| (19) |
 |
|
(11) |
EP 3 454 411 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
18.08.2021 Bulletin 2021/33 |
| (22) |
Date of filing: 07.09.2017 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
ANTENNA ARRANGEMENT FOR WEARABLE DEVICE
ANTENNENANORDNUNG FÜR WEARABLE-VORRICHTUNG
AGENCEMENT D'ANTENNE POUR DISPOSITIF VESTIMENTAIRE
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (43) |
Date of publication of application: |
|
13.03.2019 Bulletin 2019/11 |
| (73) |
Proprietor: Bittium Wireless Oy |
|
90590 Oulu (FI) |
|
| (72) |
Inventors: |
|
- Kyllönen, Markku
90590 Oulu (FI)
- Heikura, Ilkka
90590 Oulu (FI)
|
| (74) |
Representative: Kolster Oy Ab |
|
(Salmisaarenaukio 1)
P.O. Box 204 00181 Helsinki 00181 Helsinki (FI) |
| (56) |
References cited: :
US-A1- 2015 048 979 US-A1- 2017 062 912
|
US-A1- 2015 309 533
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
TECHNICAL FIELD
[0001] The invention relates to radio frequency antennas and wearable devices and, in particular
to an antenna arrangement in a wearable device.
TECHNICAL BACKGROUND
[0002] Most of the smart watches and other wearable devices manufactured today are provided
with a wireless modem capable of communicating according to one or more wireless communication
protocols, e.g. Long-Term Evolution (LTE) protocols, IEEE 802.11 protocols, Bluetooth®
protocols, satellite navigation system protocols, and other radio protocols. A single
wearable device may support even dozens of radio protocols. This may pose a challenge
in implementing antennas that would support all the protocols in such manner that
the communication performance is at acceptable level.
[0003] US 2015/048979 discloses a method and portable device providing multi-band, multi-antenna signal
communication in a portable device having wireless communication capability. A portable
device comprises a single loop multifeed (SLM) antenna system which includes a continuous
conductive ring located along and adjacent to a first device periphery area. The SLM
antenna system also comprises multiple communication feeds each respectively coupled
to one of multiple transceivers and to the conductive ring. The SLM antenna system
includes multiple ground connection points each of which is coupled to a ground plane.
Each ground connection point is selectively positioned at a corresponding location
on the continuous conductive ring in order to configure, within the SLM antenna system,
multiple corresponding antenna elements. The SLM antenna system enables frequency
tuning associated with a first antenna element to be performed independently of frequency
tuning associated with a second antenna element and supports signal propagation via
the multiple antennas using respective frequency bands.
[0004] US 2015/309533 discloses a wrist apparatus including a frame arranged to house at least one electronic
circuitry of the wrist apparatus, and at least one antenna integrated on a surface
of the frame with a laser direct structuring process, in which conductive material
is disposed at laser-defined locations on the frame.
BRIEF DESCRIPTION
[0005] The invention is defined by the independent claim. Embodiments are defined in the
dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] In the following the invention will be described in greater detail by means of preferred
embodiments with reference to the accompanying drawings, in which
Figure 1 illustrates a simplified view of a chassis and electronics of a wearable
device;
Figure 2 illustrates an antenna arrangement according to an example not falling within
the scope of the independent claim but useful for the understanding of the invention;
Figure 3 illustrates an effect of the antenna arrangement of Figure 2;
Figure 4 illustrates an antenna arrangement according to an embodiment of the invention;
and
Figures 5A and 5B illustrate an antenna arrangement according to another embodiment.
DETAILED DESCRIPTION OF THE INVENTION
[0007] The following embodiments are examples. Although the specification may refer to "an",
"one", or "some" embodiment(s) in several locations, this does not necessarily mean
that each such reference is referring to the same embodiment(s), or that the feature
only applies to a single embodiment. Single features of different embodiments may
also be combined to provide other embodiments. Furthermore, words "comprising" and
"including" should be understood as not limiting the described embodiments to consist
of only those features that have been mentioned and such embodiments may contain also
features/structures that have not been specifically mentioned.
