| (19) |
 |
|
(11) |
EP 3 470 663 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
31.08.2022 Bulletin 2022/35 |
| (22) |
Date of filing: 12.10.2017 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
A FUEL RAIL ASSEMBLY FOR A FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
KRAFTSTOFFLEISTENANORDNUNG FÜR EIN KRAFTSTOFFEINSPRITZSYSTEM FÜR EINE BRENNKRAFTMASCHINE
ENSEMBLE RAMPE DE CARBURANT POUR UN SYSTÈME D'INJECTION DE CARBURANT D'UN MOTEUR À
COMBUSTION INTERNE
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (43) |
Date of publication of application: |
|
17.04.2019 Bulletin 2019/16 |
| (73) |
Proprietor: Vitesco Technologies GmbH |
|
93055 Regensburg (DE) |
|
| (72) |
Inventors: |
|
- Serra, Giandomenico
56010 Ghezzano - S.Giuliano Terme (PI) (IT)
- Di Domizio, Gisella
56017 San Giuliano Terme (IT)
- Weigl, Georg
93049 Regensburg (DE)
|
| (74) |
Representative: Vitesco Technologies |
|
Postfach 12 02 82019 Taufkirchen 82019 Taufkirchen (DE) |
| (56) |
References cited: :
EP-A1- 1 378 658 WO-A2-01/71179 DE-A1-102008 035 494 GB-A- 2 322 819 JP-A- 2010 133 323 US-A1- 2002 190 521 US-B1- 7 028 668
|
EP-A1- 3 199 793 WO-A2-2010/072651 DE-A1-102014 223 060 JP-A- H1 085 953 US-A- 4 615 098 US-A1- 2004 206 336
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present disclosure relates to a fuel rail assembly for a fuel injection system
for an internal combustion engine and also to a method of manufacturing and assembling
together components of the assembly.
[0002] Fuel rails, also referred to as common rails or main galleries, are widely used in
fuel injection systems for internal combustion engines, and consist of a reservoir
typically in the form of an elongate tube having a fuel inlet and a plurality of fuel
outlets spaced along the rail. Fuel at high pressure is fed to the fuel inlet of the
fuel rail from whence it is delivered through the fuel outlets to fuel injectors.
The fuel injectors may inject fuel into a manifold of the internal combustion engine
but, more usually, each cylinder of the engine has an associated fuel injector which
injects fuel directly into the combustion chamber of the cylinder.
[0003] The fuel rail assembly has a fuel adapter that is bonded, usually by brazing, to
each of the fuel outlets of the fuel rail. The fuel adapter has an outlet providing
a hydraulic connection between the fuel rail, the fuel adapter and the fuel injector,
the hydraulic connection including a fuel injector cup into which the fuel injector
is inserted. In one form, the fuel injector cup is formed as an integral part of the
fuel adapter and in another form, a pipe leads from the fuel adapter to a fuel injector
cup.
[0004] Such systems operate in a harsh environment when placed in a vehicle which involves
high temperatures and high pressure which is variable throughout each induction phase
of the engine. The systems are also subject to vibration from the vehicle and its
movement and also to separate vibration of the engine on its engine mounts. The components
subject to the fuel pressure, in particular, are additionally subjected to substantial
stresses caused by the variation in the fuel pressure. As a result of this harsh environment,
components and the brazed joints between them are subject to stresses which can lead
to premature failure and insufficient durability.
[0005] European Patent No.
EP 246 6111 discloses an arrangement in which a separate mounting structure is provided which
is adapted to disperse the stress caused by an impact applied to an injector cup due
to a repulsive force when the fuel is injected. The structure has a mount unit which
is connected to the fuel rail by brazing and is also connected to a fuel adapter which
incorporates an injector cup. Thus, the injector cup is bonded to the fuel pipe and
to the mount via a bridge. The mount unit is secured to the fuel rail adjacent the
fuel adapter but in one form is spaced from the fuel adapter further along the fuel
rail in order to spread the stresses. This arrangement is expensive to manufacture,
takes up extra space in the engine bay and also limits the manner in which the fuel
rail can be installed in the engine as it must be very close to the engine cylinder
head.
