TECHNICAL FIELD
[0001] The present invention relates to silicone hydrogels displaying improved biocompatibility.
More specifically, the present invention relates to silicone hydrogels formed from
a reactive mixture comprising a mixture of hydroxyl-substituted silicone components,
at least one hydrophilic monomer, and at least about 15 wt% of at least one polyamide.
The silicone hydrogels of the present invention display an excellent balance of physical,
mechanical, and biological properties.
BACKGROUND
[0002] Contact lenses have been used commercially to improve vision since at least the 1950s.
The first contact lenses were made of hard materials and as such were somewhat uncomfortable
to users. Modern soft contact lenses are made of softer materials, typically hydrogels.
Recently soft contact lenses made from silicone hydrogels have been introduced. Silicone
hydrogel are water-swollen polymer networks that have high oxygen permeability. These
lenses provide a good level of comfort to many lens wearers, but there are some users
who experience discomfort and excessive ocular deposits leading to reduced visual
acuity when using these lenses, in particular during extended periods of wear such
as for several days in a row, for example, up to about 30 days. This discomfort and
deposits has been attributed to the hydrophobic character of the surfaces of lenses
and the interaction of those surfaces with the protein, lipids and mucin and the hydrophilic
surface of the eye.
[0003] One way to increase the water content in a silicone hydrogel is to incorporate an
internal wetting agent, such as a high molecular weight polymer, which creates more
hydrophilic domains that retain more water. Incorporation of internal wetting agents
also affects the surface lubricity of the silicone hydrogel depending on morphology
and surface roughness. Poly(vinyl pyrrolidone) (PVP) has been used as an internal
wetting agent in silicone hydrogels. For example,
U.S. Patent Nos. 6,367,929,
6,822,016, and
7,052,131 disclose PVP present in the reactive monomer mixture in amounts between 1 and 15
weight percent. Poly(N-vinyl-N-methyacetamide) (PVMA) has been used as an internal
wetting agent in non-ionic silicone hydrogels. For example,
U.S. Patent Nos. 7,786,185 and
8,022,158 disclose PVMA present in the reactive monomer mixture in amounts between 1 and 15
weight percent. Compositions with higher concentrations of internal wetting agents,
however, have not been disclosed. Contact lenses with higher concentrations of internal
wetting agents and acceptable physical, mechanical, and biological properties have
also not been disclosed.
EP2258411 A1 discloses a silicone hydrogel contact lens comprises at least one oxygen permeable
component, at least one compatibilizing component and a high molecular weight hydrophilic
polymer. The amount of high molecular weight hydrophilic polymer is sufficient to
provide said device, without a surface treatment, with tear film break up time after
about one day of wear of at least about 7 seconds.
WO 2008/005147 A2 discloses contact lenses comprising at least one ionizable antimicrobial metal compound
and a polymer formed from a reaction mixture comprising at least one hydrophobic component
and hydrophilic components in a concentration to provide a hydrophilicity index of
at least 42.
US 2013/341811 A1 discloses a contact lens formed from components including (i) at least one silicone
component, (ii) at least one low molecular weight polyamide having a weight average
molecular weight of less than 200,000, and (iii) at least one high molecular weight
polyamide having a weight average molecular weight of greater than 200,000, wherein
the low molecular weight polyamide does not contain a reactive group.
SUMMARY
[0004] Silicone hydrogels with high levels of polyamides have been prepared exhibiting an
excellent balance of physical, mechanical, and biological properties.
[0005] The present invention relates to silicone hydrogels as defined by claim 1.
[0006] Additionally, the present invention provides a method as defined by claim 29 of making
a silicone hydrogel.
[0007] These and other embodiments of the invention will become apparent from the following
description which is illustrative of the invention. The description does not limit
the scope of the invention, which is defined by the claims and equivalents thereof.
Variations and modifications of the invention may be effected without departing from
the spirit and scope of the novel contents of the disclosure.
DETAILED DESCRIPTION
[0008] Provided are silicone hydrogels formed from a reactive monomer mixture comprising:
a hydroxyalkyl (meth)acrylate monomer; silicone-containing components; and at least
one polyamide.
[0010] "About" refers to a range of +/-5% of the number that is being modified. For example,
the phrase "about 10" would include both 9.5 and 10.5.
[0011] The term "(meth)" designates optional methyl substitution. Thus, a term such as "(meth)acrylate"
denotes both methacrylate and acrylate radicals.
[0012] Wherever chemical structures are given, it should be appreciated that alternatives
disclosed for the substituents on the structure may be combined in any combination.
Thus, if a structure contained substituents R
∗ and R
∗∗, each of which contained three lists of potential groups, 9 combinations are disclosed.
The same applies for combinations of properties.
[0013] When a subscript, such as "n" in the generic formula [
∗∗∗]
n, is used to depict the number of repeating units in a polymer's chemical formula,
the formula should be interpreted to represent the number average molecular weight
of the macromolecule.
[0014] A "macromolecule" is an organic compound having a molecular weight of greater than
1500, and may be reactive or non-reactive.
[0015] A "polymer" is a macromolecule of repeating chemical units linked together into a
chain or network structure and is composed of repeating units derived from the monomers
and macromers included in the reactive mixture.
[0016] A "homopolymer" is a polymer made from one monomer or macromer; a "copolymer" is
a polymer made from two or more monomers, macromers or a combination thereof; a "terpolymer"
is a polymer made from three monomers, macromers or a combination thereof. A "block
copolymer" is composed of compositionally different blocks or segments. Diblock copolymers
have two blocks. Triblock copolymers have three blocks. "Comb or graft copolymers"
are made from at least one macromer.
[0017] A "repeating unit" or "repeating chemical unit" is the smallest repeating group of
atoms in a polymer that result from the polymerization of monomers and macromers.
[0018] "Biomedical device" refers to any article that is designed to be used while either
in or on mammalian tissues or fluid, and preferably in or on human tissue or fluids.
Examples of these devices include but are not limited to wound dressings, sealants,
tissue fillers, drug delivery systems, coatings, adhesion prevention barriers, catheters,
implants, stents, and ophthalmic devices such as intraocular lenses and contact lenses.
The biomedical devices may be ophthalmic devices, particularly contact lenses, most
particularly contact lenses made from silicone hydrogels.
[0019] "Individual" includes humans and vertebrates.
[0020] "Ocular surface" includes the surface and glandular epithelia of the cornea, conjunctiva,
lacrimal gland, accessory lacrimal glands, nasolacrimal duct and meibomian gland,
and their apical and basal matrices, puncta and adjacent or related structures, including
eyelids linked as a functional system by both continuity of epithelia, by innervation,
and the endocrine and immune systems.
[0021] "Ophthalmic device" refers to any device which resides in or on the eye or any part
of the eye, including the ocular surface.These devices can provide optical correction,
cosmetic enhancement, vision enhancement, therapeutic benefit (for example as bandages)
or delivery of active components such as pharmaceutical and nutraceutical components,
or a combination of any of the foregoing. Examples of ophthalmic devices include,
but are not limited to, lenses and optical and ocular inserts, including, but not
limited to punctal plugs and the like. "Lens" includes soft contact lenses, hard contact
lenses, hybrid contact lenses, intraocular lenses, and overlay lenses. The ophthalmic
device may comprise a contact lens.
[0022] "Contact lens" refers to a structure, an ophthalmic device, that can be placed on
the cornea of an individual's eye. The contact lens may provide corrective, cosmetic,
therapeutic benefit, including wound healing, delivery of active components such as
drugs or nutraceuticals, diagnostic evaluation or monitoring, or UV blocking and visible
light or glare reduction, or a combination thereof. A contact lens can be of any appropriate
material known in the art, and can be a soft lens, a hard lens, or a hybrid lens containing
at least two distinct portions with different properties, such as modulus, water content,
light absorbing characteristics or combinations thereof.
[0023] The biomedical devices, ophthalmic devices, and lenses of the present invention may
be comprised of silicone hydrogels. These silicone hydrogels typically contain a silicone
component and/or hydrophobic and hydrophilic monomers that are covalently bound to
one another in the cured device.
[0024] "Silicone hydrogel contact lens" refers to a contact lens comprising at least one
silicone hydrogel material. Silicone hydrogel contact lenses generally have increased
oxygen permeability compared to conventional hydrogels. Silicone hydrogel contact
lenses use both their water and polymer content to transmit oxygen to the eye.
[0025] A "polymeric network" is cross-linked macromolecule that can swell but cannot dissolve
in solvents, because the polymeric network is essentially one macromolecule. "Hydrogel"
or "hydrogel material" refers to a polymeric network that contains water in an equilibrium
state. Hydrogels generally contain at least about 10 wt.% water, or at least about
15% water.
[0026] "Conventional hydrogels" refer to polymeric networks made from monomers without any
siloxy, siloxane or carbosiloxane groups. Conventional hydrogels are prepared from
monomeric mixtures predominantly containing hydrophilic monomers, such as 2-hydroxyethyl
methacrylate ("HEMA"), N-vinyl pyrrolidone ("NVP"), N, N-dimethylacrylamide ("DMA"),
or vinyl acetate.
U.S. Patent Nos. 4,436,887,
4,495,313,
4,889,664,
5,006,622,
5,039459,
5,236,969,
5,270,418,
5,298,533,
5,824,719,
6,420,453,
6,423,761,
6,767,979,
7,934,830,
8,138,290, and
8,389,597 disclose the formation of conventional hydrogels. Commercially available hydrogel
formulations include, but are not limited to, etafilcon, polymacon, vifilcon, genfilcon,
lenefilcon, hilafilcon, nesofilcon, and omafilcon, including all of their variants.
[0027] "Silicone hydrogel" refers to a hydrogel obtained by copolymerization of at least
one silicone-containing component with at least one hydrophilic component. Hydrophilic
components may also include non-reactive polymers. Each of the silicone-containing
components and the hydrophilic components may be a monomer, macromer or combination
thereof. A silicone-containing component contains at least one siloxane or carbosiloxane
group. Examples of commercially available silicone hydrogels include balafilcon, acquafilcon,
lotrafilcon, comfilcon, delefilcon, enfilcon, fanfilcon, formofilcon, galyfilcon,
senofilcon, narafilcon, filcon II, asmofilcon A, samfilcon, riofilcon, stenficlon,
somofilcon, as well as silicone hydrogels as prepared in
US Patent No. 4,659,782,
4,659,783,
5,244,981,
5,314,960,
5,331,067,
5,371,147,
5,998,498,
6,087,415,
5,760,100,
5,776,999, 5,789,461,
5,849,811,
5,965,631,
6,367,929,
6,822,016,
6,867,245,
6,943,203,
7,247,692,
7,249,848,
7,553,880,
7,666,921,
7,786,185,
7,956,131,
8,022,158,
8,273,802,
8,399,538,
8,470,906,
8,450,387,
8,487,058,
8,507,577,
8,637,621,
8,703,891,
8,937,110,
8,937,111,
8,940,812,
9,056,878,
9,057,821,
9,125,808,
9,140,825,
9156,934,
9,170,349,
9,244,196,
9,244,197,
9,260,544,
9,297,928,
9,297,929 as well as
WO 03/22321,
WO 2008/061992, and
US 2010/048847.
[0028] "Silicone-containing component" refers to a monomer, macromer, prepolymer, crosslinker,
initiator, additive, or polymer that contains at least one silicon-oxygen bond, in
the form of siloxane [-Si-O-Si] group or carbosiloxane group. Examples of silicone-containing
components include, but are not limited to, silicone macromers, prepolymers, and monomers.
Examples of silicone macromers include, but are not limited to, polydimethylsiloxane
methacrylated with pendant hydrophilic groups. Examples of silicone-containing components
which are useful in this invention may be found in
U.S. Patent Nos. 3,808,178,
4,120,570,
4,136,250,
4,153,641,
4,740,533, 5,034,461,
5,962,548,
5,244,981,
5,314,960,
5,331,067,
5,371,147,
5,760,100,
5,849,811,
5,962,548,
5,965,631, 5,998,498,
6,367,929,
6,822,016, and
5,070,215, and
European Patent No. 080539.
[0029] "Reactive mixture" and "reactive monomer mixture" refer to the mixture of components
(both reactive and non-reactive) which are mixed together and when subjected to polymerization
conditions, form the silicone hydrogels and lenses of the present invention. The reactive
mixture comprises reactive components such as monomers, macromers, prepolymers, cross-linkers,
initiators, diluents, and additional components such as wetting agents, release agents,
dyes, light absorbing compounds such as UV absorbers, pigments, dyes and photochromic
compounds, any of which may be reactive or non-reactive but are capable of being retained
within the resulting biomedical device, as well as active components, including pharmaceutical
and nutraceutical compounds, and any diluents. It will be appreciated that a wide
range of additives may be added based upon the biomedical device which is made, and
its intended use. Concentrations of components of the reactive mixture are given in
weight % of all components in the reaction mixture, excluding diluent. When diluents
are used their concentrations are given as weight % based upon the amount of all components
in the reaction mixture and the diluent.
[0030] "Monomer" is a molecule having non-repeating reactive groups, which can undergo chain
growth polymerization, and in particular, free radical polymerization. Some monomers
have di-functional impurities that can act as cross-linking agents. "Macromers" are
linear or branched polymers having a repeating structure and at least one reactive
group that can undergo chain growth polymerization. Monomethacryloxypropyl terminated
mono-n-butyl terminated polydimethylsiloxane (molecular weight = 500-1500 g/mol) (mPDMS)
and mono-(2-hydroxy-3-methacryloxypropyl)-propyl ether terminated mono-n-butyl terminated
polydimethylsiloxane (molecular weight = 500-1500 g/mol) (OH-mPDMS) are referred to
as macromers. Typically, the chemical structure of the macromer is different than
the chemical structure of the target macromolecule, that is, the repeating unit of
the macromer's pendent group is different than the repeating unit of the target macromolecule
or its mainchain.
[0031] "Reactive components" are the components in the reactive mixture which become part
of the structure of the polymeric network of the resulting silicone hydrogel, by covalent
bonding, hydrogen bonding or the formation of an interpenetrating network. Typically,
the chemical structure of the macromer is different than the chemical structure of
the target macromolecule, that is, the repeating unit of the macromer's pendent group
is different than the repeating unit of the target macromolecule or its mainchain.
Diluents and processing aids which do not become part of the structure of the polymer
are not reactive components.
[0032] "Polymerizable" means that the compound comprises at least one reactive group which
can undergo chain growth polymerization, such as free radical polymerization. Examples
of reactive groups include the monovalent reactive groups listed below. "Non-polymerizable"
means that the compound does not comprises such a polymerizable group.
[0033] "Monovalent reactive groups" are groups that can undergo chain growth polymerization,
such as free radical and/or cationic polymerization. Non-limiting examples of free
radical reactive groups include (meth)acrylates, styrenes, vinyl ethers, (meth)acrylamides,
N-vinyllactams,
N-vinylamides, O-vinylcarbamates, O-vinylcarbonates, and other vinyl groups. In one
embodiment, the free radical reactive groups comprise (meth)acrylate, (meth)acrylamide,
N-vinyl lactam, N-vinylamide, and styryl functional groups, or (meth)acrylates, (meth)acrylamides,
and mixtures of any of the foregoing.
[0034] Examples of the foregoing include substituted or unsubstituted C
1-6alkyl(meth)acrylates, C
1-6alkyl(meth)acrylamides, C
2-12alkenyls, C
2-12alkenylphenyls, C
2-12alkenylnaphthyls, C
2-6alkenylphenylC
1-6alkyls, where suitable substituents on said C
1-6 alkyls include ethers, hydroxyls, carboxyls, halogens and combinations thereof.
[0035] Other polymerization routes such as living free radical and ionic polymerization
can also be employed. The device-forming monomers may form hydrogel copolymers. For
hydrogels, the reactive mixture will typically include at least one hydrophilic monomer.
[0036] Hydrophilic components are those which yield a clear single phase when mixed with
deionized water at 25°C at a concentration of 10 wt.%.
[0037] "Interpenetrating polymer networks" or "IPNs" are polymers comprising two or more
polymeric networks which are at least partially interlaced on a molecular scale, but
not covalently bonded to each other and cannot be separated unless chemical bonds
are broken.
[0038] "Semi-interpenetrating polymer networks" or "semi-IPNs" are polymer comprising one
or more polymer network(s) and one or more linear or branched polymer(s) characterized
by the penetration on a molecular scale of at least one of the networks by at least
some of the linear or branched chains.
[0039] A "cross-linking agent" is a di-functional or multi-functional component which can
undergo free radical polymerization at two or more locations on the molecule, thereby
creating branch points and a polymeric network. Common examples are ethylene glycol
dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane trimethacrylate,
methylene bisacrylamide, triallyl cyanurate, and the like.
[0040] The phrase "without a surface treatment" means that the exterior surfaces of the
devices (e.g. silicone hydrogels, contact lenses) of the present invention are not
separately treated to improve the wettability of the device. Treatments which may
be foregone include, plasma treatments, grafting, coating, and the like. Coatings,
however, which provide properties other than improved wettability, such as, but not
limited to antimicrobial coatings and the application of color or other cosmetic enhancement
may be applied to devices of the present invention.
[0041] A silicone hydrogel may be formed from a reactive monomer mixture comprising at least
one hydrophilic monomer, at least one hydroxyl-containing silicone component, at least
one cross-linking agent, and at least one polyamide.
Polyamide
[0042] The reactive monomer mixture includes at least one polyamide. As used herein, the
term "polyamide" refers to polymers and copolymers comprising repeating units containing
amide groups. The polyamide may comprise cyclic amide groups, acyclic amide groups
and combinations thereof, and may be any polyamide known to those of skill in the
art.
[0043] Acyclic polyamides comprise pendant acyclic amide groups and are capable of association
with hydroxyl groups. Cyclic polyamides comprise cyclic amide groups and are capable
of association with hydroxyl groups.
[0044] Examples of suitable acyclic polyamides include polymers and copolymers comprising
repeating units of Formula I or Formula II:

