

(11)

EP 3 465 091 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)
Corrections, see
Description Paragraph(s) 1, 4

(51) International Patent Classification (IPC):

G01C 21/32 (2006.01) G08G 1/01 (2006.01)
G08G 1/052 (2006.01) G08G 1/09 (2006.01)
G08G 1/097 (2006.01) G01C 21/34 (2006.01)

(48) Corrigendum issued on:

24.08.2022 Bulletin 2022/34

(52) Cooperative Patent Classification (CPC):

G01C 21/3492; G01C 21/32; G08G 1/0112;
G08G 1/0129; G08G 1/0141; G08G 1/052

(45) Date of publication and mention
of the grant of the patent:

18.05.2022 Bulletin 2022/20

(86) International application number:

PCT/EP2017/062633

(21) Application number: 17730070.4

(87) International publication number:
WO 2017/202970 (30.11.2017 Gazette 2017/48)

(22) Date of filing: 24.05.2017

(54) DETERMINING SPEED INFORMATION

BESTIMMUNG VON GESCHWINDIGKEITSINFORMATIONEN

DÉTERMINATION D'INFORMATIONS DE VITESSE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

- JANG, Dongwook**

Lisle, Illinois 60532 (US)

- GIURGIU, Gavril**

Deerfield, Illinois 60015 (US)

(30) Priority: 25.05.2016 US 201615164096

(74) Representative: **Cohausz & Florack**

Patent- & Rechtsanwälte

Partnerschaftsgesellschaft mbB

Bleichstraße 14

40211 Düsseldorf (DE)

(43) Date of publication of application:

10.04.2019 Bulletin 2019/15

(56) References cited:

US-A1- 2014 149 028 US-A1- 2015 300 825

(73) Proprietor: **HERE Global B.V.**

5611 ZT Eindhoven (NL)

(72) Inventors:

- ANASTASSOV, Anton**

Naperville, Illinois 60564 (US)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

FIELD

[0001] The invention relates to the field of determining speed information and more specifically to determining speed information (e.g. one or more potential travel path-specific speed profiles) for a vehicle (e.g. for autonomous vehicles, highly-assisted-driving vehicles and/or vehicles with predictive cruise control).

BACKGROUND

[0002] There have been multiple recent developments in transportation technology that are revolutionizing the way people experience driving. Such technologies include connected vehicles with mobile access to the internet, adaptive cruise control or autonomous navigation and platooning. Adaptive cruise control systems automatically change the vehicle speed to accommodate curves, traffic congestions or road incidents. Autonomous vehicles take a step farther by taking control not only of the vehicle speed but also of the wheel steering, when turning or changing lanes, with the ultimate goal of taking full control of the whole driving process and thus enabling drivers to become passengers, with all the benefits associated with being relieved from the task of driving. Finally, platooning of multiple trucks would save energy; reduce CO₂ emissions and reduce the strain of human drivers. Platooning could open new avenues not only in the trucking industry but also for consumers by releasing the drivers from the task of maneuvering the vehicles. In such platoons the lead vehicle drives either manually or autonomously, followed by vehicles without autonomous driving capacity, in which the drivers become passengers.

[0003] In US 2015/0300825 A1, a method of generating a horizon for use by an ADAS of a vehicle involves using digital location-based data, driver data and/or vehicle data to determine the likelihood that different outgoing paths are taken at a decision point along a currently traversed road segment, and deriving a probability that each path may be taken. The probability may be based on one or more of: an angle of the path relative to the incoming path, the road class of the path, a speed profile of the path, historical paths taken by vehicles at the decision point, and historical paths taken at the decision point by the individual driver or vehicle.

SUMMARY OF SOME EMBODIMENTS OF THE INVENTION

[0004] In all of the three cases described above, adaptive cruise control, autonomous navigation and platooning, it is conceivable that the vehicles would benefit from using the collective knowledge accumulated from other traffic participants such as human and/or robotic driving experiences. An important quantity that defines the mo-

tion of a vehicle is the speed. Traffic participants travel at different speeds on a given link such as a road section. The distribution of these speeds on the link may be characterized by one or more statistical distribution descriptors, including, but not limited to, mean speed, median speed, other speed percentiles, and various measures of the distribution width and shape. The evolution of one or more of these descriptors along a link may be understood to be represented by a speed profile. For example, a median speed profile may represent one or more speeds along the link such that half of the vehicles travel slower, and the other half travel at higher speeds. The speed profiles may be created with high spatial granularity along the link.

[0005] Such speed profiles can be used by predictive cruise control and autonomous vehicles to provide a human-like driving experience. However, a problem can appear on a link before and/or after a junction or a split in a travel route. The speed distribution or profile on these links may have a bi-modal or multi-modal structure and, therefore, a mean speed profile for such links would for example represent neither the high continuing speed nor the low turning or exiting speed of the one or more possible options.

[0006] According to an exemplary aspect of the invention, a method is presented according to claim 1.

[0007] The presented method may be performed by an apparatus or by a plurality of apparatuses. For example, the presented method may be performed by any one embodiment of the below presented apparatuses. Alternatively or additionally, the presented method may be performed by a plurality of any one embodiment of the below presented apparatuses.

[0008] Holding available the map data may be understood to mean that the map data are stored in memory means of the apparatus performing the method. Example of memory means include a volatile memory and a non-volatile memory. Alternatively or additionally, the map data could be obtained by determining the map data or by receiving the map data, for example by a communication interface of the apparatus performing the presented method.

[0009] The map data may represent the travel network at least in part by representing a map of at least a part of the travel network.

[0010] A link is a section between two junctions of the travel network. A link may be directional link (i.e. only relating to one travel direction on the link) or a non-directional link (relating to more than one travel direction on the link). Each link may be associated with a link identifier (e.g. a unique link identifier). The at least one selected link is such a link of the travel network, for example an arbitrary link of the travel network which is selected for performing the method.

[0011] As a result of the determining, for the at least one selected link, the plurality of potential travel paths an indication (e.g. a definition) for each potential travel path of the plurality of potential travel paths may be obtained.

For example, a list defining the plurality of potential travel paths for the selected link may be obtained.

[0012] A potential travel path of the selected link may be uniquely defined by specifying the selected link, an incoming link and an outgoing link and, optionally, a direction of travel on the selected link, the incoming link and the outgoing link. For example, each link may be specified by a link identifier. The direction of travel may correspond to the direction from the incoming link through the selected link to the outgoing link and, thus, may for example be derivable from the specification of the incoming link and the outgoing link. It may thus not be necessary to specify the direction of travel for defining a potential travel path of the selected link.

[0013] An incoming link may be understood to be a link adjacent to the selected link through which the selected link may be (directly) entered, and an outgoing link may be understood to be a link adjacent to the selected link through which the selected link may be exited.

[0014] Generally, for a selected link having N incoming links and M outgoing links, there exist NxM potential travel paths.

[0015] Accordingly, each potential travel of the plurality of potential travel paths may represent a specific option for (directly) entering the at least one selected link and for exiting the at least one selected link and, thus, each potential travel path of the plurality of potential travel paths may have different features (e.g. a different course).

[0016] Determining the plurality of potential travel paths may be performed at least partially based on the map data.

[0017] The plurality of potential travel paths may be understood to comprise at least two potential travel paths, more specifically at least three potential travel paths.

[0018] The plurality of respective probe data points and the one or more respective probe data sets may be different for each potential travel paths of the plurality of potential travel path.

[0019] The plurality of probe data sets may comprise at least two probe data sets, more specifically at least three probe data sets. For example, the plurality of probe data sets may comprise more than 1000 probe data sets.

[0020] The plurality of respective probe data points may comprise at least two probe data points, more specifically at least three probe data points. For example, the plurality of respective probe data points may comprise more than 100 probe data points.

[0021] A probe data set may be understood to be associated with a potential travel path if it is associated with a travel route including the potential travel path. For example, in determining, for each potential travel path of the plurality of potential travel paths, a respective speed profile only probe data sets may be used that are associated with the respective potential travel path. This may have the effect that different speed profiles may be obtained for different potential travel paths which may en-

able to determine speed profiles adapted to the different features (e.g. different courses) of the different travel paths (e.g. a speed profile for a curvy potential travel path may be different than a speed profile for a straight potential travel path).

[0022] A speed profile for a potential travel path of the selected link represents information for a vehicle travelling on the selected link along the potential travel path. Accordingly, the speed profile for a potential travel path of the selected link may be a potential travel path-specific speed profile for the selected link.

[0023] The presented method may be for determining speed information, for example for determining speed information for a vehicle.

[0024] According to a further exemplary aspect of the invention, an apparatus is presented according to claim 14.

[0025] The means of the presented apparatus can be implemented in hardware and/or software. They may comprise for instance a processor for executing computer program code for realizing the required functions, a memory storing the program code, or both. Alternatively, they could comprise for instance circuitry that is designed to realize the required functions, for instance implemented in a chipset or a chip, like an integrated circuit. The presented apparatus may comprise a single means for all functions, a common plurality of means for all functions, or a plurality of different means for different functions.

[0026] According to a further exemplary aspect of the invention, another apparatus is presented, which comprises at least one processor and at least one memory including computer program code, the at least one memory and the computer program code with the at least one processor configured to cause the apparatus at least to perform, at least in part, the steps of any one embodiment of the presented method.

[0027] The presented apparatuses may be modules or components for a device, for example chips. Alternatively, the presented apparatuses may be devices. The presented apparatuses may comprise only the disclosed components (e.g. means) or may further comprise one or more additional components.

[0028] The presented apparatuses may be for determining speed information, for example for determining speed information for a vehicle.

[0029] The presented apparatuses may be or may be part of one of a server, a stationary device, a module for a device, a vehicle or an embedded navigation device of a vehicle.

[0030] According to a further exemplary aspect of the invention, a computer program code is presented according to claim 15.

[0031] In the following, further features and embodiments of these exemplary aspects of the invention will be described.

[0032] According to an exemplary embodiment of the invention, the travel network is a road network. Accord-

ingly, a link of the travel network represented by the map data may be understood to be a road section of the road network, for example a road section between two junctions of the road network.

[0033] According to an exemplary embodiment of the invention, the plurality of potential travel paths comprises a potential travel path for each allowed and/or possible combination of an incoming link and an outgoing link linked by the selected link and represented by the map data. This may have the effect that each option for entering the at least one selected link and for exiting the at least one selected link is represented by the plurality of potential travel paths.

[0034] According to an exemplary embodiment of the invention, the presented method further comprises obtaining or holding available the plurality of probe data sets.