[0008] Figure 1 illustrates a simplified structure of a housing for a wearable device. The
wearable device may be a smart watch, a wrist computer, or any device attachable to
a human body. The wearable device typically comprises the housing comprising a chassis
100 and one or more electronic circuitries 110 enclosed by the chassis 100. The wearable
device may further comprise an attachment structure suitable for attaching the housing
to the human body. The attachment structure may comprise a strap for attaching the
housing to an arm, wrist, torso, waist, head, neck, foot, and/or leg. The attachment
structure may comprise an earlobe attachment structure, or it may comprise a frame
of glasses or goggles.
[0009] In some embodiments of the invention, the chassis 100 is metallic, or it may be formed
of another material suitable for providing the chassis 100 with capabilities of operating
as an antenna. In the embodiments, the chassis 100 itself is arranged to function
as one or more antennas which distinguishes the embodiments from solutions where an
antenna is formed or attached to the chassis. The chassis 100 may be made of one integral
piece of metallic material such as aluminium or steel. The chassis 100 may be arranged
to have a circumferential shape, and the actual shape may be designed according to
implementation. For example, the circumferential chassis 100 may take the form of
an annulus or a hollow rectangle, as illustrated in Figure 2. The actual shape of
the chassis may be affected by the design of the wearable device, e.g. the otherwise
regular shape of the chassis may be broken by positioning of buttons or other mechanical
objects of the wearable device.
[0010] Figure 2 illustrates an example of an antenna arrangement for the wearable device.
This example does not comprise the first further antenna and the second further antenna
as claimed but is nevertheless useful for the understanding of the invention.
[0011] Referring to Figures 1 and 2, the antenna arrangement comprises:
an electronic circuitry 110 comprising at least an antenna matching circuitry 116;
a metallic chassis 100 enclosing the electronic circuitry 110; at least one grounding
electrode 120, 122 coupled to the metallic chassis 100; and at least one feed electrode
124, 126 coupling the antenna matching circuitry 116 to the chassis 100.
[0012] Referring to Figure 2, the wearable device may comprise an application processor
112 executing one or more computer program applications in the wearable device. For
example, the application processor 112 may execute a measurement application employing
one or more sensors of the wearable device or connected to the wearable device. As
another example, the application processor 112 may execute a calendar application
or an e-mail application. At least some of the applications executed by the application
processor may require a communication connection over a radio interface. For that
purpose, the application processor 112 may configure a wireless modem 114 to establish
a radio connection. The wireless modem 114 may support one or more radio communication
protocols, e.g. one or more of the protocols described in the Background. The wireless
modem may comprise hardware and software required to generate and/or receive radio
signals according to the one or more radio communication protocols. An output of block
114 may be coupled to the antenna matching circuitry 116 configured to provide impedance
matching to the antenna or antennas formed by the chassis 100. The antenna matching
circuitry may comprise a dedicated matching circuitry for each antenna feed electrode
124, 126.
[0013] In an example, the chassis 100 is configured to form one or more antennas for signals
transmitted and/or received according to a cellular communication protocol such as
a 3G, 4G, or 5G cellular communication protocol. An example of the 3G protocol is
Wideband Code Division Multiple Access (W-CDMA) standardized within the 3
rd Generation Partnership Project (3GPP). An example of the 4G protocol is the LTE or
LTE-Advanced standardized also within the 3GPP. Standardization of the 5G is currently
under way within the 3GPP. Other cellular protocols exist, such as WiMAX (Worldwide
Interoperability for Microwave Access).
[0014] The coupling between the feed electrodes 124, 126 and the chassis 100 may be galvanic
or capacitive.