[0006] These shortcomings are acknowledged in
US 2014/032 6217 in which the disadvantages of such designs are acknowledged and a simpler solution
is suggested by providing a securing strap which is attached to the outer curvature
of the fuel adapter and also to an adjacent mount.
DE 10 2008 035494 A1 discloses a fuel rail assembly as in the preamble of claim 1.
[0007] However, further improvements to fuel rail assemblies which are simple to manufacture
and install and which are reliable in operation are desirable.
[0008] According to the present disclosure there is provided a fuel rail assembly for a
fuel injection system for an internal combustion engine, as disclosed in claim 1,
comprising an elongate fuel rail having a fuel inlet and a plurality of fuel outlets
spaced along the fuel rail, each outlet has a fuel adapter bonded thereto to provide
a hydraulic communication with a fuel injector cup. The fuel injector cup is in particular
adapted - i.e. in particular shaped and arranged - to receive a fuel injector. The
fuel adapter has a variable material thickness. The thickness is adapted to the characteristics
of the fuel rail and the fuel adapter in order, in use, to equalise substantially
the stresses applied to these components and the bond therebetween.
[0009] According to the invention the fuel adapter and its bonding area, where it is bonded
to the fuel rail, are designed to dissipate the stresses in a particulary uniform
manner throughout the components and the brazed joint.
[0010] Stresses may be exacerbated by variations in the thickness of the components, such
as the fuel rail and the fuel adapter which can cause stress concentration which leads
to premature failure. The use of larger and heavier components and the use of additional
components in an attempt to spread the stresses are avoided herein by the use of a
material thickness of wall thickness that is varied in order to reduce stress concentrations
and to substantially equalise the stresses. This solution also addresses the space
requirements and provides a flexibility in the design whilst not requiring an extra
component with the inevitable complexity and cost penalties.
[0011] According to the invention, the fuel adapter is brazed to the fuel rail over a bonding
area, the size of the bonding area and its shape being determined to provide a uniform
stress in the brazed joint. The shape of the fuel adapter is formed to provide a uniform
stress, in particular a uniform stress in and around the brazed joint, for example
by avoiding edges and points and/or by providing a smoothly varying shape. The cross-sectional
area of the fuel adaptor may be varied along its length by varying its lateral extent
as well as, or alternatively by varying its thickness.
[0012] The fuel adapter is brazed to the fuel rail over a bonding area defined by a fuel
adapter base, the bonding area and its shape being determined to provide, in use,
a substantially uniform stress across the brazed joint. In some embodiments, the inner
face of the fuel adapter base is shaped to mate with the periphery of the fuel rail.
For example, if the fuel rail has an arcuate surface, for example a convex surface
as it has the form of a cylindrical tube, the inner face of the base of the fuel adapter
has an arcuate surface, for example a concave surface, so that it can mate with the
periphery of the fuel rail.
[0013] The periphery of the bonding area has no sharp changes in direction which would result
in stress concentration in the joint.
[0014] The thickness of the material of the fuel adapter is reduced towards the periphery
of the bonding area so that the uniformity of the stress in increased and the stress
distribution is more uniform in order that little or no stress concentration arises
as a result of the change in material thickness between the fuel adapter and the fuel
rail at the junction at the periphery of the bonding area, for example at the periphery
of the base of the fuel adapter.
[0015] The hydraulic connection between the fuel adapter and the fuel injector cup includes
a delivery pipe which is brazed to the fuel adapter. The delivery pipe is located
in a bore in a spigot of the fuel adapter and the thickness of the material of the
fuel adapter is reduced towards the outer end of the bore or spigot. In this way,
little or no stress concentration may arise as an advantageous result of the change
in material thickness at the junction between the fuel adapter and the pipe. The spigot
may be positioned at the opposing end of the fuel adapter to the fuel adapter base.
[0016] There is also disclosed a method of joining at least one component of a fuel rail
assembly to a fuel rail including the step of varying the material thickness of the
component over at least part of the component and reducing the thickness of the material
towards the periphery of its contact area with the fuel rail so that the change in
thickness of the material at the junction between the component and the fuel rail
is minimal to reduce stress concentration at the junction.