[0035] Holding available the plurality of probe data sets may be understood to mean that the plurality of probe data sets is stored in memory means of an apparatus performing the method. Alternatively or additionally, the plurality of probe data sets could be obtained by receiving the plurality of probe data sets, for example by communication means of an apparatus performing the presented method.

[0036] According to an exemplary embodiment of the invention, each probe data point of the plurality of probe data points represents a position and a speed, for example a position of a mobile device and a speed of this mobile device at this position. Examples of such a mobile device may be a vehicle, a navigation device and/or a smartphone.

[0037] The position may be a position associated with a position captured by the mobile device. For example, the position may be a Global Navigation Satellite System (GNSS) position captured by a GNSS sensor of the mobile device. Alternatively or additionally, the position may be a map matched GNSS position representing a GNSS position captured by a GNSS sensor of the mobile device that has been matched to the travel network represented by the map data.

[0038] The speed may be associated with a speed captured by the mobile device. Alternatively or additionally, the speed may be determined at least partially based on one or more positions captured by the mobile device, for example by calculating the speed based on the distance between two positions captured by the mobile device and the time difference between capturing these two positions.

[0039] According to an exemplary embodiment of the invention, each probe data set of the plurality of probe data points may comprise a sequence of probe data points representing a position and a speed of a specific mobile device.

[0040] This may have the effect that a probe data set of the plurality of probe data sets and the probe data points of this probe data set of the plurality of probe data sets may be associated with a travel route of a specific

mobile device. For example, the probe data points of the probe data set represent positions and speeds of the specific mobile device when travelling along this travel route. Each of these probe data sets may thus be considered to represent historic experiences of human drivers travelling along this travel route. A considerable amount of such probe data sets has been collected by service providers over time and this plurality of (historic) probe data sets can be used for determining travel path-specific speed profiles for the plurality of potential travel paths.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

To avoid a falsification of the potential travel path-specific speed profiles due to traffic congestions, only probe data sets collected during weekends and during night, from 8 pm to 7 am, during business days may be used for determining travel path-specific speed profiles for the plurality of potential travel paths.

[0041] A probe data set may be understood to be associated with a potential travel path if the probe data set is associated with a travel route of a specific mobile device including the potential travel path. This may have the effect that a speed profile for a potential travel path is determined based on one or more probe data points representing one or more speeds and positions of specific mobile devices which were travelling along a travel route including this potential travel path. Accordingly, different speed profiles may be obtained for different potential travel paths of the selected link which may be based on historic speeds of different mobile devices travelling along different travel routes including one of these

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

different potential travel paths and, thus, enable speed profiles adapted to the different features (e.g. different courses) of the different travel paths. For example, mobile devices entering and exiting the selected link straight typically have higher speeds than mobile devices entering and/or exiting by a 90-degree turn. Accordingly, speed profiles which may be perceived as human-like speed profiles (i.e. speed profiles of vehicles with human drivers traveling on the selected link) may be obtained. The speed(s) represented by a speed profile for a potential travel path of the plurality of potential travel paths may be speed(s) at which an individual may still feel safe and comfortable within a vehicle while traveling on the selected link along the potential travel path and/or at which a vehicle may safely interact with one or more other vehicles while traveling on the selected link along the potential travel.

[0042] Each probe data point of a specific probe data set may comprise the identifier of the probe data set. The identifier may be indicative for a session of a service provider collecting probe data sets of a mobile device, a mobile device, or a combination thereof.

[0043] According to an exemplary embodiment of the invention, the respective speed profile (e.g. each speed profile for the selected link) represents one speed for the selected link or a plurality of speeds for a plurality of subsequent segments of the selected link.

[0044] Each of the plurality of speeds may be a speed for a respective segment of the plurality of subsequent

segments of the selected link.

[0045] For example, the selected link may be divided into the plurality of subsequent segments. This may enable a high spatial granularity of the speed profile. Each of the segments may have the same length (e.g. 10 m). Alternatively the segments may have at least partially different length.

[0046] According to an exemplary embodiment of the invention, the respective speed profile (e.g. each speed profile for the selected link) is at least partially by calculating one or more mean speeds, one or more speed percentiles or one or more combinations thereof for the selected link or for one or more subsequent segments of the selected link.

[0047] For example, this calculating is at least partially based on one or more speeds represented by one or more probe data points of the plurality of respective probe data points of the one or more respective probe data sets associated with the respective potential travel path. These one or more probe data points may represent positions on the selected link, for example on the one or more subsequent segments of the selected link.

[0048] Examples of calculated speed percentiles are a 10% speed percentile, the 25% speed percentile, a 30% speed percentile, a 50% speed percentile (i.e. the median speed), a 70% speed percentile, a 75% speed percentile, a 90% speed percentile or combinations thereof.

[0049] For example, for determining a speed profile representing a plurality of speeds for a plurality of subsequent segments of the selected link, for each segment of the subsequent segments, a mean speed or a speed percentile may be calculated based on probe data points representing a position on the respective segment.

[0050] For example, for determining a speed profile representing one speed for the selected link, a mean speed or a speed percentile may be calculated based on probe data points representing a position on the selected link.

[0051] For example, different speed profiles for a potential travel path could be determined for vehicles transporting human passengers (which have to account for the passenger comfort) and for vehicles transporting only goods or traveling empty to pick up passengers. In the latter case, without the constraints related to the human comfort, it is conceivable that autonomous vehicles would drive much faster than the ones driven by humans, while still maintaining the highest safety standards. For speed profiles for vehicles transporting human passengers for example the 50% speed percentile (i.e. the median speed) or the 70% speed percentile may be used; and for speed profiles for vehicles transporting only goods or traveling empty to pick up passengers for example the 75% speed percentile or the 90% speed percentile may be used.

[0052] According to an exemplary embodiment of the invention, the presented method further comprises determining whether one or more probe data sets of the

plurality of probe data sets are associated with a potential travel path of the plurality of potential travel paths at least partially based on one or more positions represented by one or more probe data points of the one or more probe data sets. As a result, for each potential travel path of the plurality of potential travel paths, information on one or more probe data sets of the plurality of probe data sets associated with the respective potential travel path may be obtained.

[0053] As described above, a probe data set may be understood to be associated with a potential travel path if the probe data set is associated with a travel route of a specific mobile device including the potential travel path.

[0054] For example, for determining a speed profile for a potential travel path of the plurality of travel paths, only probe data points of one or more probe data sets of the plurality of probe data sets are used that are determined to be associated with this potential travel path of the plurality of travel paths. Accordingly, each of the determined speed profiles may be a potential travel path-specific speed profile for the selected link.

[0055] Each probe data set of the plurality of probe data sets may be determined to be associated with only one potential travel path of the plurality of potential travel paths.

[0056] The one or more probe data sets of the plurality of probe data sets may be determined to be associated with a potential travel path of the plurality of potential travel paths at least partially based on the number of probe data points of the one or more probe data sets that represent a position associated with an incoming link or an outgoing link at least partially defining the potential travel paths.

[0057] For example, a voting algorithm for identifying the most probable incoming link or outgoing link may be used. The voting algorithm may be at least partially based on the number of probe data points of a probe data set that represent a position associated with an incoming link or an outgoing link at least partially defining one potential travel path of the plurality of potential travel path. A probe data set may be determined to be associated with a potential travel path of the plurality of potential travel paths that is at least partially defined by an incoming link associated with the largest number of positions represented by probe data points of this probe data set and an outgoing link associated with the largest number of positions represented probe data points of this probe data set. Otherwise, the probe data set may be determined to be not associated with a potential travel path of the plurality of potential travel paths. This may have the effect that the impact of erroneous positions (e.g. positions that have been erroneously matched to the travel network represented by the map data) is minimized.

[0058] For example, the determining whether one or more probe data sets of the plurality of probe data sets are associated with a potential travel path of the plurality of potential travel paths may comprise checking, for the

probe data points of the one or more probe data sets of the plurality of probe data sets, whether they are associated with an incoming link or and outgoing link.

[0059] A condition for identifying a position represented by a probe data point of the one or more probe data sets of the plurality of probe data sets to be associated with an incoming link may be at least one of the following:

- the position is on the incoming link,
- the position is on a link different from the selected link and directly linked to the incoming link.

[0060] A condition for identifying a position represented by a probe data point of the one or more probe data sets of the plurality of probe data sets to be associated with an outgoing link may be at least one of the following:

- the position is on the outgoing link,
- the position is on a link different from the selected link and directly linked to the outgoing link.

[0061] If the incoming link or the outgoing link or the link different from the selected link and directly linked to the outgoing link or the incoming link is a directional link, an additional condition for identifying a position represented by a probe data point of the one or more probe data sets of the plurality of probe data sets to be associated with an incoming link or an outgoing link may be:

- the direction of the incoming link or the outgoing link or the link different from the selected link and directly linked to the outgoing link or the incoming link is equal to the travel direction derivable from the sequence of probe data points of the respective probe data set.

[0062] Considering positions on a link different from the selected link and directly linked to the incoming link or the outgoing link, may be advantageous in cases of a short incoming link or a short outgoing link to increase the number of positions associated with the incoming link or the outgoing link.

[0063] The one or more probe data sets of the plurality of probe data sets may be determined to be associated with a potential travel path of the plurality of potential travel paths at least partially based on a travel direction (e.g. a travel direction on the selected link and/or on the incoming link and/or on the outgoing link and/or on the link different from the selected link and directly linked to the outgoing link or the incoming link) derivable from the sequence of probe data points of the one or more probe data sets. Accordingly, the determining whether one or more probe data sets of the plurality of probe data sets are associated with a potential travel path of the plurality of potential travel paths may comprise deriving, for the one or more probe data sets of the plurality of probe data sets, a direction of travel (e.g. a direction of travel on the selected link).

[0064] According to an exemplary embodiment of the

invention, the presented method further comprises providing or generating speed map data representing an association of the map data and a plurality of speed profiles for links of the travel network, the plurality of speed profiles comprising the speed profiles determined for the plurality of potential travel paths (e.g. the respective speed profile for each potential travel paths of the plurality of potential travel paths).

[0065] According to an exemplary embodiment of the invention, the presented method further comprises:

- determining speed information for at least one vehicle at least partially based on one or more of the speed profiles determined for the plurality of potential travel paths (e.g. the respective speed profile for each potential travel paths of the plurality of potential travel paths);
- providing the speed information to the at least one vehicle.

[0066] For example, the at least one vehicle may request speed information for a travel route from an apparatus performing the presented method (e.g. a server, e.g. a server of the presented system). The request may specify the links (e.g. by link identifiers) and/or potential travel paths (e.g. by specifying the links at least partially defining the potential travel paths) included in the travel route.