wherein X is a direct bond, -(CO)-, or -(CO)-NHR
e-, wherein R
e is a C
1 to C
3 alkyl group; R
a is selected from H, straight or branched, substituted or unsubstituted C
1 to C
4 alkyl groups; R
b is selected from H, straight or branched, substituted or unsubstituted C
1 to C
4 alkyl groups, amino groups having up to two carbon atoms, amide groups having up
to four carbon atoms, and alkoxy groups having up to two carbon groups; R
c is selected from H, straight or branched, substituted or unsubstituted C
1 to C
4 alkyl groups, or methyl, ethoxy, hydroxyethyl, and hydroxymethyl; R
d is selected from H, straight or branched, substituted or unsubstituted C
1 to C
4 alkyl groups; or methyl, ethoxy, hydroxyethyl, and hydroxymethyl wherein the number
of carbon atoms in R
a and R
b taken together is 8 or less, including 7, 6, 5, 4, 3, or less, and wherein the number
of carbon atoms in R
c and R
d taken together is 8 or less, including 7, 6, 5, 4, 3, or less. The number of carbon
atoms in R
a and R
b taken together may be 6 or less or 4 or less. The number of carbon atoms in R
c and R
d taken together may be 6 or less. As used herein substituted alkyl groups include
alkyl groups substituted with an amine, amide, ether, hydroxyl, carbonyl, carboxy
groups or combinations thereof.
[0045] R
a and R
b can be independently selected from H, substituted or unsubstituted C
1 to C
2 alkyl groups. X may be a direct bond, and R
a and R
b may be independently selected from H, substituted or unsubstituted C
1 to C
2 alkyl groups.
[0046] R
c and R
d can be independently selected from H, substituted or unsubstituted C
1 to C
2 alkyl groups, methyl, ethoxy, hydroxyethyl, and hydroxymethyl.
[0047] The acyclic polyamides of the present invention may comprise a majority of the repeating
unit of Formula I or Formula II, or the acyclic polyamides can comprise at least about
50 mole % of the repeating unit of Formula I or Formula II, including at least about
70 mole %, and at least 80 mole %.
[0048] Specific examples of repeating units of Formula I and Formula II include repeating
units derived from N-vinyl-N-methylacetamide, N-vinylacetamide, N-vinyl-N-methylpropionamide,
N-vinyl-N-methyl-2-methylpropionamide, N-vinyl-2-methylpropionamide, N-vinyl-N,N'-dimethylurea,
N, N-dimethylacrylamide, methacrylamide, and acyclic amides of Formulae IIIa and IIIb:

