| (19) |
 |
|
(11) |
EP 3 460 217 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
27.10.2021 Bulletin 2021/43 |
| (22) |
Date of filing: 24.09.2018 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
MULTIPLE CIRCUIT MANIFOLDS
VERTEILER MIT MEHREREN FLÜSSIGKEITSKREISLÄUFEN
COLLECTEURS À CIRCUITS MULTIPLES
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
25.09.2017 US 201715714265
|
| (43) |
Date of publication of application: |
|
27.03.2019 Bulletin 2019/13 |
| (73) |
Proprietor: Delavan, Inc. |
|
West Des Moines, IA 50265 (US) |
|
| (72) |
Inventors: |
|
- RYON, Jason A.
Carlisle, IA 50047 (US)
- GREENFIELD, Jacob
Granger, IA 50109 (US)
- PROCIW, Lev Alexander
Johnston, IA 50131 (US)
|
| (74) |
Representative: Dehns |
|
St. Bride's House
10 Salisbury Square London EC4Y 8JD London EC4Y 8JD (GB) |
| (56) |
References cited: :
EP-A1- 3 348 813 WO-A1-2014/133406
|
EP-A2- 1 736 651
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present disclosure relates to fluid manifolds, and more particularly to manifolds
such as used in gas turbine engines.
2. Description of Related Art
[0002] In gas turbine engines, such as industrial gas turbine engines used for power production,
there is often a need to utilize more than one type of fuel. Fuel manifolds can route
multiple different types of fuel to suitable injectors within the gas turbine engine.
Traditional fuel manifolds are relatively complicated and bulky, especially when multiple
fuels must be routed to the engine while remaining in fluid isolation from one another
en route. The complicated nature of fuel manifolds is compounded if it is desired
to utilize staged fuel injection, e.g., for improved turn down ratios.
[0003] The conventional techniques have been considered satisfactory for their intended
purpose. However, there is an ever present need for improved fluid manifolds. This
disclosure provides a solution for this.
[0004] EP 3348813 A1 which is prior art under Article 54(3) EPC only, discloses a fluid manifold including
a manifold body having a first annular passage defined between a first wall of the
manifold body and a second wall of the manifold body, wherein the second wall is radially
inward from the first wall. A second annular passage is nested radially inward of
the first annular passage, wherein the second annular passage is defined between the
second wall of the manifold body and a third wall of the manifold body radially inward
from the second wall of the manifold body.
[0005] WO 2014/133406 discloses a turbine combustor including a head end portion having a head end chamber.
The head end portion includes an exhaust gas path, a fuel path and an oxidant path.
SUMMARY OF THE INVENTION
[0006] From a first aspect, a system as claimed in claim 1 is provided.
[0007] In accordance with some embodiments, the first passage outlet and the second passage
outlet are circumferentially offset from one another relative to the manifold axis.
The fluid manifold can include at least one additional annular passage defined within
the manifold body. A first one of the at least one additional annular passage can
be nested radially outward of the second annular passage. The manifold body can include
a cylindrical dividing portion. The first annular passage and the second annular passage
can be fluidically isolated from another by the cylindrical dividing portion.
[0008] It is contemplated that the first passage outlet can be one of a plurality of distinct
first passage outlets. Each of the first passage outlets can be in fluid communication
with the first annular passage through a respective outlet channel branching off from
the first annular passage. Each of the outlet channels can extend in a radial direction
relative to the manifold axis.
[0009] The second passage outlet can be one of a plurality of distinct second passage outlets.
Each of the second passage outlets can be in fluid communication with the second annular
passage through a respective outlet channel branching off from the second annular
passage. Each of the outlet channels can extend in a radial direction relative to
the manifold axis.
[0010] The inlets of the first and second annular passages can be formed in an upstream
axial facing surface of the manifold body. The manifold body can define a seal groove
on an outer surface of the manifold body. The seal groove can include an upstream
facing seal surface and a radially outward facing seal surface. The manifold body,
including the first and second annular passages, can be a single monolithic object.
In some embodiments, the manifold body includes a first manifold portion and a second
manifold portion. The first and second manifold portions can be joined together to
form the first and second annular passages.
[0011] From a further aspect, a system as claimed in claim 12 is provided.
[0012] The manifold can include at least two additional annular passages in addition to
the first annular passage and the second annular passage, and wherein both of the
at least two additional annular passages are in fluid communication with at least
a second fuel distributor for dual fuel, dual stage fuel injection. The manifold can
include at least two additional pairs of annular passages in addition to the first
annular passage and the second annular passage, and wherein each of the at least two
pairs of additional annular passages is in fluid communication with at least one respective
additional fuel distributor for at least three stage, dual fuel injection.