[0017] The method may further comprise bonding the component to the fuel rail by brazing
the contact area to the fuel rail. In some embodiments, the component is a fuel adapter
and the contact area is provided by an inner face of a base of the fuel adapter, the
inner face being shaped to mate with the periphery of the fuel rail. The thickness
of the material of the base of the fuel adapter may be increasingly reduced towards
the periphery. Additionally, the form of the base and periphery may be without corners
and edges to provide a smooth surface which avoids possible positions of stress concentration.
[0018] The fuel adapter may comprise a spigot defining a bore for a delivery pipe. The spigot
may be positioned at the opposing end of the adapter from the base. A delivery pipe
is located in the bore and bonded to the spigot. The method may further comprise reducing
the thickness of the material of the fuel adapter towards the outer end of the spigot
of the fuel adapter to avoid a stress concentration arising as a result of a change
in material thickness between the fuel adapter and the pipe.
[0019] The method may further comprise inserting the delivery pipe into the bore of the
spigot and brazing the delivery pipe to the spigot to bond the delivery pipe to the
fuel adapter.
[0020] The fuel rail assembly of the present disclosure has a structure of the components,
in particular structure of the components at the joints between components which is
shaped to avoid spatially localised areas of increased stress in order to improve
the reliability and durability of the assembly. The fuel rail assembly of the present
disclosure also provides a very cost effective solution to improving the durability
of the assembly since it does without the necessity of having an extra stress-relieving
component thus also providing a more compact design. It also enables flexibility in
the location of the fuel rail relative to the engine.
[0021] Embodiments of the disclosure will now be described by way of example with reference
to the accompanying informal drawing in which:-
- Figure 1
- illustrates a side view of a fuel rail with a fuel connection to a fuel injector,
and
- Figure 2
- shows a cross-section of Figure 1 along the line A-A.
[0022] Referring now to Figure 1 there is shown a fuel rail 2 of a fuel injection system
for an internal combustion engine. The fuel rail 2 comprises an elongated tube forming
a reservoir for fuel which is supplied to an inlet 4. The fuel rail 2 has a plurality
of fuel outlets 6 (shown in Figure 2) spaced along the length of the fuel rail 2 but
only one is shown for the purposes of illustration.
[0023] A fuel adapter 8 is brazed to the fuel rail 2 and provides a connection to a fuel
pipe 10 which provides a fluid connection between the fuel rail to and a fuel injector
cup 12 which is adapted to receive a fuel inlet port of a fuel injector (not shown)
to provide a fuel passage from the fuel rail into the injector for injection into
the engine. The fuel adapter 8 has a fuel adapter base 16 which provides a bonding
area by which the fuel adapter 8 is brazed to the fuel rail 2. As can be seen more
clearly in Figure 2, an interior surface of the adapter base 16 provides a bonding
area shaped to provide a mating surface adapted to the exterior surface of the fuel
rail 2 to enable the two components to be brazed together. The size and shape of the
bonding area may be determined by the loads to which the brazed joint is subject in
operation.
[0024] The periphery of the fuel adapter base 16 is shaped so as not to have any sudden
changes in direction which would lead to a stress concentration point, thus, it can
be seen that changes in direction of the periphery have a radius 20.
[0025] As can be seen from figure 2 in particular the thickness of the base 16 is at a minimum
at the periphery 18 so that the change in material thickness at the junction between
the fuel adapter base 16 and the fuel rail 2 is at a minimum to minimise stress concentrations
at this point. The material thickness of the base 16 increases to merge with a spigot
22 into which the fuel pipe 10 is inserted stop the fuel pipe 10 is brazed to the
spigot 22 at the outer end 24 of the spigot 22. The thickness of the outer end of
the spigot is gradually reduced so that it is at a minimum at the junction between
the outer ends 24 of the spigot and the fuel pipe 10 to thereby minimise stress concentrations
at this point.
