagtc tggggctgag gtgaagaagt ctgggtcctc ggtgaaggtc 60
          teetgeaagg ettetggagg cacetteage egetatgeta teagetgggt gegaeaggee 120
          cctggacaag ggcttgagtg gatgggaggg atcatccctc tctttggtac attaaactac 180
          gcacagaagt tccagggcag agtcacgctt accacggacg aatcaacgag cacagcctac 240
          atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc ggtattttac 300
          tatggttcgg ggagttatcg caactggttc gacccctggg gccagggaac cctggtcacc 360
20
          gtctcctca
                                                                              369
          <210> 194
          <211> 123
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 194
30
          Glu Val Gln Leu Val Glu Ser Gly Ala Glu Val Lys Lys Ser Gly Ser
           1
                          5
                                              10
                                                                15
          Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Arg Tyr
          Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35
                                       40
          Gly Gly Ile Ile Pro Leu Phe Gly Thr Leu Asn Tyr Ala Gln Lys Phe
                                   55
          Gln Gly Arg Val Thr Leu Thr Thr Asp Glu Ser Thr Ser Thr Ala Tyr
                              70
                                                   75
          Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
40
                                               90
          Ala Val Phe Tyr Tyr Gly Ser Gly Ser Tyr Arg Asn Trp Phe Asp Pro
                      100
                                           105
                                                               110
          Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
                                       120
45
          <210> 195
          <211> 24
          <212> DNA
          <213> Artificial Sequence
50
          <220>
          <223> Synthetic
          <400> 195
          ggaggcacct tcagccgcta tgct
                                                                              24
          <210> 196
```

```
<211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
5
           <223> Synthetic
           <400> 196
           Gly Gly Thr Phe Ser Arg Tyr Ala
10
           <210> 197
           <211> 24
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 197
                                                                                24
20
           atcatccctc tctttggtac atta
           <210> 198
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 198
           Ile Ile Pro Leu Phe Gly Thr Leu
30
                             5
           <210> 199
           <211> 48
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           gcggtatttt actatggttc ggggagttat cgcaactggt tcgacccc
                                                                                48
           <210> 200
           <211> 16
           <212> PRT
45
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           <400> 200
           Ala Val Phe Tyr Tyr Gly Ser Gly Ser Tyr Arg Asn Trp Phe Asp Pro
            1
                             5
                                                                      15
                                                 10
           <210> 201
55
           <211> 321
           <212> DNA
```

	<213> Artificial Sequence	
	<220> <223> Synthetic	
5	<400> 201 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc atcacttgcc gggcaagtca gagcatcagc agctatttaa attggtatca gcagaaacca gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca	120
10	aggitcagtg gcagiggatc igggacagat itcactcica ccatcagcag ictgcaacct gaagattitg caacttacca cigicaacag agitacagta icccgatcac citcggccaa gggacacgac iggagattaa a	
15	<210> 202 <211> 107 <212> PRT <213> Artificial Sequence	
	<220> <223> Synthetic	
20	<pre><400> 202 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1</pre>	
	Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30	
25	Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45	
	Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60	
	Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80	
30	Glu Asp Phe Ala Thr Tyr His Cys Gln Gln Ser Tyr Ser Ile Pro Ile 85 90 95	
	Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys 100 105	
35	<210> 203 <211> 18 <212> DNA <213> Artificial Sequence	
40	<220> <223> Synthetic	
	<400> 203 cagagcatca gcagctat	18
45	<210> 204 <211> 6 <212> PRT <213> Artificial Sequence	
50	<220> <223> Synthetic	
	<400> 204 Gln Ser Ile Ser Ser Tyr 1 5	
55		
	<210× 205	

```
<211> 9
          <212> DNA
          <213> Artificial Sequence
          <220>
5
          <223> Synthetic
          <400> 205
                                                                              9
          gctgcatcc
10
          <210> 206
          <211> 3
          <212> PRT
          <213> Artificial Sequence
          <220>
15
          <223> Synthetic
          <400> 206
          Ala Ala Ser
20
          <210> 207
          <211> 27
          <212> DNA
          <213> Artificial Sequence
25
          <220>
          <223> Synthetic
          <400> 207
30
                                                                              27
          caacagagtt acagtatccc gatcacc
          <210> 208
          <211> 9
          <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 208
40
          Gln Gln Ser Tyr Ser Ile Pro Ile Thr
          <210> 209
          <211> 357
45
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
          gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
          tcctgtgcag cctctggatt cacctttagc acctatgcca tgagctgggt ccgccaggct 120
          ccagggaagg ggctggaatg ggtctcagct attcgtggta atggtgttaa cacatactac 180
          ggagactcca tgaagggccg tttcaccatc tccagagaca attccaagga cacgctgtat 240
55
          ttgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaaaataaa 300
          tgggagctgc tagtctttga atactggggc cagggaaccc tggtcaccgt ctcctca
```

```
<210> 210
           <211> 119
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 210
           Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
10
                                                10
           Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
                       20
                                            25
           Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                        40
           Ser Ala Ile Arg Gly Asn Gly Val Asn Thr Tyr Tyr Gly Asp Ser Met
15
                                   55
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asp Thr Leu Tyr
                               70
                                                    75
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                           85
                                                90
           Ala Lys Asn Lys Trp Glu Leu Leu Val Phe Glu Tyr Trp Gly Gln Gly
20
                       100
                                            105
                                                                110
           Thr Leu Val Thr Val Ser Ser
25
           <210> 211
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
30
           <223> Synthetic
           <400> 211
                                                                               24
           ggattcacct ttagcaccta tgcc
35
           <210> 212
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
40
           <223> Synthetic
           <400> 212
           Gly Phe Thr Phe Ser Thr Tyr Ala
45
           <210> 213
           <211> 24
           <212> DNA
           <213> Artificial Sequence
50
           <220>
           <223> Synthetic
           <400> 213
                                                                               24
           attcgtggta atggtgttaa caca
           <210> 214
```

```
<211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
5
           <223> Synthetic
           <400> 214
           Ile Arg Gly Asn Gly Val Asn Thr
10
           <210> 215
           <211> 36
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 215
20
          gcgaaaaata aatgggagct gctagtcttt gaatac
                                                                               36
           <210> 216
           <211> 12
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 216
          Ala Lys Asn Lys Trp Glu Leu Leu Val Phe Glu Tyr
30
           <210> 217
           <211> 318
35
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgcc gggcgagtca ggacattagc aattatttag cctggtatca gcagaaacca 120
           gggaaagttc ctaagctcct gatctatgct gcatccactt tgcaatcagg ggtcccattt 180
           cggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
           gaagatgttg caacttatta ctgtcaaaag tataacagtg cccctccttt cggccctggg 300
45
                                                                               318
           accaaagtgg atatcaaa
           <210> 218
           <211> 106
           <212> PRT
50
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 218
55
           Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                            5
                                                10
```

```
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
                       20
                                            25
           Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile
                                                             45
                                        40
           Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Phe Arg Phe Ser Gly
5
           Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                70
                                                    75
           Glu Asp Val Ala Thr Tyr Tyr Cys Gln Lys Tyr Asn Ser Ala Pro Pro
                                                90
                            85
10
           Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
                       100
           <210> 219
           <211> 18
15
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
20
           <400> 219
           caggacatta gcaattat
                                                                               18
           <210> 220
           <211> 6
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
30
           <400> 220
           Gln Asp Ile Ser Asn Tyr
35
           <210> 221
           <211> 9
           <212> DNA
           <213> Artificial Sequence
           <220>
40
           <223> Synthetic
           <400> 221
                                                                                9
           gctgcatcc
           <210> 222
45
           <211> 3
           <212> PRT
           <213> Artificial Sequence
           <220>
50
           <223> Synthetic
           <400> 222
           Ala Ala Ser
55
           <210> 223
```

```
<211> 24
          <212> DNA
          <213> Artificial Sequence
          <220>
5
          <223> Synthetic
          <400> 223
                                                                              24
          caaaagtata acagtgcccc tcct
10
          <210> 224
          <211> 8
          <212> PRT
          <213> Artificial Sequence
          <220>
15
          <223> Synthetic
          <400> 224
          Gln Lys Tyr Asn Ser Ala Pro Pro
20
          <210> 225
          <211> 363
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 225
          gaggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
30
          tcctgtgcag cgtctggatt cagtttcagt gactatgtca tgcactgggt ccgccaggct 120
          ccaggcaagg ggctggagtg ggtggcatct atatggtttg atggaagtaa tgaattctat 180
          gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240
          ctgcaaatga acagtctgag agccgaggac acggctgtgt attactgtgc gaaaaaggga 300
          gtgttggtag ctacctctgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360
35
                                                                              363
          tca
          <210> 226
          <211> 121
          <212> PRT
          <213> Artificial Sequence
40
          <220>
          <223> Synthetic
          <400> 226
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
45
                           5
                                               10
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Tyr
          Val Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                       40
50
          Ala Ser Ile Trp Phe Asp Gly Ser Asn Glu Phe Tyr Ala Asp Ser Val
                                   55
          Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
                               70
                                                   75
          Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                               90
55
          Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile Trp Gly
                       100
                                           105
```

	Gln Gly Thr Met Val Thr Val Ser Ser 115 120	
5	<210> 227 <211> 24 <212> DNA <213> Artificial Sequence	
10	<220> <223> Synthetic	
	<400> 227 ggattcagtt tcagtgacta tgtc	24
15	<210> 228 <211> 8 <212> PRT <213> Artificial Sequence	
20	<220> <223> Synthetic	
	<400> 228 Gly Phe Ser Phe Ser Asp Tyr Val 1 5	
25		
	<210> 229 <211> 24 <212> DNA	
30	<213> Artificial Sequence	
	<220> <223> Synthetic	
	<400> 229	
35	atatggtttg atggaagtaa tgaa	24
	<210> 230 <211> 8	
	<212> PRT	
40	<213> Artificial Sequence	
40	<220>	
	<223> Synthetic	
	<400> 230	
45	Ile Trp Phe Asp Gly Ser Asn Glu 1 5	
50	<210> 231 <211> 42 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic	
55	<400> 231 gcgaaaaagg gagtgttggt agctacctct gcttttgata tc	42

```
<210> 232
           <211> 14
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 232
          Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile
10
           <210> 233
           <211> 324
           <212> DNA
15
           <213> Artificial Sequence
           <220>
           <223> Synthetic
20
           <400> 233
           gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgcc gggcaagtca gagcattaac aactatttaa attggtatca tcagaaacca 120
           gggaaagccc ctaagctcct aatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
           aggttcagtg gcagtggatc tgggacagat tacactctca ccatcagcag tctgcaacct 240
           gaagattttg gaaattacta ctgtcaacag agttacagaa cttccatgta cacttttggc 300
25
          caggggacca aggtggaaat caaa
           <210> 234
           <211> 108
           <212> PRT
           <213> Artificial Sequence
30
           <220>
           <223> Synthetic
           <400> 234
35
          Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                                10
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Asn Asn Tyr
                       20
                                           25
           Leu Asn Trp Tyr His Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                       40
40
           Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                                    75
           Glu Asp Phe Gly Asn Tyr Tyr Cys Gln Gln Ser Tyr Arg Thr Ser Met
                           85
                                                90
45
           Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
           <210> 235
50
           <211> 18
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 235
```

	cagagcatta acaactat	18
	<210> 236	
	<211> 6	
5	<212> PRT	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic	
10		
	<400> 236	
	Gln Ser Ile Asn Asn Tyr 1 5	
15	<210> 237	
	<211> 9	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Synthetic	
	<400> 237	
	gctgcatcc	9
25	<210> 238	
	<211> 3	
	<212> PRT	
	<213> Artificial Sequence	
30	<220>	
	<223> Synthetic	
	<400> 238	
	Ala Ala Ser	
35	1	
	<210> 239	
	<210° 239 <211> 30	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Synthetic	
45	<400> 239	
45	caacagagtt acagaacttc catgtacact	30
	<210> 240	
	<211> 10	
	<212> PRT	
50	<213> Artificial Sequence	
	<220>	
	<223> Synthetic	
55	<400> 240	
	Gln Gln Ser Tyr Arg Thr Ser Met Tyr Thr	
	1 5 10	

```
<210> 241
          <211> 360
          <212> DNA
          <213> Artificial Sequence
5
          <223> Synthetic
          <400> 241
          gaggtgcagc tggtggagtc tgggggaggc ttggtacggc ctggcaggtc cctgagactc 60
10
          tectgtgcag cetetggatt cacetttgat aattatgcca tgcactgggt ceggcaagtt 120
          ccagggaagg gcctggagtg ggtctcaggt attacttgga atagtgttag cctaggctat 180
          geggactetg tgaagggeeg atteaceate tecagagaca aegeceagaa etecetgtat 240
          ctgcaaatga acagtctgag aactgtggac acggccttgt attactgtgc aaaagatagg 300
          tggggtggaa gttactactt tgacttctgg ggccagggaa ccctggtcac cgtctcctca 360
15
          <210> 242
          <211> 120
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 242
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Arg Pro Gly Arg
           1
                           5
                                               10
                                                                   15
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asn Tyr
                      20
                                           25
                                                               30
          Ala Met His Trp Val Arg Gln Val Pro Gly Lys Gly Leu Glu Trp Val
                                       40
30
          Ser Gly Ile Thr Trp Asn Ser Val Ser Leu Gly Tyr Ala Asp Ser Val
                                  55
                                                       60
          Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Gln Asn Ser Leu Tyr
                               70
                                                   75
          Leu Gln Met Asn Ser Leu Arg Thr Val Asp Thr Ala Leu Tyr Tyr Cys
                          85
                                               90
35
          Ala Lys Asp Arg Trp Gly Gly Ser Tyr Tyr Phe Asp Phe Trp Gly Gln
                      100
                                           105
          Gly Thr Leu Val Thr Val Ser Ser
                  115
40
          <210> 243
          <211> 24
          <212> DNA
          <213> Artificial Sequence
45
          <220>
          <223> Synthetic
          <400> 243
          ggattcacct ttgataatta tgcc
                                                                              24
50
          <210> 244
          <211> 8
          <212> PRT
          <213> Artificial Sequence
55
          <220>
          <223> Synthetic
```

```
<400> 244
           Gly Phe Thr Phe Asp Asn Tyr Ala
                            5
5
           <210> 245
           <211> 24
           <212> DNA
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 245
           attacttgga atagtgttag ccta
                                                                                24
15
           <210> 246
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
20
           <223> Synthetic
           <400> 246
           Ile Thr Trp Asn Ser Val Ser Leu
25
           <210> 247
           <211> 39
           <212> DNA
           <213> Artificial Sequence
30
           <220>
           <223> Synthetic
           <400> 247
35
           gcaaaagata ggtggggtgg aagttactac tttgacttc
                                                                                39
           <210> 248
           <211> 13
           <212> PRT
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 248
           Ala Lys Asp Arg Trp Gly Gly Ser Tyr Tyr Phe Asp Phe
45
           <210> 249
           <211> 318
50
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
55
           gacategtga tgacccagte tecatectee etgtetgeat etgtaggaga eagagteace 60
```