[0013] In accordance with some embodiments, the system includes an ignitor seated in a central
passage of the manifold body for ignition of fuel issued from the fuel distributor.
The system can include a seal ring between the manifold body and the combustor case.
The manifold body can define a seal groove on an outer surface of the manifold body.
The seal ring can rest within the seal groove. The seal ring can abut a downstream
facing seal surface on the combustor case, an upstream facing seal surface of the
seal groove and a radially outward facing seal surface of the seal groove.
[0014] These and other features of the systems and methods of the subject disclosure will
become more readily apparent to those skilled in the art from the following detailed
description of the preferred embodiments taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] So that those skilled in the art to which the subject disclosure appertains will
readily understand how to make and use the devices and methods of the subject disclosure
without undue experimentation, preferred embodiments thereof will be described in
detail herein below with reference to certain figures, wherein:
Fig. 1 is a schematic cross-sectional perspective view of an exemplary embodiment
of a manifold constructed in accordance with the present disclosure, showing internal
annular passages;
Fig. 2A is a schematic cross-sectional perspective view of a first portion of the
manifold of Fig. 1, showing annular passage inlets;
Fig. 2B is a schematic plan view of an upstream facing side of a second portion of
the manifold of Fig. 1, showing annular passage outlets;
Fig. 3 is a schematic cross-sectional, side elevation view of a portion of the manifold
of Fig. 1, showing the manifold in a combustor system;
Fig. 4 is a schematic cross-sectional perspective view of an exemplary embodiment
of a combustor system constructed in accordance with the present disclosure with the
manifold of Fig. 1, showing the manifold body seated in the manifold receptacle bore;
Fig. 5 is a schematic perspective view from the upstream side of an exemplary embodiment
of a combustor system constructed in accordance with the present disclosure with the
manifold of Fig. 1, showing the combustor case removed; and
Fig. 6 is a schematic perspective view from the downstream side of an exemplary embodiment
of a combustor system constructed in accordance with the present disclosure with the
manifold of Fig. 1, showing the combustor case removed.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0016] Reference will now be made to the drawings wherein like reference numerals identify
similar structural features or aspects of the subject disclosure. For purposes of
explanation and illustration, and not limitation, a partial view of an exemplary embodiment
of a manifold in accordance with the disclosure is shown in Fig. 1 and is designated
generally by reference character 100. Other embodiments of manifolds in accordance
with the disclosure, or aspects thereof, are provided in Figs. 2A-6, as will be described.
The systems and methods described herein can be used to distribute and/or stage multiple
fluids including liquids and gases, such as in dual stage, dual fuel injection for
gas turbine engines.
[0017] As shown in Fig. 1, a fluid manifold 100 includes a manifold body 102 and a plurality
of annular passages 104a-f defined within the manifold body 102. The annular passages
104a-104f are concentric about a manifold axis A. Annular passages 104b-104f after
the inner most annular passage 104a are nested radially outward from one another.
The manifold body 102 includes a first manifold portion 102a and a second manifold
portion 102b. The first and second manifold portions 102a and 102b, respectively,
form the annular passages 104a-f. The first and second manifold portions 102a and
102b, respectively, can be two separate pieces and can be brazed, welded or otherwise
secured together. In some embodiments, the first and second manifold portions 102a
and 102b, respectively, can be formed as a single monolithic object by casting or
additively manufacturing the manifold body 102. Each of the passages 104a-104f are
separated from one another with a respective cylindrical dividing portion 110a-110e,
labeled in Fig. 3. The annular passages 104a-104f are fluidically isolated from another
by the cylindrical dividing portions 110a-110e. This allows different fluids, if desired,
to be used in the respective annular passages 104a-104f The separation between passages
104a-104f also permits independent control of each stage of each fuel. The nested
and interwoven configuration allows the manifold 100 to be more compact compared to
traditional manifolds.
[0018] As shown in Figs. 1, 2A and 2B, each annular passage 104a-104f includes a respective
passage inlet 106a-106f and a plurality of respective passage outlets 108a-f downstream
from their respective passage inlets 106a. For example, the annular passage 104a as
a single inlet 106a with multiple outlets 108a. The inlets 106a-106f of the annular
passages 104a-104f are formed in an upstream axial facing surface 114 of the manifold
body 102. The passage outlets 108a-f are all positioned at the same axial position
relative to the manifold axis A. It is contemplated that some passage outlets can
be positioned at different axial positions from one another. For example, the passage
outlets 108a, 108c, and 108e can be associated with a gas fuel feed and can be at
the same axial position, while passage outlets 108b, 108d and 108f can be associated
with a liquid fuel feed and can be at the same axial position as one another, but
a position different from that of outlets 108a, 108c and 108d. The passage outlets
108a-f are circumferentially offset from one another relative to the manifold axis
A. It is also contemplated that some passage outlets can be positioned at the same
circumferential positions relative to one another. For example, the passage outlets
108a and 108b can be associated with the first stage fuel distributor and can be at
the same circumferential position, while passage outlets 108c and 108d can be associated
with the second stage fuel distributor and can be at different circumferential position
from passages 108a and 108b.
