
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

46
1

05
3

A
1

TEPZZ¥46_Z5¥A_T
(11) EP 3 461 053 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.03.2019 Bulletin 2019/13

(21) Application number: 17192193.5

(22) Date of filing: 20.09.2017

(51) Int Cl.:
H04L 9/00 (2006.01) H04L 9/32 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(71) Applicant: Nagravision S.A.
1033 Cheseaux-sur-Lausanne (CH)

(72) Inventors:
• VILLEGAS, Karine

1034 Boussens (CH)
• PELISSIER, Sylvain

1004 Lausanne (CH)
• ROMAILLER, Yolan

1020 Renens (CH)

(74) Representative: Hoyng Rokh Monegier LLP
Rembrandt Tower, 31st Floor
Amstelplein 1
1096 HA Amsterdam (NL)

(54) FAULT ATTACKS COUNTER-MEASURES FOR EDDSA

(57) A method for obtaining a public-key digital sig-
nature for a data message (103) based on EdDSA,
wherein the signature comprises a first data component
(124) and a second data component (170). The method
comprises receiving the first data component, a public
key (114), a secret-integer (112), a secret-hash (122)
and the data message, the first data component being
an intermediate result of the EdDSA obtained from the
secret-hash and the data message, wherein the se-
cret-integer is derived from a part of a EdDSA private key
(101). In different implementations, a first hash (141) and
a second hash (151) are computed based on the first
data component, the public key and the data message.
The second data component is computed based on the
first and second hash, the secret-integer, the secret-hash
and a random value (161). The second data component
is correct only if the first and second hashes are identical.

EP 3 461 053 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present disclosure relates to a computer-implemented method for obtaining a public-key digital signature
for a data message based on an Edwards-curve Digital Signature Algorithm. The disclosure further relates to a data
processing device, a computer program product and a computer-readable non-transitory storage medium.

BACKGROUND ART

[0002] A digital signature is a mathematical scheme for demonstrating the authenticity of digital messages or docu-
ments. A valid digital signature gives a recipient reason to believe that the message was created by a known sender
(authentication), that the sender cannot deny having sent the message (non-repudiation), and that the message was
not altered in transit (integrity). Digital signatures are a standard element of most cryptographic protocol suites, and are
commonly used for software distribution, financial transactions, contract management software, and in other cases where
it is important to detect forgery or tampering.
[0003] A digital signature scheme typically includes a key generation algorithm, a signing algorithm and a signature
verifying algorithm. The key generation algorithm may select a private key uniformly at random from a set of possible
private keys and outputs the private key and a corresponding public key. The signing algorithm may produce a digital
signature for a data message based on the private key. The signature verifying algorithm may accept or reject a data
message’s claim to authenticity based on the data message, the public key and the signature.
[0004] It is known that Elliptic Curve Cryptography (ECC) can be used to build digital signature algorithms with a
smaller key size than the Digital Signature Algorithm (DSA) with the same level of security. The security of such algorithms
is generally based on the Discrete Logarithm Problem (DLP). Currently the best known algorithms to solve this DLP
over elliptic curves are less efficient than ones over finite fields. This allowed the fast adoption of ECC to provide security
in embedded ecosystems where resources are constrained.
[0005] EdDSA can be used to perform fast public-key digital signatures as a replacement for the Elliptic Curve Digital
Signature Algorithm (ECDSA).
[0006] EdDSA is implemented in many products and libraries, such as OpenSSH. It was also recently defined in RFC
8032.
[0007] EdDSA is known to have higher performance compared to ECDSA notably because of its existing straightfor-
ward, secure implementations with neither branch nor lookup operations depending on the secret values being performed
during a signature.
[0008] These properties thwart many side-channel attacks. Nevertheless, it has been found that a single-fault attack
against EdDSA can recover enough private key material to forge valid signatures for any message. With a single fault,
it is possible to retrieve the long term private key and then forge valid signatures for any message.
[0009] It is an aim of the disclosure to make the EdDSA signature algorithm and its implementations more resistant
to fault attacks.