[0015] Figure 3 illustrates the arrangement of Figure 2 in a planar view from above the
chassis. In the example of Figures 2 and 3, there exists a first grounding electrode
120 and a second grounding electrode 122. Additionally, there exists a first feed
electrode 124 and a second feed electrode 126. The first feed electrode 124 and the
second feed electrode 126 are coupled to the chassis on opposite sides of the first
grounding electrode 120 along a circumference of the chassis 100. In a similar manner,
the first feed electrode 124 and the second feed electrode 126 are coupled to the
chassis on opposite sides of the second grounding electrode 122 along the circumference
of the chassis 100. As illustrated in Figures 1 and 2, the first feed electrode 124
is disposed at a location clockwise from the second grounding electrode 122 while
the second feed electrode 126 is disposed at a location counter clockwise from the
second grounding electrode 122. In a similar manner, the first feed electrode 124
is disposed at a location counter clockwise from the first grounding electrode 122
while the second feed electrode 126 is disposed at a location clockwise from the first
grounding electrode 120. In this manner, a number of radiators with different radiation
characteristics are formed.
[0016] As illustrated in Figure 3, radiating surfaces are formed between the feed electrodes
124, 126 and the grounding electrodes 120, 122. A first radiating surface is formed
in the chassis 100 between the first feed electrode 124 and the second grounding electrode
122. As illustrated by the dashed line between the first feed electrode 124 and the
second grounding electrode 122, this surface forms an L-shaped antenna. The locations
of the first feed electrode 124 and the second grounding electrode 122 may be selected
such that they are provided on different edges of the chassis to form the L-shape
and such that the distance between the first feed electrode 124 and the second grounding
electrode 122 is proportional to a desired wavelength λ of radiated or absorbed radio
signal, e.g. half of the wavelength λ/2.
[0017] A second radiating surface is formed in the chassis 100 between the second feed electrode
126 and the second grounding electrode 122. As illustrated by the dashed line between
the second feed electrode 126 and the second grounding electrode 122, this surface
also forms an L-shaped antenna. The locations of the second feed electrode 124 and
the second grounding electrode 122 may be selected such that they are provided on
different edges of the chassis to form the L-shape and such that the distance between
the first feed electrode 124 and the second grounding electrode 122 is proportional
to the desired wavelength λ of radiated or absorbed radio signal, e.g. quarter of
the wavelength λ/4. The desired wavelengths of the first and second radiating surfaces
may be different to support multiple resonance frequencies, e.g. one resonance frequency
below 1000 Megahertz (MHz) and another resonance frequency above 1 500 MHz.
[0018] Further radiating surfaces may be formed between the feed electrodes 124, 126 and
the grounding electrodes 120, 122, as illustrated in Figure 3. By using two feed electrodes
and two grounding electrodes, up to four radiating surfaces may be formed, and each
radiating surface may be configured to provide different radiation characteristics
such as different resonance frequencies by suitable positioning of the electrodes.
Further radiating surfaces may be arranged by increasing the number of grounding electrodes
and feed electrodes coupling the chassis with the antenna matching circuitry 116.
[0019] In an example, only one feed electrode and only one grounding electrode is coupled
to the chassis. In such an embodiment the chassis may form one or two radiating surfaces
with different or even the same radiation characteristics.
[0020] Figure 4 illustrates an embodiment where the antenna arrangement comprises further
antennas disposed on top of the chassis 100. Referring to Figure 4, two further antennas
300, 302 are coupled to the electronic circuitry 110. The antenna matching circuitry
116 may provide different antenna matching configurations to antenna(s) formed by
the chassis and the further antenna(s) attached to the chassis 100. The further antennas
300, 302 may be attached to the chassis by using any state-of-the-art methods such
as laser direct-structuring (LDS). Each of the further antennas 300, 302 may be a
strip-line antenna, a patch antenna, or an inverted F-antenna (IFA), for example.
[0021] In the embodiment of Figure 4, a first antenna 302 is disposed on top of the grounding
electrode 122 coupled to the metallic chassis 100. The first antenna 302 may be configured
to form an antenna providing a resonance frequency on a frequency band of a wireless
local area network (WLAN) complying with IEEE 802.11 technology. Providing the antenna
on top of the grounding electrode 122 improves the isolation and reduces interference
between the WLAN and the cellular communications operated in the wearable device.