[0067] The travel route may have been determined by the vehicle based on map data obtained or held available by the at least one vehicle. Alternatively or additionally, the travel route may have been determined by a server (e.g. a server of the presented system) for the vehicle. Determining the travel route information may be at least partially based on a starting position and a destination position. For example, the starting position may represent the current position of the vehicle and the destination position may represent a position of a desired destination of a user of the vehicle. The starting position and the destination position may be obtained by the at least one vehicle, for example by capturing the current position of the vehicle by a GNSS sensor and/or by receiving a user input on a user interface of the vehicle.

[0068] The speed information for the at least one vehicle may be determined to represent the speed profiles for the potential travel paths that are included in the travel route. For example, the speed information may at least partially represent one speed profile determined for a potential travel path of the plurality of potential travel paths of the selected link.

[0069] Providing the speed information to the at least one vehicle may be understood to mean that the speed information are communicated or caused to be communicated to the at least one vehicle by an apparatus performing the presented method (e.g. by a server, e.g. a server of the presented system), for example by a communication interface of the apparatus. Alternatively or additionally, the speed information may be provided for

use by the at least one vehicle, for example, for, at least in part, autonomously driving along the travel route. The speed information may cause the at least one vehicle to at least partially control and/or adapt its speed accordingly when driving along the route represented by the travel route information.

[0070] For example, the at least one vehicle may be, at least in part, an autonomous vehicle, a highly-assisted-driving vehicle, a vehicle with predictive cruise control, or a combination thereof. In certain embodiments of the invention, the vehicle may determine the speed information. Alternatively or additionally, the speed information may be determined by a server and communicated by the server to the vehicle.

[0071] According to an exemplary embodiment of the invention, the presented method is performed for a plurality of links of the travel network as selected link. This is understood to mean that the steps of the presented method may be performed (e.g. repeated) for further links of the plurality of links of the travel network as selected link.

[0072] It is to be understood that the presentation of the invention in this section is merely by way of examples and non-limiting.

[0073] Other features of the invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not drawn to scale and that they are merely intended to conceptually illustrate the structures and procedures described herein.

BRIEF DESCRIPTION OF THE FIGURES

[0074]

- Fig. 1a is a block diagram of an exemplary embodiment of a system according to the invention;
- Fig. 1b is a block diagram of an exemplary embodiment of an apparatus according to the invention;
- Fig. 2a-b are flowcharts of exemplary embodiments of a method according to the invention;
- Fig. 3a-c are illustrations of at least parts of an exemplary travel network represented by map data and/or exemplary potential travel paths in this travel network;
- Fig. 4 is a schematic illustration of examples of tangible and non-transitory storage media according to the present invention.

[0075] The following description serves to deepen the understanding of the present invention and shall be understood to complement and be read together with the description of example embodiments of the invention as provided in the above SUMMARY section of this specification.

[0076] By way of example, considering an autonomous vehicle driving in free flow conditions, the autonomous vehicle equipped with high performance sensors and sufficient computing power continuously scans the environment and decides, in real time, the optimal driving speed, taking into consideration multiple road factors such as speed limit, slope, curvature, number of lanes or lane widths. As these factors change along the road, the vehicle has to continuously adapt the speed to a value which is optimal from the points of view of both safety and, if humans are transported by the vehicle, driver/passenger comfort. While the vehicle may be able to perform such computations in real time and to adopt the optimal speed based on sensor data only, such computations may be aided by "prior" knowledge for example provided by travel route information representing the current travel route of the vehicle and speed information representing speed profiles for the current travel route of the vehicle. For example, the vehicle could be configured to adapt the vehicle speed by default according to the speed information, while the final decision regarding the speed would be taken based on the information collected by the real time sensors. Since the vehicle may be already in the most probable state according to the historical experience of other drivers encoded in the speed profile, the real time changes dictated by the sensor observations would be minimal and only needed when deviations from the historical norm are observed. Such deviations may be expected in many cases which include recurring traffic congestion associated with the normal business hours and non-recurring congestion due to adverse weather conditions or incidents. The difference between an autonomous vehicle driving with and without this prior knowledge may be thought as analogous to the difference between a human driving in a familiar or un-familiar area. The same as the human driver is required to focus harder to understand the surroundings and navigate in an un-familiar area, the same way, an autonomous vehicle is expected to require more sensor information and computational power when driving without any prior knowledge.

[0077] Autonomous vehicles and vehicles equipped with predictive control can thus benefit from having available speed profiles or speed map data which provides typical driving speeds on every link with high spatial granularity. Such speed profiles can be used by predictive cruise control and autonomous vehicles to provide a human-like driving experience. However, a problem can appear on a link before a junction or a split in a travel route. The speed distribution on these links has a bi-modal or multi-modal structure and, therefore, a link-specific speed profile for such links would represent neither the

high continuing speed nor the low turning or exiting speed of the one or more possible options. The standard deviation of the differences between such link-specific speed profiles and the ground truth speeds obtained by averaging multiple test drives collected by human drivers under free-flow conditions have been determined to span a range between 7 and 9 km/h.

[0078] Fig. 1a is a schematic high-level block diagram of a system 10 according to an exemplary aspect of the invention. System 10 comprises a server 11, which may alternatively be embodied as a server cloud (e.g. a plurality of servers connected e.g. via the internet and providing services at least partially jointly), and a vehicle 12.

[0079] According to exemplary embodiments of the present invention, server 11 may determine speed information for vehicle 12, for example server 11 may determine speed information for vehicle 12.

[0080] Vehicle 12 may be, at least in part, an autonomous vehicle, a highly-assisted-driving vehicle, a vehicle with predictive cruise control, or a combination thereof.

[0081] Communication between server 11 and vehicle 12 may for example take place at least partially in a wireless fashion, e.g. based on cellular radio communication or on Wireless Local Area Network (WLAN) based communication, to name but a few examples. In this way, mobility and connectivity of vehicle 12 is guaranteed.

[0082] Fig. 1b is a block diagram of an apparatus 100 according to an exemplary aspect of the invention. Apparatus 100 may for example represent server 11 of system 10. Alternatively or additionally, apparatus 100 may for example represent an embedded navigational device of vehicle 12 of system 10.

[0083] Apparatus 100 comprises a processor 101. Processor 101 may represent a single processor or two or more processors, which are for instance at least partially coupled, for instance via a bus. Processor 101 executes a program code stored in program memory 102 (for instance program code causing apparatus 100 to perform one or more of the embodiments of a method (or parts thereof) according to the invention (as for instance further described below with reference to Figs. 2a and 2b), when executed on processor 101), and interfaces with a main memory 103. Some or all of memories 102 and 103 may also be included into processor 101. One of or both of memories 102 and 103 may be fixedly connected to processor 101 or at least partially removable from processor 101, for instance in the form of a memory card or stick. Program memory 102 may for instance be a non-volatile memory. It may for instance be a FLASH memory (or a part thereof), any of a ROM, PROM, EPROM, MRAM or a FeRAM (or a part thereof) or a hard disc (or a part thereof), to name but a few examples. Program memory 102 may also comprise an operating system for processor 101. Program memory 102 may for instance comprise a first memory portion that is fixedly installed in apparatus 100, and a second memory portion that is removable from apparatus 100, for instance in the form of a removable SD memory card.

[0084] Main memory 103 may for instance be a volatile memory. It may for instance be a DRAM memory, to give non-limiting example. It may for instance be used as a working memory for processor 101 when executing an operating system and/or programs.

[0085] Processor 101 further controls an optional communication interface 104 configured to communicate with other devices (e.g. with server 11 or vehicle 12), for example by receiving and/or sending data and/or information.

10 The communication may for example be based on a wireless communication connection. The communication interface 104 may thus comprise circuitry such as modulators, filters, mixers, switches and/or one or more antennas to allow wireless transmission and/or reception of signals. In embodiments of the invention, communication interface 104 is inter alia configured to allow communication based on a 2G/3G/4G/5G cellular radio communication and/or a non-cellular radio communication, such as for instance a WLAN communication.

15 Alternatively or additionally, the communication may equally well be based on a wirebound communication connection or a combination of wireless and wirebound communication connections. Accordingly, the communication interface 104 may thus comprise circuitry such as modulators, filters, mixers, switches to allow a wirebound transmission and/or reception of signals. In embodiments of the invention, communication interface 104 is inter alia configured to allow communication based on an Ethernet communication such as a LAN (Local Area Network) communication.

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

546

travel network 300a represented by such map data. It comprises links 301, 302, 303, 304 and 305 and junctions 306 and 307. A link of travel network 300a may for example be understood to represent a section of the travel network which is between two junctions like link 301 which is between junctions 306 and 307.

[0092] In the following, it is assumed that the reference signs of the links correspond to unique link identifiers associated with the links and a travel direction of the links may be indicated by the characters "T" or "F". Thus, link 301 may be identified by "301T" in one travel direction and by "301F" in the other travel direction.

[0093] In a step 202, server 11 determines a plurality of potential travel paths for at least one selected link of the travel network represented by the map data. Each potential travel path of the plurality of potential travel paths for the at least one selected link is at least partially defined by an incoming link of the travel network and an outgoing link of the travel network that are linked by the selected link and a direction of travel from the incoming link to the outgoing link on the selected link.

[0094] Fig. 3b illustrates a plurality of potential travel paths for link 301 of travel network 300a of Fig. 3a.

[0095] Accordingly, link 301 is the selected link for this plurality of potential travel paths which comprises potential travel paths 308 - 311. As indicated by the arrows on these potential travel paths, they only represent one travel direction of link 301 which is assumed to correspond to the "T" direction of link 301. Link 301 is identified by "301T" in this travel direction.

[0096] Only considering this travel direction of link 301, link 301 has two incoming links 304 and 305 and two outgoing link 302 and 303. Accordingly, for this travel direction only the four potential travel paths 308 - 311 exist.

[0097] For example, a potential travel path may only be determined for each allowed or possible option for entering or exiting the selected link. For example, if it is not allowed to turn from link 301 to 303 when travelling in the "T" direction on link 301, link 303 would not be considered as outgoing link in determining a plurality of potential travel paths for link 301 in "T" direction. In the following, it is however assumed that it is allowed to turn from link 301 to 303 when travelling in the "T" direction on link 301.

