(19)
(11) EP 3 470 663 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
31.08.2022 Bulletin 2022/35

(21) Application number: 17196196.4

(22) Date of filing: 12.10.2017
(51) International Patent Classification (IPC): 
F02M 55/02(2006.01)
B23K 33/00(2006.01)
F02M 61/16(2006.01)
F02M 69/46(2006.01)
F02M 55/00(2006.01)
(52) Cooperative Patent Classification (CPC):
F02M 55/005; F02M 55/025; F02M 61/168; F02M 69/465; F02M 2200/80; F02M 2200/856; F02M 2200/8084; F02M 2200/03

(54)

A FUEL RAIL ASSEMBLY FOR A FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

KRAFTSTOFFLEISTENANORDNUNG FÜR EIN KRAFTSTOFFEINSPRITZSYSTEM FÜR EINE BRENNKRAFTMASCHINE

ENSEMBLE RAMPE DE CARBURANT POUR UN SYSTÈME D'INJECTION DE CARBURANT D'UN MOTEUR À COMBUSTION INTERNE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
17.04.2019 Bulletin 2019/16

(73) Proprietor: Vitesco Technologies GmbH
93055 Regensburg (DE)

(72) Inventors:
  • Serra, Giandomenico
    56010 Ghezzano - S.Giuliano Terme (PI) (IT)
  • Di Domizio, Gisella
    56017 San Giuliano Terme (IT)
  • Weigl, Georg
    93049 Regensburg (DE)

(74) Representative: Vitesco Technologies 
Postfach 12 02
82019 Taufkirchen
82019 Taufkirchen (DE)


(56) References cited: : 
EP-A1- 1 378 658
WO-A2-01/71179
DE-A1-102008 035 494
GB-A- 2 322 819
JP-A- 2010 133 323
US-A1- 2002 190 521
US-B1- 7 028 668
EP-A1- 3 199 793
WO-A2-2010/072651
DE-A1-102014 223 060
JP-A- H1 085 953
US-A- 4 615 098
US-A1- 2004 206 336
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present disclosure relates to a fuel rail assembly for a fuel injection system for an internal combustion engine and also to a method of manufacturing and assembling together components of the assembly.

    [0002] Fuel rails, also referred to as common rails or main galleries, are widely used in fuel injection systems for internal combustion engines, and consist of a reservoir typically in the form of an elongate tube having a fuel inlet and a plurality of fuel outlets spaced along the rail. Fuel at high pressure is fed to the fuel inlet of the fuel rail from whence it is delivered through the fuel outlets to fuel injectors. The fuel injectors may inject fuel into a manifold of the internal combustion engine but, more usually, each cylinder of the engine has an associated fuel injector which injects fuel directly into the combustion chamber of the cylinder.

    [0003] The fuel rail assembly has a fuel adapter that is bonded, usually by brazing, to each of the fuel outlets of the fuel rail. The fuel adapter has an outlet providing a hydraulic connection between the fuel rail, the fuel adapter and the fuel injector, the hydraulic connection including a fuel injector cup into which the fuel injector is inserted. In one form, the fuel injector cup is formed as an integral part of the fuel adapter and in another form, a pipe leads from the fuel adapter to a fuel injector cup.

    [0004] Such systems operate in a harsh environment when placed in a vehicle which involves high temperatures and high pressure which is variable throughout each induction phase of the engine. The systems are also subject to vibration from the vehicle and its movement and also to separate vibration of the engine on its engine mounts. The components subject to the fuel pressure, in particular, are additionally subjected to substantial stresses caused by the variation in the fuel pressure. As a result of this harsh environment, components and the brazed joints between them are subject to stresses which can lead to premature failure and insufficient durability.

    [0005] European Patent No. EP 246 6111 discloses an arrangement in which a separate mounting structure is provided which is adapted to disperse the stress caused by an impact applied to an injector cup due to a repulsive force when the fuel is injected. The structure has a mount unit which is connected to the fuel rail by brazing and is also connected to a fuel adapter which incorporates an injector cup. Thus, the injector cup is bonded to the fuel pipe and to the mount via a bridge. The mount unit is secured to the fuel rail adjacent the fuel adapter but in one form is spaced from the fuel adapter further along the fuel rail in order to spread the stresses. This arrangement is expensive to manufacture, takes up extra space in the engine bay and also limits the manner in which the fuel rail can be installed in the engine as it must be very close to the engine cylinder head.