[0022] A second antenna 300 is disposed on top of the chassis and configured to provide
a resonance frequency on a frequency band of a satellite positioning system. The second
antenna 300 may be disposed such that the second antenna does not extend over any
grounding electrode 120, 122 coupled to the metallic chassis. In such a case, a notch
filter 304 may be provided between the at least one feed electrode 124, 126 coupling
the antenna matching circuitry 116 to the chassis 100. The notch filter 304 may be
configured to suppress a satellite positioning system frequency from a transmission/reception
signal of the cellular antenna system, thus improving the isolation between the satellite
positioning system antenna 300 and the cellular antenna(s).
[0023] The first and the second antenna 300, 302 may be arranged to have no galvanic contact
with the chassis. For example, dielectric material may be disposed between the chassis
and the antenna 300, 302.
[0024] In general, an antenna of any narrowband communication system may be provided at
a location that is not on top of a grounding electrode coupled to the chassis, because
the notch filter may then be employed to improve the isolation. An antenna of a wideband
communication system may be provided on top of the grounding electrode to provide
for better isolation without additional filtering.
[0025] Figures 5A and 5B illustrate an embodiment according to another embodiment. Referring
to Figure 5A, the antenna arrangement of any embodiment described above may be implemented
in a frame 510 that is configured to be attached to the chassis 100 of the wearable
device. In Figure 5A, the chassis 100 is denoted by 502 and an outer shape of the
frame is designed to conform to an internal shape of the chassis such that the frame
can be attached inside the circumference of the chassis, as illustrated in Figure
5B. The frame 510 may be made of any dielectric material. The antennas may be formed
on the frame by using laser direct-structuring (LDS), adhesion, or any other solution
for attaching metallic components on a non-metallic surface. In the embodiment of
Figure 5A and 5B, the antennas 300 and 302 are now formed on the frame according to
the above-described principles.
[0026] In the above-described embodiments, the chassis 100 forms the cellular antenna. In
the embodiment of Figures 5A and 5B, the cellular antenna 500 is formed on the frame.
The cellular antenna may be formed on an outer circumference of the frame and it may
extend along in a plurality of directions along the outer perimeter, as illustrated
in Figure 5A. In another embodiment, the cellular antenna may be disposed on another
surface of the frame, e.g. top surface on which a display screen is provided to enable
radiation in a direction perpendicular to a plane of the display screen. The cellular
antenna may be provided such that it extends in parallel with one or both of the antennas
300 and 302.
[0027] According to these principles, even a higher number of additional antennas may be
attached to the wearable device. It will be obvious to a person skilled in the art
that, as the technology advances, the inventive concept can be implemented in various
ways. The invention and its embodiments are not limited to the examples described
above but may vary within the scope of the claims.
1. An antenna arrangement for a wearable apparatus, comprising:
an electronic circuitry (110) comprising at least an antenna matching circuitry (116);
a metallic chassis (100) enclosing the electronic circuitry (110) and configured to
operate as an antenna or antennas;
at least one grounding electrode (120, 122) coupled to the metallic chassis;
at least one feed electrode (124, 126) coupling the antenna matching circuitry to
the chassis;
a first further antenna (302) disposed on top of one of the at least one grounding
electrode configured to function as an antenna of a wideband communication system;
and
a second further antenna (300) disposed on top of the chassis such that the second
antenna does not extend over any grounding electrode coupled to the metallic chassis,
and configured to provide a resonance frequency on a frequency band of a narrowband
communication system,
wherein the first and second further antenna are attached to the chassis and wherein
the first and second further antenna are coupled to the antenna matching circuitry
with further feed electrodes, wherein the antenna matching circuitry provides different
antenna matching configurations to the antenna or antennas formed by the chassis and
to said first and second further antenna.
2. The antenna arrangement of claim 1, wherein the metallic chassis is circumferential.
3. The antenna arrangement of claim 2, comprising at least a first grounding electrode
(120) and a second grounding electrode (122) coupled to the metallic chassis, wherein
the at least one feed electrode (124) is coupled to the chassis between the first
and second grounding electrode, wherein a distance between the at least one grounding
electrode and the at least one feed electrode along the circumferential chassis is
configured according to desired resonance frequency characteristics.