[0098] Each of the potential travel paths 308 - 311 may be defined by specifying one of the incoming links, one of the outgoing links and link 301 and, optionally, a direction of travel. Accordingly, the potential travel paths 308 - 311 may be specified by the following triplets:

301T - 304T - 303T (i.e. potential travel path 308);
 301T - 304T - 302T (i.e. potential travel path 309);
 301T - 305T - 302T (i.e. potential travel path 310);
 301T - 305T - 303T (i.e. potential travel path 311).

[0099] As a result of the determining in step 202, a list defining the plurality of potential travel paths for the se-

lected link may be obtained. In case of link 301 in "T" direction, the list may be as follows: {301T - 304T - 303T, 301T - 304T - 302T, 301T - 305T - 302T, 301T - 305T - 303T}.

[0100] In a step 203, server 11 determines whether one or more probe data sets of the plurality of probe data sets is associated with a potential travel path of the plurality of potential travel paths (e.g. the potential travel paths defined in the list obtained in step 202) at least partially based on one or more positions represented by one or more probe data points of the one or more probe data sets.

[0101] Each probe data set of the plurality of probe data sets may comprise a sequence of probe data points representing a position and a speed of a mobile device. Each probe data point of a specific probe data set may comprise the identifier of the probe data set. The identifier may be indicative for a session of a service provider collecting probe data sets of a mobile device, a mobile device, or a combination thereof. Examples of such a mobile device may be a vehicle (e.g. vehicle 12), a navigation device and/or a smartphone.

[0102] The positions represented by the sequence of probe data points of a respective probe data set of the plurality of probe data sets may be a GNSS positions captured by a GNSS sensor of a specific mobile device when travelling along a travel route. Alternatively or additionally, the positions represented by the sequence of probe data points of a respective probe data set of the plurality of probe data sets may be map matched GNSS position representing a GNSS position captured by a GNSS sensor of the specific mobile device that has been matched to the travel network represented by the map data. A considerable amount of such probe data sets has been collected by service providers over time and this plurality of (historic) probe data sets can be used for determining travel path-specific speed profiles for the plurality of potential travel paths. To avoid a falsification of the potential travel path-specific speed profiles due to traffic congestions, only probe data sets collected during weekends and during night, from 8 pm to 7 am, during business days may be used for determining travel path-specific speed profiles for the plurality of potential travel paths.

[0103] A probe data set may be understood to be associated with a potential travel path of the plurality of potential travel path if the probe data set is associated with a travel route of a specific mobile device including the potential travel path. This may allow allocating the probe data points of the associated probe data sets for determining travel path-specific speed profiles for the plurality of potential travel path of the selected link. For example, a vehicle entering link 301 from link 305 and exiting on link 303 would travel on a travel route including potential travel path 311.

[0104] Ideally probe data points of a probe data set may only represent positions on one incoming link and one outgoing link. However, this may be not always the

case in reality. For example, when a point based map matcher is used, positions close to junctions may be erroneously matched to the travel network represented by the map data. The impact of such erroneous positions may be minimized by a voting algorithm for identifying the most probable incoming link or outgoing link. The voting algorithm is at least partially based on the number of probe data points of the a probe data set that represent a position associated with an incoming link or an outgoing link at least partially defining one potential travel path of the plurality of potential travel path.

[0105] Multiple service providers anonymize the probe data points by changing the identifier every few seconds or minutes so that the positions represented by the probe data points having the same identifier cannot be tracked over three subsequent links. Furthermore, some links may be relatively short and, thus, no or only a few probe data point may represent a position on these short links. For example, probe data points of a probe data set may be only available on the selected link, but not on the incoming or outgoing links. Such cases may be due to low frequency GNSS capturing or to high speed mobile devices travelling on short incoming/outgoing links. To minimize these effects, positions represented by probe data points may be traced not only to the incoming and outgoing links, but also on the links incoming into the incoming links and the links outgoing from the outgoing links.

[0106] The voting algorithm may therefore not only consider the incoming links and the outgoing links, but also links that are linked to the incoming links and the outgoing links. For example, a position represented by a probe data point of the one or more probe data sets of the plurality of probe data sets may be identified to be associated with an incoming link or an outgoing link if one of the following conditions is met:

- the position is on the incoming link or outgoing link,
- the position is on a link different from the selected link and directly linked to the incoming link or the outgoing link.

[0107] This voting algorithm is now explained with reference to Fig. 3c illustrating at least in part an exemplary travel network 300c. Travel network 300c at least partially corresponds to travel network 300a of Fig. 3a and 3b and further comprises links 312 - 318 and junctions 319 - 323.

[0108] As described above, links 304 and 305 are incoming links at least partially defining potential travel paths 308 - 311 for link 301 as selected link. Links 312 and 313 are different from the selected link 301 and directly linked to incoming link 304. Links 314 and 315 are different from the selected link 301 and directly linked to incoming link 305.

[0109] For example, a probe data set of a high speed mobile device may comprise probe data points representing positions on selected link 301 but not on the rather short incoming link 304. In order to avoid loss of a useful probe data set, it may be determined whether

probe data points of this probe data set represent positions on link 312 or 313. The high speed mobile device travelling along link 312 or 313 must have also have traveled through link 304 to reach selected link 301 and therefore the corresponding probe data set may be recovered.

[0110] Accordingly, a position represented by a probe data point of a probe data set of the plurality of probe data sets may be considered to be associated with incoming link 304, if it is on one of links 304, 312 and 313, and to be associated with incoming link 305, if it is on one of links 305, 314 and 315.

[0111] The numbers of probe data points of a specific probe data set associated with incoming links 304 and 305 may be calculated as follows:

$$S_{304}^{ID1} = N_{304}^{ID1} + N_{312}^{ID1} + N_{313}^{ID1}$$

$$S_{305}^{ID1} = N_{305}^{ID1} + N_{314}^{ID1} + N_{315}^{ID1}$$

[0112] When the travel direction is also considered, the numbers of probe data points of a specific probe data set associated with incoming links 304 and 305 in direction "T" may be calculated as follows:

$$S_{304T}^{ID1} = N_{304T}^{ID1} + N_{312T}^{ID1} + N_{313T}^{ID1}$$

$$S_{305T}^{ID1} = N_{305T}^{ID1} + N_{314T}^{ID1} + N_{315T}^{ID1}$$

[0113] Therein, " N_Y^X " is the number of probe data points of probe data set with identifier "X" representing a position on link "Y". These numbers may be determined, for each probe data set of the plurality of probe data sets, in advance and, for example, stored in program memory 102 of server 11.

[0114] The link with the largest number of probe data points of a probe data set of the plurality of probe data sets representing a position on this link is considered to be the link associated with this probe data set. Otherwise, the probe data set may be discarded (e.g. when there is no clear winner).

[0115] For example, if $S_{304T}^{ID1} > S_{305T}^{ID1}$ then probe data set "ID1" is considered to be associated with incoming link 304T, and if $S_{304T}^{ID1} < S_{305T}^{ID1}$ then probe data set "ID1" is considered to be associated with incoming

[0116] This voting algorithm may be performed for each probe data set of the plurality of probe data sets

and for each incoming link and outgoing link at least partially defining one or more potential travel paths of the plurality of potential travel paths.

[0117] A probe data set may then be determined to be associated with a potential travel path of the plurality of potential travel paths if it is at least partially defined by an incoming link considered to be associated with this probe data set and an outgoing link considered to be associated with this probe data set. Probe data sets which are only identified to be associated either with an incoming link or an outgoing link may be discarded. An exception may be, when one of the ends of the selected link is a dead end and has no outgoing links or incoming links.

[0118] For example, each probe data set of the plurality of probe data sets which is identified to be associated with links 304 and 302 in "T" direction may be determined to be associated with potential travel path 309. Similarly, each probe data set of the plurality of probe data sets which is identified to be associated with links 305 and 303 in "T" direction may be determined to be associated with potential travel path 311.

[0119] As a result of the determining in step 203, for each potential travel paths of the plurality of potential, a list with identifiers of probe data sets that have been identified to be associated with the respective potential travel paths is obtained. The lists for potential travel paths 308-311 may be as follows:

potential travel path 308: {ID1, ID8, ID10, ...};
 potential travel path 309: {ID3, ID4, ...};
 potential travel path 310: {ID33, ID40, ...};
 potential travel path 311: {ID15, ...}.

[0120] In a step 204, server 11 determines, for each potential travel path of the plurality of potential travel paths, a respective speed profile at least partially based on a plurality of respective probe data points of one or more respective probe data sets of a plurality of probe data sets which are associated with the respective potential travel path of the plurality of potential travel paths for which the respective speed profile is determined.

[0121] The plurality of respective probe data points may for example comprise the probe data points of the probe data sets that are determined to be associated with a respective potential travel path of the plurality of travel path in step 203.

[0122] In the following it is assumed that a speed profile for a potential travel path of the potential travel paths represents a plurality of speeds for a plurality of subsequent segments of the selected link. The selected link may be divided into the plurality of subsequent segments having the same length (e.g. 10 m).

[0123] A speed profile for a respective potential travel path of the plurality of potential travel paths may represent for each segment of this plurality of segments a speed percentile or a mean speed. For calculating the speed percentile or the mean speed for such a segment,

only speeds represented by respective probe data points of the plurality of respective probe data points may be used that represent a position on the respective segment.

[0124] Examples of calculated speed percentiles are a 10% speed percentile, a 25% speed percentile, a 30% speed percentile, a 50% speed percentile (i.e. the median speed), a 70% speed percentile, a 75% speed percentile, a 90% speed percentile or combinations thereof.

[0125] For example, different speed profiles for a potential travel path could be determined for vehicles transporting human passengers (which have to account for the passenger comfort) and for vehicles transporting only goods or traveling empty to pick up passengers. For speed profiles for vehicles transporting human passengers for example the 50% speed percentile (i.e. the median speed) or the 70% speed percentile may be used; and for speed profiles for vehicles transporting only goods or traveling empty to pick up passengers for example the 75% speed percentile or the 90% speed percentile may be used.

[0126] As a result of the determining in step 204, a plurality of potential travel path-specific speed profiles for the selected link (e.g. link 301) may be obtained.

[0127] As described above, close to junctions, there are typically different populations of vehicles following different speed patterns. Junction 307 of travel network 300a of Fig. 3a shows such an example where link 301 forks into two links: forward link 302 continuing in the same direction and exit link 303 with traffic taking a 90-degree turn. The vehicles traveling forward will only slightly slow down, while the vehicles taking the right turn must slow down significantly to safely negotiate the sharp turn. A combined speed profile for vehicles following links 302 and 303 may thus display a significant speed drop close to junction 307. This speed drop is due to the exiting vehicles which have to slow down to negotiate the right turn. However, the speed drop does not represent the forward going vehicles for which the combined speed profile is inadequate. By determining a plurality of potential travel path-specific speed profiles for a selected link of the travel network (instead of a single link-specific speed profile for the selected link) this effect may be corrected. As described above, to account for all possible cases, for a selected link with N incoming links and M outgoing links, NxM speed profiles are determined. For the case presented in Figure 3a there are four speed profiles for one travel direction on selected link 301, for example.