```
atcacttgcc gggcgagtca gggcattagc aattatttag cctggtatca gcagaaacca 120
          gggaaagttc ctaaactcct gatctattct gcatccactt tgcaatcagg ggtcccatct 180
          cggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcaa cctgcagcct 240
          gaagattttg caactttttt ctgtcaaaag tataacagtg cccccacttt cggcggaggg 300
          accaaggtgg agatcaaa
                                                                              318
5
          <210> 250
          <211> 106
          <212> PRT
          <213> Artificial Sequence
10
          <220>
          <223> Synthetic
          <400> 250
          Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
15
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Asn Tyr
                      20
                                           25
                                                                30
          Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile
                  35
                                       40
20
          Tyr Ser Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
              50
                                   55
                                                       60
          Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Leu Gln Pro
          65
                               70
                                                   75
          Glu Asp Phe Ala Thr Phe Phe Cys Gln Lys Tyr Asn Ser Ala Pro Thr
                                               90
25
          Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                      100
                                           105
          <210> 251
30
          <211> 18
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
35
          <400> 251
          cagggcatta gcaattat
                                                                              18
          <210> 252
40
          <211> 6
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
45
          <400> 252
          Gln Gly Ile Ser Asn Tyr
                           5
50
          <210> 253
          <211> 9
          <212> DNA
          <213> Artificial Sequence
55
          <220>
          <223> Synthetic
```

```
<400> 253
                                                                               9
           tctgcatcc
           <210> 254
           <211> 3
5
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
10
           <400> 254
           Ser Ala Ser
           1
15
           <210> 255
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
20
           <223> Synthetic
           <400> 255
                                                                               24
           caaaagtata acagtgcccc cact
25
           <210> 256
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
30
           <223> Synthetic
           <400> 256
           Gln Lys Tyr Asn Ser Ala Pro Thr
           1
35
           <210> 257
           <211> 363
           <212> DNA
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 257
           caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
45
           tcctgtgcag cgtctggatt cagtttcagt gactatgtca tgcactgggt ccgccaggct 120
           ccaggcaagg ggctggagtg ggtggcatct atatggtttg atggaagtaa tgaattctat 180
           gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240
           ctgcaaatga acagtctgag agccgaggac acggctgtgt attactgtgc gaaaaaggga 300
           gtgttggtag ctacctctgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360
50
           tca
           <210> 258
           <211> 121
           <212> PRT
           <213> Artificial Sequence
55
           <220>
```

	<223> Synthetic	
	<400> 258	
5	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15	
	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Tyr 20 25 30	
	Val Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
10	Ala Ser Ile Trp Phe Asp Gly Ser Asn Glu Phe Tyr Ala Asp Ser Val 50 55 60	
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe 65 70 75 80	
	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
15	Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile Trp Gly 100 105 110	
	Gln Gly Thr Met Val Thr Val Ser Ser 115 120	
20	<210> 259 <211> 24	
	<212> DNA <213> Artificial Sequence	
	<220>	
25	<223> Synthetic	
	<400> 259 ggattcagtt tcagtgacta tgtc	24
30	<210> 260	
	<211> 8 <212> PRT <213> Artificial Sequence	
	<220>	
35	<223> Synthetic	
	<400> 260 Gly Phe Ser Phe Ser Asp Tyr Val 1 5	
40		
	<210> 261 <211> 24	
	<212> DNA <213> Artificial Sequence	
45		
	<220> <223> Synthetic	
	<400> 261	
50	atatggtttg atggaagtaa tgaa	24
	<210> 262 <211> 8	
	<211> 8 <212> PRT	
	<213> Artificial Sequence	
55	<220>	
	<223> Synthetic	

```
<400> 262
          Ile Trp Phe Asp Gly Ser Asn Glu
                           5
5
          <210> 263
          <211> 42
          <212> DNA
          <213> Artificial Sequence
10
          <220>
          <223> Synthetic
          <400> 263
                                                                              42
         gcgaaaaagg gagtgttggt agctacctct gcttttgata tc
15
          <210> 264
          <211> 14
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 264
          Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile
25
          <210> 265
          <211> 324
          <212> DNA
30
          <213> Artificial Sequence
         <220>
          <223> Synthetic
          <400> 265
35
          gaaattgtga tgacgcagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
          atcacttgcc gggcaagtca gagcattaac aactatttaa attggtatca tcagaaacca 120
          gggaaagccc ctaagctcct aatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
          aggttcagtg gcagtggatc tgggacagat tacactctca ccatcagcag tctgcaacct 240
         gaagattttg gaaattacta ctgtcaacag agttacagaa cttccatgta cacttttggc 300
40
         caggggacca aggtggagat caaa
                                                                              324
          <210> 266
          <211> 108
          <212> PRT
          <213> Artificial Sequence
45
          <220>
          <223> Synthetic
          <400> 266
50
         Glu Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                               10
          1
                           5
         Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Asn Asn Tyr
          Leu Asn Trp Tyr His Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                       40
55
          Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
              50
                                  55
```

```
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                70
                                                     75
           Glu Asp Phe Gly Asn Tyr Tyr Cys Gln Gln Ser Tyr Arg Thr Ser Met
                            85
                                                90
           Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
5
                        100
                                            105
           <210> 267
           <211> 18
10
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 267
           cagagcatta acaactat
                                                                                18
           <210> 268
           <211> 6
           <212> PRT
20
           <213> Artificial Sequence
           <220>
           <223> Synthetic
25
           <400> 268
           Gln Ser Ile Asn Asn Tyr
            1
           <210> 269
30
           <211> 9
           <212> DNA
           <213> Artificial Sequence
           <220>
35
           <223> Synthetic
           <400> 269
           gctgcatcc
                                                                                9
           <210> 270
40
           <211> 3
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
45
           <400> 270
           Ala Ala Ser
            1
50
           <210> 271
           <211> 30
           <212> DNA
           <213> Artificial Sequence
55
           <220>
           <223> Synthetic
```

```
<400> 271
          caacagagtt acagaacttc catgtacact
                                                                              30
          <210> 272
          <211> 10
5
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
10
          <400> 272
         Gln Gln Ser Tyr Arg Thr Ser Met Tyr Thr
                           5
15
          <210> 273
          <211> 366
          <212> DNA
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 273
          caggtgeage tgeaggagte gggeecagga etggtgaage etteggagae eetgteeete 60
          acctgcactg tctctggtgg ctccatcagt acttactact ggagctggtt ccggcagccc 120
         ccagggaagg gactggagtg gattgggtat atctattaca gtgggagcac caaccacaac 180
          ccctccctca agagtcgagt caccatatca gtagacacgt ccaagaacca gttctccctg 240
          aaactgaggt ctgtgaccgc tgcggacacg gccgtgtatt actgtgcgag agtaggtccg 300
          gtgggctggg gatcatgggg gaactttgac tactggggcc agggaaccct ggtcaccgtc 360
         tcctca
30
          <210> 274
          <211> 122
          <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 274
          Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
40
          Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Thr Tyr
                                          25
          Tyr Trp Ser Trp Phe Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
          Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn His Asn Pro Ser Leu Lys
45
              50
                                  55
                                                       60
          Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
                              70
                                                   75
         Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
                                               90
50
         Arg Val Gly Pro Val Gly Trp Gly Ser Trp Gly Asn Phe Asp Tyr Trp
                                          105
                      100
         Gly Gln Gly Thr Leu Val Thr Val Ser Ser
55
          <210> 275
          <211> 24
```

```
<212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
5
           <400> 275
                                                                               24
           ggtggctcca tcagtactta ctac
           <210> 276
10
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
15
           <400> 276
           Gly Gly Ser Ile Ser Thr Tyr Tyr
                    5
20
           <210> 277
           <211> 21
           <212> DNA
           <213> Artificial Sequence
25
           <220>
           <223> Synthetic
           <400> 277
           atctattaca gtgggagcac c
                                                                               21
30
           <210> 278
           <211> 7
           <212> PRT
           <213> Artificial Sequence
35
           <220>
           <223> Synthetic
           <400> 278
           Ile Tyr Tyr Ser Gly Ser Thr
40
           <210> 279
           <211> 48
           <212> DNA
45
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 279
50
                                                                               48
           gcgagagtag gtccggtggg ctggggatca tgggggaact ttgactac
           <210> 280
           <211> 16
           <212> PRT
           <213> Artificial Sequence
55
           <220>
```

```
<223> Synthetic
           <400> 280
           Ala Arg Val Gly Pro Val Gly Trp Gly Ser Trp Gly Asn Phe Asp Tyr
5
           <210> 281
           <211> 321
           <212> DNA
10
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 281
15
           gacatccagt tgacccagtc tccatccttc ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgct gggccagtca gggcattagc agttatttag cctggtctca gcaaaaacca 120
           gggaaagccc ctaagctcct gatctatgct gcatccactt tacaaagtgg ggtcccatca 180
           aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240
           gaagattttg caacttatta ctgtcaacag cttaatagtt acccgtggac gttcggccaa 300
20
           gggaccaagg tggagatcaa a
                                                                               321
           <210> 282
           <211> 107
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 282
           Asp Ile Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
30
                           5
                                                10
          Asp Arg Val Thr Ile Thr Cys Trp Ala Ser Gln Gly Ile Ser Ser Tyr
           Leu Ala Trp Ser Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                                            45
                   35
                                       40
35
           Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
           Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Ser Tyr Pro Trp
                           85
                                                90
40
           Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
                       100
           <210> 283
           <211> 18
45
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
50
           <400> 283
           cagggcatta gcagttat
                                                                               18
           <210> 284
           <211> 6
55
           <212> PRT
           <213> Artificial Sequence
```

```
<220>
          <223> Synthetic
          <400> 284
          Gln Gly Ile Ser Ser Tyr
5
          <210> 285
          <211> 9
10
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
15
          <400> 285
                                                                                9
          gctgcatcc
          <210> 286
          <211> 3
20
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 286
          Ala Ala Ser
           1
30
          <210> 287
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
35
          <223> Synthetic
          <400> 287
                                                                               27
          caacagctta atagttaccc gtggacg
40
          <210> 288
           <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
45
          <223> Synthetic
           <400> 288
          Gln Gln Leu Asn Ser Tyr Pro Trp Thr
                            5
50
           <210> 289
           <211> 360
           <212> DNA
           <213> Artificial Sequence
           <220>
```

```
<223> Synthetic
           <400> 289
           gaggtgcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60
           tcctgcaagg cttctggtta cacctttacc aattatggta tcacctgggt gcgacaggcc 120
5
           cctggacaag ggcttgagtg gatggggtgg atcagcgctt acaatggtaa caccggctat 180 gcacagaaat tccagggcag agtcaccatg accacagaca cttccacgag cacagcctac 240
           atggagctga ggagcctgag atctgacgac acggccgtgt attactgtgc gagagaggat 300
           tacgattttt ggagggcttt tgatatctgg ggccaaggga caatggtcac cgtctcttca 360
10
           <210> 290
           <211> 120
           <212> PRT
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 290
           Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                              5
                                                  10
20
           Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
                        20
                                              25
           Gly Ile Thr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                                          40
           Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Gly Tyr Ala Gln Lys Phe
                                     55
           Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
                                 70
                                                       75
           Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
                                                  90
           Ala Arg Glu Asp Tyr Asp Phe Trp Arg Ala Phe Asp Ile Trp Gly Gln
30
                        100
                                              105
           Gly Thr Met Val Thr Val Ser Ser
35
           <210> 291
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
40
           <223> Synthetic
           <400> 291
           ggttacacct ttaccaatta tggt
                                                                                   24
           <210> 292
45
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
50
           <223> Synthetic
           <400> 292
           Gly Tyr Thr Phe Thr Asn Tyr Gly
55
           <210> 293
```

```
<211> 24
          <212> DNA
          <213> Artificial Sequence
          <220>
5
          <223> Synthetic
          <400> 293
                                                                              24
          atcagcgctt acaatggtaa cacc
10
          <210> 294
          <211> 8
          <212> PRT
          <213> Artificial Sequence
          <220>
15
          <223> Synthetic
          <400> 294
          Ile Ser Ala Tyr Asn Gly Asn Thr
20
          <210> 295
          <211> 39
          <212> DNA
          <213> Artificial Sequence
25
          <220>
          <223> Synthetic
          <400> 295
30
          gcgagagagg attacgattt ttggagggct tttgatatc
                                                                              39
          <210> 296
          <211> 13
          <212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> Synthetic
          <400> 296
40
          Ala Arg Glu Asp Tyr Asp Phe Trp Arg Ala Phe Asp Ile
          <210> 297
          <211> 324
45
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
          gaaattgtgc tgactcagtc tccaggcacc ctgtctttgt ctccggggga aagagccacc 60
          ctctcctgca gggccagtca gagtgttagc agcacctact tagcctggct ccagcagaaa 120
          cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac cggcatccca 180
          gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcaa cagactggag 240
55
          cctgaagatt ttgcagtgta ttattgtcaa cagtatgctt actcaccgta cacttttggc 300
          caggggacca agctggagat caaa
```

```
<210> 298
           <211> 108
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 298
           Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
10
           1
                                                10
           Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Thr
                       20
                                            25
           Tyr Leu Ala Trp Leu Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
                                        40
           Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
15
                                   55
           Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Arg Leu Glu
                               70
                                                    75
           Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Ala Tyr Ser Pro
20
           Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
                       100
                                            105
           <210> 299
           <211> 21
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
30
           <400> 299
                                                                               21
           cagagtgtta gcagcaccta c
           <210> 300
           <211> 7
           <212> PRT
35
           <213> Artificial Sequence
           <220>
           <223> Synthetic
40
           Gln Ser Val Ser Ser Thr Tyr
           <210> 301
45
           <211> 9
           <212> DNA
           <213> Artificial Sequence
           <220>
50
           <223> Synthetic
           <400> 301
                                                                               9
           ggtgcatcc
           <210> 302
           <211> 3
           <212> PRT
```

```
<213> Artificial Sequence
           <220>
           <223> Synthetic
5
           <400> 302
          Gly Ala Ser
           1
10
          <210> 303
           <211> 27
           <212> DNA
           <213> Artificial Sequence
          <220>
15
           <223> Synthetic
           <400> 303
                                                                               27
          caacagtatg cttactcacc gtacact
          <210> 304
20
          <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
25
          <223> Synthetic
           <400> 304
          Gln Gln Tyr Ala Tyr Ser Pro Tyr Thr
30
          <210> 305
           <211> 363
           <212> DNA
           <213> Artificial Sequence
35
           <220>
          <223> Synthetic
           <400> 305
           caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
40
          tectgtgeag egtetggatt eagttteagt gaetatgtea tgeactgggt eegeeagget 120
          ccaggcaagg ggctggagtg ggtggcatct atatggtttg atggaagtaa tgaattctat 180
          gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240
          ctgcaaatga acagtctgag agccgaggac acggctgtgt attactgtgc gaaaaaggga 300
          gtgttggtag ctacctctgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360
          tca
45
          <210> 306
          <211> 121
           <212> PRT
           <213> Artificial Sequence
50
           <220>
          <223> Synthetic
           <400> 306
          Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
55
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Tyr
```