4. The antenna arrangement of claim 3, wherein the distance is one half or one fourth
of a desired wavelength of a radio signal emitted or absorbed by the chassis.
5. The antenna arrangement of claim 3 or 4, comprising at least a first feed electrode
(124) and a second feed electrode (126) coupling the antenna matching circuitry to
the chassis, wherein the first feed electrode and the second feed electrode are coupled
to the chassis on opposite sides of the first grounding electrode along a circumference
of the chassis.
6. The antenna arrangement of claim 5, wherein a first radiating surface of the chassis
between the first feed electrode and the first grounding electrode provides for different
resonance frequency characteristics than a second radiating surface of the chassis
between the second feed electrode and the first grounding electrode.
7. The antenna arrangement of any preceding claim, wherein the first and second further
antenna have no galvanic contact with the chassis.
8. The antenna arrangement of claim 7, wherein dielectric material is disposed between
the chassis and the first and second further antenna.
9. The antenna arrangement of any preceding claim, wherein the first further antenna
is configured to form an antenna providing a resonance frequency on a frequency band
of a wireless local area network.
10. The antenna arrangement of any preceding claim, wherein the second further antenna
(300) is configured to provide a resonance frequency on a frequency band of a satellite
positioning system.
11. The antenna arrangement of any preceding claim, further comprising a notch filter
(304) between the at least one feed electrode coupling the antenna matching circuitry
to the chassis, wherein the notch filter is configured to suppress a transmission
frequency of the narrowband communication system.
12. The antenna arrangement of any preceding claim, wherein the at least one further antenna
is coupled to the at least one further feed electrode via capacitive coupling.
13. A wearable device comprising the antenna arrangement of any preceding claim.
14. A wrist computer comprising the antenna arrangement of any preceding claim 1 to 12.
1. Antennenanordnung für eine tragbare Einrichtung, die Folgendes umfasst:
eine elektronische Schaltung (110), die mindestens eine Antennenabgleichschaltung
(116) umfasst;
ein Metallgehäuse (100), das die elektronische Schaltung (110) umschließt und dazu
ausgelegt ist, als eine Antenne oder Antennen betrieben zu werden;
mindestens eine Erdungselektrode (120, 122), die an das Metallgehäuse gekoppelt ist;
mindestens eine Speiseelektrode (124, 126), die die Antennenabgleichschaltung an das
Gehäuse koppelt;
eine erste weitere Antenne (302), die auf einer der mindestens einen Erdungselektrode
angeordnet und dazu ausgelegt ist, als eine Antenne eines Breitbandkommunikationssystems
zu fungieren; und
eine zweite weitere Antenne (300), die derart auf dem Gehäuse angeordnet ist, dass
sich die zweite Antenne nicht über eine Erdungselektrode, die an das Metallgehäuse
gekoppelt ist, erstreckt, und dazu ausgelegt ist, auf einem Frequenzband eines Schmalbandkommunikationssystems
eine Resonanzfrequenz bereitzustellen,
wobei die erste und die zweite weitere Antenne am Gehäuse befestigt sind und wobei
die erste und die zweite weitere Antenne mit weiteren Speiseelektroden an die Antennenabgleichschaltung
gekoppelt sind, wobei die Antennenabgleichschaltung der Antenne oder den Antennen,
die vom Gehäuse gebildet werden, und der ersten und der zweiten weiteren Antenne verschiedene
Antennenabgleichauslegungen bereitstellt.
2. Antennenanordnung nach Anspruch 1, wobei das Metallgehäuse umlaufend ist.
3. Antennenanordnung nach Anspruch 2, die mindestens eine erste Erdungselektrode (120)
und eine zweite Erdungselektrode (122), die an das Metallgehäuse gekoppelt sind, umfasst,
wobei die mindestens eine Speiseelektrode (124) zwischen der ersten und der zweiten
Erdungselektrode an das Gehäuse gekoppelt ist, wobei ein Abstand zwischen der mindestens
einen Erdungselektrode und der mindestens einen Speiseelektrode entlang des umlaufenden
Gehäuses gemäß gewünschten Resonanzfrequenzeigenschaften ausgelegt ist.