[0019] In the embodiment shown in Fig. 2A and 2B, each annular passage 104a-104f includes
five respective passage outlets 108a-f. For example, annular passage 104a includes
five passage outlets 108a. While each annular passage is shown with five respective
passage outlets, it is contemplated that in some embodiments more or less than five
passage outlets can be used. Each annular passage 104a-104f is in fluid communication
with a respective set of outlet channels 112a-f through its respective set of passage
outlets 108a-f. The outlet channels 112a-f, branch off from their associated annular
passage 104a-104f and extend in a radial direction relative to the manifold axis A.
[0020] As shown in Figs. 3 and 4, the manifold 100 including manifold body 102 is in a combustor
system 101. The system 101 includes a combustor case 116 defining a manifold receptacle
bore 118 therethrough. The manifold body 102 is seated in the manifold receptacle
bore 118 to plug seal pressure within the combustor case 116. The system 101 includes
a plurality of fuel distributors 120a-c. Each fuel distributor 120a-c is in fluid
communication with two of annular passages 104a-f to facilitate three stage, dual
fuel injection. Fuel distributors 120a-c are in communication with the inside of a
combustor 103. The system 101 includes an ignitor 122 seated in a central passage
of the manifold body 102 for ignition of fuel issued from the fuel distributors 120a-120c.
While the embodiments herein show manifolds that facilitate three stage, dual fuel
injection, it is contemplated that some embodiments can also be used for single fuel-type
injection, and/or injection with any number of stages, such as two-stage injection.
[0021] With reference now to Figs. 4-6, the system 101 includes sets of transfer tubes 124a-c
downstream from the annular passages 104a-f. Each passage outlet 108a-f and its associated
outlet channel 112a-f is associated with a respective one of the transfer tubes 124a-124c
to fluidly connect the passage outlets 108a (and in turn their associated annular
passage 104a) to various stages of the fuel distributors 120a-c. In the embodiment
depicted in the figures, there are 5 pairs of transfer tubes 124a-c for each stage.
The number of transfer tubes can vary depending on the number of passage outlets 108
associated with a given annular passage 104. For example, annular passages 104a and
104b are in fluid communication with first stage fuel distributor 120a through the
first stage transfer tubes 124a. Five of the transfer tubes 124a fluidly connect annular
passage 104a with first stage fuel distributor 120a, via the outlets 108a and outlet
channels 112a of annular passage 104a. The other five transfer tubes 124a fluidly
connect annular passage 104b with first stage fuel distributor 120a via the outlets
108b and outlet channels 112b of annular passage 104b. This allows system 101 to provide
gas fuel to fuel distributor 120a through annular passage 104a and/or liquid fuel
to fuel distributor 120a through annular passage 104b.
[0022] With continued reference to Figs. 4-6, annular passages 104c and 104d are in fluid
communication with second stage fuel distributor 120b through transfer tubes 124b
(10 total). Five of the transfer tubes 124b fluidly connect annular passage 104c with
second stage fuel distributor 120b via the outlets 108c and outlet channels 112c of
annular passage 104c. The other five transfer tubes 124b fluidly connect annular passage
104d with second stage fuel distributor 120b via the outlets 108d and outlet channels
112d of annular passage 104d. This allows system 101 to provide gas fuel to fuel distributor
120b through annular passage 104c and/or liquid fuel to fuel distributor 120b through
annular passage 104d. Annular passages 104e and 104f are in fluid communication with
third stage fuel distributor 120c through transfer tubes 124c. Five of the transfer
tubes 124c fluidly connect annular passage 104e with third stage fuel distributor
120c via the outlets 108e and outlet channels 112e of annular passage 104e. The other
five transfer tubes 124c fluidly connect annular passage 104f with third stage fuel
distributor 120c via the outlets 108f and outlet channels 112f of annular passage
104f. This allows system 101 to provide gas fuel to fuel distributor 120c through
annular passage 104e and/or liquid fuel to fuel distributor 120c through annular passage
104f. While it is described herein that each annular passage is associated with a
given fuel distributor with five transfer tubes, it will be appreciated that in other
embodiments the number of transfer tubes can vary depending on the number of outlets
associated with a given annular passage.