    [0006] These shortcomings are acknowledged in US 2014/032 6217 in which the disadvantages of such designs are acknowledged and a simpler solution is suggested by providing a securing strap which is attached to the outer curvature of the fuel adapter and also to an adjacent mount. DE 10 2008 035494 A1 discloses a fuel rail assembly as in the preamble of claim 1.

    [0007] However, further improvements to fuel rail assemblies which are simple to manufacture and install and which are reliable in operation are desirable.

    [0008] According to the present disclosure there is provided a fuel rail assembly for a fuel injection system for an internal combustion engine, as disclosed in claim 1, comprising an elongate fuel rail having a fuel inlet and a plurality of fuel outlets spaced along the fuel rail, each outlet has a fuel adapter bonded thereto to provide a hydraulic communication with a fuel injector cup. The fuel injector cup is in particular adapted - i.e. in particular shaped and arranged - to receive a fuel injector. The fuel adapter has a variable material thickness. The thickness is adapted to the characteristics of the fuel rail and the fuel adapter in order, in use, to equalise substantially the stresses applied to these components and the bond therebetween.

    [0009] According to the invention the fuel adapter and its bonding area, where it is bonded to the fuel rail, are designed to dissipate the stresses in a particulary uniform manner throughout the components and the brazed joint.

    [0010] Stresses may be exacerbated by variations in the thickness of the components, such as the fuel rail and the fuel adapter which can cause stress concentration which leads to premature failure. The use of larger and heavier components and the use of additional components in an attempt to spread the stresses are avoided herein by the use of a material thickness of wall thickness that is varied in order to reduce stress concentrations and to substantially equalise the stresses. This solution also addresses the space requirements and provides a flexibility in the design whilst not requiring an extra component with the inevitable complexity and cost penalties.

    [0011] According to the invention, the fuel adapter is brazed to the fuel rail over a bonding area, the size of the bonding area and its shape being determined to provide a uniform stress in the brazed joint. The shape of the fuel adapter is formed to provide a uniform stress, in particular a uniform stress in and around the brazed joint, for example by avoiding edges and points and/or by providing a smoothly varying shape. The cross-sectional area of the fuel adaptor may be varied along its length by varying its lateral extent as well as, or alternatively by varying its thickness.

    [0012] The fuel adapter is brazed to the fuel rail over a bonding area defined by a fuel adapter base, the bonding area and its shape being determined to provide, in use, a substantially uniform stress across the brazed joint. In some embodiments, the inner face of the fuel adapter base is shaped to mate with the periphery of the fuel rail. For example, if the fuel rail has an arcuate surface, for example a convex surface as it has the form of a cylindrical tube, the inner face of the base of the fuel adapter has an arcuate surface, for example a concave surface, so that it can mate with the periphery of the fuel rail.

    [0013] The periphery of the bonding area has no sharp changes in direction which would result in stress concentration in the joint.

    [0014] The thickness of the material of the fuel adapter is reduced towards the periphery of the bonding area so that the uniformity of the stress in increased and the stress distribution is more uniform in order that little or no stress concentration arises as a result of the change in material thickness between the fuel adapter and the fuel rail at the junction at the periphery of the bonding area, for example at the periphery of the base of the fuel adapter.

    [0015] The hydraulic connection between the fuel adapter and the fuel injector cup includes a delivery pipe which is brazed to the fuel adapter. The delivery pipe is located in a bore in a spigot of the fuel adapter and the thickness of the material of the fuel adapter is reduced towards the outer end of the bore or spigot. In this way, little or no stress concentration may arise as an advantageous result of the change in material thickness at the junction between the fuel adapter and the pipe. The spigot may be positioned at the opposing end of the fuel adapter to the fuel adapter base.