4. Antennenanordnung nach Anspruch 3, wobei der Abstand eine Hälfte oder ein Viertel
einer gewünschten Wellenlänge eines Funksignals, das vom Gehäuse emittiert oder absorbiert
wird, beträgt.
5. Antennenanordnung nach Anspruch 3 oder 4, die mindestens eine erste Speiseelektrode
(124) und eine zweite Speiseelektrode (126), die die Antennenabgleichschaltung an
das Gehäuse koppeln, umfasst, wobei die erste Speiseelektrode und die zweite Speiseelektrode
entlang eines Umfangs des Gehäuses auf gegenüberliegenden Seiten der ersten Erdungselektrode
an das Gehäuse gekoppelt sind.
6. Antennenanordnung nach Anspruch 5, wobei eine erste Abstrahlfläche des Gehäuses zwischen
der ersten Speiseelektrode und der ersten Erdungselektrode andere Resonanzfrequenzeigenschaften
bewirkt als eine zweite Abstrahlfläche des Gehäuses zwischen der zweiten Speiseelektrode
und der ersten Erdungselektrode.
7. Antennenanordnung nach einem der vorhergehenden Ansprüche, wobei die erste und die
zweite weitere Antenne keinen galvanischen Kontakt zum Gehäuse aufweisen.
8. Antennenanordnung nach Anspruch 7, wobei zwischen dem Gehäuse und der ersten und der
zweiten weiteren Antenne ein Dielektrikummaterial angeordnet ist.
9. Antennenanordnung nach einem der vorhergehenden Ansprüche, wobei die erste weitere
Antenne dazu ausgelegt ist, eine Antenne zu bilden, die auf einem Frequenzband eines
drahtlosen lokalen Netzwerks eine Resonanzfrequenz bereitstellt.
10. Antennenanordnung nach einem der vorhergehenden Ansprüche, wobei die zweite weitere
Antenne (300) dazu ausgelegt ist, auf einem Frequenzband eines Satellitenpositionsbestimmungssystems
eine Resonanzfrequenz bereitzustellen.
11. Antennenanordnung nach einem der vorhergehenden Ansprüche, die ferner ein Kerbfilter
(304) zwischen der mindestens einen Speiseelektrode, die die Antennenabgleichschaltung
an das Gehäuse koppelt, umfasst, wobei das Kerbfilter dazu ausgelegt ist, eine Übertragungsfrequenz
des Schmalbandkommunikationssystems zu unterdrücken.
12. Antennenanordnung nach einem der vorhergehenden Ansprüche, wobei die mindestens eine
weitere Antenne via eine kapazitive Kopplung an die mindestens eine weitere Speiseelektrode
gekoppelt ist.
13. Tragbare Vorrichtung, die die Antennenanordnung nach einem der vorhergehenden Ansprüche
umfasst.
14. Handgelenkcomputer, der die Antennenanordnung nach einem der vorhergehenden Ansprüche
1 bis 12 umfasst.
1. Agencement d'antenne pour un appareil portatif, comprenant :
un ensemble de circuits électroniques (110) comprenant au moins un ensemble de circuits
d'appariement d'antenne (116) ;
un châssis métallique (100) enfermant l'ensemble de circuits électroniques (110) et
configuré marcher comme une ou plusieurs antennes ;
au moins une électrode de mise à la terre (120, 122) couplée au châssis métallique
;
au moins une électrode d'alimentation (124, 126) couplant l'ensemble de circuits d'appariement
d'antenne au châssis ;
une première antenne supplémentaire (302) disposée sur le dessus de l'une des une
ou plusieurs électrodes de mise à la terre, configurée pour fonctionner comme une
antenne d'un système de communication à large bande ; et
une deuxième antenne supplémentaire (300) disposée sur le dessus du châssis, de sorte
que la deuxième antenne ne s'étende pas sur une quelconque électrode de mise à la
terre couplée au châssis métallique, et configurée pour fournir une fréquence de résonance
sur une bande de fréquence d'un système de communication à bande étroite,
dans lequel les première et deuxième antennes supplémentaires sont fixées au châssis,
et dans lequel les première et deuxième antennes supplémentaires sont couplées à l'ensemble
de circuits d'appariement d'antenne avec des électrodes d'alimentation supplémentaires,
dans lequel l'ensemble de circuits d'appariement d'antenne fournit différentes configurations
d'appariement d'antenne à l'antenne ou aux antennes formées par le châssis et auxdites
première et deuxième antennes supplémentaires.