[0049] The acyclic polyamides may also be copolymers comprising both acyclic and cyclic
amide repeating units. Examples of suitable cyclic amides that can be used to form
the acyclic polyamides of include α-lactam, β-lactam, γ-lactam, δ-lactam, and ε-lactam.
Examples of suitable cyclic amides include repeating units of Formula IV:

wherein R
1 is independently a hydrogen atom or methyl; f is a number from 1 to 10, X is a direct
bond, -(CO)-, or -(CO)-NH-R
e-, wherein R
e is a C
1 to C
3 alkyl group. In Formula IV, f may be 8 or less, including 7, 6, 5, 4, 3, 2, or 1.
In Formula IV, f may be 6 or less, including 5, 4, 3, 2, or 1. In Formula IV, f may
be from 2 to 8, including 2, 3, 4, 5, 6, 7, or 8. In Formula IV, f may be 2 or 3.
[0050] When X is a direct bond, f may be 2. In such instances, the cyclic polyamide may
be poly(vinyl pyrrolidone) (PVP).
[0051] Specific examples of repeating units of Formula IV include repeating units derived
from N-vinylpyrrolidone (NVP).
[0052] Additional repeating units may be formed from monomers selected from N-vinyl amides,
acrylamides, hydroxyalkyl(meth)acrylates, alkyl(meth)acrylates and siloxane substituted
acrylates or methacrylates. Specific examples of monomers which may be used to form
the additional repeating units of the acyclic polyamides include as N-vinylpyrrolidone,
N,N-dimethylacrylamide (DMA), 2-hydroxyethylmethacrylate, vinyl acetate, acrylonitrile,
hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, methyl methacrylate and butyl
methacrylate, hydroxybutyl methacrylate, GMMA, PEGS,, and the like and mixtures thereof.
Ionic monomers may also be included. Examples of ionic monomers include acrylic acid,
methacrylic acid, 2-methacryloyloxyethyl phosphorylcholine, 3-(dimethyl(4-vinylbenzyl)ammonio)propane-1-sulfonate
(DMVBAPS), 3-((3-acrylamidopropyl)dimethylammonio)propane-1-sulfonate (AMPDAPS), 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate
(MAMPDAPS), 3-((3-(acryloyloxy)propyl)dimethylammonio)propane-1-sulfonate (APDAPS),
methacryloyloxy)propyl)dimethylammonio)propane-1-sulfonate (MAPDAPS), ), 1-propanaminium,N-(2-carboxyethyl)-N,N-dimethyl-3-[(1-oxo-2-propen-1-yl)amino]-,
inner salt (CBT, carboxybetaine;
CAS 79704-35-1), 1-propanaminium, N,N-dimethyl-N-[3-[(1-oxo-2-propen-1-yl)amino]propyl]-3-sulfo-,
inner salt (SBT, sulfobetaine,
CAS 80293-60-3), 3,5-Dioxa-8-aza-4-phosphaundec-10-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-,
inner salt, 4-oxide (9CI) (PBT, phosphobetaine,
CAS 163674-35-9).
[0053] The at least one acylic polyamide may be selected from the group consisting of polyvinylmethylacrylamide
(PVMA), polyvinylacetamide (PNVA), polydimethylacrylamide (PDMA), polyacrylamide and
poly[N-vinyl N-alkyl acetamide] wherein the N-alkyl group is selected from the group
consisting of linear and branched alkyl groups containing between one (C
1) and five (C
5) carbon atoms.
[0054] The reactive monomer mixture may comprise both an acyclic polyamide and a cyclic
polyamide or copolymers thereof. The acyclic polyamide can be any of those acyclic
polyamides described herein or copolymers thereof, and the cyclic polyamide can be
formed from any combination of the repeating units of Formula V, either alone or with
other repeating units. Examples of cyclic polyamides include PVP and PVP copolymers.
Other polymeric internal wetting agents, such as poly(hydroxyethyl(meth)acrylamide),
may also be included.
[0055] The total amount of all polyamides in the reactive mixture is greater than 15 weight
percent, based upon the total weight of the reactive monomer mixture. The reactive
monomer mixture may include the polyamide(s) in an amount in the range of between
15.1 weight percent and about 35 weight percent, including in the range of about 16
weight percent to about 30 weight percent, or the range of about 20 weight percent
to about 30 weight percent, in all cases, based on the total weight of the reactive
components of the reactive monomer mixture.
[0056] Without intending to be bound by theory, the polyamide functions as an internal wetting
agent in the resulting silicone hydrogel. The polyamides of the present invention
may be non-polymerizable, and in this case is incorporated into the silicone hydrogels
as a semi-interpenetrating network. The non-polymerizable polyamide is "entrapped",
or physically retained within a hydrogel matrix. Alternatively, the polyamides of
the present invention may be polymerizable, for example as polyamide macromers, which
are covalently incorporated into the silicone hydrogels. Reactive polyamides may be
functionalized to contain at least one monovalent reactive group.
[0057] The polyamide(s) improve the wettability of the silicone hydrogel lens without a
surface treatment. In silicone hydrogel formulations of the prior art, including wetting
agents in amounts in excess of 15% was difficult, due to the inherent incompatibility
of the silicone components, which are hydrophobic and the wetting agent, which is
hydrophilic and has weight average molecular weights in excess of 100,000 and often
1,000,000 Daltons. This incompatibility is particularly challenging for formulations
where oxygen permeabilities (Dk) of greater than about 80, 90, 100 or 120 barrers
are desired. The silicone hydrogels may have Dk values between 80 and 170 barrers,
between 90-170, 100-170 or 120- 170 barrers. The inventors have surprisingly found
that including a mixture of at least two hydroxyl functional polydialkylsiloxanes,
provides silicone hydrogels having very high concentrations of internal wetting agents,
and desirable Dk values.
[0058] When the polyamides are incorporated into the reactive monomer mixture they have
a weight average molecular weight of at least about 100,000 Daltons; greater than
about 150,000; between about 150,000 to about 2,000,000 Daltons, between about 300,000
to about 1,800,000 Daltons.
[0059] The polyamides may also comprise at least one reactive group. For polyamides having
molecular weights of 10,000 Daltons, a single reactive group may be included. For
polyamides having molecular weights greater than about 10,000, greater than about
30,000, or greater than about 100,000 Daltons, more than one reactive group may be
included. Mixtures of reactive and non-reactive polyamides may also be used.
[0060] The polyamides may be incorporated into the hydrogel by a variety of methods. For
example, the polyamide may be added to the reaction mixture such that the hydrogel
polymerizes "around" the polyamide, forming a semi-interpenetrating network.
Hydrophilic Component
[0061] The reactive monomer mixture may, in addition to the hydroxyalkyl (meth)acrylate
monomers described below, include at least one additional hydrophilic component selected
from hydrophilic monomers and macromers. Hydrophilic monomers can be any of the hydrophilic
monomers known to be useful to make hydrogels. Examples of suitable families of hydrophilic
monomers include
N-vinyl amides,
N-vinylimides,
N-vinyl lactams, (meth)acrylates, (meth)acrylamides, styrenes, vinyl ethers,
O-vinyl carbonates,
O-vinyl carbamates,
N-vinyl ureas, other hydrophilic vinyl compounds and mixtures thereof.
[0062] The hydrophilic monomers that may be used to make the polymers of this invention
have at least one polymerizable double bond and at least one hydrophilic functional
group. Such hydrophilic monomers may themselves be used as crosslinking agents, however,
where hydrophilic monomers having more than one polymerizable functional group are
used, their concentration should be limited as discussed above to provide a contact
lens having the desired modulus. The term "vinyl-type" or "vinyl- containing" monomers
refer to monomers containing the vinyl grouping (-CH=CH
2) and are generally highly reactive. Such hydrophilic vinylcontaining monomers are
known to polymerize relatively easily.
[0063] "Acrylic-type" or "acrylic-containing" monomers are those monomers containing an
acrylic group (CH
2=CRCOX) wherein R is H or CH
3, and X is O or N, which are also known to polymerize readily, such as
N,N-dimethyl acrylamide (DMA), 2-hydroxyethyl methacrylate (HEMA), glycerol methacrylate,
2-hydroxyethyl methacrylamide, polyethyleneglycol monomethacrylate, methacrylic acid,
acrylic acid, mixtures thereof and the like.
[0064] Non-limiting examples of hydrophilic (meth)acrylate and (meth)acrylamide monomers
include: acrylamide, N-isopropyl acrylamide, N,N-dimethylaminopropyl (meth)acrylamide,
N,N-dimethyl acrylamide (DMA), N-(2-hydroxyethyl) (meth)acrylamide, N,N-bis(2-hydroxyethyl)
(meth)acrylamide, N-(2-hydroxypropyl) (meth)acrylamide, N,N-bis(2-hydroxypropyl) (meth)acrylamide,
N-(3-hydroxypropyl) (meth)acrylamide, N-(2-hydroxybutyl) (meth)acrylamide, N-(3-hydroxybutyl)
(meth)acrylamide, N-(4-hydroxybutyl) (meth)acrylamide, vinyl acetate, acrylonitrile,
and mixtures thereof.
[0065] Non-limiting examples of hydrophilic N-vinyl lactam and N-vinyl amide monomers include:
N-vinyl pyrrolidone (NVP), N-vinyl-2-piperidone, N-vinyl-2-caprolactam, N-vinyl-3-methyl-2-caprolactam,
N-vinyl-3-methyl-2-piperidone, N-vinyl-4-methyl-2-piperidone, N-vinyl-4-methyl-2-caprolactam,
N-vinyl-3-ethyl-2- pyrrolidone, N-vinyl-4,5-dimethyl-2-pyrrolidone, N-vinyl acetamide
(NVA), N-vinyl-N-methylacetamide (VMA), N-vinyl-N-ethyl acetamide, N-vinyl-N-ethyl
formamide, N-vinyl formamide, N-vinyl-N-methylpropionamide, N-vinyl-N-methyl-2-methylpropionamide,
N-vinyl-2-methylpropionamide, N-vinyl-N,N'-dimethylurea, 1-methyl-3-methylene-2-pyrrolidone,
1-methyl-5-methylene-2-pyrrolidone, 5-methyl-3-methylene-2-pyrrolidone; 1-ethyl-5-methylene-2-pyrrolidone,
N-methyl-3-methylene-2-pyrrolidone, 5-ethyl-3-methylene-2-pyrrolidone, 1-N-propyl-3-methylene-2-pyrrolidone,
1-N-propyl-5-methylene-2-pyrrolidone, 1-isopropyl-3-methylene-2-pyrrolidone, 1-isopropyl-5-methylene-2-pyrrolidone,
N-vinyl-N-ethyl acetamide, N-vinyl-N-ethyl formamide, N-vinyl formamide, N-vinyl isopropylamide,
N-vinyl caprolactam, N-carboxyvinyl-β-alanine (VINAL), N-carboxyvinyl-α-alanine, N-vinylimidazole,
and mixtures thereof
[0066] Non-limiting examples of hydrophilic O-vinyl carbamates and O-vinyl carbonates monomers
include: N-2-hydroxyethyl vinyl carbamate and N-carboxy-β-alanine N-vinyl ester. Further
examples of the hydrophilic vinyl carbonate or vinyl carbamate monomers are disclosed
in
U.S. Patent No. 5,070,215, and the hydrophilic oxazolone monomers are disclosed in
U.S. Patent No. 4,910,277.
[0067] Other hydrophilic vinyl compounds include ethylene glycol vinyl ether (EGVE), di(ethylene
glycol) vinyl ether (DEGVE), allyl alcohol, 2-ethyl oxazoline, vinyl acetate, acrylonitrile,
and mixtures thereof.
[0068] Other suitable hydrophilic monomers will be apparent to one skilled in the art.
[0069] The hydrophilic monomers of the present invention may be macromers of linear or branched
polyethylene glycol), polypropylene glycol), or statistically random or block copolymers
of ethylene oxide and propylene oxide. The macromers of these polyethers have one
or more reactive group. Non-limiting examples of such reactive groups are acrylates,
methacrylates, styrenes, vinyl ethers, acrylamides, methacrylamides, and other vinyl
compounds. In one embodiment, the macromers of these polyethers comprise acrylates,
methacrylates, acrylamides, methacrylamides, and mixtures thereof.
[0070] The hydrophilic monomers which may be incorporated into the polymers disclosed herein
may be selected from
N,N-dimethyl acrylamide (DMA), 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylamide,
N-hydroxypropyl methacrylamide, bishydroxyethyl acrylamide, 2,3-dihydroxypropyl (meth)acrylamide,
N-vinylpyrrolidone (NVP),
N-vinyl-
N-methyl acetamide,
N-vinyl methacetamide (VMA), and polyethyleneglycol monomethacrylate.
[0071] The hydrophilic monomers may be selected from DMA, NVP, VMA, NVA, and mixtures thereof.
[0072] Generally there are no particular restrictions with respect to the amount of the
hydrophilic monomer present in the reactive monomer mixture. The amount of the hydrophilic
monomers may be selected based upon the desired characteristics of the resulting hydrogel,
including water content, clarity, contact angle, protein uptake, and the like. The
hydrophilic monomer, when present, can be present in an amount in the range of up
to about 40 wt. %, 30 30%, or 20wt%, or in the range of about 1 to about 40 wt. %,
about 1 to about 30 wt. %, or about 1 to about 20 wt. %, based on the total weight
of the reactive components in the reactive monomer mixture. It is a surprising effect
of the present invention that silicone hydrogels with a desirable balance of wettability,
water content and biocompatibility may be formed from reaction mixtures with less
than about 30 wt%, less than about 25 wt%; 20 wt% or even less than 10% hydrophilic
monomers, and particularly hydrophilic amide monomers such as DMA, NVP and VMA.
Hydroxyl Containing Silicone Component
[0073] The reactive monomer mixture also includes a mixture of hydroxyl-containing silicone
components of different molecular weights or different compositions. The first hydroxyl-containing
silicone component may be selected from hydroxyl-containing silicone monomers, and
hydroxyl containing polydisubstituted siloxanes having at least 4 polydisubstituted
siloxane repeating units or 4-8 polydisubstituted siloxane repeating units; and at
least one monovalent reactive group. When the first hydroxyl-containing silicone component
is a hydroxyl-containing silicone monomer, the second hydroxyl-containing silicone
component may be selected from hydroxyl substituted poly(disubstituted siloxane) having
4 to 8 siloxane repeating units, monofunctional hydroxyl substituted poly(disubstituted
siloxane)s having 10 to 200, 10-100 or 10-20 siloxane repeating units and multifunctional
hydroxyl substituted poly(disubstituted siloxane)s having 10 to 200, or 10 to 100
siloxane repeating units, and mixtures thereof. When the first hydroxyl-containing
silicone component is a hydroxyl-substituted poly(disubstituted siloxane) having 4
to 8 siloxane repeating units, the second hydroxyl-containing silicone component may
be selected from monofunctional hydroxyl substituted poly(disubstituted siloxane)s
having 10 to 200, 10-100 or 10-20 siloxane repeating units and multifunctional hydroxyl
substituted poly(disubstituted siloxane)s having 10 to 200, or 10 to 100 siloxane
repeating units, and mixtures thereof.
[0074] Hydroxyl-containing silicone components having 4 polydisubstituted siloxane repeating
units in the siloxane chain are not a distribution and have four repeating units in
each monomer. For all hydroxyl-containing silicone components having more than four
polydisubstituted siloxane repeating units in the siloxane chain the number of repeating
units is a distribution, with the peak of the distribution centered around the listed
number of repeat units.
[0075] The elemental Si content of the hydroxyl containing silicone component is greater
than about 20 weight percent, to about 38 weight percent of the total molecular weight
of the hydroxyl containing silicone component.
[0076] Examples of hydroxyl-containing silicone monomers include propenoic acid-2-methyl-2-hydroxy-3-[3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]-1-disiloxanyl]propoxy]propyl
ester ("SiGMA"), and 2-hydroxy-3-methacryloxypropyloxypropyltris(trimethylsiloxy)silane,
and compounds of Formula V:

