(19)
(11) EP 3 467 713 A8

(12) CORRECTED EUROPEAN PATENT APPLICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 A1)

(48) Corrigendum issued on:
05.06.2019 Bulletin 2019/23

(43) Date of publication:
10.04.2019 Bulletin 2019/15

(21) Application number: 18192803.7

(22) Date of filing: 05.09.2018
(51) International Patent Classification (IPC): 
G06K 9/62(2006.01)
G06K 9/46(2006.01)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 03.10.2017 US 201715723597

(71) Applicant: StradVision, Inc.
Gyeongsangbuk-do 37673 (KR)

(72) Inventors:
  • Kim, Yongjoong
    Gyeongsangbuk-do, 37673 (KR)
  • Nam, Woonhyun
    Gyeongsangbuk-do, 37656 (KR)
  • Boo, Sukhoon
    Gyeonggi-do, 14034 (KR)
  • Sung, Myungchul
    Gyeongsangbuk-do, 37593 (KR)
  • Yeo, Donghun
    Gyeongsangbuk-do, 37673 (KR)
  • Ryu, Wooju
    Gyeongsangbuk-do, 37673 (KR)
  • Jang, Taewoong
    Seoul, 06108 (KR)
  • Jeong, Kyungjoong
    Gyeongsangbuk-do, 37671 (KR)
  • Je, Hongmo
    Gyeongsangbuk-do, 37665 (KR)
  • Cho, Hojin
    Gyeongsangbuk-do, 37673 (KR)

(74) Representative: Klunker IP Patentanwälte PartG mbB 
Destouchesstraße 68
80796 München
80796 München (DE)

   


(54) LEARNING METHOD AND LEARNING DEVICE FOR IMPROVING IMAGE SEGMENTATION AND TESTING METHOD AND TESTING DEVICE USING THE SAME


(57) A method for improving image segmentation by using a learning device is disclosed. The method includes steps of: (a) if a training image is obtained, acquiring (2- K)th to (2-1)th feature maps through an encoding layer and a decoding layer, and acquiring 1st to Hth losses from the 1st to the Hth loss layers respectively corresponding to H feature maps, obtained from the H filters, among the (2-K)th to the (2-1)th feature maps; and (b) upon performing a backpropagation process, performing processes of allowing the (2-M)th filter to apply a convolution operation to (M-1)2-th adjusted feature map relayed from the (2-(M-1))th filter to obtain M1-th temporary feature map; relaying, to the (2-(M+1))th filter, M2-th adjusted feature map obtained by computing the Mth loss with the M1-th temporary feature map; and adjusting at least part of parameters of the (1-1)th to the (1-K)th filters and the (2-K)th to the (2-1)th filters.