```
20
                                          25
         Val Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                     40
         Ala Ser Ile Trp Phe Asp Gly Ser Asn Glu Phe Tyr Ala Asp Ser Val
5
                                  55
                                                      60
         Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
                              70
                                                  75
         65
         Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                         85
                                              90
                                                                   95
         Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile Trp Gly
10
                      100
                                          105
         Gln Gly Thr Met Val Thr Val Ser Ser
                  115
         <210> 307
         <211> 24
         <212> DNA
         <213> Artificial Sequence
         <220>
20
         <223> Synthetic
         <400> 307
         ggattcagtt tcagtgacta tgtc
                                                                             24
         <210> 308
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
30
         <223> Synthetic
         <400> 308
         Gly Phe Ser Phe Ser Asp Tyr Val
35
         <210> 309
         <211> 24
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> Synthetic
         <400> 309
45
         atatggtttg atggaagtaa tgaa
                                                                             24
         <210> 310
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Synthetic
         <400> 310
         Ile Trp Phe Asp Gly Ser Asn Glu
```

```
<210> 311
           <211> 42
           <212> DNA
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           gcgaaaaagg gagtgttggt agctacctct gcttttgata tc
                                                                               42
10
           <210> 312
           <211> 14
           <212> PRT
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 312
           Ala Lys Lys Gly Val Leu Val Ala Thr Ser Ala Phe Asp Ile
20
                            5
           <210> 313
           <211> 324
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 313
30
           gacatccagt tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgcc gggcaagtca gagcattaac aactatttaa attggtatca tcagaaacca 120
           gggaaagccc ctaagctcct aatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
           aggttcagtg gcagtggatc tgggacagat tacactctca ccatcagcag tctgcaacct 240
           gaagattttg gaaattacta ctgtcaacag agttacagaa cttccatgta cacttttggc 300
35
          caggggacca aggtggaaat caaa
                                                                               324
           <210> 314
           <211> 108
           <212> PRT
           <213> Artificial Sequence
40
           <220>
           <223> Synthetic
           <400> 314
           Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
45
           1
                            5
                                                10
           Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Asn Asn Tyr
                       20
                                            25
                                                                30
           Leu Asn Trp Tyr His Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                   35
                                       40
                                                            45
50
           Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
           Glu Asp Phe Gly Asn Tyr Tyr Cys Gln Gln Ser Tyr Arg Thr Ser Met
55
           Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
                       100
                                            105
```

```
<210> 315
          <211> 18
          <212> DNA
          <213> Artificial Sequence
5
          <220>
          <223> Synthetic
          <400> 315
                                                                                18
          cagagcatta acaactat
10
          <210> 316
          <211> 6
          <212> PRT
          <213> Artificial Sequence
15
          <220>
          <223> Synthetic
          <400> 316
          Gln Ser Ile Asn Asn Tyr
20
          <210> 317 <211> 9
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
30
          <400> 317
                                                                                9
          gctgcatcc
          <210> 318
          <211> 3
35
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
40
          <400> 318
          Ala Ala Ser
          1
45
          <210> 319
          <211> 30
          <212> DNA
          <213> Artificial Sequence
          <220>
50
          <223> Synthetic
          <400> 319
                                                                                30
          caacagagtt acagaacttc catgtacact
55
          <210> 320
          <211> 10
```

```
<212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
5
          <400> 320
          Gln Gln Ser Tyr Arg Thr Ser Met Tyr Thr
                           5
10
          <210> 321
          <211> 360
          <212> DNA
          <213> Artificial Sequence
15
          <220>
          <223> Synthetic
          <400> 321
          gaggtgcagc tggtggagtc tgggggggc ttggtacagc cgggggggtc cctgagactc 60
20
          teetgtgeag cetetggatt eacetttage agetatgeea tgagetgggt eegeeaggtt 120
          ccagggaagg ggctggagtg ggtctcagct attagtggta gtggtgataa tacatataac 180
          gcagagtccg tgaagggccg gttcaccatc tccagagaca attccaagaa tatgttgtat 240
          ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaaacaaag 300
          tttagcagct cgttgctctt tgactactgg ggccagggaa ccctggtcac cgtctcctca 360
          <210> 322
          <211> 120
          <212> PRT
          <213> Artificial Sequence
30
          <220>
          <223> Synthetic
          <400> 322
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
35
                           5
                                              10
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
          Ala Met Ser Trp Val Arg Gln Val Pro Gly Lys Gly Leu Glu Trp Val
                                       40
                                                           45
40
          Ser Ala Ile Ser Gly Ser Gly Asp Asn Thr Tyr Asn Ala Glu Ser Val
                                   55
          Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Met Leu Tyr
          65
                              70
                                                   75
                                                                       80
          Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                          85
                                               90
45
          Ala Lys Thr Lys Phe Ser Ser Ser Leu Leu Phe Asp Tyr Trp Gly Gln
                                           105
          Gly Thr Leu Val Thr Val Ser Ser
                                       120
                  115
50
          <210> 323
          <211> 24
          <212> DNA
          <213> Artificial Sequence
55
          <220>
          <223> Synthetic
```

```
<400> 323
                                                                                24
          ggattcacct ttagcagcta tgcc
          <210> 324
          <211> 8
5
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
10
          <400> 324
          Gly Phe Thr Phe Ser Ser Tyr Ala
           1
15
          <210> 325
<211> 24
          <212> DNA
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 325
          attagtggta gtggtgataa taca
                                                                                24
25
          <210> 326
          <211> 8
          <212> PRT
          <213> Artificial Sequence
30
          <220>
          <223> Synthetic
          <400> 326
          Ile Ser Gly Ser Gly Asp Asn Thr
35
          <210> 327
          <211> 39
          <212> DNA
40
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 327
45
                                                                                39
          gcgaaaacaa agtttagcag ctcgttgctc tttgactac
          <210> 328
          <211> 13
          <212> PRT
50
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 328
55
          Ala Lys Thr Lys Phe Ser Ser Leu Leu Phe Asp Tyr
```

```
<210> 329
          <211> 318
          <212> DNA
          <213> Artificial Sequence
5
          <223> Synthetic
          <400> 329
          gacatcgtga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60
10
          atcacttqcc qqqccaqtca qaqtattaqt tqqtqqttqq cctqqtatca qcaqaaacca 120
          gggaaagccc ctaagctcct gatctataag gcgtctagtt tagaaagtgg ggtcccatca 180
          aggttcagcg gcagtggatc tgggacagaa ttcactctca ccatcagcag cctgcagcct 240
          gatgattttg caacttatta ctgccaacag tataatagtt attccacttt cggcggaggg 300
          accaagctgg agatcaaa
15
          <210> 330
          <211> 106
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 330
          Asp Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
           1
                           5
                                               10
25
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Trp Trp
                      20
                                           25
                                                                30
          Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
          Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly
30
              50
                                   55
                                                       60
          Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                   75
          Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Ser Thr
                          85
          Phe Gly Gly Thr Lys Leu Glu Ile Lys
35
                      100
          <210> 331
          <211> 18
40
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
45
          <400> 331
          cagagtatta gttggtgg
                                                                              18
          <210> 332
          <211> 6
          <212> PRT
50
          <213> Artificial Sequence
          <220>
          <223> Synthetic
55
          <400> 332
          Gln Ser Ile Ser Trp Trp
```

	1 5	
5	<210> 333 <211> 9	
J	<212> DNA <213> Artificial Sequence	
10	<220> <223> Synthetic <400> 333	
		9
15	<211> 3 <212> PRT <213> Artificial Sequence	
20	<220> <223> Synthetic	
	<400> 334 Lys Ala Ser 1	
25	<210> 335 <211> 24 <212> DNA <213> Artificial Sequence	
30	<220> <223> Synthetic	
	<pre><400> 335 caacagtata atagttattc cact 2</pre>	24
35	<210> 336 <211> 8 <212> PRT <213> Artificial Sequence	
40	<220> <223> Synthetic	
	<400> 336 Gln Gln Tyr Asn Ser Tyr Ser Thr 1 5	
45	<210> 337	
50	<211> 372 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic	
55	<400> 337 gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc tcctgtgcag cctctacatt cacctttagc agctatgcca tgacctgggt ccgccaggct : ccagggaagg ggctggagtg ggtctcaagt attagtggta gtggtgatag cacatactac :	120

```
gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgttt 240
           ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaaaaggat 300
           gggcctggga ggtattacgt gaggtacggt atggacgtct ggggccaagg gaccacggtc 360
           accgtctcct ca
5
           <210> 338
           <211> 124
           <212> PRT
           <213> Artificial Sequence
10
           <220>
           <223> Synthetic
           <400> 338
           Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                            5
                                                10
15
           Ser Leu Arg Leu Ser Cys Ala Ala Ser Thr Phe Thr Phe Ser Ser Tyr
                       20
                                            25
                                                                 30
           Ala Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                        40
                                                             45
           Ser Ser Ile Ser Gly Ser Gly Asp Ser Thr Tyr Tyr Ala Asp Ser Val
                                   55
               50
20
                                                        60
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
                               70
                                                    75
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                                                     95
                           85
                                                90
          Ala Lys Lys Asp Gly Pro Gly Arg Tyr Tyr Val Arg Tyr Gly Met Asp
                       100
                                            105
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                   115
                                        120
           <210> 339
30
           <211> 24
           <212> DNA
           <213> Artificial Sequence
           <220>
35
           <223> Synthetic
           <400> 339
           acattcacct ttagcagcta tgcc
                                                                               24
           <210> 340
40
           <211> 8
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> Synthetic
45
           <400> 340
           Thr Phe Thr Phe Ser Ser Tyr Ala
50
           <210> 341
           <211> 24
           <212> DNA
           <213> Artificial Sequence
55
           <220>
           <223> Synthetic
```

```
<400> 341
          attagtggta gtggtgatag caca
                                                                              24
          <210> 342
          <211> 8
5
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Synthetic
10
          <400> 342
          Ile Ser Gly Ser Gly Asp Ser Thr
15
          <210> 343
          <211> 51
          <212> DNA
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 343
          gcgaaaaagg atgggcctgg gaggtattac gtgaggtacg gtatggacgt c
                                                                              51
          <210> 344
          <211> 17
          <212> PRT
          <213> Artificial Sequence
30
          <220>
          <223> Synthetic
          Ala Lys Lys Asp Gly Pro Gly Arg Tyr Tyr Val Arg Tyr Gly Met Asp
           1
                                               10
35
          Val
          <210> 345
40
          <211> 321
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
45
          <400> 345
          gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
          atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120
          gggaaagccc ctaagctcct gatctatact acatccagtt tgcaaagtgg ggtcccatcc 180
          aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
50
          gaagattttg caacttatta ttgtcaacag gctaacagtt tccctctcac tttcggcgga 300
          gggaccaaag tggatatcaa a
                                                                              321
          <210> 346
          <211> 107
55
          <212> PRT
          <213> Artificial Sequence
```

```
<220>
           <223> Synthetic
          <400> 346
          Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
5
                            5
                                                10
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
                       20
                                            25
          Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                   35
                                        40
                                                            45
10
           Tyr Thr Thr Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                                   55
          Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
          Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Leu
                           85
                                                90
15
           Thr Phe Gly Gly Gly Thr Lys Val Asp Ile Lys
                       100
                                            105
          <210> 347
20
          <211> 18
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Synthetic
25
          <400> 347
                                                                               18
          cagggtatta gcagctgg
          <210> 348
30
          <211> 6
          <212> PRT
          <213> Artificial Sequence
           <220>
          <223> Synthetic
35
          <400> 348
          Gln Gly Ile Ser Ser Trp
40
          <210> 349
           <211> 9
           <212> DNA
          <213> Artificial Sequence
45
          <220>
          <223> Synthetic
          <400> 349
          actacatcc
                                                                               9
50
          <210> 350
           <211> 3
           <212> PRT
          <213> Artificial Sequence
55
          <220>
          <223> Synthetic
```

```
<400> 350
          Thr Thr Ser
           1
5
          <210> 351
          <211> 27
          <212> DNA
          <213> Artificial Sequence
10
          <220>
          <223> Synthetic
          <400> 351
          caacaggcta acagtttccc tctcact
                                                                              27
15
          <210> 352
          <211> 9
          <212> PRT
          <213> Artificial Sequence
20
          <220>
          <223> Synthetic
          <400> 352
          Gln Gln Ala Asn Ser Phe Pro Leu Thr
                           5
25
          <210> 353
          <211> 372
          <212> DNA
30
          <213> Artificial Sequence
          <220>
          <223> Synthetic
          <400> 353
35
          gaggtgcagc tggtggagtc tgggggggc ttggaacagc ctggggggtc cctgagactc 60
          tcctgtgcag cctctggatt cacctttagc agctatgtca tgagctgggt ccgccaggtt 120
          ccagggaagg ggctggagtg ggtctcagtt atcagtggta gtggtggtag cacatactac 180
          gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240
          ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaaccctca 300
40
          tettatagea getegaaett eeactaeggt atggaegtet ggggeeaagg gaeeaeggte 360
          accgtctcct ca
          <210> 354
          <211> 124
          <212> PRT
45
          <213> Artificial Sequence
          <220>
          <223> Synthetic
50
          <400> 354
          Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Glu Gln Pro Gly Gly
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                      20
                                           25
          Val Met Ser Trp Val Arg Gln Val Pro Gly Lys Gly Leu Glu Trp Val
55
          Ser Val Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
```

```
55
           Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                               70
                                                   75
           Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                                90
                           85
5
           Ala Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe His Tyr Gly Met Asp
                       100
                                            105
                                                                 110
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
10
           <210> 355
           <211> 24
           <212> DNA
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 355
           ggattcacct ttagcagcta tgtc
                                                                               24
20
           <210> 356
           <211> 8
           <212> PRT
           <213> Artificial Sequence
25
           <220>
           <223> Synthetic
           <400> 356
           Gly Phe Thr Phe Ser Ser Tyr Val
            1
30
           <210> 357
           <211> 24
           <212> DNA
35
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 357
40
                                                                               24
           atcagtggta gtggtggtag caca
           <210> 358
           <211> 8
           <212> PRT
           <213> Artificial Sequence
45
           <220>
           <223> Synthetic
           <400> 358
50
           Ile Ser Gly Ser Gly Gly Ser Thr
           <210> 359
           <211> 51
55
           <212> DNA
           <213> Artificial Sequence
```