2. Agencement d'antenne selon la revendication 1, dans lequel le châssis métallique est
circonférentiel.
3. Agencement d'antenne selon la revendication 2, comprenant au moins une première électrode
de mise à la terre (120) et une deuxième électrode de mise à la terre (122) couplée
au châssis métallique, dans lequel la au moins une électrode d'alimentation (124)
est couplée au châssis entre les première et deuxième électrodes de mise à la terre,
dans lequel une distance entre la au moins une électrode de mise à la terre et la
au moins une électrode d'alimentation le long du châssis circonférentiel est configurée
selon des caractéristiques de fréquence de résonance souhaitées.
4. Agencement d'antenne selon la revendication 3, dans lequel la distance est égale à
la moitié ou au quart d'une longueur d'onde souhaitée d'un signal radio émis ou absorbé
par le châssis.
5. Agencement d'antenne selon la revendication 3 ou 4, comprenant au moins une première
électrode d'alimentation (124) et une deuxième électrode d'alimentation (126) couplant
l'ensemble de circuits d'appariement d'antenne au châssis, dans lequel la première
électrode d'alimentation et la deuxième électrode d'alimentation sont couplées au
châssis sur des côtés opposés de la première électrode de mise à la terre le long
d'une circonférence du châssis.
6. Agencement d'antenne selon la revendication 5, dans lequel une première surface rayonnante
du châssis entre la première électrode d'alimentation et la première électrode de
mise à la terre fournit des caractéristiques de fréquence de résonance différentes
de celles d'une deuxième surface rayonnante du châssis entre la deuxième électrode
d'alimentation et la première électrode de mise à la terre.
7. Agencement d'antenne selon l'une quelconque des revendications précédentes, dans lequel
les première et deuxième antennes supplémentaires n'ont pas de contact galvanique
avec le châssis.
8. Agencement d'antenne selon la revendication 7, dans lequel un matériau diélectrique
est disposé entre le châssis et les première et deuxième antennes supplémentaires.
9. Agencement d'antenne selon l'une quelconque des revendications précédentes, dans lequel
la première antenne supplémentaire est configurée pour former une antenne fournissant
une fréquence de résonance sur une bande de fréquence d'un réseau local sans fil.
10. Agencement d'antenne selon l'une quelconque des revendications précédentes, dans lequel
la deuxième antenne supplémentaire (300) est configurée pour fournir une fréquence
de résonance sur une bande de fréquence d'un système de positionnement par satellite.
11. Agencement d'antenne selon l'une quelconque des revendications précédentes, comprenant
en outre un filtre coupe-bande (304) entre la au moins une électrode d'alimentation
couplant l'ensemble de circuits d'appariement d'antenne au châssis, dans lequel le
filtre coupe-bande est configuré pour supprimer une fréquence de transmission du système
de communication à bande étroite.
12. Agencement d'antenne selon l'une quelconque des revendications précédentes, dans lequel
la au moins une antenne supplémentaire est couplée à la au moins une électrode d'alimentation
supplémentaire via un couplage capacitif.
13. Dispositif portatif comprenant l'agencement d'antenne selon l'une quelconque des revendications
précédentes.
14. Ordinateur de poignet comprenant l'agencement d'antenne selon l'une quelconque des
revendications précédentes 1 à 12.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description