[0128] The steps 201 to 204 may be repeated for each link of the travel network represented by the map data. Subsequently, a speed map data may be generated representing an association of the map data and a plurality of travel path-specific speed profiles for the links of the travel network.

[0129] Fig. 2b is a flowchart 210 illustrating optional steps of the method according to the invention. The steps of flowchart 210 may for example be performed subsequent to the steps of flowchart 200 of Fig. 2a. In the fol-

lowing, it is assumed that the steps of this flowchart 210 are performed by server 11 of system 10 of Fig. 1a. Alternatively or additionally, the steps of this flowchart may be at least partially performed by vehicle 12 of system 10 of Fig. 1a.

[0130] In step 211, server 11 determines speed information for vehicle 12 at least partially based on one or more of the speed profiles determined in step 204 of flowchart 200 of Fig. 2a.

[0131] For example, server 11 may receive a request for determining speed information for a travel route from vehicle 12. The request may specify the links or potential travel paths included in the travel route.

[0132] The speed information for vehicle 12 may be determined to represent the potential travel path-specific speed profiles for the potential travel paths that are included in the travel route.

[0133] As described above, each of the plurality of speed profiles for a selected link may be specified by the identifier of the selected link, the identifier of the incoming link and the identifier of the outgoing link. With reference to Fig. 3a and 3b described above, a travel route entering link 301 from link 305 and exiting on link 303 would include potential travel path 311 which may be defined by the following triplet: 301T - 305T - 303T. For example, the request for determining speed information for this travel route may specify potential travel path 311 by this triplet (301T - 305T - 303T). In this example, the speed information determined in step 211 may represent the speed profile for potential travel path 311 for link 301.

[0134] By way of example, the speed information may represent speed profiles at which despite the automotive capabilities of vehicle 12 in terms of speed, acceleration, braking, etc., a user may still feel comfortable and safe within the vehicle while traveling and/or the vehicle may interact safely with one or more other vehicles on the same route.

[0135] In step 212, server 11 may provide the speed information to vehicle 12. For example the speed information may be communicated from server 11 to vehicle 12.

[0136] Vehicle 12 may use the speed information for, at least in part, autonomously driving along the travel route. The speed information may cause vehicle 12 to at least partially control and/or adapt its speed accordingly when driving along the route represented by the travel route information.

[0137] Fig. 4 is a schematic illustration of examples of tangible and non-transitory computer-readable storage media according to the present invention that may for instance be used to implement program memory 102 of Fig. 1. To this end, Fig. 4 displays a flash memory 500, which may for instance be soldered or bonded to a printed circuit board, a solid-state drive 501 comprising a plurality of memory chips (e.g. Flash memory chips), a magnetic hard drive 502, a Secure Digital (SD) card 503, a Universal Serial Bus (USB) memory stick 504, an optical storage medium 505 (such as for instance a CD-ROM or DVD)

and a magnetic storage medium 506.

[0138] In the present specification, any presented connection in the described embodiments is to be understood in a way that the involved components are operationally coupled. Thus, the connections can be direct or indirect with any number or combination of intervening elements, and there may be merely a functional relationship between the components.

[0139] Moreover, any of the methods, processes, steps and actions described or illustrated herein may be implemented using executable instructions in a general-purpose or special-purpose processor and stored on a computer-readable storage medium (e.g., disk, memory, or the like) to be executed by such a processor. References to a 'computer-readable storage medium' should be understood to encompass specialized circuits such as FPGAs, ASICs, signal processing devices, and other devices.

[0140] The expression "A and/or B" is considered to comprise any one of the following three scenarios: (i) A, (ii) B, (iii) A and B. Furthermore, the article "a" is not to be understood as "one", i.e. use of the expression "an element" does not preclude that also further elements are present. The term "comprising" is to be understood in an open sense, i.e. in a way that an object that "comprises an element A" may also comprise further elements in addition to element A.

[0141] It will be understood that all presented embodiments are only exemplary, and that any feature presented for a particular example embodiment may be used with any aspect of the invention on its own or in combination with any feature presented for the same or another particular example embodiment and/or in combination with any other feature not mentioned. In particular, the example embodiments presented in this specification shall also be understood to be disclosed in all possible combinations with each other, as far as it is technically reasonable and the example embodiments are not alternatives with respect to each other. It will further be understood that any feature presented for an example embodiment in a particular category (method/apparatus/computer program) may also be used in a corresponding manner in an example embodiment of any other category. It should also be understood that presence of a feature in the presented example embodiments shall not necessarily mean that this feature forms an essential feature of the invention and cannot be omitted or substituted.

[0142] The sequence of all method steps presented above is not mandatory, also alternative sequences may be possible. Nevertheless, the specific sequence of method steps exemplarily shown in the figures shall be considered as one possible sequence of method steps for the respective embodiment described by the respective figure.

[0143] The invention has been described above by means of example embodiments. It should be noted that there are alternative ways and variations which are ob-

vious to a skilled person in the art and can be implemented without deviating from the scope of the appended claims.

Claims

1. A method, said method comprising:

- obtaining (201) or holding available map data representing, at least in part, a travel network (300a;300b;300c),

- determining (202), for at least one selected link (301) of said travel network (300a;300b;300c) represented by said map data, a plurality of potential travel paths (308;309;310;311), wherein said selected link (301) is a section between two junctions of said travel network, wherein each potential travel path of said plurality of potential travel paths (308;309;310;311) for said at least one selected link (301) is at least partially defined by an incoming link (304;305) of said travel network (300a;300b;300c) and an outgoing link (302;303) of said travel network (300a;300b;300c) that are linked by said selected link (301) and a direction of travel from said incoming link (304;305) to said outgoing link (302;303) on said selected link (301).

- for each potential travel path of said plurality of potential travel paths (308;309;310;311), determining (204) a respective speed profile at least partially based on a plurality of respective probe data points of one or more respective probe data sets of a plurality of probe data sets, said one or more respective probe data sets associated with said respective potential travel path of said plurality of potential travel paths (308;309;310;311) for which said respective speed profile is determined, wherein said respective speed profile represents speed information for a vehicle travelling on said selected link along said respective potential travel path of said plurality of potential travel paths (308;309;310;311).

2. The method according to claim 1, wherein said plurality of potential travel paths (308;309;310;311) comprises a potential travel path for each allowed and/or possible combination of an incoming link (304;305) and an outgoing link (302;303) linked by said selected link (301) and represented by said map data.

- obtaining or holding available said plurality of probe data sets

4. The method according to any one of claims 1-3, wherein said respective speed profile represents one speed for said selected link (301) or a plurality of speeds for a plurality of subsequent segments of said selected link (301).
5. The method according to any one of claims 1-4, wherein each probe data point represents a position and a speed.
6. The method according to claim 5, wherein said respective speed profile is at least partially determined by calculating one or more mean speeds, one or more speed percentiles or one or more combinations thereof for said selected link (301) or for one or more subsequent segments of said selected link (301).
7. The method according to claim 6, wherein calculating is at least partially based on one or more speeds represented by one or more probe data points of said plurality of respective probe data points of said one or more respective probe data sets associated with said respective potential travel path.
8. The method according to any one of claims 5-7, said method further comprising:
 - determining (203) whether one or more probe data sets of said plurality of probe data sets is associated with a potential travel path of said plurality of potential travel paths (308;309;310;311) at least partially based on one or more positions represented by one or more probe data points of said one or more probe data sets.
9. The method according to claim 8, wherein each probe data set of said plurality of probe data sets is determined to be associated with only one potential travel path of said plurality of potential travel paths (308;309;310;311).
10. The method according to any one of claims 8-9, wherein said one or more probe data sets of said plurality of probe data sets are determined to be associated with a potential travel path of said plurality of potential travel paths (308;309;310;311) at least partially based on the number of probe data points of said one or more probe data sets that represent a position associated with an incoming link (304;305) or an outgoing link (302;303) at least partially defining said potential travel path.
11. The method according to claim 10, wherein a condition for identifying a position represented by a probe data point of said one or more probe data sets of said plurality of probe data sets to be associated with an incoming link (304;305) is at least one of the

following:

- said position is on said incoming link (304;305),
- said position is on a link different from said selected link (301) and directly linked to said incoming link (304;305).

12. The method according to any one of claims 10-11, wherein a condition for identifying a position represented by a probe data point of said one or more probe data sets of said plurality of probe data sets to be associated with an outgoing link (302;303) is at least one of the following:

- said position is on said outgoing link (302;303)
- said position is on a link different from said selected link (301) and directly linked to said outgoing link (302;303).

13. The method according to any one of claims 1-12, said method further comprising at least one of:

- providing or generating speed map data representing an association of said map data and a plurality of speed profiles for links of said travel network (300a;300b;300c) said plurality of speed profiles comprising said speed profiles determined for said plurality of potential travel paths (308;309;310;311).
- determining (211) speed information for at least one vehicle (12) at least partially based on one or more of said speed profiles determined for said plurality of potential travel paths (308;309;310;311); and providing (212) said speed information to said at least one vehicle (12).

14. An apparatus comprising means for performing the steps of the method according to any one of claims 1-13.

15. A computer program code, the computer program code when executed by a processor (101) causing an apparatus (100) to perform the steps of the method according to one of claims 1-13.