SUMMARY

[0010] The disclosure provides a solution for making the EdDSA signature algorithm more resistant to fault attacks.
[0011] According to an aspect of the disclosure, a computer-implemented method is proposed for obtaining a public-
key digital signature for a data message based on an EdDSA algorithm, wherein the public-key digital signature comprises
a first data component and a second data component. The method can comprise receiving the first data component, a
public key, a secret-integer, a secret-hash and the data message. The first data component can be an intermediate
result of the EdDSA obtained from the secret-hash and the data message. The secret-integer can be derived from a
part of a EdDSA private key. Typically, the derivation of the secret-integer uses a hash function and may further include
clamping as defined in RFC8032.The secret-hash can be derived from a part of EdDSA private key and the data message.
The method can further comprise computing a first hash based on the first data component, the public key and the data
message. The method can further comprise computing a second hash based on the first data component, the public
key and the data message. The method can further comprise computing the second data component based on the first
hash, the second hash, the secret-integer, the secret-hash and a random value. The outcome of the computing of the
second data component can be correct only if the first hash and the second hash are identical.
[0012] Advantageously, the calculation of the two hashes and computing the second data component of the signature
based on these two hashes makes it very difficult to perform fault attacks on the EdDSA algorithm and obtain a valid
signature.
[0013] In an embodiment, the computing of the first hash and the computing of the second hash can be implemented

EP 3 461 053 A1

3

5

10

15

20

25

30

35

40

45

50

55

and/or coded differently using hardware and/or software means. Hence, it becomes increasingly difficult to perform fault
attacks on the EdDSA algorithm, knowing that the computation results of the hashes should be the same for obtaining
the second data component of the signature.
[0014] In an embodiment, the random value can change with each computation of the second data component. This
randomizes each computation of the signature to increase the security of the EdDSA algorithm.
[0015] In an embodiment, the second data component can be computed using the following formula: S = (r + h1 + (a
- ri).h1 + (ri - 1).h2) mod <, wherein "S" is the second data component, "h1" is the first hash, "h2" is the second hash, "ri"
is the random value, "a" is the secret-integer, "r" is the secret-hash, and "<" is the curve order of the Edwards-curve as
defined in the EdDSA standard.
[0016] In an embodiment, one or more further hashes can be computed based on the first data component, the public
key and the data message. In another embodiment, it is possible to add more than one random values, as long as the
introduced randomness cancels itself in the subsequent computations.
[0017] The second data component can be computed further based on the one or more further hashes. The outcome
of the computing of the second data component can be correct only if the first hash, the second hash and the one or
more further hashes are identical.
[0018] According to an aspect of the disclosure, a data processing device is proposed. The device can comprise a
processor that is configured to perform one or more of the steps of the above described method. It will be well understood
that this is not a limited example, and an integrated circuit can for example be used to implement the method.
[0019] According to an aspect of the disclosure, a computer program product is proposed. The computer program
product can be implemented on a computer-readable non-transitory storage medium. The computer program product
can comprise computer executable instructions which, when executed by a processor, cause the processor to carry out
one or more of the steps of the above described method.
[0020] According to an aspect of the disclosure, a computer-readable non-transitory storage medium is proposed,
comprising computer executable instructions which, when executed by a processor, cause the processor to carry out
one or more of the steps of the above described method.
[0021] The wording first, second, third and fourth as used in the claims is not intended to indicate any particular order.
This wording is used to label different elements for distinguishing the elements.
[0022] Hereinafter, embodiments of the disclosure will be described in further detail. It should be appreciated, however,
that these embodiments may not be construed as limiting the scope of protection for the present disclosure.

BRIEF DESCRIPTION OF DRAWINGS

[0023] Embodiments will now be described, by way of example only, with reference to the accompanying schematic
drawings in which corresponding reference symbols indicate corresponding parts, and in which:

FIG. 1 shows a flow diagram of an exemplary EdDSA implementation according to an aspect of the disclosure; and
FIG. 2 is an abstract representation of an exemplary cryptographic device 1 according to an aspect of the disclosure.