```
<220>
        <223> Synthetic
        <400> 359
5
        gcgaaaccct catcttatag cagctcgaac ttccactacg gtatggacgt c
                                                                             51
        <210> 360
        <211> 17
        <212> PRT
        <213> Artificial Sequence
10
        <220>
        <223> Synthetic
        <400> 360
        Ala Lys Pro Ser Ser Tyr Ser Ser Ser Asn Phe His Tyr Gly Met Asp
         1
                          5
        Val
20
        <210> 361
        <211> 321
        <212> DNA
        <213> Artificial Sequence
25
        <220>
        <223> Synthetic
        <400> 361
        gacatccaga tgacccagtc tccatattcc gtgtctgcat ctgtaggaga cagagtcacc 60
30
        atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120
        gggagagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
        aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
        gaagattttg caacttacta ttgtcaaaag actaacagtt tcccattcac tttcggccct 300
        gggaccaagg tggaaatcaa a
35
        <210> 362
        <211> 107
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Synthetic
        <400> 362
        Asp Ile Gln Met Thr Gln Ser Pro Tyr Ser Val Ser Ala Ser Val Gly
45
        Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
        Leu Ala Trp Tyr Gln Gln Lys Pro Gly Arg Ala Pro Lys Leu Leu Ile
        Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50
                                 55
        Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                                  75
        Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Lys Thr Asn Ser Phe Pro Phe
                         85
                                             90
55
        Thr Phe Gly Pro Gly Thr Lys Val Glu Ile Lys
                     100
                                         105
```

```
<210> 363
           <211> 18
           <212> DNA
           <213> Artificial Sequence
5
           <220>
           <223> Synthetic
           <400> 363
                                                                                 18
           cagggtatta gcagctgg
10
           <210> 364
           <211> 6
<212> PRT
           <213> Artificial Sequence
15
           <220>
           <223> Synthetic
           <400> 364
           Gln Gly Ile Ser Ser Trp
                             5
20
            1
           <210> 365
           <211> 9
           <212> DNA
25
           <213> Artificial Sequence
           <220>
           <223> Synthetic
           <400> 365
30
                                                                                  9
           gctgcatcc
           <210> 366
           <211> 3
           <212> PRT
35
           <213> Artificial Sequence
           <220>
           <223> Synthetic
            <400> 366
40
           Ala Ala Ser
           <210> 367
            <211> 27
45
            <212> DNA
            <213> Artificial Sequence
            <220>
            <223> Synthetic
50
           <400> 367
                                                                                  27
           caaaagacta acagtttccc attcact
            <210> 368
            <211> 9
55
            <212> PRT
            <213> Artificial Sequence
```

```
<220>
            <223> Synthetic
            <400> 368
            Gln Lys Thr Asn Ser Phe Pro Phe Thr
5
            <210> 369
            <211> 141
10
            <212> PRT
            <213> Artificial Sequence
            <220>
            <223> Synthetic
15
            <400> 369
            Ala Gly Gly Pro Gly Ser Arg Ala Arg Ala Ala Gly Ala Arg Gly Cys
            Arg Leu Arg Ser Gln Leu Val Pro Val Arg Ala Leu Gly Leu Gly His
                        20
                                             25
20
            Arg Ser Asp Glu Leu Val Arg Phe Arg Phe Cys Ser Gly Ser Cys Arg
                                        40
            Arg Ala Arg Ser Pro His Asp Leu Ser Leu Ala Ser Leu Leu Gly Ala
                                    55
                                                       60
            Gly Ala Leu Arg Pro Pro Pro Gly Ser Arg Pro Val Ser Gln Pro Cys
                                70
                                                     75
25
            Cys Arg Pro Thr Arg Tyr Glu Ala Val Ser Phe Met Asp Val Asn Ser
                            85
                                                90
            Thr Trp Arg Thr Val Asp Arg Leu Ser Ala Thr Ala Cys Gly Cys Leu
                                            105
                                                                110
            Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gly Glu Gln Lys
30
                                        120
            Leu Ile Ser Glu Glu Asp Leu His His His His His His
                                    135
            <210> 370
35
            <211> 371
            <212> PRT
            <213> Artificial Sequence
            <220>
40
            <223> Synthetic
            <400> 370
            Asp Pro Leu Pro Thr Glu Ser Arg Leu Met Asn Ser Cys Leu Gln Ala
            Arg Arg Lys Cys Gln Ala Asp Pro Thr Cys Ser Ala Ala Tyr His His
45
                        20
                                             25
                                                                 30
            Leu Asp Ser Cys Thr Ser Ser Ile Ser Thr Pro Leu Pro Ser Glu Glu
            Pro Ser Val Pro Ala Asp Cys Leu Glu Ala Ala Gln Gln Leu Arg Asn
                                    55
50
            Ser Ser Leu Ile Gly Cys Met Cys His Arg Arg Met Lys Asn Gln Val
                                70
                                                     75
            Ala Cys Leu Asp Ile Tyr Trp Thr Val His Arg Ala Arg Ser Leu Gly
                            85
                                                90
            Asn Tyr Glu Leu Asp Val Ser Pro Tyr Glu Asp Thr Val Thr Ser Lys
                                            105
                                                                 110
55
            Pro Trp Lys Met Asn Leu Ser Lys Leu Asn Met Leu Lys Pro Asp Ser
                                        120
```

	Asp	Leu 130	Cys	Leu	Lys	Phe	Ala 135	Met	Leu	Cys	Thr	Leu 140	Asn	Asp	Lys	Cys
	Asp 145	Arg	Leu	Arg	Lys	Ala 150		Gly	Glu	Ala	Cys 155		Gly	Pro	His	Cys 160
5	_	Arg	His	Val	Cys 165		Arg	Gln	Leu	Leu 170		Phe	Phe	Glu	Lys 175	
	Ala	Glu	Pro	His 180	Ala	Gln	Gly	Leu	Leu 185	Leu	Cys	Pro	Cys	Ala 190	Pro	Asn
		Arg	195					200					205			
10		Leu 210					215					220				
	225	Ser	_			230	_		-		235	_				240
15	Cys	His	Pro	Met	Asp 245	тте	Leu	GTĀ	Thr	250	Ата	Thr	GLu	GIn	255	Arg
15	Суз	Leu	Arg	Ala 260	Tyr	Leu	Gly	Leu	Ile 265	Gly	Thr	Ala	Met	Thr 270	Pro	Asn
		Val	275					280					285		_	_
20	_	Ser 290	_				295		-			300		_		
	305	His	Asn	Pro	Cys	1eu 310	Thr	GLu	Ala	IIe	A1a 315	Ala	Lys	Met	Arg	Phe 320
	His	Ser	Gln	Leu	Phe 325	Ser	Gln	Asp	Trp	Pro 330	His	Pro	Thr	Phe	Ala 335	Val
25	Met	Ala	His	Gln 340	Asn	Glu	Asn	Glu	Gln 345	Lys	Leu	Ile	Ser	Glu 350	Glu	Asp
	Leu	Gly	Gly 355	Glu	Gln	Lys	Leu	Ile 360	Ser	Glu	Glu	Asp	Leu 365	His	His	His
	His	His 370	His													
30																
	<211	0> 3' l> 5' 2> PI	78													
35	<213	3> A ı	rtifi	icial	L Sec	quen	ce									
	<220 <223)> 3> Sy	ynthe	etic												
	<400)> 3 ⁻	71													
40		Pro		Pro	Thr 5	Glu	Ser	Arg	Leu	Met 10	Asn	Ser	Cys	Leu	Gln 15	Ala
	_	Arg	Lys	Cys 20	_	Ala	Asp	Pro	Thr 25		Ser	Ala	Ala	Tyr 30		His
	Leu	Asp	Ser 35	Cys	Thr	Ser	Ser	Ile 40	Ser	Thr	Pro	Leu	Pro 45	Ser	Glu	Glu
45	Pro	Ser 50	Val	Pro	Ala	Asp	Cys 55	Leu	Glu	Ala	Ala	Gln 60	Gln	Leu	Arg	Asn
	Ser 65	Ser	Leu	Ile	Gly	Cys 70	Met	Cys	His	Arg	Arg 75	Met	Lys	Asn	Gln	Val 80
	Ala	Суѕ	Leu	Asp	Ile 85	Tyr	Trp	Thr	Val	His 90	Arg	Ala	Arg	Ser	Leu 95	Gly
50	Asn	Tyr	Glu	Leu 100	Asp	Val	Ser	Pro	Tyr 105	Glu	Asp	Thr	Val	Thr 110	Ser	Lys
	Pro	Trp	Lys 115	Met	Asn	Leu	Ser	Lys 120	Leu	Asn	Met	Leu	Lys 125	Pro	Asp	Ser
55	Asp	Leu 130	Cys	Leu	Lys	Phe	Ala 135	Met	Leu	Суѕ	Thr	Leu 140	Asn	Asp	Lys	Cys
	Asp 145	Arg	Leu	Arg	Lys	Ala 150	Tyr	Gly	Glu	Ala	Cys 155	Ser	Gly	Pro	His	Cys 160

```
Gln Arg His Val Cys Leu Arg Gln Leu Leu Thr Phe Phe Glu Lys Ala
                           165
                                               170
             Ala Glu Pro His Ala Gln Gly Leu Leu Leu Cys Pro Cys Ala Pro Asn
                                  185
                        180
             Asp Arg Gly Cys Gly Glu Arg Arg Arg Asn Thr Ile Ala Pro Asn Cys
5
                    195
                                       200
             Ala Leu Pro Pro Val Ala Pro Asn Cys Leu Glu Leu Arg Arg Leu Cys
                                   215
                                                       220
             Phe Ser Asp Pro Leu Cys Arg Ser Arg Leu Val Asp Phe Gln Thr His
                               230
                                                  235
10
             Cys His Pro Met Asp Ile Leu Gly Thr Cys Ala Thr Glu Gln Ser Arg
                            245
                                               250
             Cys Leu Arg Ala Tyr Leu Gly Leu Ile Gly Thr Ala Met Thr Pro Asn
                        260
                                           265
             Phe Val Ser Asn Val Asn Thr Ser Val Ala Leu Ser Cys Thr Cys Arg
                  275 280
15
             Gly Ser Gly Asn Leu Gln Glu Glu Cys Glu Met Leu Glu Gly Phe Phe
                        295
                                                      300
             Ser His Asn Pro Cys Leu Thr Glu Ala Ile Ala Ala Lys Met Arg Phe
                                                   315
             His Ser Gln Leu Phe Ser Gln Asp Trp Pro His Pro Thr Phe Ala Val
                            325
                                               330
20
             Met Ala His Gln Asn Glu Asn Pro Ala Val Arg Pro Gln Pro Trp Asp
                                           345
             Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
                                                 365
                                       360
             Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
                                    375
             Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
                               390
                                                   395
             Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
                           405
                                               410
             Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
30
                       420
                                        425 430
             Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
                                       440
             Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
                                    455
                                                      460
35
             Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
                               470
                                                   475
             Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu
                           485
                                              490
             Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
                        500
                                           505
40
             Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
                                       520
                                                          525
             Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
                                   535
                                                      540
             Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
                                                   555
                                550
45
             Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
                            565
                                               570
             Gly Lys
50
             <210> 372
             <211> 584
             <212> PRT
             <213> Artificial Sequence
55
             <220>
             <223> Synthetic
```

	<400> 372															
	Asp 1	Pro	Leu	Pro	Thr 5	Glu	Ser	Arg	Leu	Met 10	Asn	Ser	Cys	Leu	Gln 15	Ala
5	Arg	Arg	Lys	Cys 20	Gln	Ala	Asp	Pro	Thr 25	Cys	Ser	Ala	Ala	Tyr 30	His	His
	Leu	Asp	Ser 35	Суѕ	Thr	Ser	Ser	Ile 40	Ser	Thr	Pro	Leu	Pro 45	Ser	Glu	Glu
	Pro	Ser 50	Val	Pro	Ala	Asp	Cys 55	Leu	Glu	Ala	Ala	Gln 60	Gln	Leu	Arg	Asn
10	65				_	70		Cys		_	75		_			80
		_		_	85	_	_	Thr		90	_		_		95	_
		_		100	_			Pro	105		_			110		_
15		_	115					Lys 120 Met					125		_	
		130					135	Gly				140				
	145	9		9	_,	150	-1-	O-1	014		155	501	O - 1			160
20	Gln	Arg	His	Val	Cys 165	Leu	Arg	Gln	Leu	Leu 170	Thr	Phe	Phe	Glu	Lys 175	Ala
				180				Leu	185					190		
25	_	_	195	_	_		_	Arg 200	_				205			_
		210					215	Asn	_			220	_	_		_
	225		_			230	_	Ser	-		235	_				240
30	_				245			Gly		250					255	_
				260				Leu	265					270		
			275					Ser 280 Glu					285		_	_
35	_	290	_				295	Glu	_			300		_		
	305				-	310		Asp			315		_		_	320
		502	0		325		0	1101		330					335	
40				340				Pro	345					350		
		_	355				_	9ro 360	_			_	365	_		
45		370			_	_	375	Ser				380			_	
	385	-				390		Leu			395			_		400
		_			405	_	_	Pro	_	410				_	415	
50				420				Ala	425					430		
	_		435			-		Val 440					445			
		450					455	Phe Thr				460				
55	465					470	_	Leu			475		_	_		480
	9					-1-										

					405					400					405	
	Lys	Lys	Gln	Val 500	485 Thr	Leu	Thr	Cys	Met 505	490 Val	Thr	Asp	Phe	Met 510	495 Pro	Glu
5	Asp	Ile	Tyr 515	Val	Glu	Trp	Thr	Asn 520	Asn	Gly	Lys	Thr	Glu 525	Leu	Asn	Tyr
	Lys	As n 530	Thr	Glu	Pro	Val	Leu 535	Asp	Ser	Asp	Gly	Ser 540	Tyr	Phe	Met	Tyr
	Ser 545	Lys	Leu	Arg	Val	Glu 550	Lys	Lys	Asn	Trp	Val 555	Glu	Arg	Asn	Ser	Tyr 560
10	Ser	Cys	Ser	Val	Val 565	His	Glu	Gly	Leu	His 570	Asn	His	His	Thr	Thr 575	Lys
	Ser	Phe	Ser	Arg 580	Thr	Pro	Gly	Lys								
15	<213	0> 3' 1> 3' 2> PI	71 RT		l Co.											
	<221		rtifi	LCIA	L sec	4nem	Je									
20			ynthe	etic												
		0> 3														_
	1		Leu -		5			-		10			_		15	
25	_	_	Lys	20			_		25					30		
		_	Ser 35	_				40					45			
		50	Val			_	55					60			_	
30	65		Leu -		_	70		_		_	75		_			80
		_	Leu	_	85	_	_			90	_		_		95	_
25		_	Glu	100	_				105		_			110		_
35		_	Lys 115 Cys					120					125		_	
		130	Leu				135					140				
40	145	_	His	_	_	150	_	_			155		_			160
		_	Pro		165		_			170					175	
			Gly	180					185					190		
45	_	_	195 Pro	_	_		_	200	_				205			_
	Phe	210 Ser	Asp	Pro	Leu	Cys	215 Arg	Ser	Arg	Leu	Val	220 As p	Phe	Gln	Thr	His
	225		Pro			230					235					240
50			Arg		245					250					255	
			Ser	260					265					270		
55	Gly		275 Gly	Asn	Leu	Gln		280 Glu	Cys	Glu	Gln		285 Glu	Gly	Phe	Phe
	Ser	290 His	Asn	Pro	Cys	Leu	295 Thr	Glu	Ala	Ile	Ala	300 Ala	Lys	Met	Arg	Phe