[0026] The thickness of the spigot wall and the spacing between the inlet end of the pipe
10 and the fuel rail 2 is determined by the stress levels encountered in practice,
for example in a particular internal combustion engine. In this way the stresses applied
to the components, the fuel rail 2, the fuel adapter 8 and the fuel pipe 10 and the
brazed junctions between them are kept as low as possible by appropriate dimensions
of the components. In this way, the cross-sectional area of the fuel adaptor 8 may
be varied along its length by varying its lateral extent as well as, or alternatively
and/or in addition to, varying its thickness. Thus, the stress level throughout the
adapter and in the transition between adjacent components is achieved by gradual changes
in material thickness and dimensions where appropriate to avoid stress concentrations.
[0027] Figures 1 and 2 also illustrate a schematic view of a mount 14 by which the fuel
rail 2 is secured to the engine via the fuel pipe 10. The mount 14 by which the fuel
rail 2 is secured to the engine is not tied to the fuel rail 2 so it can be located
in a more convenient position, which facilitates the installation in the engine bay.
[0028] The provision of a specific shape for the bonding area between the fuel adapter and
the fuel rail and the variable thickness of the fuel adapter, in particular the wall
thickness of the material providing the fuel adapter, enables a neat solution to the
problem of ensuring a uniform distribution of stress throughout the components and
the bond, without the need of providing a further component to assist in distributing
the stress. This leads to a smaller, neater solution which provides a much more compact
design for packaging purposes. Varying the thickness of the fuel adapter and, particularly,
its reduction in thickness at the junctions between the components leads to a very
compact cost effective solution in a region which is otherwise prone to premature
failure and metal fatigue. The fact that the size and shape of the bonding area between
the fuel adapter and the fuel rail is readily adjustable to suit the circumstances
of a particular installation is particularly cost effective. This is particularly
useful where the materials of the two mating components that are brazed together are
formed of different materials with different characteristics and different acceptable
stress limits.
[0029] Although described with reference to providing the variable thickness of the fuel
adapter 8 at the joints to both the fuel rail 2 and the fuel pipe 10 it will be appreciated
that the technique could be adapted to only one of these positions.
[0030] Although described with reference to the variation in the thickness of the various
parts of the fuel adapter 8 it will be understood that certain parts of the fuel rail
and the passage therethrough could be of constant thickness.
1. A fuel rail assembly for a fuel injection system for an internal combustion engine,
comprising an elongate fuel rail (2) having a fuel inlet (4) and a plurality of fuel
outlets (6) spaced along the fuel rail (2), each outlet (6) has a fuel adapter (8)
bonded thereto to provide a hydraulic communication with a fuel injector cup (12)
adapted to receive a fuel injector, wherein
the fuel adapter (8) has a variable material thickness, the thickness being adapted
to the characteristics of the fuel rail (2) and the fuel adapter (8) in order, in
use, to equalise substantially the stresses applied to the fuel rail (2) and the fuel
adapter (8) and the bond therebetween, characterized in and that the fuel adapter (8) is brazed to the fuel rail (2) over a bonding area
defined by a fuel adapter base (15), the bonding area and its shape being determined
to provide, in use, a substantially uniform stress across the brazed joint, wherein
the thickness of the material of the fuel adapter (8) is reduced towards the periphery
(18) of the bonding area to minimise stress concentration arising as a result of the
change in material thickness between the fuel adapter (8) and the fuel rail (2) at
the junction at the periphery (18) of the bonding area and in that the periphery (18) of the bonding area has no sharp changes in direction which would
result in stress concentration in the joint, wherein the hydraulic connection between
the fuel adapter (8) and a fuel injector cup (12) includes a delivery pipe (10) which
is brazed to the fuel adapter (8), and wherein the delivery pipe (10) is located in
a bore in the fuel adapter (8) and the thickness of the material of the fuel adapter
(8) is reduced towards the outer end of a spigot (22) of the fuel adapter (8) to avoid
a stress concentration arising as a result of the change in material thickness between
the fuel adapter (8) and the pipe (10).
2. A fuel rail assembly according to any one of the preceding claims, wherein the cross-sectional
area of the fuel adaptor is varied along its length by varying its lateral extent
as well as varying its thickness.