[0024] The figures are meant for illustrative purposes only, and do not serve as restriction of the scope or the protection
as laid down by the claims.

DESCRIPTION OF EMBODIMENTS

[0025] EdDSA is a public-key signature algorithm similar to ECDSA. In RFC 8032 EdDSA is defined for two twisted
Edwards curves edwards25519 and edwards448; nevertheless EdDSA may be instantiated over other curves.
[0026] EdDSA uses a private key k that is b-bits long and a hash function H that produces a 2b-bits output. One
common instance is to use SHA-512 for b = 256 bits. The secret-integer a is determined from H(k) = (h0, h1, ..., h2b-1) with:

[0027] The public key A is then computed from the base point B ≠ (0, 1) of order <, chosen as per the curve specifications
or peers agreement, such that A = a · B. In practice the public key and the signatures may be output according to the
encoding defined in RFC 8032.
[0028] The signature (R, S) of a message M is typically computed according to the following Algorithm 1 (where the
notation R corresponds to the value (yR||bit sign of xR) constructed from R coordinates).

EP 3 461 053 A1

4

5

10

15

20

25

30

35

40

45

50

55

[0029] Amongst its differences from ECDSA, the signature computation following Algorithm 1 is deterministic, i.e., for
a given message M, if multiple signatures are computed they will all be identical.
[0030] A signature may be considered valid if from the parsing of R, it can be checked that R is an element of E, S is
an element of {0, 1, ..., <-1} and the following equation holds in E:

[0031] Herein, verification without the cofactor 8 is a stronger way to verify a signature.
[0032] The principle of fault attacks is to disturb the normal behavior of a device making it output erroneous results or
bypass certain operations. If the fault happens during the computation of sensitive operations, the erroneous outputs
may be used to recover sensitive information.
[0033] An attack can for example be based on faulting operation 5 of Algorithm 1 during the computation of the
signature. As long as the output of the hash is faulted and changed to a value h’ ≠ h then the faulty signature will be (R,
S’), i.e. as soon as the second part of the signature is changed. The value of a can be then recovered with:

[0034] The value of h can be computed from R, A and M which are known, however, the value h’ has to be known or
guessed. This limitation can be overcome if the fault model is characterized properly and the faulted value can be
guessed in a post-processing phase. For example, if the fault model is a random byte e that is an element of {1, 2, ...,
255} injected at a random offset i after the hash computation, i.e. h’ = 28ie ⊕ h. For example, i is an element of {0, 1, ...,
31} for edwards25519 and i is an element of {0, 1, ..., 57} for edwards448. In the first case, all the 255 · 32 = 8160
possibilities can be tested for h’ until the computation of a · B matches the public key value A.
[0035] Even if the secret-integer a is known, it remains impossible to compute the secret-hash r = H(hb, ..., h2b-1,M)
for a new message M since the values hb, ..., h2b-1 are not known. However, by selecting the secret-hash r as a random
number, and computing a new (R, S) similarly for any message M, we have:

[0036] The verification equation still holds. Thus it is possible to forge valid signatures for any message, since a verifier
does not know the secret-hash r.
[0037] To overcome the above weakness and sensitivity to fault attacks, in an embodiment, S may be computed in a
way which would prevent faults located in both the hash and the message to allow the recovery of the secret-integer a.
[0038] Hereto, steps 5-7 of Algorithm 1 may be replaced by the following three steps.

Step 1) Compute h1 = H(R, A, M) with a first implementation.
Step 2) Compute h2 = H(R, A, M) with a second implementation.
Herein the first and second implementation are different implementations. The first implementation is for example
a hardware implementation, while the second implementation is a software implementation. Alternatively, two dif-
ferent software implementations are used. The two operations may also be implemented with two different hardware
implementations. Preferably the two implementations run in parallel, but it is possible to perform these implemen-
tations in series.