[0023] With reference now to Figs. 1, 2A, 3 and 4, the manifold body 102 defines a seal
groove 128 on an outer surface of the manifold body 102. The seal groove 128 includes
an upstream facing seal surface 132 and a radially outward facing seal surface 134.
The system 101 includes seal ring 126 between the manifold body 102 and the combustor
case 116 that rests in the seal groove 128. The seal ring 126 abuts a downstream facing
seal surface 130 on the combustor case 116, an upstream facing seal surface 132 of
the seal groove 128 and a radially outward facing seal surface 134 of the seal groove
128. The seal ring 126 can be a c-seal ring. In this embodiment, pressure from inside
the combustor 103 pushes the manifold upstream, e.g. to the left as oriented in Fig.
4, which tightens the seal. This arrangement requires a smaller seal surface as compared
with traditional assemblies where the nozzle portions of combustors are removable
from the outside of the combustor case and therefore must withstand the force from
the pressure within the combustor.
[0024] It is contemplated that manifolds 100 and combustor systems 101 as described herein
can be retrofitted into existing gas turbine engines. Moreover, while shown and described
herein in the exemplary context of fuel manifolds 100, those skilled in the art will
readily appreciate that manifolds 100 as disclosed herein can be used in any suitable
application where it is desired to maintain separate fluid circuits in a manifold,
such as in food or chemical processing or the like.
[0025] Systems and methods as described herein allow for receiving fluids from multiple
sources, and for delivering to multiple outlets for each source. It is contemplated
that manifolds as described have multiple annular passages acting to divide fluid
evenly among multiple individual circuits, e.g., for fuel injection. Manifolds as
described herein can operate better at lower flow rates or power levels than traditional
manifold arrangements. Manifolds as described herein can minimize manifold size for
efficient packaging or advantageous envelope for multiple fluid circuits. Manifolds
as described herein can fit within envelopes designed for traditional manifold arrangements,
e.g., without taking up room outside a combustor case.
[0026] The methods and systems of the present disclosure, as described above and shown in
the drawings, provide for manifolds with superior properties including compact form
factor. While the apparatus and methods of the subject disclosure have been shown
and described with reference to preferred embodiments, those skilled in the art will
readily appreciate that changes and/or modifications may be made thereto without departing
from the scope of the subject disclosure, as defined in the appended claims.
1. A system comprising a fuel manifold (100), the fuel manifold (100) comprising:
a manifold body (102), the manifold body (102) comprising:
a first annular passage (104a) defined within the manifold body (102) between a first
passage inlet (106a) and a first passage outlet (108a) downstream from the first passage
inlet (106a); and
a second annular passage (104b) defined within the manifold body (102) nested radially
outward from the first annular passage (104a), and between a second passage inlet
(106b) and a second passage outlet (108b) downstream from the second passage inlet
(106b), wherein the first and second annular passages (104a, 104b) are concentric
about a manifold axis (A), wherein the first passage outlet (108a) and the second
passage outlet (108b) are positioned at the same axial position relative to the manifold
axis (A),
the system further comprising a fuel distributor (120a),
characterised in that the manifold body (102) further comprises:
a first outlet channel extending radially from the first annular passage;
a second outlet channel extending radially from the second annular passage;
a first transfer tube (124a) downstream from the first outlet channel of the manifold
body; and
a second transfer tube (124b) downstream from the second outlet channel of the manifold
body, wherein the fuel distributor (120a) is in fluid communication with the first
and second annular passages (104a, 104b) via the first and second transfer tubes and
the first and second outlet channels, wherein each of the first and second annular
passage outlets are in fluid communication with the first and second outlet channels,
respectively, wherein the first and second outlet channels are positioned at the same
axial position relative to the manifold axis (A).
2. The system as recited in claim 1, wherein the first passage outlet (108a) and the
second passage outlet (108b) are circumferentially offset from one another relative
to the manifold axis (A).
3. The system as recited in claim 1 or 2, further comprising at least one additional
annular passage (104c, 104d, 104e, 104f) defined within the manifold body (102), wherein
a first one of the at least one additional annular passage (104c, 104d, 104e, 104f)
is nested radially outward of the second annular passage (104b) .
4. The system as recited in claim 1, 2 or 3, wherein the manifold body (102) includes
a cylindrical dividing portion (110a), wherein the first annular passage (104a) and
the second annular passage (104b) are fluidically isolated from one another by the
cylindrical dividing portion (110a).
5. The system as recited in any preceding claim, wherein the first passage outlet (108a)
is one of a plurality of distinct first passage outlets and wherein the respective
radially extending outlet channel (112a) is one of a plurality of radially extending
outlet channels, wherein each of the first passage outlets (108a) is in fluid communication
with a respective one of the plurality of radially extending outlet channels (112a)
branching off from the first annular passage (104a).