```
305
                              310
          His Ser Gln Leu Phe Tyr Gln Asp Trp Pro His Pro Thr Phe Ala Val
                          325
                                              330
          Met Ala His Gln Asn Glu Asn Glu Gln Lys Leu Ile Ser Glu Glu Asp
                                          345
5
          Leu Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu His His His
                  355
                                      360
          His His His
              370
10
          <210> 374
          <211> 1200
          <212> DNA
          <213> Homo sapiens
15
          <400> 374
          atggtgegee ecetgaacce gegacegetg eegecegtag teetgatgtt getgetgetg 60
          ctgccgccgt cgccgctgcc tctcgcagcc ggagaccccc ttcccacaga aagccgactc 120
          atgaacagct gtctccaggc caggaggaag tgccaggctg atcccacctg cagtgctgcc 180
          taccaccacc tggattcctg cacctctagc ataagcaccc cactgccctc agaggagcct 240
          teggteeetg etgaetgeet ggaggeagea eageaactea ggaacagete tetgatagge 300
20
          tgcatgtgcc accggcgcat gaagaaccag gttgcctgct tggacatcta ttggaccgtt 360
          caccgtgccc gcagccttgg taactatgag ctggatgtct ccccctatga agacacagtg 420
          accagcaaac cctggaaaat gaatctcagc aaactgaaca tgctcaaacc agactcagac 480
          ctctgcctca agtttgccat gctgtgtact ctcaatgaca agtgtgaccg gctgcgcaag 540
          gcctacgggg aggcgtgctc cgggccccac tgccagcgcc acgtctgcct caggcagctg 600
          ctcactttct tcgagaaggc cgccgagccc cacgcgcagg gcctgctact gtgcccatgt 660
          gcccccaacg accggggctg cggggagcgc cggcgcaaca ccatcgcccc caactgcgcg 720
          etgeegeetg tggeeceeaa etgeetggag etgeggegee tetgettete egaecegett 780
          tgcagatcac gcctggtgga tttccagacc cactgccatc ccatggacat cctaggaact 840
          tgtgcaacag agcagtccag atgtctacga gcatacctgg ggctgattgg gactgccatg 900
          acceccaact ttgtcagcaa tgtcaacace agtgttgcct taagetgcac etgeegagge 960
30
          agtggcaacc tgcaggagga gtgtgaaatg ctggaagggt tcttctccca caacccctgc 1020
          ctcacggagg ccattgcagc taagatgcgt tttcacagcc aactcttctc ccaggactgg 1080
          ccacacccta cctttgctgt gatggcacac cagaatgaaa accctgctgt gaggccacag 1140
          ccctgggtgc cctctctttt ctcctgcacg cttcccttga ttctgctcct gagcctatgg 1200
35
          <210> 375
          <211> 400
          <212> PRT
          <213> Homo sapiens
40
          Met Val Arg Pro Leu Asn Pro Arg Pro Leu Pro Pro Val Val Leu Met
                           5
                                              10
          Leu Leu Leu Leu Pro Pro Ser Pro Leu Pro Leu Ala Ala Gly Asp
                      20
                                          25
          Pro Leu Pro Thr Glu Ser Arg Leu Met Asn Ser Cys Leu Gln Ala Arg
45
                                      40
                                                           45
          Arg Lys Cys Gln Ala Asp Pro Thr Cys Ser Ala Ala Tyr His His Leu
                                  55
          Asp Ser Cys Thr Ser Ser Ile Ser Thr Pro Leu Pro Ser Glu Glu Pro
                              70
                                                   75
50
          Ser Val Pro Ala Asp Cys Leu Glu Ala Ala Gln Gln Leu Arg Asn Ser
                                               90
                          85
          Ser Leu Ile Gly Cys Met Cys His Arg Arg Met Lys Asn Gln Val Ala
                                          105
          Cys Leu Asp Ile Tyr Trp Thr Val His Arg Ala Arg Ser Leu Gly Asn
                                      120
55
          Tyr Glu Leu Asp Val Ser Pro Tyr Glu Asp Thr Val Thr Ser Lys Pro
              130
                                  135
                                                       140
```

	Trp 145	Lys	Met	Asn	Leu	Ser 150	Lys	Leu	Asn	Met	Leu 155	Lys	Pro	Asp	Ser	Asp 160
	Leu	Cys	Leu	Lys	Phe 165	Ala	Met	Leu	Cys	Thr 170	Leu	Asn	Asp	Lys	Cys 175	Asp
5	Arg	Leu	Arg	Lys 180		Tyr	Gly	Glu	Ala 185	Суѕ	Ser	Gly	Pro	His 190	Cys	Gln
	Arg	His	Val 195		Leu	Arg	Gln	Leu 200		Thr	Phe	Phe	Glu 205		Ala	Ala
	Glu		His	Ala	Gln	Gly			Leu	Cys	Pro	_		Pro	Asn	Asp
10	_	210 Gly	Cys	Gly	Glu	_	215 Arg	Arg	Asn	Thr		220 Ala	Pro	Asn	Cys	
	225 Leu	Pro	Pro	Val		230 Pro	Asn	Cys	Leu		235 Leu	Arg	Arg	Leu		240 Phe
	Ser	Asp	Pro		245 Cys	Arg	Ser	Arg		250 Val	Asp	Phe	Gln		255 His	Cys
15	His	Pro	Met	260 Asp	Ile	Leu	Gly		265 Cys	Ala	Thr	Glu		270 Ser	Arg	Cys
	Leu		275 A la	Tyr	Leu	Gly		280 Ile	Gly	Thr	Ala		285 Thr	Pro	Asn	Phe
	Val	290 Ser	Asn	Val	Asn	Thr	295 Ser	Val	Ala	Leu	Ser	300 Cys	Thr	Cys	Arg	Gly
20	305 Ser	Gly	Asn	Leu	Gln	310 Glu	Glu	Cys	Glu	Met	315 Leu	Glu	Gly	Phe	Phe	320 Ser
	His	Asn	Pro	Cys	325 Leu	Thr	Glu	Ala	Ile	330 Ala	Ala	Lys	Met	Arg	335 Phe	His
	Ser	Gln	Leu	340 Phe	Ser	Gln	Asp	Trp	345 Pro	His	Pro	Thr	Phe	350 Ala	Val	Met
25	Ala	His	355 Gln	Asn	Glu	Asn	Pro	360 Ala	Val	Arg	Pro	Gln	365 Pro	Trp	Val	Pro
		370	Phe				375			_		380		_		
	385					390					395					400
30																
		0> 3° 1> 6°														
		2> PI														
25	<213	3> H	omo s	sapie	ens											
35	<400	0> 3.	76													
	Asp 1	Arg	Leu	Asp	Cys 5	Val	Lys	Ala	Ser	Asp 10	Gln	Cys	Leu	Lys	Glu 15	Gln
	Ser	Суѕ	Ser	Thr 20	Lys	Tyr	Arg	Thr	Leu 25	Arg	Gln	Cys	Val	Ala 30	Gly	Lys
40	Glu	Thr	Asn 35	Phe	Ser	Leu	Ala	Ser 40	Gly	Leu	Glu	Ala	Lys 45	Asp	Glu	Cys
	Arg	Ser 50	Ala	Met	Glu	Ala	Leu 55	Lys	Gln	Lys	Ser	Leu 60	Tyr	Asn	Cys	Arg
45	Cys 65	Lys	Arg	Gly	Met	Lys 70	Lys	Glu	Lys	Asn	Cys 75	Leu	Arg	Ile	Tyr	Trp 80
40		Met	Tyr	Gln	Ser 85	Leu	Gln	Gly	Asn	Asp	Leu	Leu	Glu	Asp	Ser 95	Pro
	Tyr	Glu	Pro	Val 100		Ser	Arg	Leu	Ser 105	Asp	Ile	Phe	Arg	Val 110		Pro
50	Phe	Ile	Ser 115		Val	Phe	Gln	Gln 120		Glu	His	Ile	Pro 125		Gly	Asn
	Asn	Cys 130	Leu	Asp	Ala	Ala	Lys 135		Суѕ	Asn	Leu	Asp 140		Ile	Cys	Lys
	Lys 145		Arg	Ser	Ala	Tyr 150		Thr	Pro	Суз	Thr 155		Ser	Val	Ser	Asn 160
55		Val	Cys	Asn	Arg 165		Lys	Cys	His	Lys 170		Leu	Arg	Gln	Phe 175	
	Asp	Lys	Val	Pro		Lys	His	Ser	Tyr	_	Met	Leu	Phe	Cys		Cys