wherein R
1 is a hydrogen atom or methyl group and R
2 is a linear, branched or cyclic alkyl groups containing 1 to 8 carbon atoms or a
trimethylsiloxy group.
[0077] The hydroxyl-containing silicone components may be selected from monofunctional hydroxyl
substituted, poly(disubstituted siloxane)s of Formula VI-1:
wherein Z is selected from O, N, S or NCH2CH2O, when Z is O or S R2 is not present;
R1 is independently H or methyl;
R2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
and which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 may be independently selected from methyl, ethyl or phenyl, or may be methyl;
n is the number of siloxane units and is from 4 to 8 for the first monofunctional
hydroxyl substituted poly(disubstituted siloxane) monomer, and
R5 is selected from straight or branched C1 to C8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, and combinations thereof. R5 may be straight or branched C4 alkyl, either of which may optionally be substituted with hydroxyl, or may be methyl.
[0078] The hydroxyl-containing silicone components may be selected from monofunctional hydroxyl
substituted, poly(disubstituted siloxane)s of Formula VI-2:
wherein Z is selected from O, N, S or NCH2CH2O, when Z is O or S R2 is not present;
R1 is independently H or methyl;
R2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
and which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 may be independently selected from methyl, ethyl or phenyl, or may be methyl;
n is the number of siloxane units and is from 10 to 200, or 10-100, or 10-50, or 10-20,
or 12-18 for the second monofunctional hydroxyl substituted poly(disubstituted siloxane),
and
R5 is selected from straight or branched C1 to C8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, and combinations thereof. R5 may be straight or branched C4 alkyl, either of which may optionally be substituted with hydroxyl, or may be methyl.
[0079] Examples of monofunctional hydroxyl containing silicone components include mono-(2-hydroxy-3-methacryloxypropyl)-propyl
ether terminated mono-n-butyl terminated polydimethylsiloxanes (OH-mPDMS) as shown
in Formula VIIa wherein n is between 4 and 30, 4-8 or 10-20; and polydimethylsiloxanes
having the chemical structures as shown in Formulae VIIb through VIIId, where n is
between 4 and 30, 4 and 8 or 10 and 20; n
1 n
2 are independently between 4 to 100; 4 to 50; 4 to 25; n
3 is 1-50, 1-20, or 1-10; R
5 is selected from straight or branched C
1 to C
8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, polyhydroxyl groups selected from straight or branched C
1 to C
8 groups having a formula of C
fH
g(OH)
h wherein f=1-8 and g+h=2f+1 and cyclic C
1 to C
8 groups having a formula of C
fH
g(OH)
h wherein f=1-8 and g+h=2f-1, and combinations thereof; or R
5 may be selected from methyl, butyl or hydroxyl substituted C
2-C
5 alkyl, including hydroxyl ethyl, hydroxyl propyl, hydroxyl butyl, hydroxyl pentyl
and 2,3-dihydroxypropyl; and polycarbosiloxanes of Formula IX where a 4-8 for the
first hydroxyl-containing silicone component and between 4-100 for the second hydroxyl-containing
silicone component, and R
1 and R
5 are as defined above.