    [0016] There is also disclosed a method of joining at least one component of a fuel rail assembly to a fuel rail including the step of varying the material thickness of the component over at least part of the component and reducing the thickness of the material towards the periphery of its contact area with the fuel rail so that the change in thickness of the material at the junction between the component and the fuel rail is minimal to reduce stress concentration at the junction.

    [0017] The method may further comprise bonding the component to the fuel rail by brazing the contact area to the fuel rail. In some embodiments, the component is a fuel adapter and the contact area is provided by an inner face of a base of the fuel adapter, the inner face being shaped to mate with the periphery of the fuel rail. The thickness of the material of the base of the fuel adapter may be increasingly reduced towards the periphery. Additionally, the form of the base and periphery may be without corners and edges to provide a smooth surface which avoids possible positions of stress concentration.

    [0018] The fuel adapter may comprise a spigot defining a bore for a delivery pipe. The spigot may be positioned at the opposing end of the adapter from the base. A delivery pipe is located in the bore and bonded to the spigot. The method may further comprise reducing the thickness of the material of the fuel adapter towards the outer end of the spigot of the fuel adapter to avoid a stress concentration arising as a result of a change in material thickness between the fuel adapter and the pipe.

    [0019] The method may further comprise inserting the delivery pipe into the bore of the spigot and brazing the delivery pipe to the spigot to bond the delivery pipe to the fuel adapter.

    [0020] The fuel rail assembly of the present disclosure has a structure of the components, in particular structure of the components at the joints between components which is shaped to avoid spatially localised areas of increased stress in order to improve the reliability and durability of the assembly. The fuel rail assembly of the present disclosure also provides a very cost effective solution to improving the durability of the assembly since it does without the necessity of having an extra stress-relieving component thus also providing a more compact design. It also enables flexibility in the location of the fuel rail relative to the engine.

    [0021] Embodiments of the disclosure will now be described by way of example with reference to the accompanying informal drawing in which:-
    Figure 1
    illustrates a side view of a fuel rail with a fuel connection to a fuel injector, and
    Figure 2
    shows a cross-section of Figure 1 along the line A-A.


    [0022] Referring now to Figure 1 there is shown a fuel rail 2 of a fuel injection system for an internal combustion engine. The fuel rail 2 comprises an elongated tube forming a reservoir for fuel which is supplied to an inlet 4. The fuel rail 2 has a plurality of fuel outlets 6 (shown in Figure 2) spaced along the length of the fuel rail 2 but only one is shown for the purposes of illustration.

    [0023] A fuel adapter 8 is brazed to the fuel rail 2 and provides a connection to a fuel pipe 10 which provides a fluid connection between the fuel rail to and a fuel injector cup 12 which is adapted to receive a fuel inlet port of a fuel injector (not shown) to provide a fuel passage from the fuel rail into the injector for injection into the engine. The fuel adapter 8 has a fuel adapter base 16 which provides a bonding area by which the fuel adapter 8 is brazed to the fuel rail 2. As can be seen more clearly in Figure 2, an interior surface of the adapter base 16 provides a bonding area shaped to provide a mating surface adapted to the exterior surface of the fuel rail 2 to enable the two components to be brazed together. The size and shape of the bonding area may be determined by the loads to which the brazed joint is subject in operation.

    [0024] The periphery of the fuel adapter base 16 is shaped so as not to have any sudden changes in direction which would lead to a stress concentration point, thus, it can be seen that changes in direction of the periphery have a radius 20.

    [0025] As can be seen from figure 2 in particular the thickness of the base 16 is at a minimum at the periphery 18 so that the change in material thickness at the junction between the fuel adapter base 16 and the fuel rail 2 is at a minimum to minimise stress concentrations at this point. The material thickness of the base 16 increases to merge with a spigot 22 into which the fuel pipe 10 is inserted stop the fuel pipe 10 is brazed to the spigot 22 at the outer end 24 of the spigot 22. The thickness of the outer end of the spigot is gradually reduced so that it is at a minimum at the junction between the outer ends 24 of the spigot and the fuel pipe 10 to thereby minimise stress concentrations at this point.