Patentansprüche

1. Ein Verfahren, wobei das Verfahren umfasst:

- Erhalten (201) oder Bereithalten von Karten-daten, die zumindest teilweise ein Verkehrsnetz (300a; 300b; 300c) repräsentieren,
- Bestimmen (202), für zumindest eine ausgewählte Verbindung (301) des durch die Karten-daten repräsentierten Verkehrsnetzes (300a; 300b; 300c), einer Vielzahl von potentiellen Re-

sepfaden (308; 309; 310; 311), wobei die ausgewählte Verbindung (301) ein Abschnitt zwischen zwei Knotenpunkten des Verkehrsnetzes ist, wobei jeder potentielle Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310;311) für die zumindest eine ausgewählte Verbindung (301) zumindest teilweise durch eine eingehende Verbindung (304; 305) des Verkehrsnetzes (300a; 300b; 300c) und eine ausgehende Verbindung (302; 303) des Verkehrsnetzes (300a; 300b; 300c), die durch die ausgewählte Verbindung (301) verbunden sind, und durch eine Fahrtrichtung von der eingehenden Verbindung (304; 305) zu der ausgehenden Verbindung (302; 303) auf der ausgewählten Verbindung (301) definiert ist,

- für jeden potentiellen Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311), Bestimmen (204) eines jeweiligen Geschwindigkeitsprofils zumindest teilweise basierend auf einer Vielzahl von jeweiligen Messdatenpunkten eines oder mehrerer jeweiliger Messdatensätze einer Vielzahl von Messdatensätzen, wobei der eine oder die mehreren jeweiligen Messdatensätze mit dem jeweiligen potentiellen Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) assoziiert sind, für den das jeweilige Geschwindigkeitsprofil bestimmt wird, wobei das jeweilige Geschwindigkeitsprofil eine Geschwindigkeitsinformation für ein Fahrzeug repräsentiert, das auf der ausgewählten Verbindung entlang des jeweiligen potentiellen Reisepfades der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) fährt.

2. Das Verfahren gemäß Anspruch 1, wobei die Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) einen potentiellen Reisepfad für jede zulässige und/oder mögliche Kombination einer eingehenden Verbindung (304; 305) und einer ausgehenden Verbindung (302; 303), die durch die ausgewählte Verbindung (301) verbunden und durch die Kartendaten repräsentiert werden, umfasst.

3. Das Verfahren gemäß einem der Ansprüche 1 und 2, wobei das Verfahren ferner umfasst:

- Erhalten oder Bereithalten der Vielzahl von Messdatensätzen.

4. Das Verfahren gemäß einem der Ansprüche 1 bis 3, wobei das jeweilige Geschwindigkeitsprofil eine Geschwindigkeit für die ausgewählte Verbindung (301) oder eine Vielzahl von Geschwindigkeiten für eine Vielzahl von aufeinanderfolgenden Segmenten der ausgewählten Verbindung (301) repräsentiert.

5. Das Verfahren gemäß einem der Ansprüche 1 bis 4, wobei jeder Messdatenpunkt eine Position und eine Geschwindigkeit repräsentiert. 5

6. Das Verfahren gemäß Anspruch 5, wobei das jeweilige Geschwindigkeitsprofil zumindest teilweise durch Berechnen einer oder mehrerer mittlerer Geschwindigkeiten, einer oder mehrerer Geschwindigkeitsperzentile oder einer oder mehrerer Kombinationen davon für die ausgewählte Verbindung (301) oder für ein oder mehrere aufeinanderfolgende Segmente der ausgewählten Verbindung (301) bestimmt wird. 10

7. Das Verfahren gemäß Anspruch 6, wobei das Berechnen zumindest teilweise auf einer oder mehreren Geschwindigkeiten basiert, die repräsentiert werden durch einen oder mehrere Messdatenpunkte der Vielzahl von jeweiligen Messdatenpunkten des einen oder der mehreren jeweiligen Messdatensätze, die mit dem jeweiligen potentiellen Reisepfad assoziiert sind: 15 20

8. Das Verfahren gemäß einem der Ansprüche 5 bis 7, wobei das Verfahren ferner umfasst: 25

- Bestimmen (203), ob ein oder mehrere Messdatensätze der Vielzahl von Messdatensätzen mit einem potentiellen Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) assoziiert sind, zumindest teilweise basierend auf einer oder mehreren Positionen, die durch einen oder mehrere Messdatenpunkte des einen oder der mehreren Messdatensätze repräsentiert werden. 30 35

9. Das Verfahren gemäß Anspruch 8, wobei jeder Messdatensatz der Vielzahl von Messdatensätzen mit nur einem potentiellen Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) assoziiert ist. 40

10. Das Verfahren gemäß einem der Ansprüche 8 und 9, wobei der eine oder die mehreren Messdatensätze der Vielzahl von Messdatensätzen so bestimmt werden, dass sie mit einem potentiellen Reisepfad der Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) assoziiert sind, zumindest teilweise basierend auf der Anzahl von Messdatenpunkten des einen oder der mehreren Messdatensätze, die eine Position repräsentieren, die mit einer eingehenden Verbindung (304; 305) oder einer ausgehenden Verbindung (302; 303), die zumindest teilweise den potentiellen Reisepfad definieren, assoziiert ist. 45 50

11. Das Verfahren gemäß Anspruch 10, wobei eine Bedingung zum Identifizieren, dass eine Position, die durch einen Messdatenpunkt des einen oder der mehreren Messdatensätze der Vielzahl von Messdatensätzen repräsentiert wird, mit einer eingehenden Verbindung (304; 305) assoziiert ist, zumindest eine der folgenden ist:

- die Position befindet sich auf der eingehenden Verbindung (304; 305),
- die Position befindet sich auf einer Verbindung, die sich von der ausgewählten Verbindung (301) unterscheidet und direkt mit der eingehenden Verbindung (304; 305) verbunden ist.

12. Das Verfahren gemäß einem der Ansprüche 10 und 11, wobei eine Bedingung zum Identifizieren, dass eine Position, die durch einen Messdatenpunkt des einen oder der mehreren Messdatensätze der Vielzahl von Messdatensätzen repräsentiert wird, mit einer ausgehenden Verbindung (302; 303) assoziiert ist, zumindest eine der folgenden ist:

die Position befindet sich auf der ausgehenden Verbindung (302; 303),

- die Position befindet sich auf einer Verbindung, die sich von der ausgewählten Verbindung (301) unterscheidet und direkt mit der ausgehenden Verbindung (302; 303) verbunden ist.

13. Das Verfahren gemäß einem der Ansprüche 1 bis 12, wobei das Verfahren ferner zumindest einen der folgenden Schritte umfasst:

- Bereitstellen oder Erzeugen von Geschwindigkeitskartendaten, die eine Assozierung der Kartendaten mit einer Vielzahl von Geschwindigkeitsprofilen für Verbindungen des Verkehrsnetzes (300a; 300b; 300c) repräsentieren, wobei die Vielzahl von Geschwindigkeitsprofilen die für die Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) bestimmten Geschwindigkeitsprofile umfasst,
- Bestimmen (211) von Geschwindigkeitsinformation für zumindest ein Fahrzeug (12) zumindest teilweise basierend auf einem oder mehreren der für die Vielzahl von potentiellen Reisepfaden (308; 309; 310; 311) bestimmten Geschwindigkeitsprofilen; und Bereitstellen (212) der Geschwindigkeitsinformation an dem zumindest einen Fahrzeug (12).

14. Eine Vorrichtung umfassend Mittel zur Durchführung der Schritte des Verfahrens gemäß einem der Ansprüche 1 bis 13.

15. Ein Computerprogrammcode, wobei der Computerprogrammcode, wenn von einem Prozessor (101) ausgeführt, eine Vorrichtung (100) veranlasst, die Schritte des Verfahrens gemäß einem der Ansprüche 1 bis 13 durchzuführen.

Revendications**1. Procédé, ledit procédé comprenant :**

- obtenir (201) ou tenir à disposition des données cartographiques représentant, au moins en partie, un réseau de déplacement (300a ; 300b ; 300c),
 - déterminer (202), pour au moins un lien sélectionné (301) dudit réseau de déplacement (300a ; 300b ; 300c) représenté par lesdites données cartographiques, une pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311), où ledit lien sélectionné (301) est une section entre deux jonctions dudit réseau de déplacement, où chaque chemin de déplacement potentiel de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) pour ledit au moins un lien sélectionné (301) est au moins partiellement défini par un lien entrant (304 ; 305) dudit réseau de déplacement (300a ; 300b ; 300c) et un lien sortant (302 ; 303) dudit réseau de déplacement (300a ; 300b ; 300c) qui sont reliés par ledit lien sélectionné (301) et une direction de déplacement à partir dudit lien entrant (304 ; 305) audit lien sortant (302 ; 303) sur ledit lien sélectionné (301),
 - déterminer (204), pour chaque chemins de déplacement potentiel de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311), un profil de vitesse respectif au moins partiellement sur la base d'une pluralité de points de données de sonde respectifs d'un ou plusieurs ensembles de données de sonde respectifs d'une pluralité d'ensembles de données de sonde, lesdits un ou plusieurs ensembles de données de sonde respectifs associés audit chemin de déplacement potentiel respectif de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) pour lequel ledit profil de vitesse respectif est déterminé, dans lequel ledit profil de vitesse respectif représente des informations de vitesse pour un véhicule se déplaçant sur ledit lien sélectionné le long dudit chemin de déplacement potentiel respectif de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311).

2. Procédé selon la revendication 1, dans lequel ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) comprend un chemin potentiel pour chaque combinaison autorisée et/ou possible d'un lien entrant (304 ; 305) et d'un lien sortant (302 ; 303) reliés par ledit lien sélectionné (301) et représentés par lesdites données cartographiques.**3. Procédé selon l'une quelconque des revendications 1 à 2, ledit procédé comprenant en outre :**

- obtenir ou tenir à disposition ladite pluralité d'ensembles de données de sonde.

4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ledit profil de vitesse respectif représente une vitesse pour ladite liaison sélectionnée (301) ou une pluralité de vitesses pour une pluralité de segments ultérieurs dudit lien sélectionné (301).

10 5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel chaque point de données de sonde représente une position et une vitesse.

15 6. Procédé selon la revendication 5, dans lequel ledit profil de vitesse respectif est au moins partiellement déterminé en calculant une ou plusieurs vitesses moyennes, un ou plusieurs percentiles de vitesse ou une ou plusieurs combinaisons de ceux-ci pour ledit lien sélectionné (301) ou pour un ou plusieurs segments ultérieurs dudit lien sélectionné (301).

20 7. Procédé selon la revendication 6, dans lequel ledit calcul est au moins partiellement basé sur une ou plusieurs vitesses représentées par un ou plusieurs points de données de sonde de ladite pluralité de points de données de sonde respectifs desdits un ou plusieurs ensembles de données de sonde respectifs associés audit chemin de déplacement potentiel respectif.

25 8. Procédé selon l'une quelconque des revendications 5 à 7, ledit procédé comprenant en outre :

30 35 9. - déterminer (203) si un ou plusieurs ensembles de données de sonde de ladite pluralité d'ensembles de données de sonde est associé à un chemin de déplacement potentiel de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) au moins partiellement sur la base d'une ou plusieurs positions représentées par un ou plusieurs points de données de sonde dudit un ou plusieurs ensembles de données de sonde.