Algorithm 1: EdDSA Signature

Require: M, (h0, h1, ..., h2b-1), B and A
1: a ← 2b-2 + ∑3≤ i≤b-3 2ihi

2: h ← H(hb,..., h2b-1,M)
3: r ← h mod <
4: R ← r·B
5: h ← H(R, A, M)

6: S ← (r+ah) mod <
7: return (R, S)

EP 3 461 053 A1

5

5

10

15

20

25

30

35

40

45

50

55

Step 3) Compute S = (r + h1 + (a - ri).h1 + (ri - 1).h2) mod <

Herein, ri is a random b-bit number, changed at each signature computation.
If h1 = h2 = h, the signature part S will be obtained as S = r + ah mod <
If h1 ≠ h2, and a fault occurred on h1, then the following is true:

[0039] Thus, the introduction of the random r1 hinders the recovery of a in case h1 ≠ h2, and a fault occurred on h1.
[0040] If h1 ≠ h2, and a fault occurred on h2, then the following is true:

[0041] Thus, there is no link with the secret-integer a at all in case h1 ≠ h2, and a fault occurred on h2.
[0042] The replacement steps of Algorithm 1 prevent faults in h1 or h2 from outputting a value which leaks the actual
value of a, except if two same faults are performed on both h1 and h2. The latter is considered very difficult if not impossible
because of the two implementations wherein h1 and h2 are computed. This is especially true if both implementations differ.
[0043] FIG. 1 shows an exemplary flow chart of an improved EdDSA implementation 100 according to an aspect of
the disclosure, with the following flow chart elements:

101: Private key = k (b bits)
102: Hash = H(x) (2b bits)
103: Message = M
110: Left half = H[0:b-1] (b bits)
111: Clamp as per RFC8032
112: Secret-integer = a (b bits)
113: Basepoint multiplication and point encoding
114: Public key = A (b bits)
120: Right half = H[b:2b] (b bits)
121: Hash = H(x) (2b bits)
122: Secret-hash = r (2b bits)
123: Basepoint multiplication and point encoding
124: R part of the signature = R (b bits)
130: Final hash input = R, A, M
140: Compute h1 = H(R, A, M)
141: Final hash = h1 (2b bits)
150: Compute h2 = H(R, A, M)
151: Final hash = h2 (2b bits)
160: Compute S = (r + h1 + (a - ri).h1 + (ri - 1).h2) mod <
161: Random value = ri (at least b bits)
170: S part of the signature = S (b bits)

[0044] The variables and operations used in FIG. 1 correspond with the variables and operations of the above described
examples.
[0045] In FIG. 1, the upper part of the implementation depicted "I" is similar to known EdDSA algorithms. The bottom
part of the implementation depicted "II" includes the improvements to the EdDSA algorithm, wherein two hashes h1 and