    [0026] The thickness of the spigot wall and the spacing between the inlet end of the pipe 10 and the fuel rail 2 is determined by the stress levels encountered in practice, for example in a particular internal combustion engine. In this way the stresses applied to the components, the fuel rail 2, the fuel adapter 8 and the fuel pipe 10 and the brazed junctions between them are kept as low as possible by appropriate dimensions of the components. In this way, the cross-sectional area of the fuel adaptor 8 may be varied along its length by varying its lateral extent as well as, or alternatively and/or in addition to, varying its thickness. Thus, the stress level throughout the adapter and in the transition between adjacent components is achieved by gradual changes in material thickness and dimensions where appropriate to avoid stress concentrations.

    [0027] Figures 1 and 2 also illustrate a schematic view of a mount 14 by which the fuel rail 2 is secured to the engine via the fuel pipe 10. The mount 14 by which the fuel rail 2 is secured to the engine is not tied to the fuel rail 2 so it can be located in a more convenient position, which facilitates the installation in the engine bay.

    [0028] The provision of a specific shape for the bonding area between the fuel adapter and the fuel rail and the variable thickness of the fuel adapter, in particular the wall thickness of the material providing the fuel adapter, enables a neat solution to the problem of ensuring a uniform distribution of stress throughout the components and the bond, without the need of providing a further component to assist in distributing the stress. This leads to a smaller, neater solution which provides a much more compact design for packaging purposes. Varying the thickness of the fuel adapter and, particularly, its reduction in thickness at the junctions between the components leads to a very compact cost effective solution in a region which is otherwise prone to premature failure and metal fatigue. The fact that the size and shape of the bonding area between the fuel adapter and the fuel rail is readily adjustable to suit the circumstances of a particular installation is particularly cost effective. This is particularly useful where the materials of the two mating components that are brazed together are formed of different materials with different characteristics and different acceptable stress limits.

    [0029] Although described with reference to providing the variable thickness of the fuel adapter 8 at the joints to both the fuel rail 2 and the fuel pipe 10 it will be appreciated that the technique could be adapted to only one of these positions.

    [0030] Although described with reference to the variation in the thickness of the various parts of the fuel adapter 8 it will be understood that certain parts of the fuel rail and the passage therethrough could be of constant thickness.


    Claims

    1. A fuel rail assembly for a fuel injection system for an internal combustion engine, comprising an elongate fuel rail (2) having a fuel inlet (4) and a plurality of fuel outlets (6) spaced along the fuel rail (2), each outlet (6) has a fuel adapter (8) bonded thereto to provide a hydraulic communication with a fuel injector cup (12) adapted to receive a fuel injector, wherein
    the fuel adapter (8) has a variable material thickness, the thickness being adapted to the characteristics of the fuel rail (2) and the fuel adapter (8) in order, in use, to equalise substantially the stresses applied to the fuel rail (2) and the fuel adapter (8) and the bond therebetween, characterized in and that the fuel adapter (8) is brazed to the fuel rail (2) over a bonding area defined by a fuel adapter base (15), the bonding area and its shape being determined to provide, in use, a substantially uniform stress across the brazed joint, wherein the thickness of the material of the fuel adapter (8) is reduced towards the periphery (18) of the bonding area to minimise stress concentration arising as a result of the change in material thickness between the fuel adapter (8) and the fuel rail (2) at the junction at the periphery (18) of the bonding area and in that the periphery (18) of the bonding area has no sharp changes in direction which would result in stress concentration in the joint, wherein the hydraulic connection between the fuel adapter (8) and a fuel injector cup (12) includes a delivery pipe (10) which is brazed to the fuel adapter (8), and wherein the delivery pipe (10) is located in a bore in the fuel adapter (8) and the thickness of the material of the fuel adapter (8) is reduced towards the outer end of a spigot (22) of the fuel adapter (8) to avoid a stress concentration arising as a result of the change in material thickness between the fuel adapter (8) and the pipe (10).
     