[0080] The second hydroxyl-containing silicone component may be selected from the group
consisting of a second monofunctional hydroxyl substituted, poly(disubstituted siloxane)
of general Formula VI, or compounds of Formulae VIIa-IX having 10 to 200 siloxane
repeating units and a multifunctional hydroxyl substituted, poly(disubstituted siloxane)
of Formula X having 10 to 500, or 10 to 200, or 10 to 100 siloxane repeating units,
and mixtures thereof:
wherein in Formula X, Z is selected from O, N, S or NCH2CH2O; wherein R1 is independently a hydrogen atom or methyl group; for Z = O and S, R2 is not required;
R2, R6, R7, R8, R9, R10 are independently selected from the group consisting of a hydrogen atom or any of
the substituents defined for R11 through R14;
R11, R12, R13, R14 are independently selected from the group consisting of
a linear, branched, or cyclic alkyl group containing one to eight carbon atoms, any
of which may be further substituted with at least one hydroxy group, amido, ether,
amino, carboxyl, carbonyl groups and combinations; a linear or branched alkyleneoxy
group, specifically ethyleneoxy groups, [CH2CH2O]p wherein p is between 1 and 200, or 1 and 100, or 1 and 50, or 1 and 25, or 1 and
20, optionally substituted with one or more hydroxyl, amino, amido, ether, carbonyl,
carboxyl, and combinations thereof;
a C1-C6 linear or branched fluoroalkyl groups optionally substituted with one or more hydroxyl,
amino, amido, ether, carbonyl, carboxyl, and combinations thereof;
a substituted or un-substituted aryl groups, specifically phenyl groups, wherein the
substituents are selected from halogen, hydroxyl, alkoxy, alkylcarbonyl, carboxy,
and linear or branched or cyclic alkyl groups which may be further substituted with
halogen, hydroxyl, alkoxy, alkylcarbonyl, and carboxyl groups, and combinations thereof;
and
a, b, c, x, y and z are independently between 0 and 100, between 0 and 50, between
0 and 20, between 0 and 10, or between 0 and 5; and
n is the number of siloxane repeating units and is from 10 to 500; 10 to 200; 10 to
100; 10 to 50; 10 to 20.
the weight ratio of the first mono-functional hydroxyl-substituted poly(disubstituted
siloxane) to the second hydroxyl-substituted poly(disubstituted siloxane) is in a
range of 0.1 to 2, or 0.1 to 1.
[0081] The hydroxyl-containing silicone components may comprise a mixture of a first mono-functional
hydroxyl-substituted poly(disubstituted siloxane) of Formula VI, or VIIa-IX where
n is from 4 to 8 and a second hydroxyl-substituted poly(disubstituted siloxane) selected
from the group consisting of a mono-functional hydroxyl-substituted poly(disubstituted
siloxane) of Formula VI or VIIa to IX, wherein n is from 10-200, 10-100 or 10 to 20
and a di-functional hydroxyl-substituted poly(disubstituted siloxane) of Formula XI

wherein
R1 is independently a hydrogen atom or methyl group;
R15 and R16 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
amido, ether, amino, carboxyl, carbonyl groups and combinations thereof; or are independently
selected from unsubstituted C1-4 alkyl groups and C1-4 alkyl groups substituted with hydroxyl or ether; or are selected from methyl, ethyl
or -(CH2CH2O)mOCH3;
n is selected from is 4 to 100; 4 to 50; or 4 to 25; and m is 1-50, 1-20, and 1-10.
[0082] Examples of multifunctional hydroxyl containing silicones include α-(2-hydroxy-1-methacryloxypropyloxypropyl)-ω-butyl-decamethylpentasiloxane
and those of Formula XII:

wherein Z is selected from O, N, S or NCH
2CH
2O, when Z is O or S, R
2 is not present; R
1 is independently H or methyl; R
2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof; and
n
1 and n
2 are independently between 4 to 100; 4 to 50; 4 to 25; n
3 is 1-50, 1-20, or 1-10.
[0083] The ratio of the first hydroxyl-containing silicone component to any of the above
described second hydroxyl substituted, poly(disubstituted siloxane) can be in a range
of 0.2-1.3, 0.4-1 and 0.6-1.
[0084] The hydroxyl containing silicone components are present in the reactive mixture in
amounts between about 40 and about 70 wt% or about 45 to about 70 wt%.
Silicone-Containing Compounds without Hydroxyl Functionality
[0085] Additional silicone-containing compounds without hydroxyl functionality may also
be included. Suitable examples include those of Formula XIII:

wherein:
at least one R17 is a monovalent reactive group, and the remaining R17 are independently selected from
monovalent reactive groups, monovalent alkyl groups, or monovalent aryl groups, any
of the foregoing which may further comprise functionality selected from hydroxy, amino,
oxa, carboxy, alkyl carboxy, alkoxy, amido, carbamate, carbonate, halogen or combinations
thereof;
fluoroalkyl alkyl or aryl groups; partially fluorinated alkyl or aryl groups; halogens;
linear, branched or cyclic alkoxy or aryloxy groups; linear or branched polyethyleneoxyalkyl
groups, polypropyleneoxyalkyl groups, or poly(ethyleneoxy-co-propyleneoxyalkyl groups;
and
monovalent siloxane chains comprising between 1-100 siloxane repeat units which may
further comprise functionality selected from alkyl, alkoxy, hydroxy, amino, oxa, carboxy,
alkyl carboxy, alkoxy, amido, carbamate, halogen or combinations thereof;
wherein n is 0 to 500 or 0 to 200, or 0 to 100,or 0 to 20, where it is understood
that when n is other than 0, n is a distribution having a mode equal to a stated value
[0086] In Formula XIII from one to three R
17 may comprise monovalent reactive groups.
[0087] Suitable monovalent alkyl and aryl groups include
unsubstituted and substituted monovalent linear, branched or cyclic C1 to C16 alkyl groups, or unsubstituted monovalent C1 to C6 alkyl groups, such as substituted and unsubstituted methyl, ethyl, propyl, butyl,
substituted or unsubstituted C6-C14 aryl groups, or a substituted or un-substituted C6 aryl group, wherein the substituents include amido, ether, amino, halo, hydroxyl,
carboxyl, carbonyl groups; or a phenyl or benzyl group, combinations thereof and the
like.
[0088] When one R
17 is a monovalent reactive group, the additional silicone containing compounds may
be selected from the polydisubstituted siloxane macromer of Formulae XIVa or XIVb;
the styryl polydisubstituted siloxane macromer of Formula XVa or XVb or the carbosilane
of Formula XVc:
wherein R1 is a hydrogen atom or methyl;
Z is selected from O, N, S or NCH2CH2O; when Z = O or S, R2 is not required;
wherein j is a whole number between 1 and 20; n1 and n2 are between 4 to 100; 4 to 50; or 4 to 25; n3 is 1-50, 1-20, or 1-10; q is up to 50, 5-30 or 10-25;
wherein R18 is a substituted or unsubstituted C1-6, C1-4 or C2-4 alkylene segment of formula (CH2)r, wherein each methylene group may optionally be independently substituted with ethers,
amines, carbonyls, carboxylates, carbamates and combinations thereof; or an oxyalkylene
segment (OCH2)k wherein k is a whole number from one to three, or wherein R18 may be a mixture of alkylene and oxyalkylene segments and the sum of r and k is between
1 and 9;
wherein each R19 is independently a linear, branched, or cyclic alkyl group containing between one
and six carbon atoms, a linear, branched, or cyclic alkoxy group containing between
one and six carbon atoms, a linear or branched polyethyleneoxyalkyl group, a phenyl
group, a benzyl group, a substituted or un-substituted aryl group, a fluoroalkyl group,
a partially fluorinated alkyl group, a perfluoroalkyl group, a fluorine atom, or combinations
thereof;
wherein R5 is a substituted or un-substituted linear or branched alkyl group having 1 to eight
carbon atoms, or 1 to 4 carbon atoms, or methyl or butyl; or an aryl group, any of
which may be substituted with one or more fluorine atoms.
[0089] When Z is O, non-limiting examples of polysiloxane macromers include monomethacryloxypropyl
terminated mono-n-butyl terminated polydimethylsiloxanes (mPDMS) as shown in Formula
XVI wherein n is between 3 and 15; mono-methacryloxypropyl terminated mono-n-alkyl
terminated polydimethylsiloxanes, mono-n-alkyl terminated, polydimethyl, polyethylene
glycol siloxanes as shown in Formulae XVIIa and XVIIb wherein n is 4-100, 4-20, or
3-15; n
1 and n
2 are between 4 to 100; 4 to 50; or 4 to 25; n
3 is 1-50, 1-20, or 1-10; and macromers having the chemical structures as shown in
formulae XVIIIa through XXIb wherein R
1 is hydrogen or a methyl group; R
2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof; n
1 and n
2 are between 4 to 100; 4 to 50; or 4 to 25; n
3 is 1-50, 1-20, or 1-10; and R
5 may be C
1-C
4 alkyl or methyl or butyl.