6. The system as recited in any preceding claim, wherein the second passage outlet (108b)
is one of a plurality of distinct second passage outlets and wherein the respective
radially extending outlet channel (112b) is one of a plurality of radially extending
outlet channels, wherein each of the second passage outlets (108b) is in fluid communication
with one of the plurality of radially extending outlet channels branching off from
the second annular passage (104b).
7. The system as recited in claim 5 or 6, wherein each of the radially extending outlet
channels (112a, 112b) extends in a radial direction relative to the manifold axis
(A).
8. The system as recited in any preceding claim, wherein the inlets of the first and
second annular passages (104a, 104b) are formed in an upstream axial facing surface
(114) of the manifold body (102).
9. The system as recited in any preceding claim, wherein the manifold body (102) defines
a seal groove (128) on an outer surface of the manifold body (102).
10. The system as recited in claim 9, wherein the seal groove (128) includes an upstream
facing seal surface (132) and a radially outward facing seal surface (134).
11. The system as recited in any preceding claim, wherein the manifold body (102), including
the first and second annular passages (104a, 104b), is a single monolithic object,
or wherein the manifold body (102) includes a first manifold portion (102a) and a
second manifold portion (102b), wherein the first and second manifold portions (102a,
102b) are joined together to form the first and second annular passages (104a, 104b).
12. A system as claimed in claim 1 and further comprising:
a combustor case (116) defining a manifold receptacle bore (118) therethrough,
wherein the manifold body (102) is seated in the manifold receptacle bore (118) to
plug seal pressure within the combustor case (116).
13. The system as recited in claim 12, wherein the manifold includes two additional annular
passages in addition to the first annular passage (104a) and the second annular passage
(104b), and wherein both of the two additional annular passages are in fluid communication
with a second fuel distributor (120b) for dual fuel, dual stage fuel injection, or
wherein the manifold includes two additional pairs of annular passages in addition
to the first annular passage (104a) and the second annular passage (104b), and wherein
each of the two pairs of additional annular passages is in fluid communication with
a respective additional fuel distributor (120b, 120c) for three stage, dual fuel injection.
14. The system as recited in claim 12 or 13, further comprising an ignitor (122) seated
in a central passage of the manifold body (102) for ignition of fuel issued from the
fuel distributor (120a).
15. The system as recited in claim 12, 13 or 14, further comprising a seal ring (126)
between the manifold body (102) and the combustor case (116), wherein the manifold
body (102) defines a seal groove (128) on an outer surface of the manifold body (102),
wherein the seal ring (126) rests within the seal groove (128), wherein, optionally,
the seal ring (126) abuts a downstream facing seal surface (130) on the combustor
case (116), an upstream facing seal surface (132) of the seal groove (128) and a radially
outward facing seal surface (134) of the seal groove (128).
1. System, umfassend einen Treibstoffverteiler (100), wobei der Treibstoffverteiler (100)
Folgendes umfasst:
einen Verteilerkörper (102), wobei der Verteilerkörper (102) Folgendes umfasst:
einen ersten ringförmigen Durchgang (104a), welcher in dem Verteilerkörper (102) zwischen
einem ersten Durchgangseinlass (106a) und einem ersten Durchgangauslass (108a) stromabwärts
von dem ersten Durchgangeinlass (106a) angeordnet ist; und
ein zweiter ringförmiger Durchgang (104b), welcher in dem Verteilerkörper (102) definiert
ist, welcher radial nach außen von dem ersten ringförmigen Durchgang (104a) eingenistet
ist, und zwischen einem zweiten Durchgangeinlass (106b) und einem zweiten Durchgangsauslass
(108b) stromabwärts von dem zweiten Durchgangseinlass (106b), wobei der erste und
zweite ringförmige Durchgang (104a, 104b) konzentrisch um eine Verteilerachse (A)
sind, wobei der erste Durchgangsauslass (108a) und der zweite Durchgangsauslass (108b)
in der gleichen axialen Position bezogen auf die Verteilerachse (A) positioniert sind,
wobei das System ferner einen Treibstoffzuteiler (120a) umfasst,
dadurch gekennzeichnet, dass der Verteilerkörper (102) ferner Folgendes umfasst:
einen ersten Auslasskanal, welcher sich radial von dem ersten ringförmigen Durchgang
erstreckt;
einen zweiten Auslasskanal, welcher sich radial von dem ersten ringförmigen Durchgang
erstreckt;
ein erstes Übertragungsrohr (124a) stromabwärts von dem ersten Auslasskanal des Verteilerkörpers;
und
ein zweites Übertragungsrohr (124b) stromabwärts von dem zweiten Auslasskanal des
Verteilerkörpers, wobei der Treibstoffzuteiler (120a) über das erste und zweite Übertragungsrohr
und den ersten und zweiten Auslasskanal in Fluidkommunikation mit dem ersten und zweiten
ringförmigen Durchgang (104a, 104b) steht, wobei jeder des ersten und zweiten ringförmigen
Durchgangsauslasses in Fluidkommunikation mit dem entsprechenden ersten und zweiten
Auslasskanal steht, wobei der erste und zweite Auslasskanal bezogen auf die Verteilerachse
(A) in der gleichen axialen Position positioniert sind.