    2. A fuel rail assembly according to any one of the preceding claims, wherein the cross-sectional area of the fuel adaptor is varied along its length by varying its lateral extent as well as varying its thickness.
     
    3. A fuel rail assembly according to any one of claims 1 to 2, wherein the inner face of the fuel adapter base (16) is shaped to mate with the periphery of the fuel rail (2).
     
    4. A method of joining at least one component of a fuel rail assembly according to any of claims 1 to 3 to a fuel rail characterized in that the material thickness of the component varying over at least part of the component and reducing the thickness of the material towards the periphery of its contact area with the fuel rail so that the change in thickness of the material at the junction between the component and the fuel rail is minimal to reduce stress concentration at the junction.
     
    5. A method according to claim 4, further comprising bonding the component to the fuel rail by brazing the contact area to the fuel rail.
     
    6. A method according to claim 4 or claim 5, wherein the component is a fuel adapter and the contact area is provided by an inner face of a base (16) of the fuel adapter base (8), characterized in that the inner face being shaped to mate with the periphery of the fuel rail (2).
     
    7. A method according to any one of claims 4 to 6, wherein the fuel adapter (8) comprises a spigot (22) defining a bore, a delivery pipe (10) is located in the bore and brazed to the spigot (22), wherein the method further comprises reducing the thickness of the material of the fuel adapter (8) towards the outer end of the spigot (22) of the fuel adapter (8) to avoid a stress concentration arising as a result of a change in material thickness between the fuel adapter (8) and the pipe (10).
     
    8. A method according to claim 7, further comprising inserting the delivery pipe (10) into the bore of the spigot (22) and brazing the delivery pipe (10) to the spigot (22) to bond the delivery pipe (10) to the fuel adapter (8).
     


    Ansprüche

    1. Kraftstoffverteileranordnung für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine, umfassend einen länglichen Kraftstoffverteiler (2), der einen Kraftstoffeinlass (4) und eine Mehrzahl von Kraftstoffauslässen (6), die entlang des Kraftstoffverteilers (2) beabstandet sind, aufweist, wobei jeder Auslass (6) einen daran gebundenen Kraftstoffadapter (8) aufweist, um eine hydraulische Kommunikation mit einer Kraftstoffeinspritzventilaufnahme (12) bereitzustellen, die dazu ausgelegt ist, ein Kraftstoffeinspritzventil aufzunehmen, wobei

    der Kraftstoffadapter (8) eine variable Materialdicke aufweist, wobei die Dicke auf die Charakteristiken des Kraftstoffverteilers (2) und des Kraftstoffadapters (8) ausgelegt ist, um bei Verwendung im Wesentlichen die auf den Kraftstoffverteiler (2) und den Kraftstoffadapter (8) und die Bindung dazwischen aufgebrachten Spannungen auszugleichen,

    dadurch gekennzeichnet, dass der Kraftstoffadapter (8) an den Kraftstoffverteiler (2) über einem Bindungsbereich gelötet ist, der durch eine Kraftstoffadapterbasis (15) definiert ist, wobei der Bindungsbereich und seine Form so bestimmt sind, dass bei Verwendung eine im Wesentlichen einheitliche Spannung über die gelötete Fügestelle bereitgestellt wird, wobei die Dicke des Materials des Kraftstoffadapters (8) hin zu dem Umfang (18) des Bindungsbereichs verringert ist, um eine Spannungskonzentration zu minimieren, die infolge der Änderung der Materialdicke zwischen dem Kraftstoffadapter (8) und dem Kraftstoffverteiler (2) an der Anschlussstelle am Umfang (18) des Bindungsbereichs entsteht, und dadurch, dass der Umfang (18) des Bindungsbereichs keine scharfen Änderungen in einer Richtung aufweist, die zu einer Spannungskonzentration in der Fügestelle führen würden, wobei die hydraulische Verbindung zwischen dem Kraftstoffadapter (8) und einer Kraftstoffeinspritzventilaufnahme (12) eine Zufuhrleitung (10) umfasst, die an den Kraftstoffadapter (8) gelötet ist, und wobei die Zufuhrleitung (10) in einer Bohrung in dem Kraftstoffadapter (8) angeordnet ist und die Dicke des Materials des Kraftstoffadapters (8) hin zu dem äußeren Ende eines Zapfens (22) des Kraftstoffadapters (8) verringert ist, um eine Spannungskonzentration zu vermeiden, die infolge der Änderung der Materialdicke zwischen dem Kraftstoffadapter (8) und der Leitung (10) entsteht.