[0090] Examples of suitable mono(meth)acryloxyalkylpolydisubstituted siloxanes include mono(meth)acryloxypropyl
terminated mono-n-butyl terminated polydimethylsiloxane, mono(meth)acryloxypropyl
terminated mono-n-methyl terminated polydimethylsiloxane, mono(meth)acryloxypropyl
terminated mono-n-butyl terminated polydiethylsiloxane, mono(meth)acryloxypropyl terminated
mono-n-methyl terminated polydiethylsiloxane, mono(meth)acrylamidoalkylpolydialkylsiloxanes
mono(meth)acryloxyalkyl terminated monoalkyl polydiarylsiloxanes, and mixtures thereof.
[0091] In Formula XIII, when n is zero, one R
18 may be a monovalent reactive group, and at least 3 R
18 are selected from monovalent alkyl groups having 1 to 16, 1 to 6 or 1-4 carbon atoms.
Non-limiting examples of silicone components include, 3-methacryloxypropyltris(trimethylsiloxy)silane
(TRIS), 3-methacryloxypropylbis(trimethylsiloxy)methylsilane, and 3-methacryloxypropylpentamethyl
disiloxane.
[0092] The number of siloxane repeating units, n, may also be 2 to 50, 3 to 25, or 3 to
15; wherein at least one terminal R
17 comprises a monovalent reactive group and the remaining R
17 are selected from monovalent alkyl groups having 1 to 16 carbon atoms, or from monovalent
alkyl groups having 1 to 6 carbon atoms. Non-hydroxyl containing silicone compounds
may also include those where n is 3 to 15, one terminal R
17 comprises a monovalent reactive group, the other terminal R
17 comprises a monovalent alkyl group having 1 to 6 carbon atoms and the remaining R
17 comprise monovalent alkyl group having 1 to 3 carbon atoms. Non-limiting examples
of silicone components include monomethacryloxypropyl n-butyl terminated polydimethylsiloxanes
(M
n=800-1000), (mPDMS, as shown in XXII).

[0093] Formula XIII may also include compounds where n is 5 to 400 or from 10 to 300, both
terminal R
17 comprise monovalent reactive groups and the remaining R
17 are independently of one another selected from monovalent alkyl groups having 1 to
18 carbon atoms which may have ether linkages between carbon atoms and may further
comprise halogen.
[0094] One to four R
17 in Formula XIII may comprise a vinyl carbonate or vinyl carbamate of Formula XXIIIa:

wherein Y denotes O-, S- or NH-; R
1 denotes a hydrogen atom or methyl.
[0095] The silicone-containing vinyl carbonate or vinyl carbamate monomers specifically
include: 1,3-bis[4-(vinyloxycarbonyloxy)but-1-yl]tetramethyl-disiloxane; 3-(vinyloxycarbonylthio)
propyl-[tris (trimethylsiloxy)silane]; 3-[tris(trimethylsiloxy)silyl] propyl allyl
carbamate; 3-[tris(trimethylsiloxy)silyl] propyl vinyl carbamate; trimethylsilylethyl
vinyl carbonate; trimethylsilylmethyl vinyl carbonate, and the crosslinking agent
of Formula XXIIIb.

[0096] Where biomedical devices with moduli below about 200 psi are desired, only one R
17 comprises a monovalent reactive group and no more than two of the remaining R
17 groups comprise monovalent siloxane groups.
[0097] Another suitable silicone-containing macromer is compound of Formula XXIV in which
the sum of x and y is a number in the range of 10 to 30. The silicone containing macromer
of Formula XXIV is formed by the reaction of fluoroether, hydroxy-terminated polydimethylsiloxane,
isophorone diisocyanate and isocyanatoethylmethacrylate.

[0098] The non-hydroxyl containing silicone-containing component may be selected from non-hydroxyl
containing acrylamide silicones of
U.S. Patent No. 8,415,405. Other silicone components suitable for use in this invention include those described
is
WO 96/31792 such as macromers containing polysiloxane, polyalkylene ether, diisocyanate, polyfluorinated
hydrocarbon, polyfluorinated ether and polysaccharide groups. Another class of suitable
silicone-containing components includes silicone-containing macromers made via GTP,
such as those disclosed in
U.S. Patent Nos. 5,314,960,
5,331,067,
5,244,981,
5,371,147, and
6,367,929.
U.S. Patent Nos. 5,321,108,
5,387,662, and
5,539,016 describe polysiloxanes with a polar fluorinated graft or side group having a hydrogen
atom attached to a terminal difluorosubstituted carbon atom.
US 2002/0016383 describes hydrophilic siloxanyl methacrylates containing ether and siloxanyl linkages
and crosslinkable monomers containing polyether and polysiloxanyl groups. Any of the
foregoing polysiloxanes can also be used as the silicone-containing component in this
invention.
[0099] In one embodiment where a modulus of less than about 120 psi is desired, the majority
of the mass fraction of the silicone-containing components used in the lens formulation
should contain only one polymerizable functional group.
[0100] The non-hydroxyl containing silicone component may be selected from the group consisting
of monomethacryloxypropyl terminated, mono-n-alkyl terminated linear polydisubstituted
siloxane; methacryloxypropyl-terminated linear polydisubstituted siloxane; and mixtures
thereof.
[0101] The non-hydroxyl containing silicone component may also be selected from monomethacrylate
terminated, C
1-C
4 alkyl terminated, linear polydimethylsiloxanes; and mixtures thereof.
[0102] In some instances, the non-hydroxyl functionalized silicone-containing component
may be used in amounts up to about 10 wt%. Examples include those selected from mPDMS
of Formula XXII where R
5 is methyl or butyl, compounds of Formulae XVIa, XVIIb through XVIIIb, XX, XXIa, XXIb
and the macromers shown in Formula XXV or XXVI where n is 1-50 and m is 1-50, 1-20
or 1-10:

[0103] Specific examples of non-hydroxyl functionalized silicone-containing components include
mPDMS of Formula XVIIa, compounds of Formulae XVIII or XIX where R
1 is methyl and R
5 is selected from methyl or butyl and the macromers shown in Formula XXV where n is
1-50 or 4-40, 4-20.
[0104] Specific examples of silicone containing crosslinkers include bismethacryloxypropyl
polydimethyl siloxane, where n may be 4-200, or 4-150, and the following compounds
of Formula XXVIa-XXVIIc, wherein n
1 and n
2 are independently selected from 4 to 100; 4 to 50; or 4 to 25; n
3 is 1-50, 1-20 or 1-10, m is 1-100, 1-50, 1-20 or 1-10, and q is up to 50, 5-30 or
10-25; wherein R
1 is a hydrogen atom or methyl; wherein Z is selected from O, N, S or NCH
2CH
2O; when Z = O or S, R
2 is not required; R
2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof; and
wherein each R
19 is independently a linear, branched, or cyclic alkyl group containing between one
and six carbon atoms, a linear, branched, or cyclic alkoxy group containing between
one and six carbon atoms, a linear or branched polyethyleneoxyalkyl group, a phenyl
group, a benzyl group, a substituted or un-substituted aryl group, a fluoroalkyl group,
a partially fluorinated alkyl group, a perfluoroalkyl group, a fluorine atom, or combinations
thereof.