40 45 10. Procédé selon la revendication 8, dans lequel chaque ensemble de données de sonde de ladite pluralité d'ensembles de données de sonde est déterminé comme étant associé à un seul chemin de déplacement potentiel de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311).

50 55 11. Procédé selon l'une quelconque des revendications 8 à 9, dans lequel lesdits un ou plusieurs ensembles de données de sonde de ladite pluralité d'ensembles de données de sonde sont déterminés comme étant associés à un chemin de déplacement potentiel de ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) au moins partiellement

sur la base du nombre de points de données de sonde desdits un ou plusieurs ensembles de données de sonde qui représentent une position associée à un lien entrant (304 ; 305) ou un lien sortant (302 ; 303) définissant au moins partiellement ledit chemin de déplacement potentiel.

11. Procédé selon la revendication 10, dans lequel une condition pour identifier une position représentée par un point de données de sonde dudit un ou plusieurs ensembles de données de sonde de ladite pluralité d'ensembles de données de sonde à associer à un lien entrant (304 ; 305) est au moins l'une des suivantes :

- ladite position est sur ledit lien entrant (304 ; 305),
- ladite position est sur un lien différent dudit lien sélectionné (301) et directement lié audit lien entrant (304 ; 305).

12. Procédé selon l'une quelconque des revendications 10 à 11, dans lequel une condition pour identifier une position représentée par un point de données de sonde dudit un ou plusieurs ensembles de données de sonde de ladite pluralité d'ensembles de données de sonde à associer à un lien sortant (302 ; 303) est au moins l'une des suivantes :

- ladite position est sur ledit lien sortant (302 ; 303)
- ladite position est sur un lien différent dudit lien sélectionné (301) et directement lié audit lien sortant (302 ; 303).

13. Procédé selon l'une quelconque des revendications 1 à 12, ledit procédé comprenant en outre au moins l'un des éléments suivants:

- fournir ou générer des données cartographiques de vitesse représentant une association desdites données cartographiques et une pluralité de profils de vitesse pour des liens dudit réseau de déplacement (300a ; 300b ; 300c), ladite pluralité de profils de vitesse comprenant lesdits profils de vitesse déterminés pour ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311),
- déterminer (211) des informations de vitesse pour au moins un véhicule (12) au moins partiellement sur la base d'un ou plusieurs desdits profils de vitesse déterminés pour ladite pluralité de chemins de déplacement potentiels (308 ; 309 ; 310 ; 311) ; et fournir (212) lesdites informations de vitesse audit au moins un véhicule (12).

14. Appareil comprenant des moyens pour exécuter les

étapes du procédé selon l'une quelconque des revendications 1 à 13.

15. Code de programme informatique, le code de programme informatique, lorsqu'il est exécuté par un processeur (101), amenant un appareil (100) à exécuter les étapes du procédé selon l'une des revendications 1 à 13.