     
    2. Kraftstoffverteileranordnung nach einem der vorhergehenden Ansprüche, wobei der Querschnittsbereich des Kraftstoffadapters entlang seiner Länge durch Variieren seiner lateralen Erstreckung sowie Variieren seiner Dicke variiert ist.
     
    3. Kraftstoffverteileranordnung nach einem der Ansprüche 1 bis 2, wobei die Innenfläche der Kraftstoffadapterbasis (16) so geformt ist, dass sie mit dem Umfang des Kraftstoffverteilers (2) zusammenpasst.
     
    4. Verfahren zum Fügen mindestens einer Komponente einer Kraftstoffverteileranordnung nach einem der Ansprüche 1 bis 3 an einen Kraftstoffverteiler, dadurch gekennzeichnet, dass die Materialdicke der Komponente über zumindest einen Teil der Komponente variiert und die Dicke des Materials hin zu dem Umfang ihres Kontaktbereichs mit dem Kraftstoffverteiler so verringert wird, dass die Änderung der Dicke des Materials an der Anschlussstelle zwischen der Komponente und dem Kraftstoffverteiler minimal ist, um eine Spannungskonzentration an der Anschlussstelle zu verringern.
     
    5. Verfahren nach Anspruch 4, ferner umfassend Binden der Komponente an den Kraftstoffverteiler durch Löten des Kontaktbereichs an den Kraftstoffverteiler.
     
    6. Verfahren nach Anspruch 4 oder Anspruch 5, wobei die Komponente ein Kraftstoffadapter ist und der Kontaktbereich durch eine Innenfläche einer Basis (16) der Kraftstoffadapterbasis (8) bereitgestellt wird, dadurch gekennzeichnet, dass die Innenfläche so geformt ist, dass sie mit dem Umfang des Kraftstoffverteilers (2) zusammenpasst.
     
    7. Verfahren nach einem der Ansprüche 4 bis 6, wobei der Kraftstoffadapter (8) einen Zapfen (22) umfasst, der eine Bohrung definiert, wobei eine Zufuhrleitung (10) in der Bohrung angeordnet und an den Zapfen (22) gelötet ist, wobei das Verfahren ferner Verringern der Dicke des Materials des Kraftstoffadapters (8) hin zu dem äußeren Ende des Zapfens (22) des Kraftstoffadapters (8) umfasst, um eine Spannungskonzentration zu vermeiden, die infolge einer Änderung der Materialdicke zwischen dem Kraftstoffadapter (8) und der Leitung (10) entsteht.
     
    8. Verfahren nach Anspruch 7, ferner umfassend Einsetzen der Zufuhrleitung (10) in die Bohrung des Zapfens (22) und Löten der Zufuhrleitung (10) an den Zapfen (22), um die Zufuhrleitung (10) an den Kraftstoffadapter (8) zu binden.
     


    Revendications

    1. Ensemble à rampe de carburant pour un système d'injection de carburant pour un moteur à combustion interne, comprenant une rampe de carburant allongée (2) ayant une entrée de carburant (4) et une pluralité de sorties de carburant (6) espacées le long de la rampe de carburant (2), chaque sortie (6) a un adaptateur de carburant (8) lié à celle-ci pour fournir une communication hydraulique avec un manchon d'injecteur de carburant (12) adapté pour recevoir un injecteur de carburant, dans lequel

    l'adaptateur de carburant (8) a une épaisseur de matériau variable, l'épaisseur étant adaptée aux caractéristiques de la rampe de carburant (2) et de l'adaptateur de carburant (8) dans l'ordre, durant l'utilisation, pour égaliser sensiblement les contraintes appliquées sur la rampe de carburant (2) et l'adaptateur de carburant (8) et la liaison entre ceuxci,