2. System nach Anspruch 1, wobei der erste Durchgangsauslass (108a) und der zweite Durchgangsauslass
(108b) bezogen auf die Verteilerachse (A) umlaufend voneinander versetzt sind.
3. System nach Anspruch 1 oder 2, ferner umfassend mindestens einen zusätzlichen ringförmigen
Durchgang (104c, 104d, 104e, 104f), welcher in dem Verteilerkörper (102) definiert
ist, wobei ein erster des mindestens einen zusätzlichen ringförmigen Durchgangs (104c,
104d, 104e, 104f) radial nach außen von dem zweiten ringförmigen Durchgang (104b)
eingenistet ist.
4. System nach Anspruch 1, 2 oder 3, wobei der Verteilerkörper (102) einen zylindrischen
Trennteil (110a) beinhaltet, wobei der erste ringförmige Durchgang (104a) und der
zweite ringförmige Durchgang (104b) durch den zylindrischen Trennteil (110a) fluidisch
voneinander isoliert sind.
5. System nach einem der vorstehenden Ansprüche, wobei der erste Durchgangsauslass (108a)
einer von einer Vielzahl von unterschiedlichen ersten Durchgangsauslässen ist und
wobei der entsprechende sich radial erstreckende Auslasskanal (112a) einer von einer
Vielzahl von sich radial erstreckenden Auslasskanälen ist, wobei jeder der ersten
Durchgangsauslässe (108a) mit einem entsprechenden der Vielzahl von sich radial erstreckenden
Auslasskanälen (112a) in Fluidkommunikation steht, welche von dem ersten ringförmigen
Durchgang (104a) abzweigen.
6. System nach einem der vorstehenden Ansprüche, wobei der zweite Durchgangsauslass (108b)
einer von einer Vielzahl von unterschiedlichen zweiten Durchgangsauslässen ist und
wobei der entsprechende sich radial erstreckende Auslasskanal (112b) einer von einer
Vielzahl von sich radial erstreckenden Auslasskanälen ist, wobei jeder der zweiten
Durchgangsauslässe (108a) mit einem der Vielzahl von sich radial erstreckenden Auslasskanälen
in Fluidkommunikation steht, welche von dem zweiten ringförmigen Durchgang (104b)
abzweigen.
7. System nach Anspruch 5 oder 6, wobei sich jeder der sich radial erstreckenden Auslasskanäle
(112a, 112b) bezogen auf die Verteilerachse (A) in einer radialen Richtung erstreckt.
8. System nach einem der vorstehenden Ansprüche, wobei die Einlässe des ersten und zweiten
ringförmigen Durchgangs (104a, 104b) in einer stromaufwärtigen in axialer Richtung
zeigende Fläche (114) des Verteilerkörpers (102) gebildet sind.
9. System nach einem der vorstehenden Ansprüche, wobei der Verteilerkörper (102) eine
Dichtungsnut (128) an einer äußeren Fläche des Verteilerkörpers (102) definiert.
10. System nach Anspruch 9, wobei die Dichtungsnut (128) eine stromaufwärts zeigende Dichtungsfläche
(132) und eine radial nach außen zeigende Dichtungsfläche (134) beinhaltet.
11. System nach einem der vorstehenden Ansprüche, wobei der Verteilerkörper (102), welcher
den ersten und zweiten ringförmigen Durchgang (104a, 104b) beinhaltet, ein einzelnes
monolithisches Objekt ist, oder
wobei der Verteilerkörper (102) einen ersten Verteilerteil (102a) und einen zweiten
Verteilerteil (102b) beinhaltet, wobei der erste und zweite Verteilerteil (102a, 102b)
zusammengefügt sind, um den ersten und zweiten ringförmigen Durchgang (104a, 104b)
zu bilden.
12. System nach Anspruch 1 und ferner umfassend:
ein Brennkammergehäuse (116), welches eine Verteileraufnahmebohrung (118) dort hindurch
definiert,
wobei der Verteilerkörper (102) in der Verteileraufnahmebohrung (118) sitzt, um Dichtungsdruck
in dem Brennkammergehäuse (116) zu verstopfen.