```
180
                                      185
           Arg Asp Ile Ala Cys Thr Glu Arg Arg Gln Thr Ile Val Pro Val
                          200
                                           205
           Cys Ser Tyr Glu Glu Arg Glu Lys Pro Asn Cys Leu Asn Leu Gln Asp
                                215
5
            Ser Cys Lys Thr Asn Tyr Ile Cys Arg Ser Arg Leu Ala Asp Phe Phe
                            230
                                           235
            Thr Asn Cys Gln Pro Glu Ser Arg Ser Val Ser Ser Cys Leu Lys Glu
                                          250
           Asn Tyr Ala Asp Cys Leu Leu Ala Tyr Ser Gly Leu Ile Gly Thr Val
10
                                      265
                     260
           Met Thr Pro Asn Tyr Ile Asp Ser Ser Ser Leu Ser Val Ala Pro Trp
                                   280
           Cys Asp Cys Ser Asn Ser Gly Asn Asp Leu Glu Glu Cys Leu Lys Phe
                    295
                                        300
           Leu Asn Phe Phe Lys Asp Asn Thr Cys Leu Lys Asn Ala Ile Gln Ala
15
                   310 315
           Phe Gly Asn Gly Ser Asp Val Thr Val Trp Gln Pro Ala Phe Pro Val
                         325 330 335
           Gln Thr Thr Thr Ala Thr Thr Thr Ala Leu Arg Val Lys Asn Lys
                                       345
                                                        350
           Pro Leu Gly Pro Ala Gly Ser Glu Asn Glu Ile Pro Thr His Val Leu
20
            355 360
                                          365
           Pro Pro Cys Ala Asn Leu Gln Ala Gln Lys Leu Lys Ser Asn Val Ser
                                375
                                                 380
           Gly Asn Thr His Leu Cys Ile Ser Asn Gly Asn Tyr Glu Lys Glu Gly
                            390
                                              395
25
           Leu Gly Ala Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
                         405
                                          410
           Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
                             425
                     420
           Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
             435
                        440
30
           Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
                                455
           Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
                            470
                                              475
            Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
35
                         485
                                          490
           Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
                     500
                                       505
           Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
                                   520
           Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
40
                                535
              530
                                                 540
           Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
                          550
                                           555
           Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
                                         57<sup>-</sup>0
                  565
           Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
45
                                       585
            Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
                                   600
                                                    605
            Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
                                615
                                                 620
50
            Ser Leu Ser Leu Ser Pro Gly Lys
                      630
           <210> 377
            <211> 405
55
            <212> PRT
            <213> Artificial Sequence
```

<220>

	<22	<223> Cynomolgus GFRalpha3:								cerebellum cDNA									
	<40	0> 3'	77																
5	Met 1	Val	Arg	Pro	Pro 5	Ser	Pro	Arg	Pro	Leu 10	Pro	Pro	Val	Val	Leu 15	Met			
	Leu	Leu	Leu	Leu 20	Leu	Leu	Leu	Leu	Leu 25	Leu	Pro	Pro	Ser	Pro 30	Leu	Pro			
	Leu	Ala	Ala 35	Gly	Asp	Pro	Leu	Pro 40	Thr	Glu	Ser	Arg	Leu 45	Met	Asn	Ser			
10	Cys	Leu 50	Gln	Ala	Arg	Arg	Lys 55	Cys	Gln	Ala	Asp	Pro 60	Ile	Cys	Ser	Ala			
	Ala 65	Tyr	His	His	Leu	Asp 70	Ser	Cys	Thr	Ser	Ser 75	Ile	Ser	Thr	Pro	Leu 80			
15	Pro	Ser	Glu	Glu	Pro 85	Ser	Val	Pro	Ala	Asp 90	Cys	Leu	Glu	Ala	Ala 95	Gln			
	Gln	Leu	Arg	Asn 100	Ser	Ser	Leu	Ile	Gly 105	Суѕ	Met	Cys	His	Arg 110	Arg	Met			
	Lys	Asn	Gln 115	Val	Ala	Суѕ	Leu	Asp 120	Ile	Tyr	Trp	Thr	Val 125	His	Arg	Ala			
20	Arg	Ser 130	Leu	Gly	Asn	Tyr	Glu 135	Leu	Asp	Val	Ser	Pro 140	Tyr	Glu	Asp	Thr			
	Val 145	Thr	Ser	Lys	Pro	Trp 150	Lys	Met	Asn	Leu	Ser 155	Lys	Leu	Asn	Met	Leu 160			
	Lys	Pro	Asp	Ser	Asp 165	Leu	Cys	Leu	Lys	Phe 170	Ala	Met	Leu	Cys	Thr 175	Leu			
25	Asn	Asp	Lys	Cys 180	Asp	Arg	Leu	Arg	Lys 185	Ala	Tyr	Gly	Glu	Ala 190	Cys	Ser			
			195					200					205		Thr				
		210	_				215				_	220			Cys				
30	225				_	230	_	_	_		235	_	_		Thr	240			
				_	245					250			_		Glu 255				
35				260					265					270	Val				
			275					280					285		Ala				
		290					295					300			Thr				
40	305					310					315				Leu	320			
					325					330					Gln 335				
		_		340					345					350	Ala				
45			355					360					365		His				
		370					375					380			Arg				
	385					Ser 390	Leu	Phe	Ser	Cys	Thr 395	Leu	Pro	Leu	Ile	Leu 400			
50	Leu	Leu	Ser	Leu	1rp 405														
		0> 3'																	
55		1> 10 2> P1																	
	<21	3> A:	rtif	icia:	L Sec	quen	ce												

<220>

<223> Cynomolgus RET without signal sequence <400> 378 Leu Tyr Phe Ser Arg Asp Ala Tyr Trp Glu Lys Leu Tyr Val Asp Gln Pro Ala Gly Thr Pro Leu Leu Tyr Val His Ala Leu Arg Asp Ala Pro Glu Glu Val Pro Ser Phe Arg Leu Gly Gln His Leu Tyr Gly Thr Tyr Arg Thr Arg Leu His Glu Asn Asn Trp Ile Cys Ile Gln Glu Asp Thr Gly Leu Leu Tyr Leu Asn Arg Ser Leu Asp Arg Ser Ser Trp Glu Lys Leu Ser Gly Arg Asn Arg Gly Phe Pro Leu Leu Thr Val Tyr Leu Lys Val Phe Leu Ser Pro Thr Ser Leu Arg Glu Gly Glu Cys Gln Trp Pro Gly Cys Ala Arg Val Tyr Phe Ser Phe Phe Asn Thr Ser Phe Pro Ala Cys Thr Ser Leu Lys Pro Arg Glu Leu Cys Phe Pro Glu Thr Arg Pro Ser Phe Arg Ile Arg Glu Asn Arg Pro Pro Gly Thr Phe His Gln Phe Arg Leu Leu Pro Val Gln Phe Leu Cys Pro Asn Ile Ser Val Ala Tyr Arg Leu Leu Glu Gly Glu Gly Leu Pro Phe Arg Cys Ala Pro Asp Ser Leu Glu Val Ser Thr Arg Trp Ala Leu Asp Arg Glu Gln Arg Glu Lys Tyr Glu Leu Val Ala Val Cys Thr Val His Ala Gly Ala Arg Glu Glu Val Val Met Val Pro Phe Pro Val Thr Val Tyr Asp Glu Asp Asp Ser Ala Pro Thr Phe Pro Ala Gly Val Asp Thr Ala Ser Ala Val Val Glu Phe Lys Arg Lys Glu Asp Thr Val Val Ala Thr Leu Arg Val Phe Asp Ala Asp Val Val Pro Ala Ser Gly Glu Leu Val Arg Arg Tyr Thr Ser Thr Leu Leu Pro Gly Asp Thr Trp Thr Gln Gln Thr Phe Arg Val Glu His Trp Pro Asn Glu Thr Ser Val Gln Ala Asn Gly Ser Phe Val Arg Ala Thr Val His Asp Tyr Arg Leu Val Leu Asn Arg Asn Leu Ser Ile Ser Glu Asn Arg Thr Met Gln Leu Ala Val Leu Val Asn Asp Ser Asp Phe Gln Gly Pro Gly Ala Gly Val Leu Leu Leu His Phe Asn Val Ser Val Leu Pro Val Ser Leu His Leu Pro Ser Ser Tyr Ser Leu Ser Val Ser Arg Arg Ala Arg Arg Phe Ala Gln Ile Gly Lys Val Cys Val Glu Asn Cys Gln Ala Phe Ser Gly Ile Asn Val Gln Tyr Glu Leu His Ser Ser Gly Ala Asn Cys Ser Thr Leu Gly Val Val Thr Ser Ala Glu Asp Thr Ser Gly Ile Leu Phe Val Asn Asp Thr Lys Ala Leu Arg Arg Pro Lys Cys Ala Glu Leu His Tyr Met Val Val Ala Thr Asn His Gln Thr

	Ser 465	Arg	Gln	Ala	Gln	Ala 470	Gln	Leu	Leu	Val	Thr 475	Val	Glu	Gly	Leu	Tyr 480
	Val	Ala	Glu	Glu	Ala 485	Gly	Cys	Pro	Leu	Ser 490	Cys	Ala	Val	Ser	Lys 495	Arg
5	Arg	Pro	Glu	C ys 500	Glu	Glu	Cys	Gly	Gly 505	Leu	Gly	Ser	Pro	Thr 510	Gly	Arg
	Cys	Glu	Trp 515	Arg	Gln	Gly	Asp	Gly 520	Lys	Gly	Ile	Thr	Arg 525	Asn	Phe	Ser
	Thr	Cys 530	Ser	Pro	Ser	Thr	Lys 535	Thr	Сув	Pro	Asp	Gly 540	His	Сув	Asp	Val
10	545					550		Ile			555					560
					565			Pro		570					575	
15	_	_	_	580	_		_	Phe	585				_	590		_
			595					Pro 600					605			
		610					615	Phe				620				
20	625			-		630	-	Tyr		-	635			-		640
	Ile	Pro	Ser	Ala	Glu 645	Met	Thr	Phe	Arg	Arg 650	Pro	Ala	Gln	Ala	Phe 655	Pro
				660				Ala	665	_				670		
25			675				_	Ala 680		_			685	_		_
	_	690			_	_	695	Leu			_	700			_	
	705					710		Lys			715					720
30	_		_		725			Ala		730					735	
				740				Leu	745					750		
			755					11e 760	_		_		765			
35	-	770					775	Val		-		780	_	-		
	785					790		Arg			795					800
40					805			Ser		810					815	
				820	_	_		Ile	825			_		830		-
	_		835	-				Met 840	-				845	-		
45		850					855	Glu -				860				
	865	_			_	870		Tyr -			875		_		_	880
				_	885			Lys		890					895	
50	_			900				Ser	905		_			910		
			915					Gly 920					925			
		930					935	Leu	_		_	940	_			_
55	945	_		_		950		Met	_	_	955				_	960
	Lys	Gln	Glu	Pro	Asp	Lys	Arg	Pro	Val	Phe	Ala	Asp	Ile	Ser	Lys	Asp

					965					970					975	
	Leu	Glu	Lys	Met 980	Met	Val	Lys	Ser	Arg 985	Asp	Tyr	Leu	Asp	Leu 990	Ala	Ala
5	Ser	Thr	Pro 995	Ser	Asp	Ser	Leu	Leu 1000		Asp	Asp	Gly	Leu 1005		Glu	Glu
	Glu	Thr 1010	Pro)	Leu	Val	Asp	Cys 1015		Asn	Ala	Pro	Leu 1020		Arg	Ala	Leu
	Pro 1025		Thr	Trp	Ile	Glu 1030	_	Lys	Leu	Tyr	Gly 1035		Ser	Asp	_	Asn L040
10	Trp	Pro	Gly	Glu	Ser 1045		Val	Pro	Leu	Thr 1050	_	Ala	Asp	Gly	Thr 1055	
	Thr	Gly	Phe	Pro 1060	_	Tyr	Ala	Asn	Asp 1065		Val	Tyr	Ala	Asn 1070	_	Met
	Leu	Ser	Pro 1075		Ala	Ala	Lys	Leu 1080		Asp	Thr	Phe	Asp 1085	_		
15																
	<210)> 3	79													
		L> 3														
		2> PI														
20	\Z1 3	> A1	rtifi	.cıaı	. sec	quenc	e.									
20	<220)>														
	<223		ouse		_			_								
			a 1-3 a 344										ne ta	. ~		
		ac	1 31.	. 5,,		, C G(, 111	INCL	my C	nexe		, LULI	16 00	.g		
25	<400)> 37	79													
	Asn 1	Ser	Leu	Ala	Thr 5	Glu	Asn	Arg	Phe	Val 10	Asn	Ser	Cys	Thr	Gln 15	Ala
	Arg	Lys	Lys	Cys 20	Glu	Ala	Asn	Pro	Ala 25	Сув	Lys	Ala	Ala	Tyr 30	Gln	His
30		_	Ser 35	_				40		_			45			
	Ser	Al a 50	Met	Ser	Ala	Asp	Cys 55	Leu	Glu	Ala	Ala	Glu 60	Gln	Leu	Arg	Asn
	Ser 65	Ser	Leu	Ile	Asp	Cys 70	Arg	Cys	His	Arg	Arg 75	Met	Lys	His	Gln	Ala 80
35	Thr	Cys	Leu	Asp	Ile 85	Tyr	Trp	Thr	Val	His 90	Pro	Ala	Arg	Ser	Leu 95	Gly
			Glu	100					105					110		
40			Lys 115					120					125			
40	Asp	Leu 130	Cys	Leu	Lys	Phe	Ala 135	Met	Leu	Cys	Thr	Leu 140	His	Asp	Lys	Cys
	Asp 145	Arg	Leu	Arg	Lys	Ala 150	Tyr	Gly	Glu	Ala	Cys 155	Ser	Gly	Ile	Arg	Cys 160
45		_	His		165					170					175	
	Ala	Glu	Ser	His 180	Ala	Gln	Gly	Leu	Leu 185	Leu	Cys	Pro	Cys	Ala 190	Pro	Glu
	Asp	Ala	Gly 195	Cys	Gly	Glu	Arg	Arg 200	Arg	Asn	Thr	Ile	Ala 205	Pro	Ser	Cys
50	Ala	Leu 210	Pro	Ser	Val	Thr	Pro 215	Asn	Суѕ	Leu	Asp	Leu 220	Arg	Ser	Phe	Cys
	Arg 225	Ala	Asp	Pro	Leu	Cys 230	Arg	Ser	Arg	Leu	Met 235	Asp	Phe	Gln	Thr	His 240
	Суѕ	His	Pro	Met	Asp 245	Ile	Leu	Gly	Thr	Cys 250	Ala	Thr	Glu	Gln	Ser 255	Arg
55	Cys	Leu	Arg	Ala 260	Tyr	Leu	Gly	Leu	Ile 265	Gly	Thr	Ala	Met	Thr 270	Pro	Asn
	Phe	Ile	Ser	Lys	Val	Asn	Thr	Thr	Val	Ala	Leu	Ser	Cys	Ser	Cys	Arg

```
275
                                        280
           Gly Ser Gly Asn Leu Gln Asp Glu Cys Glu Gln Leu Glu Arg Ser Phe
                                   295
                                                        300
           Ser Gln Asn Pro Cys Leu Val Glu Ala Ile Ala Ala Lys Met Arg Phe
                               310
                                                    315
5
           His Arg Gln Leu Phe Ser Gln Asp Trp Ala Asp Ser Thr Phe Ser Val
                                                330
                           325
          Val Gln Gln Gln Asn Ser Asn Glu Gln Lys Leu Ile Ser Glu Glu Asp
                                            345
           Leu Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu His His His
10
                   355
                                        360
                                                            365
           His His His
               370
           <210> 380
15
           <211> 372
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> synthetic
20
           <400> 380
           caggttcaac tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60
           tectgeaagg ettetggtta eacetttace agetatggta teatetgggt gegacaggee 120
           cctggacaag ggcttgagtg gatgggatgg atcagcggtt acaatggtaa cacaaactat 180
25
           acacagaatc tccagggcag agtcaccatg accacagaca cttccacgac cacagcctac 240
           atggagetga ggageetgag atetgaegae aeggeegtgt attactgtge gagatggggt 300
           atagcaactc gtccctacta ctactacggt atggacgtct ggggccaagg gaccacggtc 360
           accgtctcct ca
           <210> 381
30
           <211> 124
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> synthetic
35
           <400> 381
           Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                                                10
           Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
40
                       20
                                            25
           Gly Ile Ile Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                                        40
                                                            45
           Gly Trp Ile Ser Gly Tyr Asn Gly Asn Thr Asn Tyr Thr Gln Asn Leu
                                   55
                                                        60
           Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Thr Thr Ala Tyr
45
                                                    75
           Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
                                                90
                                                                     95
                           85
           Ala Arg Trp Gly Ile Ala Thr Arg Pro Tyr Tyr Tyr Tyr Gly Met Asp
                       100
                                            105
50
           Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                   115
                                        120
           <210> 382
           <211> 24
55
           <212> DNA
           <213> Artificial Sequence
```

```
<220>
         <223> synthetic
         <400> 382
                                                                              24
         ggttacacct ttaccagcta tggt
5
         <210> 383
         <211> 8
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> synthetic
         <400> 383
15
         Gly Tyr Thr Phe Thr Ser Tyr Gly
                           5
         <210> 384
         <211> 24
20
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> synthetic
         <400> 384
                                                                              24
         atcagcggtt acaatggtaa caca
         <210> 385
         <211> 8
30
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> synthetic
35
         <400> 385
         Ile Ser Gly Tyr Asn Gly Asn Thr
          1
40
         <210> 386
         <211> 51
         <212> DNA
         <213> Artificial Sequence
45
         <220>
         <223> synthetic
         gcgagatggg gtatagcaac tcgtccctac tactactacg gtatggacgt c
                                                                              51
50
         <210> 387
         <211> 17
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> synthetic
```

```
<400> 387
           Ala Arg Trp Gly Ile Ala Thr Arg Pro Tyr Tyr Tyr Tyr Gly Met Asp
           1
                            5
                                                10
           Val
5
           <210> 388
           <211> 321
           <212> DNA
10
           <213> Artificial Sequence
           <220>
           <223> synthetic
           <400> 388
15
           gacatccaga tgacccagtc tccatcctca ctgtctgcat ctgtaggaga cagagtcacc 60
           atcacttgtc gggcgagtca ggacattacc aattatttag cctggtttca gcagaaacca 120
           gggaaagccc ctaagtccct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
           aagttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
           gaagattttg caacttatta ctgccaacag tataatagtt acceteceae ttteggeeet 300
                                                                               321
20
           gggaccaaag tggatatcaa a
           <210> 389
           <211> 107
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> synthetic
           <400> 389
           Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
30
                           5
                                               10
          Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Thr Asn Tyr
                                           25
           Leu Ala Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu Ile
                                                            45
                   35
                                       40
35
           Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Lys Phe Ser Gly
                                   55
                                                        60
           Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                               70
                                                    75
           Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Pro
                           85
                                                90
40
           Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
                       100
           <210> 390
           <211> 18
45
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> synthetic
50
           <400> 390
           caggacatta ccaattat
                                                                               18
           <210> 391
           <211> 6
55
           <212> PRT
           <213> Artificial Sequence
```

```
<220>
          <223> synthetic
          <400> 391
          Gln Asp Ile Thr Asn Tyr
5
          <210> 392
          <211> 9
10
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> synthetic
15
          <400> 392
                                                                                9
          gctgcatcc
          <210> 393
          <211> 3
20
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> synthetic
          <400> 393
          Ala Ala Ser
           1
30
          <210> 394
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
35
          <223> synthetic
          <400> 394
                                                                               27
          caacagtata atagttaccc tcccact
40
          <210> 395
           <211> 9
           <212> PRT
           <213> Artificial Sequence
           <220>
45
          <223> synthetic
           <400> 395
          Gln Gln Tyr Asn Ser Tyr Pro Pro Thr
                            5
50
           <210> 396
           <211> 369
           <212> DNA
           <213> Artificial Sequence
           <220>
```

```
<223> synthetic
          <400> 396
          gaggtgcagt tattggagtc tggggggaac ttggtacagc cgggggggtc cctgagactc 60
          tcctgtgcag cctctggatt cacctttagc agttatgcca tgacctgggt ccgccaggct 120
5
          ccagggaagg ggctggagtg ggtctcaact attagtggta gtggtaccag cacatattac 180
          gcagactccg tgaagggccg gttcaccatc tccagggaca attccaggga cacggtgttt 240
          ctacaaatga acagcctgag agccgaggac acggccgtat attactgttc gaaaccttct 300
          gcattacgat ttttacattg gttatgtatg gacgtctggg gccaagggac cctggtcacc 360
          gtctcctca
10
          <210> 397
          <211> 123
          <212> PRT
          <213> Artificial Sequence
15
          <223> synthetic
          <400> 397
          Glu Val Gln Leu Leu Glu Ser Gly Gly Asn Leu Val Gln Pro Gly Gly
           1
                            5
                                               10
20
          Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                      20
                                           25
          Ala Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                       40
                                                            45
          Ser Thr Ile Ser Gly Ser Gly Thr Ser Thr Tyr Tyr Ala Asp Ser Val
                                   55
          Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Arg Asp Thr Val Phe
                               70
                                                    75
          Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                               90
                           85
          Ser Lys Pro Ser Ala Leu Arg Phe Leu His Trp Leu Cys Met Asp Val
30
                      100
                                           105
          Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
                                       120
35
          <210> 398
          <211> 24
          <212> DNA
          <213> Artificial Sequence
          <220>
40
          <223> synthetic
          <400> 398
          ggattcacct ttagcagtta tgcc
                                                                              24
          <210> 399
45
          <211> 8
          <212> PRT
          <213> Artificial Sequence
          <220>
50
          <223> synthetic
          <400> 399
          Gly Phe Thr Phe Ser Ser Tyr Ala
55
          <210> 400
```