3. A fuel rail assembly according to any one of claims 1 to 2, wherein the inner face
of the fuel adapter base (16) is shaped to mate with the periphery of the fuel rail
(2).
4. A method of joining at least one component of a fuel rail assembly according to any
of claims 1 to 3 to a fuel rail characterized in that the material thickness of the component varying over at least part of the component
and reducing the thickness of the material towards the periphery of its contact area
with the fuel rail so that the change in thickness of the material at the junction
between the component and the fuel rail is minimal to reduce stress concentration
at the junction.
5. A method according to claim 4, further comprising bonding the component to the fuel
rail by brazing the contact area to the fuel rail.
6. A method according to claim 4 or claim 5, wherein the component is a fuel adapter
and the contact area is provided by an inner face of a base (16) of the fuel adapter
base (8), characterized in that the inner face being shaped to mate with the periphery of the fuel rail (2).
7. A method according to any one of claims 4 to 6, wherein the fuel adapter (8) comprises
a spigot (22) defining a bore, a delivery pipe (10) is located in the bore and brazed
to the spigot (22), wherein the method further comprises reducing the thickness of
the material of the fuel adapter (8) towards the outer end of the spigot (22) of the
fuel adapter (8) to avoid a stress concentration arising as a result of a change in
material thickness between the fuel adapter (8) and the pipe (10).
8. A method according to claim 7, further comprising inserting the delivery pipe (10)
into the bore of the spigot (22) and brazing the delivery pipe (10) to the spigot
(22) to bond the delivery pipe (10) to the fuel adapter (8).
1. Kraftstoffverteileranordnung für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine,
umfassend einen länglichen Kraftstoffverteiler (2), der einen Kraftstoffeinlass (4)
und eine Mehrzahl von Kraftstoffauslässen (6), die entlang des Kraftstoffverteilers
(2) beabstandet sind, aufweist, wobei jeder Auslass (6) einen daran gebundenen Kraftstoffadapter
(8) aufweist, um eine hydraulische Kommunikation mit einer Kraftstoffeinspritzventilaufnahme
(12) bereitzustellen, die dazu ausgelegt ist, ein Kraftstoffeinspritzventil aufzunehmen,
wobei
der Kraftstoffadapter (8) eine variable Materialdicke aufweist, wobei die Dicke auf
die Charakteristiken des Kraftstoffverteilers (2) und des Kraftstoffadapters (8) ausgelegt
ist, um bei Verwendung im Wesentlichen die auf den Kraftstoffverteiler (2) und den
Kraftstoffadapter (8) und die Bindung dazwischen aufgebrachten Spannungen auszugleichen,
dadurch gekennzeichnet, dass der Kraftstoffadapter (8) an den Kraftstoffverteiler (2) über einem Bindungsbereich
gelötet ist, der durch eine Kraftstoffadapterbasis (15) definiert ist, wobei der Bindungsbereich
und seine Form so bestimmt sind, dass bei Verwendung eine im Wesentlichen einheitliche
Spannung über die gelötete Fügestelle bereitgestellt wird, wobei die Dicke des Materials
des Kraftstoffadapters (8) hin zu dem Umfang (18) des Bindungsbereichs verringert
ist, um eine Spannungskonzentration zu minimieren, die infolge der Änderung der Materialdicke
zwischen dem Kraftstoffadapter (8) und dem Kraftstoffverteiler (2) an der Anschlussstelle
am Umfang (18) des Bindungsbereichs entsteht, und dadurch, dass der Umfang (18) des
Bindungsbereichs keine scharfen Änderungen in einer Richtung aufweist, die zu einer
Spannungskonzentration in der Fügestelle führen würden, wobei die hydraulische Verbindung
zwischen dem Kraftstoffadapter (8) und einer Kraftstoffeinspritzventilaufnahme (12)
eine Zufuhrleitung (10) umfasst, die an den Kraftstoffadapter (8) gelötet ist, und
wobei die Zufuhrleitung (10) in einer Bohrung in dem Kraftstoffadapter (8) angeordnet
ist und die Dicke des Materials des Kraftstoffadapters (8) hin zu dem äußeren Ende
eines Zapfens (22) des Kraftstoffadapters (8) verringert ist, um eine Spannungskonzentration
zu vermeiden, die infolge der Änderung der Materialdicke zwischen dem Kraftstoffadapter
(8) und der Leitung (10) entsteht.