13. System nach Anspruch 12, wobei der Verteiler zwei zusätzliche ringförmige Durchgänge
zusätzlich zu dem erste ringförmigen Durchgang (104a) und dem zweiten ringförmigen
Durchgang (104b) beinhaltet, und wobei beide der zwei zusätzlichen ringförmigen Durchgänge
zur zweistufigen doppelten Treibstoffeinspritzung in Fluidkommunikation mit einem
zweiten Treibstoffzuteiler (120b) stehen, oder
wobei der Verteiler zwei zusätzliche Paare von ringförmigen Durchgängen zusätzlich
zu dem ersten ringförmigen Durchgang (104a) und dem zweiten ringförmigen Durchgang
(104b) beinhaltet, und wobei jedes der zwei Paare von zusätzlichen Durchgängen zur
dreistufigen doppelten Treibstoffeinspritzung in Fluidkommunikation mit einem entsprechenden
zusätzlichen Treibstoffzuteiler (120b, 120c) steht.
14. System nach Anspruch 12 oder 13, ferner umfassend einen Zünder (122), welcher in einem
mittleren Durchgang des Verteilerkörpers (102) sitzt, um Treibstoff zu entzünden,
welcher von dem Treibstoffzuteiler (120a) ausgegeben wird.
15. System nach Anspruch 12, 13 oder 14, ferner umfassend einen Dichtungsring (126) zwischen
dem Verteilerkörper (102) und dem Brennkammergehäuse (116), wobei der Verteilerkörper
(102) eine Dichtungsnut (128) an einer äußeren Fläche des Verteilerkörpers (102) definiert,
wobei der Dichtungsring (126) in der Dichtungsnut (128) liegt, optional wobei der
Dichtungsring (126) an eine stromabwärts zeigende Dichtungsfläche (130) auf dem Brennkammergehäuse
(116), an eine stromaufwärtszeigende Dichtungsfläche (132) der Dichtungsnut (128)
und an eine radial nach außen zeigende Dichtungsfläche (134) der Dichtungsnut (128)
angrenzt.
1. Système comprenant un collecteur de carburant (100), le collecteur de carburant (100)
comprenant :
un corps de collecteur (102), le corps de collecteur (102) comprenant :
un premier passage annulaire (104a) défini à l'intérieur du corps de collecteur (102)
entre une première entrée de passage (106a) et une première sortie de passage (108a)
en aval de la première entrée de passage (106a) ; et
un second passage annulaire (104b) défini à l'intérieur du corps de collecteur (102)
imbriqué radialement vers l'extérieur du premier passage annulaire (104a), et entre
une seconde entrée de passage (106b) et une seconde sortie de passage (108b) en aval
de la seconde entrée de passage (106b), dans lequel les premier et second passages
annulaires (104a, 104b) sont concentriques autour d'un axe de collecteur (A), dans
lequel la première sortie de passage (108a) et la seconde sortie de passage (108b)
sont positionnées au niveau de la même position axiale par rapport à l'axe de collecteur
(A),
le système comprenant en outre un distributeur de carburant (120a),
caractérisé en ce que le corps de collecteur (102) comprend en outre :
u n premier canal de sortie s'étendant radialement à partir du premier passage annulaire
;
u n second canal de sortie s'étendant radialement à partir du second passage annulaire
;
u n premier tube de transfert (124a) en aval du premier canal de sortie du corps de
collecteur ; et
u n second tube de transfert (124b) en aval du second canal de sortie du corps de
collecteur, dans lequel le distributeur de carburant (120a) est en communication fluidique
avec les premier et second passages annulaires (104a, 104b) via les premier et second
tubes de transfert et les premier et second canaux de sortie, dans lequel chacune
des première et seconde sorties de passage annulaire sont en communication fluidique
avec les premier et second canaux de sortie, respectivement, dans lequel les premier
et second canaux de sortie sont positionnés au niveau de la même position axiale par
rapport à l'axe de collecteur (A).
2. Système selon la revendication 1, dans lequel la première sortie de passage (108a)
et la seconde sortie de passage (108b) sont décalées circonférentiellement l'une de
l'autre par rapport à l'axe de collecteur (A).
3. Système selon la revendication 1 ou 2, comprenant en outre au moins un passage annulaire
supplémentaire (104c, 104d, 104e, 104f) défini à l'intérieur du corps de collecteur
(102), dans lequel un premier de l'au moins un passage annulaire supplémentaire (104c,
104d, 104e, 104f) est imbriqué radialement vers l'extérieur du second passage annulaire
(104b).