```
<211> 24
          <212> DNA
          <213> Artificial Sequence
          <220>
5
          <223> synthetic
          <400> 400
                                                                               24
          attagtggta gtggtaccag caca
10
          <210> 401
          <211> 8
          <212> PRT
          <213> Artificial Sequence
          <220>
15
          <223> synthetic
          <400> 401
          Ile Ser Gly Ser Gly Thr Ser Thr
20
          <210> 402
          <211> 48
          <212> DNA
          <213> Artificial Sequence
25
          <220>
          <223> synthetic
          <400> 402
30
          tcgaaacctt ctgcattacg atttttacat tggttatgta tggacgtc
                                                                               48
          <210> 403
          <211> 16
<212> PRT
          <213> Artificial Sequence
35
          <220>
          <223> synthetic
          <400> 403
40
          Ser Lys Pro Ser Ala Leu Arg Phe Leu His Trp Leu Cys Met Asp Val
                            5
          <210> 404
          <211> 321
45
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> synthetic
50
          <400> 404
          gacatccaga tgacccagtc tccatcctca ctgtctgcat ttgtaggaga cagagtcacc 60
          atcacttgtc gggcgagtca ggacattagg aattatttag actggtttca gcagaaacca 120
          gggaaagccc ctaagtccct gatctatgct gcatccaatt tgcaaagtgg ggtcccatca 180
          aggttcggcg gcagtggatc tgggacagat ttcactctca ccatcaacag cctgcagcct 240
55
          gaagattttg taacttatta ctgccagcag tataattctt accctcccac tttcggcgga 300
          gggaccaagg tggagatcaa a
                                                                               321
```