5

10

15

20

25

35

40

45

50

55

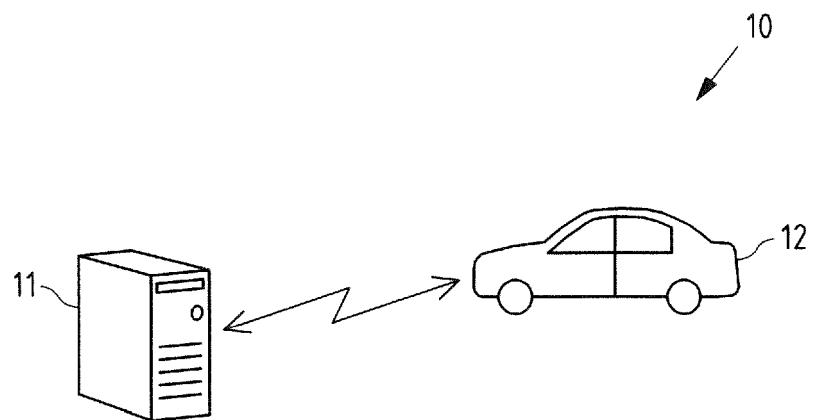


Fig.1a

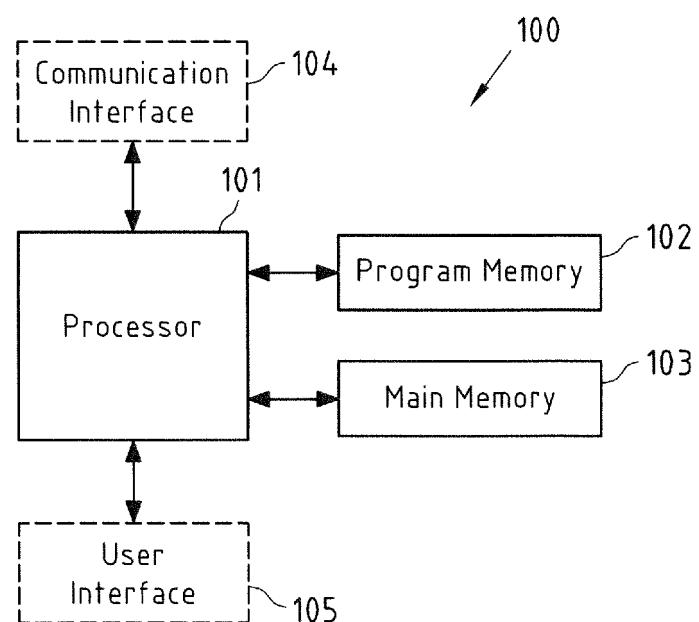


Fig.1b

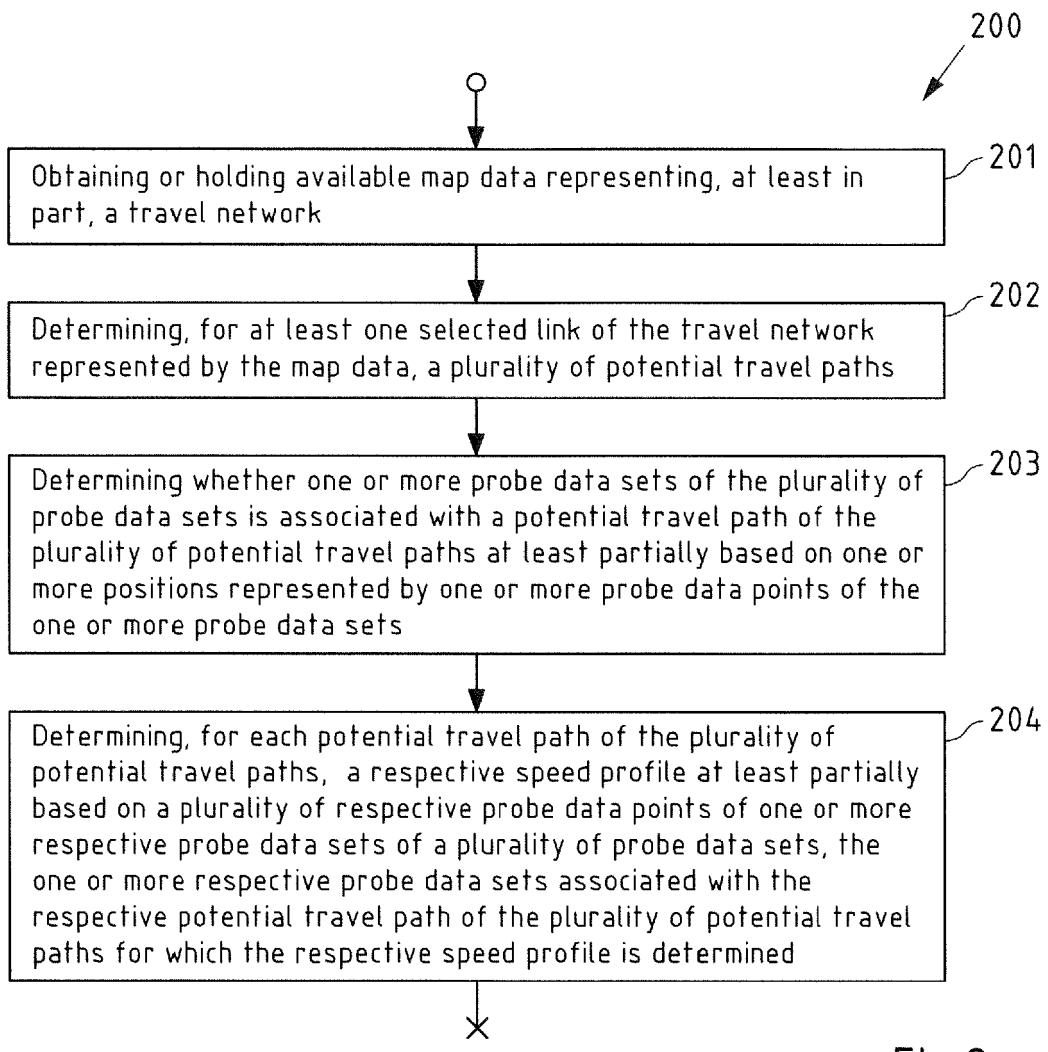


Fig.2a

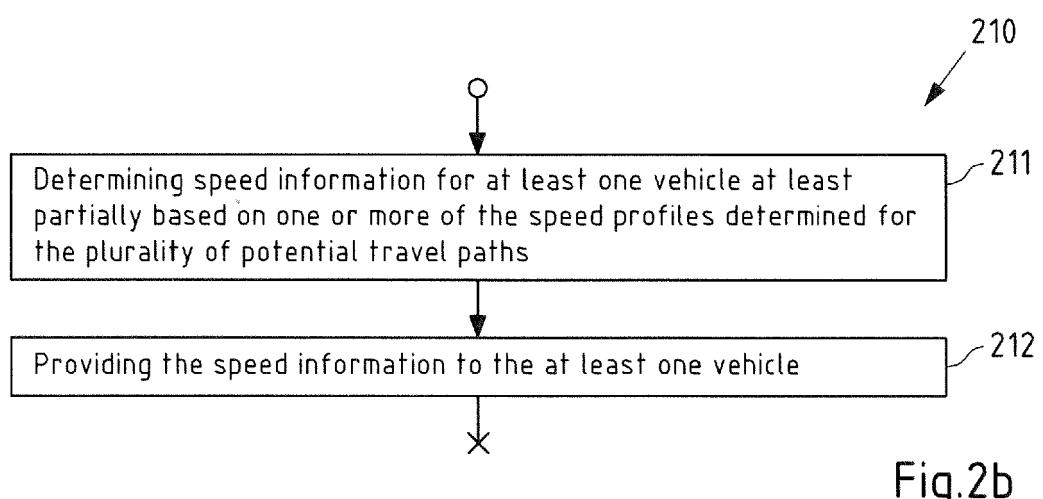


Fig.2b

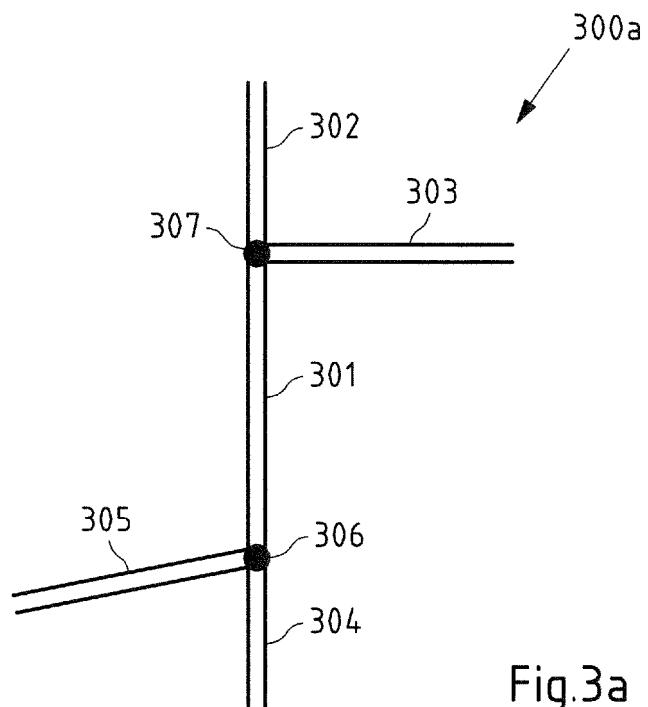


Fig.3a

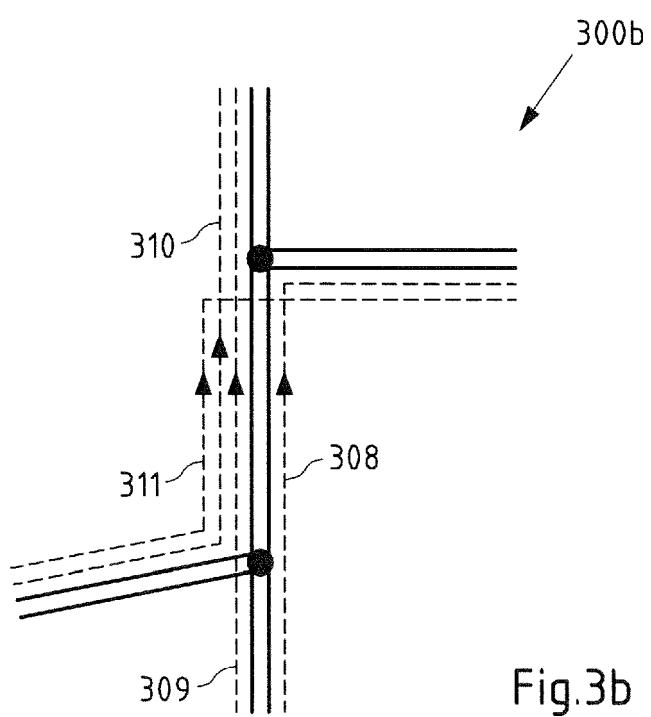


Fig.3b

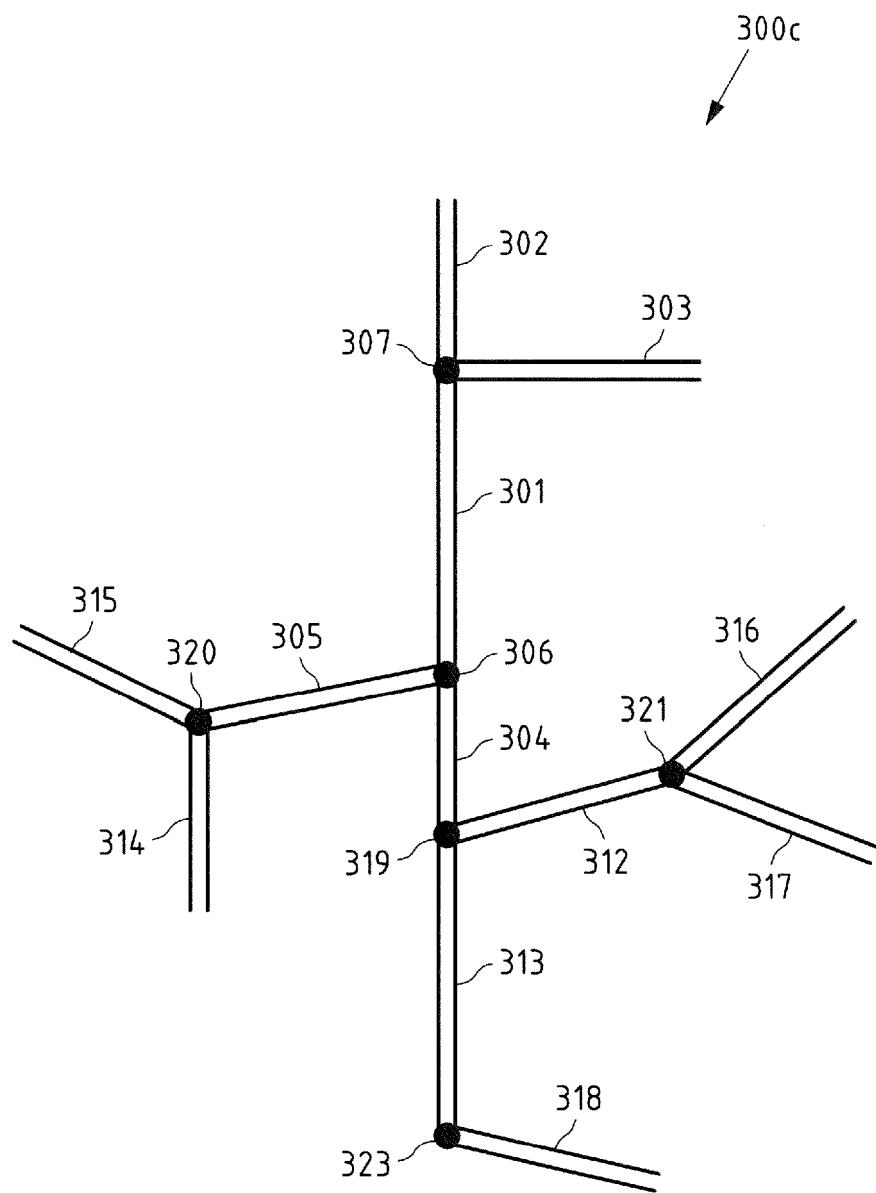


Fig.3c

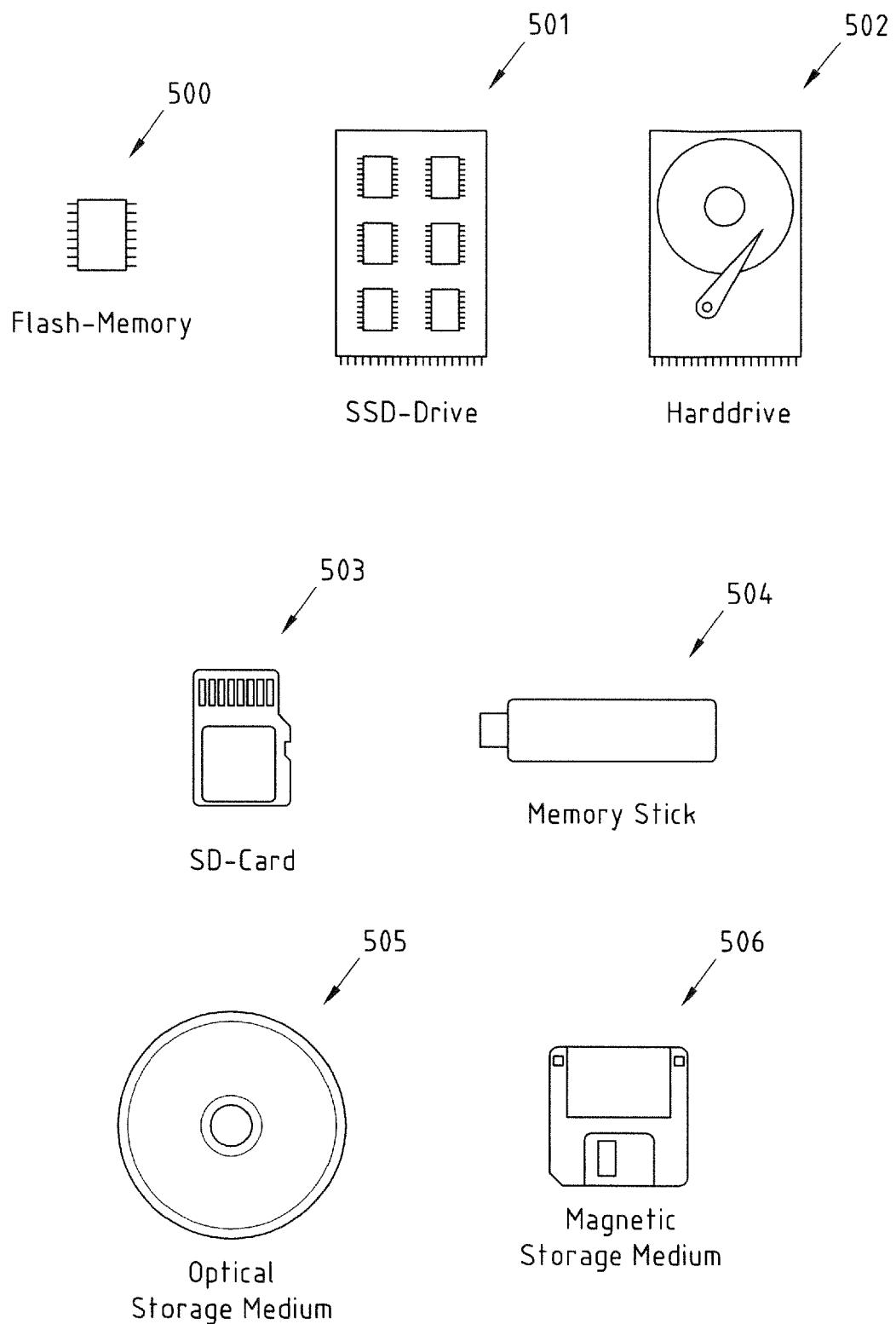


Fig.4

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20150300825 A1 [0003]