2. Kraftstoffverteileranordnung nach einem der vorhergehenden Ansprüche, wobei der Querschnittsbereich
des Kraftstoffadapters entlang seiner Länge durch Variieren seiner lateralen Erstreckung
sowie Variieren seiner Dicke variiert ist.
3. Kraftstoffverteileranordnung nach einem der Ansprüche 1 bis 2, wobei die Innenfläche
der Kraftstoffadapterbasis (16) so geformt ist, dass sie mit dem Umfang des Kraftstoffverteilers
(2) zusammenpasst.
4. Verfahren zum Fügen mindestens einer Komponente einer Kraftstoffverteileranordnung
nach einem der Ansprüche 1 bis 3 an einen Kraftstoffverteiler, dadurch gekennzeichnet, dass die Materialdicke der Komponente über zumindest einen Teil der Komponente variiert
und die Dicke des Materials hin zu dem Umfang ihres Kontaktbereichs mit dem Kraftstoffverteiler
so verringert wird, dass die Änderung der Dicke des Materials an der Anschlussstelle
zwischen der Komponente und dem Kraftstoffverteiler minimal ist, um eine Spannungskonzentration
an der Anschlussstelle zu verringern.
5. Verfahren nach Anspruch 4, ferner umfassend Binden der Komponente an den Kraftstoffverteiler
durch Löten des Kontaktbereichs an den Kraftstoffverteiler.
6. Verfahren nach Anspruch 4 oder Anspruch 5, wobei die Komponente ein Kraftstoffadapter
ist und der Kontaktbereich durch eine Innenfläche einer Basis (16) der Kraftstoffadapterbasis
(8) bereitgestellt wird, dadurch gekennzeichnet, dass die Innenfläche so geformt ist, dass sie mit dem Umfang des Kraftstoffverteilers
(2) zusammenpasst.
7. Verfahren nach einem der Ansprüche 4 bis 6, wobei der Kraftstoffadapter (8) einen
Zapfen (22) umfasst, der eine Bohrung definiert, wobei eine Zufuhrleitung (10) in
der Bohrung angeordnet und an den Zapfen (22) gelötet ist, wobei das Verfahren ferner
Verringern der Dicke des Materials des Kraftstoffadapters (8) hin zu dem äußeren Ende
des Zapfens (22) des Kraftstoffadapters (8) umfasst, um eine Spannungskonzentration
zu vermeiden, die infolge einer Änderung der Materialdicke zwischen dem Kraftstoffadapter
(8) und der Leitung (10) entsteht.
8. Verfahren nach Anspruch 7, ferner umfassend Einsetzen der Zufuhrleitung (10) in die
Bohrung des Zapfens (22) und Löten der Zufuhrleitung (10) an den Zapfen (22), um die
Zufuhrleitung (10) an den Kraftstoffadapter (8) zu binden.