    caractérisé en ce que l'adaptateur de carburant (8) est brasé sur la rampe de carburant (2) sur une zone de liaison définie par une base d'adaptateur de carburant (15), la zone de liaison et sa forme étant déterminées pour fournir, durant l'utilisation, une contrainte sensiblement uniforme dans tout le joint brasé, dans lequel l'épaisseur du matériau de l'adaptateur de carburant (8) est réduite vers la périphérie (18) de la zone de liaison pour minimiser la concentration de contrainte se produisant en conséquence du changement d'épaisseur de matériau entre l'adaptateur de carburant (8) et la rampe de carburant (2) à la jonction à la périphérie (18) de la zone de liaison et en ce que la périphérie (18) de la zone de liaison n'a aucun changement abrupt de direction qui aurait pour conséquence une concentration de contrainte dans le joint, dans lequel le raccord hydraulique entre l'adaptateur de carburant (8) et un manchon d'injecteur de carburant (12) inclut un tuyau d'alimentation (10) qui est brasé sur l'adaptateur de carburant (8), et dans lequel le tuyau d'alimentation (10) est situé dans un alésage dans l'adaptateur de carburant (8) et l'épaisseur du matériau de l'adaptateur de carburant (8) est réduite vers l'extrémité extérieure d'un bout d'emboîtement (22) de l'adaptateur de carburant (8) pour éviter une concentration de contrainte se produisant en conséquence du changement d'épaisseur de matériau entre l'adaptateur de carburant (8) et le tuyau (10).


     
    2. Ensemble à rampe de carburant selon l'une quelconque des revendications précédentes, dans lequel la superficie de section transversale de l'adaptateur de carburant est variée le long de sa longueur en variant son étendue latérale ainsi qu'en variant son épaisseur.
     
    3. Ensemble à rampe de carburant selon l'une quelconque des revendications 1 et 2, dans lequel la face intérieure de la base d'adaptateur de carburant (16) est formée pour s'accoupler avec la périphérie de la rampe de carburant (2).
     
    4. Procédé de jonction d'au moins un composant d'un ensemble à rampe de carburant selon l'une quelconque des revendications 1 à 3 à une rampe de carburant, caractérisé en ce que l'épaisseur de matériau du composant varie sur au moins une partie du composant et réduit l'épaisseur du matériau vers la périphérie de sa zone de contact avec la rampe de carburant pour que le changement d'épaisseur du matériau à la jonction entre le composant et la rampe de carburant soit minimal pour réduire la concentration de contrainte à la jonction.
     
    5. Procédé selon la revendication 4, comprenant en outre le liage du composant à la rampe de carburant en brasant la zone de contact sur la rampe de carburant.
     
    6. Procédé selon la revendication 4 ou la revendication 5, dans lequel le composant est un adaptateur de carburant et la zone de contact est fournie par une face intérieure d'une base (16) de la base d'adaptateur de carburant (8), caractérisé en ce que la face intérieure étant formée pour s'accoupler avec la périphérie de la rampe de carburant (2).
     
    7. Procédé selon l'une quelconque des revendications 4 à 6, dans lequel l'adaptateur de carburant (8) comprend un bout d'emboîtement (22) définissant un alésage, un tuyau d'alimentation (10) est situé dans l'alésage et brasé sur le bout d'emboîtement (22), dans lequel le procédé comprend en outre la réduction de l'épaisseur du matériau de l'adaptateur de carburant (8) vers l'extrémité extérieure du bout d'emboîtement (22) de l'adaptateur de carburant (8) pour éviter une concentration de contrainte se produisant en conséquence d'un changement d'épaisseur de matériau entre l'adaptateur de carburant (8) et le tuyau (10).
     
    8. Procédé selon la revendication 7, comprenant en outre l'insertion du tuyau d'alimentation (10) dans l'alésage du bout d'emboîtement (22) et le brasage du tuyau d'alimentation (10) sur le bout d'emboîtement (22) pour lier le tuyau d'alimentation (10) à l'adaptateur de carburant (8).
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description