EP 3 461 053 A1

6

5

10

15

20

25

30

35

40

45

50

55

h2 may be computed in two parallel implementations in accordance with step 1 and step 2 described above. The thus
calculated hashes h1 and h2 are input, together with a randomly chosen value ri, into the computational step of calculating
the signature component S, in accordance with the above described step 3.
[0046] Note that the other signature component R is an intermediate result of the EdDSA algorithm, as shown in FIG.
1 in step 124.
[0047] The resulting signature of the improved EdDSA algorithm is (R, S).
[0048] In an alternative embodiment, more than two hashes may be calculated in different implementations. The
computation of the signature component S may then be based on these more than two hashes and produce a valid
signature if all computed hashes are the same.
[0049] FIG. 2 is an abstract representation of an exemplary cryptographic device 1. The device 1 may include a
processor 10 for executing computer executable instructions 20. The computer executable instructions 20 may be stored
on a computer-readable non-transitory storage medium. The device 1 may further include a random number generator
30 for generating a random number ri for each signature computation. The device 1 may further include a memory 40
for storing a private key k.
[0050] A message M may be input to the device 1, for which a public-key digital signature (R, S) is to be obtained.
Output of the device 1 may be the obtained signature (R, S).
[0051] The computer executable instructions 20 form the improved EdDSA algorithm and includes a first implementation
21 for calculating the first hash h1 and a second implementation 22 for calculating the second hash h2. The resulting
hashes are used to compute the second data component S of the signature. The first data component R of the signature
is an intermediate result of the EdDSA algorithm, as shown in FIG. 1. During computation, random number ri and private
key k are input to the algorithm at the required steps of the algorithm.
[0052] One or more embodiments of the disclosure may be implemented as a computer program product for use with
a computer system. The program(s) of the program product may define functions of the embodiments (including the
methods described herein) and can be contained on a variety of computer-readable storage media. The computer-
readable storage media may be non-transitory storage media. Illustrative computer-readable storage media include, but
are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM
disks readable by a CD-ROM drive, ROM chips or any type of solid-state non-volatile semiconductor memory) on which
information may be permanently stored; and (ii) writable storage media (e.g., hard disk drive or any type of solid-state
random-access semiconductor memory, flash memory) on which alterable information may be stored.

Claims

1. A computer-implemented method for obtaining a public-key digital signature for a data message (103) based on an
Edwards-curve Digital Signature Algorithm (hereinafter: EdDSA), wherein the public-key digital signature comprises
a first data component (124) and a second data component (170), the method comprising:

receiving the first data component (124), a public key (114), a secret-integer (112), a secret-hash (122) and the
data message (103), wherein the first data component (124) is an intermediate result of the EdDSA obtained
from the secret-hash (122) and the data message (103), wherein the secret-integer (112) is derived from a part
of a EdDSA private key (101);
computing a first hash (141) based on the first data component (124), the public key (114) and the data message
(103);
computing a second hash (151) based on the first data component (124), the public key (114) and the data
message (103); and
computing the second data component (170) based on the first hash (141), the second hash (151), the secret-
integer (112), the secret-hash (122) and a random value (161),

wherein the outcome of the computing of the second data component (170) is correct only if the first hash (141) and
the second hash (151) are identical.

2. The method according to claim 1, wherein the computing of the first hash (141) and the computing of the second
hash (151) are implemented and/or coded differently using hardware and/or software means.

3. The method according to claim 1 or 2, wherein the random value (161) changes with each computation of the second
data component (170).

4. The method according to any of the preceding claims, wherein the second data component (170) is computed using

EP 3 461 053 A1

7

5

10

15

20

25

30

35

40

45

50

55

the following formula:

 wherein "S" is the second data component (170), "h1" is the first hash (141), "h2" is the second hash (151), "ri" is
the random value (161), "a" is the secret-integer (112), "r" is the secret-hash (122), and "<" is a curve order as
defined in by EdDSA.

5. The method according to any one of the preceding claims, wherein one or more further hashes are computed based
on the first data component (124), the public key (114) and the data message (103), wherein the second data
component (170) is computed further based on the one or more further hashes, and wherein the outcome of the
computing of the second data component (170) is correct only if the first hash (141), the second hash (151) and the
one or more further hashes are identical.

6. A data processing device (1) comprising a processor (2) configured to perform the steps of the method according
to any one of the claims 1-5.

7. A data processing device (1) comprising an integrated circuit configured to perform the steps of the method according
to any one of the claims 1-5.

8. A computer program product, implemented on a computer-readable non-transitory storage medium, the computer
program product comprising computer executable instructions which, when executed by a processor, cause the
processor to carry out the steps of the method according to any one of the claims 1-5.

9. A computer-readable non-transitory storage medium comprising computer executable instructions which, when
executed by a processor, cause the processor to carry out the steps of the method according to any one of the
claims 1-5.

EP 3 461 053 A1

8

EP 3 461 053 A1

9

EP 3 461 053 A1

10

5

10

15

20

25

30

35

40

45

50

55

EP 3 461 053 A1

11

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