[0105] The non-hydroxyl containing silicone component may have an average molecular weight
of from about 400 to about 4000 Daltons.
[0106] If present, the non-hydroxyl containing silicone components may be present in amounts
which do not degrade the properties of the resulting lenses, including haze. The non-hydroxyl
containing silicone components may be present in amounts up to about 15 wt% or up
to about 10wt%. The reactive monomer mixture may be free from non-hydroxyl containing
silicone components. The silicone-containing component(s) (both hydroxyl and non-hydroxyl
containing) may be present in amounts up to about 80 weight %, or from about 10 and
about 80, from about 20 and about 75 weight %, or from about 20 and about 70 weight
%, based upon all reactive components of the reactive mixture (e.g., excluding diluents).
Charged Reactive Component
[0107] The reactive monomer mixture may further comprise at least one reactive component
which is charged under physiological conditions. The charged monomer may be selected
from anions, cations, zwitterions, betaines, and mixtures thereof.
[0108] The charged monomers, when incorporated into the silicone hydrogels of the present
invention, provide a net negative charge distribution. Anionic monomers comprise at
least one anionic group and at least one reactive group. Specifically, the anionic
group can include, but is not limited to, carboxylate groups, phosphates, sulfates,
sulfonates, phosphonates, borates, and mixtures thereof. The anionic groups may comprise
from three to ten carbon atoms, or from three to eight carbon atoms. The anionic groups
may comprise carboxylic acid groups. Specifically, the charged monomer may be a carboxylic
acid monomer selected from the group consisting of acrylic acid, methacrylic acid,
furmaric acid, maelic acid, itaconic acid, crotonic acid, cinnamic acid, vinylbenzoic
acid, monoesters of furmaric acid, maelic acid, and itaconic acid, and mixtures thereof.
[0109] The charged monomer can be a zwitterionic monomer. Zwitterionic monomers comprise
at least one zwitterionic group and at least one reactive group. As used herein, the
term "zwitterion" refers to a neutral chemical compound with both a positive and negative
electrical charge. Zwitterionic monomers include betaine monomers.
[0110] The charged monomer can be a betaine monomer. Betaine monomers comprise at least
one betaine group and at least one reactive group. As used herein, the term "betaine"
refers to a neutral chemical compound with a positively charged cationic functional
group such as a quaternary ammonium or phosphonium cation which bears no hydrogen
atom and with negatively charged functional group such as a carboxylate group which
may not be adjacent to the cationic site.
[0111] The charged monomer contains at least one polymerizable group, or reactive group.
Reactive groups include groups that can undergo free radical polymerization. Non-limiting
examples of free radical reactive groups include (meth)acrylates, styryls, vinyls,
vinyl ethers, C
1-6 alkyl(meth)acrylates, (meth)acrylamides, C
1-6 alkyl (meth)acrylamides, N-vinyllactams, N-vinylamides, C
2-12 alkenyls, C
2-12 alkenylphenyls, C
2-12 alkenylnaphthyls, C
2-6 alkenylphenyl, C
1-6 alkyls, O-vinylcarbamates, and O-vinylcarbonates.
[0112] Examples of "charged monomers" include (meth)acrylic acid, N-[(ethenyloxy)carbonyl]-β-alanine
(VINAL,
CAS #148969-96-4), 3-acrylamidopropanoic acid (ACA1), 5-acrylamidopropanoic acid (ACA2), 3-acrylamido-3-methylbutanoic
acid (AMBA), 2-(methacryloyloxy)ethyl trimethylammonium chloride (Q Salt or METAC),
2-acrylamido-2-methylpropane sulfonic acid (AMPS), 1-propanaminium, N-(2-carboxyethyl)-N,N-dimethyl-3-[(1-oxo-2-propen-1-yl)amino]-,
inner salt (CBT, carboxybetaine;
CAS 79704-35-1), 1-propanaminium, N,N-dimethyl-N-[3-[(1-oxo-2-propen-1-yl)amino]propyl]-3-sulfo-,
inner salt (SBT, sulfobetaine,
CAS 80293-60-3), 3,5-Dioxa-8-aza-4-phosphaundec-10-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-,
inner salt, 4-oxide (9CI) (PBT, phosphobetaine,
CAS 163674-35-9, 2-methacryloyloxyethyl phosphorylcholine, 3-(dimethyl(4-vinylbenzyl)ammonio)propane-1-sulfonate
(DMVBAPS), 3-((3-acrylamidopropyl)dimethylammonio)propane-1-sulfonate (AMPDAPS), 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate
(MAMPDAPS), 3-((3-(acryloyloxy)propyl)dimethylammonio)propane-1-sulfonate (APDAPS),
methacryloyloxy)propyl)dimethylammonio)propane-1-sulfonate (MAPDAPS).
The charged monomer may be selected from (meth)acrylic acid, 3-acrylamidopropanoic
acid (ACA1), 5-acrylamidopropanoic acid (ACA2), and mixtures thereof..
[0113] The charged monomer can be present in an amount up to about 10 weight percent (wt.
%), based on the total weight of the reaction monomer mixture, including a range of
about 0.5 to about 5 wt.%, about 0.5 to about 3 wt.%, about 0.5 to about 2 wt.%, about
1 to about 10 wt.%, about 1 to about 5 wt.%, about 1 to about 3 wt.%, and about 1
to about 2 wt.%.
Hydroxyalkyl (meth)acrylate monomer
[0114] The reactive mixtures of the present invention further comprise at least one hydroxyalkyl
(meth)acrylate where the hydroxyl alkyl group may be selected from C
2-C
4 mono or dihydroxy substituted alkyl, and poly(ethylene glycol) having 1-10 repeating
units; or is selected from 2-hydroxyethyl, 2,3-dihydroxypropyl, or 2-hydroxypropyl.
[0115] Examples of suitable hydroxyalkyl (meth)acrylate monomer include 2-hydroxyethyl (meth)acrylate,
3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxypropyl
(meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 1-hydroxypropyl-2-(meth)acrylate,
2-hydroxy-2-methyl-propyl (meth)acrylate, 3-hydroxy-2,2-dimethyl-propyl (meth)acrylate,
4-hydroxybutyl (meth)acrylate, glycerol (meth)acrylate, polyethyleneglycol monomethacrylate,
and mixtures thereof.
[0116] The hydroxyalkyl monomer may also be selected from the group consisting of 2-hydroxyethyl
methacrylate, glycerol methacrylate, 2-hydroxypropyl methacrylate, hydroxybutyl methacrylate,
3-hydroxy-2,2-dimethyl-propyl methacrylate, and mixtures thereof. The hydroxyalkyl
monomer may comprise 2-hydroxyethyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate,
hydroxybutyl methacrylate or glycerol methacrylate.
[0117] Hydroxyl containing (meth)acrylamides are generally too hydrophilic to be included
as compatibilizing hydroxyalkyl monomers, and when included are hydrophilic monomers.
[0118] The lower amount of hydroxyalkyl monomers may be selected to provide a haze value
to the final lens of less than about 50% or less than about 30%.
[0119] It will be appreciated that the amount of hydroxyl component will vary depending
upon a number of factors, including, the number of hydroxyl groups on the hydroxyalkyl
monomer, the amount, molecular weight and presence of hydrophilic functionality on
the silicone containing components. The hydrophilic hydroxyl component may be present
in the reactive mixture in amounts up to about 15%, up to about 10 wt%, between about
1 and about 15 wt%, about 3 and about 15 wt%, or about 5 and about 15 wt%.
Cross-linking Agent
[0120] Cross-linking agents, also referred to as cross-linking monomers, may be included
in the reactive mixture. The cross-linking agents may be selected from bifunctional
cross-linkers, trifunctional cross-linkers, tetrafunctional cross-linkers, and mixtures
thereof, including silicone-containing and non-silicone containing cross-linking agents.
Non-silicone-containing crosslinking agents include ethylene glycol dimethacrylate
(EGDMA), diethyleneglycol dimethacrylate, tetraethylene glycol dimethacrylate (TEGDMA),
trimethylolpropane trimethacrylate ("TMPTMA"), glycerol trimethacrylate, 1,3-propanediol
dimethacrylate; 2,3-propanediol dimethacrylate; 1,6-hexanediol dimethacrylate; 1,4-butanediol
dimethacrylate, triallyl cyanurate (TAC), glycerol trimethacrylate, methacryloxyethyl
vinylcarbonate (HEMAVc), allylmethacrylate, methylene bisacrylamide (MBA), polyethylene
glycol dimethacrylate (wherein the polyethylene glycol has a molecular weight up to,
e.g., about 5000 Daltons). The cross-linking agents may be used in the usual amounts,
e.g., from about 0.000415 to about 0.0156 mole per 100 grams of reactive components
in the reaction mixture. Alternatively, if the hydrophilic monomers and/or the silicone-containing
components are multifunctional by molecular design or because of impurities, the addition
of a cross-linking agent to the reaction mixture is optional. Examples of hydrophilic
monomers and macromers which can act as the cross-linking agent and when present do
not require the addition of an additional cross-linking agent to the reaction mixture
include (meth)acrylate and (meth)acrylamide endcapped polyethers.
Further Constituents
[0121] The reactive monomer mixture may contain additional components such as, but not limited
to, diluents, wetting agents, light absorbing compounds, including UV absorbers, and
photochromic compounds; tints, pigments, dyes, any of which may be reactive or non-reactive
but capable of being retained in the biomedical device, and medicinal agents, antimicrobial
compounds, pharmaceutical compounds, nutriceutical compounds, release agents, and
combinations thereof.
[0122] Classes of suitable diluents for silicone hydrogel reaction mixtures include alcohols
having 2 to 20 carbon atoms, amides having 10 to 20 carbon atoms derived from primary
amines and carboxylic acids having 8 to 20 carbon atoms. The diluents may be primary,
secondary and tertiary alcohols.
[0123] Generally the reactive components are mixed in a diluent to form a reaction mixture.
Suitable diluents are known in the art. For silicone hydrogels suitable diluents are
disclosed in
WO 03/022321 and
US6020445.
[0124] Classes of suitable diluents for silicone hydrogel reaction mixtures include alcohols
having 2 to 20 carbons, amides having 10 to 20 carbon atoms derived from primary amines,
and carboxylic acids having 8 to 20 carbon atoms. Primary and tertiary alcohols may
be used. Preferred classes include alcohols having 5 to 20 carbons and carboxylic
acids having 10 to 20 carbon atoms.
[0125] Specific diluents which may be used include 1-ethoxy-2-propanol, diisopropylaminoethanol,
isopropanol, 3,7-dimethyl-3-octanol, 1-decanol, 1-dodecanol, 1-octanol, 1-pentanol,
2-pentanol, 1-hexanol, 2-hexanol, 2-octanol, 3-methyl-3-pentanol, tert-amyl alcohol,
tert-butanol, 2-butanol, 1-butanol, 2-methyl-2-pentanol, 2-propanol, 1-propanol, ethanol,
2-ethyl-1-butanol, (3-acetoxy-2-hydroxypropyloxy)-propylbis(trimethylsiloxy) methylsilane,
1-tert-butoxy-2-propanol, 3,3-dimethyl-2-butanol, tert-butoxyethanol, 2-octyl-1-dodecanol,
decanoic acid, octanoic acid, dodecanoic acid, 2-(diisopropylamino)ethanol mixtures
thereof and the like.
[0126] Preferred diluents include 3,7-dimethyl-3-octanol, 1-dodecanol, 1-decanol, 1-octanol,