1. Ensemble à rampe de carburant pour un système d'injection de carburant pour un moteur
à combustion interne, comprenant une rampe de carburant allongée (2) ayant une entrée
de carburant (4) et une pluralité de sorties de carburant (6) espacées le long de
la rampe de carburant (2), chaque sortie (6) a un adaptateur de carburant (8) lié
à celle-ci pour fournir une communication hydraulique avec un manchon d'injecteur
de carburant (12) adapté pour recevoir un injecteur de carburant, dans lequel
l'adaptateur de carburant (8) a une épaisseur de matériau variable, l'épaisseur étant
adaptée aux caractéristiques de la rampe de carburant (2) et de l'adaptateur de carburant
(8) dans l'ordre, durant l'utilisation, pour égaliser sensiblement les contraintes
appliquées sur la rampe de carburant (2) et l'adaptateur de carburant (8) et la liaison
entre ceuxci,
caractérisé en ce que l'adaptateur de carburant (8) est brasé sur la rampe de carburant (2) sur une zone
de liaison définie par une base d'adaptateur de carburant (15), la zone de liaison
et sa forme étant déterminées pour fournir, durant l'utilisation, une contrainte sensiblement
uniforme dans tout le joint brasé, dans lequel l'épaisseur du matériau de l'adaptateur
de carburant (8) est réduite vers la périphérie (18) de la zone de liaison pour minimiser
la concentration de contrainte se produisant en conséquence du changement d'épaisseur
de matériau entre l'adaptateur de carburant (8) et la rampe de carburant (2) à la
jonction à la périphérie (18) de la zone de liaison et en ce que la périphérie (18) de la zone de liaison n'a aucun changement abrupt de direction
qui aurait pour conséquence une concentration de contrainte dans le joint, dans lequel
le raccord hydraulique entre l'adaptateur de carburant (8) et un manchon d'injecteur
de carburant (12) inclut un tuyau d'alimentation (10) qui est brasé sur l'adaptateur
de carburant (8), et dans lequel le tuyau d'alimentation (10) est situé dans un alésage
dans l'adaptateur de carburant (8) et l'épaisseur du matériau de l'adaptateur de carburant
(8) est réduite vers l'extrémité extérieure d'un bout d'emboîtement (22) de l'adaptateur
de carburant (8) pour éviter une concentration de contrainte se produisant en conséquence
du changement d'épaisseur de matériau entre l'adaptateur de carburant (8) et le tuyau
(10).
2. Ensemble à rampe de carburant selon l'une quelconque des revendications précédentes,
dans lequel la superficie de section transversale de l'adaptateur de carburant est
variée le long de sa longueur en variant son étendue latérale ainsi qu'en variant
son épaisseur.
3. Ensemble à rampe de carburant selon l'une quelconque des revendications 1 et 2, dans
lequel la face intérieure de la base d'adaptateur de carburant (16) est formée pour
s'accoupler avec la périphérie de la rampe de carburant (2).
4. Procédé de jonction d'au moins un composant d'un ensemble à rampe de carburant selon
l'une quelconque des revendications 1 à 3 à une rampe de carburant, caractérisé en ce que l'épaisseur de matériau du composant varie sur au moins une partie du composant et
réduit l'épaisseur du matériau vers la périphérie de sa zone de contact avec la rampe
de carburant pour que le changement d'épaisseur du matériau à la jonction entre le
composant et la rampe de carburant soit minimal pour réduire la concentration de contrainte
à la jonction.
5. Procédé selon la revendication 4, comprenant en outre le liage du composant à la rampe
de carburant en brasant la zone de contact sur la rampe de carburant.
6. Procédé selon la revendication 4 ou la revendication 5, dans lequel le composant est
un adaptateur de carburant et la zone de contact est fournie par une face intérieure
d'une base (16) de la base d'adaptateur de carburant (8), caractérisé en ce que la face intérieure étant formée pour s'accoupler avec la périphérie de la rampe de
carburant (2).
7. Procédé selon l'une quelconque des revendications 4 à 6, dans lequel l'adaptateur
de carburant (8) comprend un bout d'emboîtement (22) définissant un alésage, un tuyau
d'alimentation (10) est situé dans l'alésage et brasé sur le bout d'emboîtement (22),
dans lequel le procédé comprend en outre la réduction de l'épaisseur du matériau de
l'adaptateur de carburant (8) vers l'extrémité extérieure du bout d'emboîtement (22)
de l'adaptateur de carburant (8) pour éviter une concentration de contrainte se produisant
en conséquence d'un changement d'épaisseur de matériau entre l'adaptateur de carburant
(8) et le tuyau (10).
8. Procédé selon la revendication 7, comprenant en outre l'insertion du tuyau d'alimentation
(10) dans l'alésage du bout d'emboîtement (22) et le brasage du tuyau d'alimentation
(10) sur le bout d'emboîtement (22) pour lier le tuyau d'alimentation (10) à l'adaptateur
de carburant (8).

REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description