```
<210> 405
           <211> 107
           <212> PRT
           <213> Artificial Sequence
5
           <220>
           <223> synthetic
           <400> 405
           Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Phe Val Gly
10
            1
                            5
                                                10
           Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg Asn Tyr
                       20
                                            25
           Leu Asp Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu Ile
                   35
                                        40
           Tyr Ala Ala Ser Asn Leu Gln Ser Gly Val Pro Ser Arg Phe Gly Gly
15
                                   55
           Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro
                               70
                                                    75
           Glu Asp Phe Val Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Pro
                                                90
           Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
20
                       100
           <210> 406
           <211> 18
25
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> synthetic
30
           <400> 406
                                                                               18
           caggacatta ggaattat
           <210> 407
           <211> 6
35
           <212> PRT
           <213> Artificial Sequence
           <220>
           <223> synthetic
40
           <400> 407
           Gln Asp Ile Arg Asn Tyr
            1
           <210> 408
45
           <211> 9
           <212> DNA
           <213> Artificial Sequence
           <220>
50
           <223> synthetic
           <400> 408
                                                                               9
           gctgcatcc
           <210> 409
55
           <211> 3
           <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> synthetic
5
         <400> 409
         Ala Ala Ser
          1
10
         <210> 410
         <211> 27
         <212> DNA
          <213> Artificial Sequence
15
          <220>
          <223> synthetic
          <400> 410
                                                                                 27
         cagcagtata attettacce teccaet
20
          <210> 411
          <211> 9
          <212> PRT
          <213> Artificial Sequence
25
          <220>
          <223> synthetic
          <400> 411
         Gln Gln Tyr Asn Ser Tyr Pro Pro Thr
30
                            5
```

Claims

35

40

45

50

- 1. An anti-GFR α 3 antibody or antigen-binding fragment thereof comprising an HCVR/LCVR pair encoded by a nucleic acid sequence pair selected from the group consisting of:
 - (i) SEQ ID NO: 1 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 9 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto; (ii) SEQ ID NO: 17 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 25 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (iii) SEQ ID NO: 33 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 41 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (iv) SEQ ID NO: 49 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 57 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (v) SEQ ID NO: 65 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 73 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (vi) SEQ ID NO: 81 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 89 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto:
 - (vii) SEQ ID NO: 97 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 105 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;

5

10

15

20

25

30

35

40

45

50

- (viii) SEQ ID NO: 113 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 121 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (ix) SEQ ID NO: 129 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 137 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (x) SEQ ID NO: 145 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 153 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xi) SEQ ID NO: 161 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 169 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xii) SEQ ID NO: 177 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 185 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xiii) SEQ ID NO: 193 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 201 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xiv) SEQ ID NO: 209 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 217 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xv) SEQ ID NO: 225 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 233 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
- (xvi) SEQ ID NO: 241 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 249 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xvii) SEQ ID NO: 257 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 265 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xviii) SEQ ID NO: 273 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 281 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xix) SEQ ID NO: 289 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 297 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xx) SEQ ID NO: 305 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 313 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto:
 - (xxi) SEQ ID NO: 321 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 329 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xxii) SEQ ID NO: 337 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 345 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xxiii) SEQ ID NO: 353 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 361 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (xxiv) SEQ ID NO: 380 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 388 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto: and
 - (xxv) SEQ ID NO: 396 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 404 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto.
- 2. The antibody or an antigen-binding fragment thereof of claim 1, having one or more of the following characteristics:
 - (i) exhibits a K_D ranging from about 10⁻⁸ M to about 10⁻¹³ M as measured by surface plasmon resonance;

- (ii) demonstrates the ability to block about 50-100% of the binding of GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 15 nM;
- (iii) demonstrates the ability to block about 20% to about 100% of the binding of GFR α 3 to a solid support coated with a mixture of artemin and RET;
- (iv) blocks or inhibits artemin-dependent activation of RET with an IC $_{50}$ ranging from about 200 pM to about 50 nM;
- (v) inhibits or reduces one or more nociceptive responses in an in vivo model of bone cancer pain;
- (vi) inhibits or reduces artemin-sensitized thermal hyperalgesia in vivo;
- (vii) inhibits or reduces allodynia in an in vivo model of osteoarthritis; or
- (viii) does not cross-react with other GFR co-receptors for RET.
- 3. The antibody or an antigen-binding fragment thereof of any one of the preceding claims, wherein:
 - (a) the antibody is selected from the group consisting of a chimeric antibody, a humanized antibody and a human antibody, and/or;
 - (b) wherein the antibody does not cross-react with human GFR α 1 or human GFR α 2.
- 4. The antibody or an antigen-binding fragment thereof of any one of the preceding claims, wherein:
 - (a) the antibody demonstrates the ability to block about 50-95% of the binding of human GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 40 pM to about 750 pM;
 - (b) the antibody or the antigen-binding fragment thereof blocks about 75-100% of the binding of human GFR α 3 to its ligand, artemin, with an IC₅₀ value ranging from about 400 pM to about 15 nM;
 - (c) the antibody or the antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of human RET with an IC_{50} ranging from about 300 pM to about 5 nM; or
 - (d) the antibody or the antigen-binding fragment thereof blocks or inhibits artemin-dependent activation of cynomolgus RET with an IC_{50} ranging from about 0.7 nM to about 2.5 nM.
- 5. The antibody or antigen-binding fragment thereof of any one of the preceding claims, comprising an HCVR/LCVR pair encoded by a nucleic acid sequence pair selected from the group consisting of:
 - (i) SEQ ID NO: 49 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 57 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto; (ii) SEQ ID NO: 145 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 153 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto;
 - (iii) SEQ ID NO: 209 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 217 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto; and
 - (iv) SEQ ID NO: 289 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto, and SEQ ID NO: 297 or a sequence having at least 90%, at least 95%, at least 98%, or at least 99% identity thereto.
- 6. An isolated nucleic acid molecule encoding the antibody or antigen-binding fragment of any of claims 1-5.
- 7. An expression vector comprising the nucleic acid molecule of claim 6.
 - **8.** A method of producing an anti-GFRα3 antibody or antigen-binding fragment thereof comprising the steps of introducing the expression vector of claim 7 into an isolated host cell, growing the cell under conditions permitting production of the antibody or fragment thereof, and recovering the antibody so produced.
 - **9.** A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof according to any one of claims 1-5 and a pharmaceutically acceptable carrier or diluent.
- 10. A pharmaceutical composition comprising an antibody or antigen-binding fragment thereof according to any one of claims 1-5 and a second therapeutic agent selected from the group consisting of an opioid, a COX-2 inhibitor, a local anesthetic, an NMDA modulator, a cannabinoid receptor agonist, a P2X family modulator, a VR1 antagonist, a substance P antagonist, a second GFRα3 antagonist, a cytokine or cytokine receptor antagonist, a nerve growth factor (NGF) inhibitor (a small molecular inhibitor or an anti-NGF antibody), an inhibitor of BDNF, TrkA, TrkB or p75,

10

5

25

20

30

40

35

aspirin, a NSAID, a steroid, morphine, a selective serotonin reuptake inhibitor (SSRI), a serotonin norepinephrine reuptake inhibitor (SNRI), a tricyclic, an inhibitor of a voltage-gated sodium channel (Na $_{v}$), a calcium channel inhibitor, a potassium channel inhibitor, a tumor necrosis factor (TNF) or TNF receptor inhibitor, an inhibitor of TWEAK (TNF-related WEAK inducer of apoptosis), a RET inhibitor, an inhibitor of a GDNF family ligand, an inhibitor of GFR α 1, GFR α 2 or GFR α 4, an inhibitor of an acid sensing ion channel (ASIC1 or ASIC3), an anti-convulsant (gabapentin or pregabalin), an inhibitor of a prokineticin receptor (PROK1 and PROK2), a caspase inhibitor, a p38 inhibitor, an IKK1/2 inhibitor, CTLA-4Ig and a corticosteroid; and a pharmaceutically acceptable carrier or diluent; optionally wherein the second GFR α 3 antagonist is a small organic molecule, a polypeptide antagonist, a second antibody specific for GFR α 3, a siRNA or an antisense molecule specific for GFR α 3; or wherein the cytokine or cytokine receptor antagonist is an interleukin-1 (IL-1) antagonist, an IL-6 antagonist, or an IL-18 antagonist.

5

10

15

20

35

40

45

50

55

- 11. The isolated antibody or antigen-binding fragment thereof according to any one of claims 1-5, or the pharmaceutical composition of either claim 9 or 10, for use in treating the pain associated with thermal hyperalgesia, wherein the pain associated with thermal hyperalgesia is prevented, ameliorated, or reduced in severity or frequency of occurrence.
- **12.** The antibody or antigen-binding fragment thereof according to any one of claims 1-5, or the pharmaceutical composition of either claim 9 or 10, for use in treating pain associated with bone cancer, wherein the pain associated with bone cancer is prevented, ameliorated, or reduced in severity or frequency of occurrence.
- **13.** The antibody, antigen-binding fragment, or pharmaceutical composition for use according to claim 11 or 12, wherein said antibody, antigen-binding fragment or pharmaceutical composition is for administration to a patient in combination with a second therapeutic agent; wherein said second therapeutic agent is optionally as defined in claim 10.
- 14. The antibody or antigen-binding fragment thereof of claim 1, comprising an HCDR1 amino acid sequence of SEQ ID NO: 148; an HCDR2 amino acid sequence of SEQ ID NO: 150; an HCDR3 amino acid sequence of SEQ ID NO: 152; an LCDR1 amino acid sequence of SEQ ID NO: 156; an LCDR2 amino acid sequence of SEQ ID NO: 158; and an LCDR3 amino acid sequence of SEQ ID NO: 160.
- 15. The antibody or antigen-binding fragment thereof of claim 1, comprising an HCVR amino acid sequence of SEQ ID NO: 146 or the CDRs contained therein, and/or an LCVR amino acid sequence of SEQ ID NO: 154 or the CDRs contained therein.

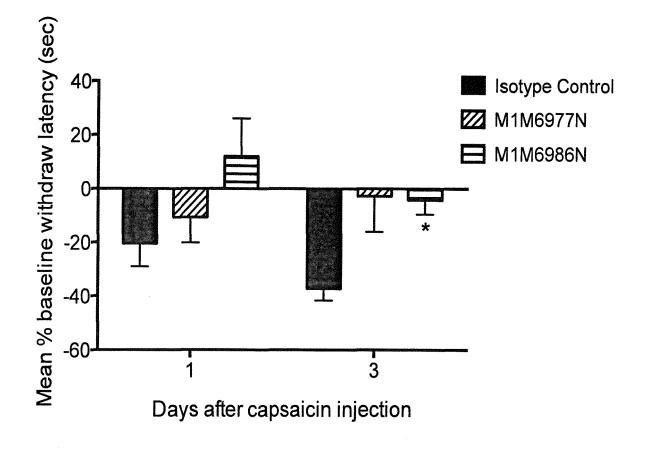
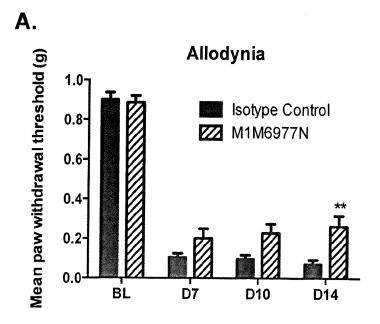



Figure 1

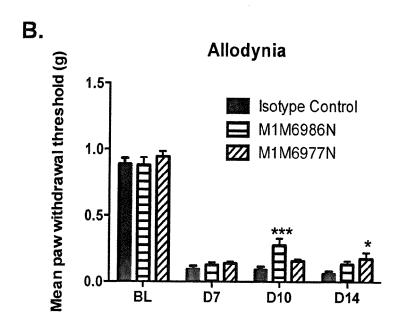
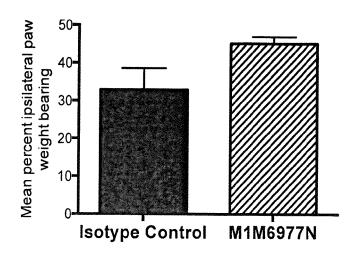



Figure 2

A.

Weight Bearing

В.

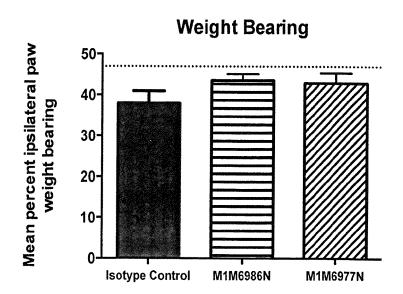
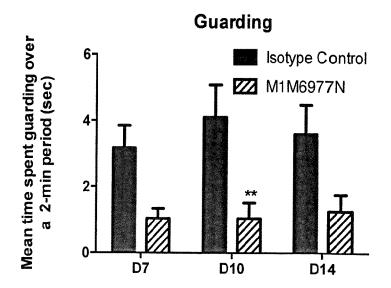



Figure 3

A.

В.

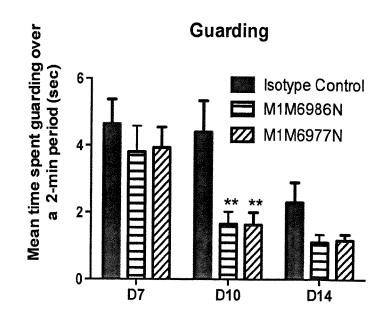


Figure 4

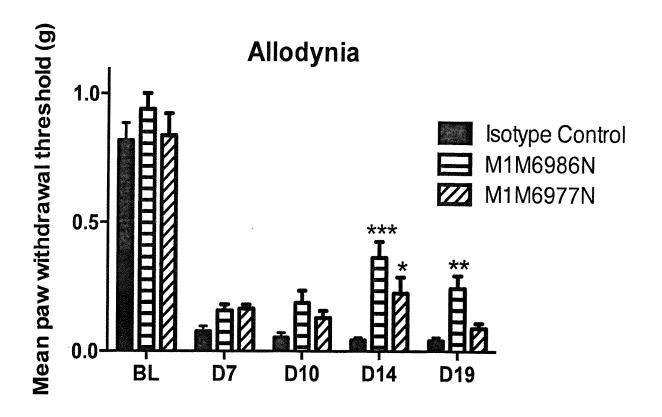
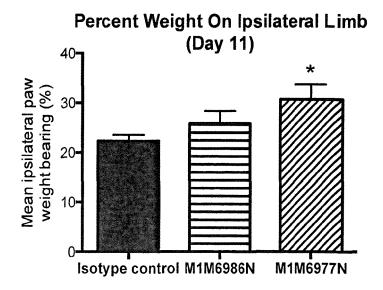



Figure 5

A.

В.

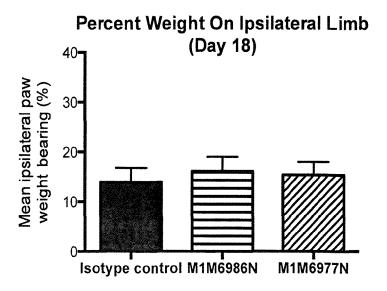


Figure 6

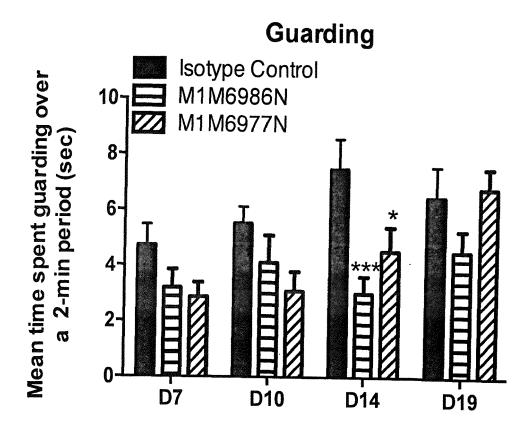


Figure 7

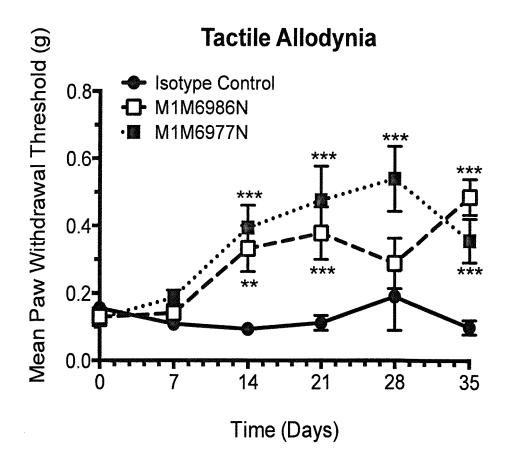


Figure 8

		·		· · · · · · · · · · · · · · · · · · ·	·									
	H4H2350P	1.35	1.46	1.35	1.42	1.44	1.35	1.44	1.27	1.20	1.36	1.43	1.53	0.25
Figure 9	H4H2292S	1.81	1.85	1.80	1.92	1.94	1.92	1.92	1.87	1.70	1.76	0.15	0.11	1.74
	H4H5352S	1.91	1.72	1.85	1.99	2.03	2.00	1.97	2.01	0.46	0.08	0,10	0.34	2.06
	H4H2212N	1.79	1.76	1.81	1.92	1.96	1.90	1.95	1.76	0.22	0,05	0.05	1.78	1.57
	H4H2243N2	20.0	0.31	10.0	0.03	0000	10.0	60'0	90.0	90.0	0.16	0.18	1.91	1.72
	S96ZZH#H	0.02	0.28	20:0	0.04	-0.01	90'0	0.18	20.0	0.33	2.36	2.35	2.36	2.10
	H4H33228	00:00	0.16	0.02	0.00	0.00	0.00	0.07	0.02	0.24	2.05	2.12	2.07	1.77
	87382H4H	0.04	0.25	0.05	0.03	0.00	0.04	0.16	0.06	0.32	2.38	2.45	2.43	2.23
	H4H2291 <i>8</i>	0.06	0.45	0.20	0.12	50'0	0.18	0.31	0.18	0.52	2.69	2.63	2.81	2.57
	H4H2294S	00'0	0.23	0.02	0.02	00:00	0.05	0.16	0.04	0.29	2.12	2.25	2.31	2.00
	H4H2295S	0.03	0.31	0.05	0.04	0.00	0.12	0.20	0.05	0.39	2.15	2.31	2.31	2.05
	H4H2342P	-0.01	90.0	0.01	0.01	-0.01	-0.01	0.06	0.03	0.15	2.17	2.08	2.16	1.80
	H4H2236N3	0.00	0.20	0.01	0.05	0.01	0.04	0.18	0.07	0:30	2.14	2.15	2.24	1.98
	Amount of Antibody 1 bound (nm)	2.64 ± 0.18	2.69 ± 0.17	2.83 ± 0.27	2.91 ± 0.09	2.89 ± 0.08	2.82 ± 0.07	2.73 ± 0.07	2.88 ± 0.23	2.42 ± 0.17	2.32 ± 0.15	2.74 ± 0.16	2.82 ± 0.08	3.31 ± 0.15
	Biotin- human GFRα3 captured (nm)	1.07 ± 0.08	1.09 ± 0.08	1.14 ± 0.15	1.22 ± 0.04	1.16 ± 0.04	1.15 ± 0.03	1.15 ± 0.03	1.29 ± 0.13	1.10 ± 0.08	1.09 ± 0.08	1.15 ± 0.03	1.17 ± 0.04	1.09 ± 0.07
	Antibody	H4H2236N3	H4H2342P	H4H2295S	H4H2294S	H4H2291S	H4H2357S	H4H2355S	H4H2296S	H4H2243N2	H4H2212N	H4H2352S	H4H2292S	H4H2350P

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 18 20 0535

10

	DOGGINE IN TO GOTIOIDE	INCO TO BE INCLEVANT				
Category	Citation of document with in- of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
X	WORLEY DANE S [US]; [US]; SEAM) 28 December 28	nber 2006 (2006-12-28) line 2; claims 1-35;	1-15	INV. C07K16/28 A61P29/00 A61K39/395		
Х	US 7 026 138 B1 (DE [US] ET AL) 11 Apri * example 11 *		1-15			
Х	R&D SYSTEMS ET AL: antibody", INTERNET CITATION	"Anti-mouse GFRalpha3	1-15			
	no. 1-800-343-7475 page 1, XP002531393 Retrieved from the URL:http://www.rnds df	0				
	[retrieved on 2009-0			TECHNICAL FIELDS		
	the whore document			TECHNICAL FIELDS SEARCHED (IPC)		
				C07K A61P A61K		
	The present search report has b	•				
	Place of search	Date of completion of the search 19 November 2016	0 0:	Examiner Mayor		
	The Hague		Siaterli, Maria			
X : part Y : part docu A : tech O : non	X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background E: earlier pa after the f C: documen L: documen			ciple underlying the invention t document, but published on, or date ed in the application ed for other reasons le same patent family, corresponding		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 20 0535

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-11-2018

	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	WO 2006138721 A1	28-12-2006	CA 2612417 A1 EP 1896047 A1 JP 2008546716 A US 2009202562 A1 WO 2006138721 A1	28-12-2006 12-03-2008 25-12-2008 13-08-2009 28-12-2006
	US 7026138 B1	11-04-2006	NONE	
ORM P0459				

C For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6861509 B [0006]
- US 6677135 B [0006]
- US 7026138 B [0006]
- US 20070232535 A [0006]
- US 20060216289 A [0006]
- US 7138251 B [0006]
- US 6927044 B [0065]

- US 20040101920 A [0137]
- WO 05103081 A [0150]
- US 20070280945 A1 [0177]
- US 13022759 B [0202]
- US 20100331527 A [0202]
- WO 2010077854 A [0204]
- US 20100166768 A [0204]

Non-patent literature cited in the description

- AIRAKSINEN, M.S. et al. Nature Reviews Neuroscience, 2002, vol. 3, 383-394 [0002] [0003] [0108] [0109]
- OROZCO, O.E. et al. European J. Neuroscience, 2001. vol. 13, 2177-2182 [0003]
- AIRAKSINEN, M.S. et al. Brain, Behavior and Evolution, 2006, vol. 68, 181-190 [0003]
- MALIN, S.A. et al. J. Neuroscience, 2006, vol. 26 (33), 8588-8599 [0004]
- **ELITT, C.M. et al.** *J. Neuroscience*, 2006, vol. 26 (33), 8578-8587 **[0004]**
- TANAKA, T. et al. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, vol. 300, G418-G424 [0005]
- CEYHAN, G.O. et al. *Gut*, 2007, vol. 56, 534-544 [0005]
- **REDDY et al.** *J. Immunol.*, vol. 164, 1925-1933 [0024]
- KABAT. Sequences of Proteins of Immunological Interest. National Institutes of Health, 1991 [0025]
- AL-LAZIKANI et al. J. Mol. Biol., 1997, vol. 273, 927-948 [0025]
- MARTIN et al. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 9268-9272 [0025]
- SHIELD et al. JBC, 2002, vol. 277, 26733 [0064]
- LINDSAY RM et al. Neuron, 1996, vol. 17, 571-574
 [0083]
- AIRAKSINEN, MS et al. Mol. Cell Neurosci., 1999, vol. 13, 313-325 [0083]
- SANICOLA, M. et al. PNAS, USA, 1997, vol. 94, 6238-43 [0084]
- KLEIN, RD et al. Nature, 1997, vol. 387, 717-21 [0084]
- BUJ-BELLO, A. et al. *Nature*, 1997, vol. 387, 721-4 [0084]
- BALOH, RH et al. Neuron, 1997, vol. 18, 793-802
 [0084]
- MASURE, S. et al. Eur. J. Biochem., 1998, vol. 251, 622-30 [0084]

- NOMOTO, S. et al. BBRC, 1998, vol. 244, 849-53 [0084]
- PADLAN et al. FASEB J., 1995, vol. 9, 133-139
 [0086]
- VAJDOS et al. *J Mol Biol*, 2002, vol. 320, 415-428 [0086]
- **PEARSON.** *Methods Mol. Biol.*, 1994, vol. 24, 307-331 [0102]
- GONNET et al. Science, 1992, vol. 256, 1443-45 [0102]
- ALTSCHUL et al. J. Mol. Biol., 1990, vol. 215, 403-410 [0103]
- Nucleic Acids Res., 1997, vol. 25, 3389-402 [0103]
- LLOYD. The Art, Science and Technology of Pharmaceutical Compounding, 1999 [0105]
- HENDERSON, C.E. et al. Science, 1994, vol. 266, 1062-1064 [0107]
- KOTZBAUER, P.T. et al. Nature, 1996, vol. 384, 467-470 [0107]
- SPRINGER, J.E. et al. Exp. Neurol., 1994, vol. 127, 167-170 [0107]
- SCHAAR. D.G. et al. Exp. Neurol., 1993, vol. 124, 368-371 [0107]
- YAN, Q. et al. Nature, 1995, vol. 373, 341-344 [0107]
- **HENDERSON, C.E. et al.** *Science,* vol. 266, 1062-1064 [0107]
- BUJ-BELLO, A. et al. *Neuron*, 1995, vol. 15, 821-828 [0107]
- TRUPP, M. et al. J. Cell Biol., 1995, vol. 130, 137-148 [0107]
- AIRAKSINEN, M.S. et al. Nature Reviews, 2002, vol. 3, 383-392 [0107]
- WANG, X. et al. Structure, 2006, vol. 14, 1083-1092 [0112]
- TANG, J-Z et al. Mol Cancer Ther, 2010, vol. 9 (6), 1697-1708 [0112] [0165]
- KANG, J. et al. Oncogene, 2009, vol. 28, 2034-2045
 [0112] [0165]

- CEYHAN, G.O. et al. Annals of Surgery, 2006, vol. 244 (2), 274-281 [0112] [0165]
- BANERJEE, A. et al. Breast Cancer Res, 2011, vol.
 13, R112 [0112] [0165]
- PANDEY, V. et al. Endocrinology, 2010, vol. 151 (3), 909-920 [0112] [0165]
- KANG, J. et al. Oncogene, 2010, vol. 29, 3228-3240 [0112] [0165]
- LI, S. et al. J Biomed Sci, 2011, vol. 18, 24 [0112] [0165]
- HARLOW; LANE. Antibodies. Cold Spring Harbor Press [0135]
- REINEKE. Methods Mol Biol, 2004, vol. 248, 443-63
 [0135]
- TOMER. Protein Science, 2000, vol. 9, 487-496 [0135]

- EHRING. Analytical Biochemistry, 1999, vol. 267 (2), 252-259 [0135]
- ENGEN; SMITH. Anal. Chem., 2001, vol. 73, 256A-265A [0135]
- **JUNGHANS et al.** *Cancer Res.*, 1990, vol. 50, 1495-1502 [0147]
- TUTT et al. J. Immunol., 1991, vol. 147, 60-69 [0151]
- **KUFER et al.** *Trends Biotechnol.*, 2004, vol. 22, 238-244 [0151]
- Remington's Pharmaceutical Sciences. Mack Publishing Company [0153]
- POWELL et al. Compendium of excipients for parenteral formulations. PDA (1998) J Pharm Sci Technol, 1998, vol. 52, 238-311 [0153]
- WU et al. J. Biol. Chem., 1987, vol. 262, 4429-4432 [0155]
- LANGER. Science, 1990, vol. 249, 1527-1533 [0156]