4. Système selon la revendication 1, 2 ou 3, dans lequel le corps de collecteur (102)
comporte une partie de division cylindrique (110a), dans lequel le premier passage
annulaire (104a) et le second passage annulaire (104b) sont isolés fluidiquement l'un
de l'autre par la partie de division cylindrique (110a).
5. Système selon une quelconque revendication précédente, dans lequel la première sortie
de passage (108a) est l'une d'une pluralité de premières sorties de passage distinctes
et dans lequel le canal de sortie s'étendant radialement respectif (112a) est l'un
d'une pluralité de canaux de sortie s'étendant radialement, dans lequel chacune des
premières sorties de passage (108a) est en communication fluidique avec un canal respectif
de la pluralité de canaux de sortie s'étendant radialement (112a) se ramifiant depuis
le premier passage annulaire (104a).
6. Système selon une quelconque revendication précédente, dans lequel la seconde sortie
de passage (108b) est l'une d'une pluralité de secondes sorties de passage distinctes
et dans lequel le canal de sortie s'étendant radialement respectif (112b) est l'un
d'une pluralité de canaux de sortie s'étendant radialement, dans lequel chacune des
secondes sorties de passage (108b) est en communication fluidique avec l'un d'une
pluralité de canaux s'étendant radialement se ramifiant depuis le second passage annulaire
(104b).
7. Système selon la revendication 5 ou 6, dans lequel chacun des canaux de sortie s'étendant
radialement (112a, 112b) s'étend dans une direction radiale par rapport à l'axe de
collecteur (A) .
8. Système selon une quelconque revendication précédente, dans lequel les premier et
second passages annulaires (104a, 104b) sont formés dans une surface axiale orientée
en amont (114) du corps de collecteur (102).
9. Système selon une quelconque revendication précédente, dans lequel le corps de collecteur
(102) définit une rainure d'étanchéité (128) sur une surface externe du corps de collecteur
(102).
10. Système selon la revendication 9, dans lequel la rainure d'étanchéité (128) comporte
une surface d'étanchéité orientée en amont (132) et une surface d'étanchéité orientée
radialement vers l'extérieur (134).
11. Système selon une quelconque revendication précédente, dans lequel le corps de collecteur
(102), comportant les premier et second passages (104a, 104b), est un objet monolithique
unique, ou
dans lequel le corps de collecteur (102) comporte une première partie de collecteur
(102a) et une seconde partie de collecteur (102b), dans lequel les première et seconde
parties de collecteur (102a, 102b) sont jointes ensemble pour former les premier et
second passages annulaires (104a, 104b).
12. Système selon la revendication 1 et comprenant en outre :
un carter de chambre de combustion (116) définissant un alésage de réceptacle de collecteur
(118) à travers celui-ci,
dans lequel le corps de collecteur (102) est logé dans l'alésage de réceptacle de
collecteur (118) pour bloquer la pression d'étanchéité à l'intérieur du carter de
chambre de combustion (116).
13. Système selon la revendication 12, dans lequel le collecteur comporte deux passages
annulaires supplémentaires en plus du premier passage annulaire (104a) et du second
passage annulaire (104b), et dans lequel les deux passages annulaires supplémentaires
sont en communication fluidique avec un second distributeur de carburant (120b) pour
une injection de deux carburants en deux étapes, ou
dans lequel le collecteur comporte deux paires supplémentaires de passages annulaires
en plus du premier passage annulaire (104a) et du second passage annulaire (104b),
et dans lequel chacune des deux paires de passages annulaires supplémentaires est
en communication fluidique avec un distributeur de carburant supplémentaire respectif
(120b, 120c) pour une injection de deux carburants en trois étapes.
14. Système selon la revendication 12 ou 13, comprenant en outre un allumeur (122) logé
dans un passage central du corps de collecteur (102) pour l'allumage de carburant
distribué à partir du distributeur de carburant (120a).
15. Système selon la revendication 12, 13 ou 14, comprenant en outre une bague d'étanchéité
(126) entre le corps de collecteur (102) et le carter de chambre de combustion (116),
dans lequel le corps de collecteur (102) définit une rainure d'étanchéité (128) sur
une surface externe du corps de collecteur (102), dans lequel la bague d'étanchéité
(126) repose à l'intérieur de la rainure d'étanchéité (128), dans lequel, éventuellement,
la bague d'étanchéité (126) vient en butée contre une surface d'étanchéité orientée
en aval (130) du carter de chambre de combustion (116), une surface d'étanchéité orientée
en amont (132) de la rainure d'étanchéité (128) et une surface d'étanchéité orientée
radialement vers l'extérieur (134) de la rainure d'étanchéité (128).
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description