1-pentanol, 1-hexanol, 2-hexanol, 2-octanol, 3-methyl-3-pentanol, 2-pentanol, t-amyl
alcohol, tert-butanol, 2-butanol, 1-butanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol,
ethanol, 3,3-dimethyl-2-butanol, 2-octyl-1-dodecanol, decanoic acid, octanoic acid,
dodecanoic acid, mixtures thereof and the like.
[0127] More preferred diluents include 3,7-dimethyl-3-octanol, 1-dodecanol, 1-decanol, 1-octanol,
1-pentanol, 1-hexanol, 2-hexanol, 2-octanol, 1-dodecanol, 3-methyl-3-pentanol, 1-pentanol,
2-pentanol, t-amyl alcohol, tert-butanol, 2-butanol, 1-butanol, 2-methyl-2-pentanol,
2-ethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-octyl-1-dodecanol, mixtures thereof and
the like.
[0128] Mixtures of diluents may be used. The diluents may be used in amounts up to about
55% by weight of the total of all components in the reaction mixture. More preferably
the diluent is used in amounts less than about 45% and more preferably in amounts
between about 15 and about 40% by weight of the total of all components in the reaction
mixture.
[0129] If a diluent is present, generally there are no particular restrictions with respect
to the amount of diluent present. When diluent is used, the diluent may be present
in an amount in the range of about 2 to about 70 weight percent, including in the
range of about 5 to about 50 weight percent, and in the range of about 15 to about
40 weight percent, based on the total weight of the reactive mixtures (including reactive
and nonreactive components).
[0130] A polymerization initiator may be used in the reaction mixture. The polymerization
initiator can include at least one of lauryl peroxide, benzoyl peroxide, iso- propyl
percarbonate, azobisisobutyronitrile, and the like, that generate free radicals at
moderately elevated temperatures, and photoinitiator systems such as aromatic alpha-hydroxy
ketones, alkoxyoxybenzoins, acetophenones, acylphosphine oxides, bisacylphosphine
oxides, and a tertiary amine plus a diketone, mixtures thereof and the like. Illustrative
examples of photoinitiators are 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one,
bis(2,6-dimethoxybenzoyl)-2,4-4-trimethylpentyl phosphine oxide (DMBAPO), bis(2,4,6-trimethylbenzoyl)-phenyl
phosphineoxide (Irgacure 819), 2,4,6-trimethylbenzyldiphenyl phosphine oxide and 2,4,6-trimethylbenzoyl
diphenylphosphine oxide, benzoin methyl ester and a combination of cam- phorquinone
and ethyl 4-(N,N-dimethylamino)benzoate.
[0131] Commercially available visible light initiator systems include Irgacure
® 819, Irgacure
® 1700, Irgacure
® 1800, Irgacure
® 819, Irgacure
® 1850 (all from Ciba Specialty Chemicals) and Lucrin
® TPO initiator (available from BASF). Commercially available UV photoinitiators include
Darocur
® 1173 and Darocur
® 2959 (Ciba Specialty Chemicals). These and other photoinitiators which may be used
are disclosed in
Volume III, Photoinitiators for Free Radical Cationic & Anionic Photopolymerization,
2nd Edition by J. V. Crivello & K. Dietliker; edited by G. Bradley; John Wiley and
Sons; New York; 1998. The initiator is used in the reaction mixture in effective amounts to initiate photopolymerization
of the reaction mixture, e.g., from about 0.1 to about 2 parts by weight per 100 parts
of reactive monomer. Polymerization of the reaction mixture can be initiated using
the appropriate choice of heat or visible or ultraviolet light or other means depending
on the polymerization initiator used. Alternatively, initiation can be conducted without
a photoinitiator using, for example, e-beam. However, when a photoinitiator is used,
the preferred initiators are bisacylphosphine oxides, such as bis(2,4,6-tri-methylbenzoyl)-phenyl
phosphine oxide (Irgacure
® 819) or a combination of 1-hydroxycyclohexyl phenyl ketone and bis(2,6-dimethoxybenzoyl)-2,4-4-trimethylpentyl
phosphine oxide (DMBAPO), or the method of polymerization initiation is via visible
light activation.
[0132] Polymerization of the reaction mixture can be initiated using the appropriate choice
of heat or visible or ultraviolet light or other means depending on the polymerization
initiator used. Alternatively, initiation can be conducted without a photoinitiator
using, for example, e-beam.
Curing of Silicone Polymer/Hydrogel and Manufacture of Lens
[0133] The reactive mixtures of the present invention can be formed by any of the methods
known in the art, such as shaking or stirring, and used to form polymeric articles
or devices by known methods. The reactive components (hydrophilic monomer, hydroxyl-containing
silicone component, cross-linking agent, polyamide, etc.) are mixed together either
with or without a diluent to form the reactive mixture.
[0134] For examples, the silicone hydrogels may be prepared by mixing reactive components,
and, optionally, diluent(s), with a polymerization initiator and curing by appropriate
conditions to form a produce that can be subsequently formed into the appropriate
shape by lathing, cutting, and the like. Alternatively, the reaction mixture may be
placed in a mold and subsequently cure into the appropriate article.
[0135] The reactive mixture of the present invention may be cured via any known process
for molding the reaction mixture in the production of contact lenses, including spincasting
and static casting. Spincasting methods are disclosed in
U.S. Patents Nos. 3,408,429 and
3,660,545, and static casting methods are disclosed in
U.S. Patents Nos. 4,113,224 and
4,197,266. The contact lenses of this invention may be formed by the direct molding of the
silicone hydrogels, which is economical, and enables precise control over the final
shape of the hydrated lens. For this method, the reaction mixture is placed in a mold
having the shape of the final desired silicone hydrogel and the reaction mixture is
subjected to conditions whereby the monomers polymerize, to thereby produce a polymer
in the approximate shape of the final desired product.
[0136] After curing, the lens may be subjected to extraction to remove unreacted components
and release the lens from the lens mold. The extraction may be done using conventional
extraction fluids, such organic solvents, such as alcohols or may be extracted using
aqueous solutions.
[0137] Aqueous solutions are solutions which comprise water. The aqueous solutions of the
present invention may comprise at least about 30 weight % water, or at least about
50 weight % water, or at least about 70% water, or at least about 90 weight % water.
Aqueous solutions may also include additional water soluble components such as release
agents, wetting agents, slip agents, pharmaceutical and nutraceutical components,
combinations thereof and the like. Release agents are compounds or mixtures of compounds
which, when combined with water, decrease the time required to release a contact lens
from a mold, as compared to the time required to release such a lens using an aqueous
solution that does not comprise the release agent. The aqueous solutions may comprise
less than about 10 weight %, or less than about 5 weight % organic solvents such as
isopropyl alcohol, or may be free from organic solvents. The aqueous solutions may
not require special handling, such as purification, recycling or special disposal
procedures.
[0138] In various embodiments, extraction can be accomplished, for example, via immersion
of the lens in an aqueous solution or exposing the lens to a flow of an aqueous solution.
In various embodiments, extraction can also include, for example, one or more of:
heating the aqueous solution; stirring the aqueous solution; increasing the level
of release aid in the aqueous solution to a level sufficient to cause release of the
lens; mechanical or ultrasonic agitation of the lens; and incorporating at least one
leach aid in the aqueous solution to a level sufficient to facilitate adequate removal
of unreacted components from the lens. The foregoing may be conducted in batch or
continuous processes, with or without the addition of heat, agitation or both.
[0139] Some embodiments can also include the application of physical agitation to facilitate
leach and release. For example, the lens mold part to which a lens is adhered can
be vibrated or caused to move back and forth within an aqueous solution. Other embodiments
may include ultrasonic waves through the aqueous solution.
[0140] The lenses may be sterilized by known means such as, but not limited to autoclaving.
[0141] The contact lenses of the present invention display desirable combination of both
mechanical and biological properties including water content, haze, contact angle,
modulus, oxygen permeability, lipid uptake, lysozyme uptake and PQ1 uptake, as shown
in the following table. All values are prefaced by "about", and the ophthalmic devices
of the present invention may have any combination of the listed properties.
| [H2O] % |
>20 |
>30 |
>40 |
20-60 |
30-60 |
| % haze |
>50 |
>30 |
|
|
|
| DCA (°) |
>90 |
>70 |
≥50 |
≥40 |
≥20 |
| Modulus (psi) |
>120 |
>110 |
50-120 |
50-110 |
|
| Dk (barrers) |
>80 |
80-200 |
90-180 |
100-160 |
|
| Lipid uptake |
<20 |
<10 |
<5 |
|
|
| (µg/lens) |
|
|
|
|
|
| Lysozyme |
>50 |
>100 |
>200 |
>500 |
>700 |
| uptake (µg/lens) |
|
|
|
|
|
| PQ1 uptake (%) |
<10 |
<5 |
|
|
|
[0142] When the contact lenses of the present invention contain at least one charged component
the lysozyme uptake may also be at least about 800 or between 50 and 1500, 100-1500
or 200-1500 µg/lens.
Test Methods
[0143] It will be appreciated that all of the tests specified herein have a certain amount
of inherent error. Accordingly, the results reported herein are not to be taken as
absolute numbers, but numerical ranges based upon the precision of the particular
test.
[0144] Haze was measured by placing a hydrated test lens in borate buffered saline in a clear
glass cell at ambient temperature above a flat black background, illuminating from
below with a fiber optic lamp (Dolan-Jenner PL-900 fiber optic light with 0.5 inch
diameter light guide) at an angle of 66° normal to the lens cell, and capturing an
image of the test lens from above, normal to the glass cell with a video camera (DVC
1310C RGB camera or equivalent equipped with a suitable zoom camera lens) placed 14
cm above the lens holder. The background scatter is subtracted from the scatter of
the test lens by subtracting an image of a blank cell with borate buffered saline
(baseline) using EPIX XCAP V 3.8 software. The subtracted scattered light image is
quantitatively analyzed by integrating over the central 10 mm of the test lens and
then compared to a frosted glass standard.
[0145] The light intensity/power setting was adjusted to achieve a mean grayscale value
in the range of 900-910 for the frosted glass standard; at this setting, the baseline
mean grayscale value was in the range of 50-70. The mean grayscale values of the baseline
and frosted glass standard are recorded and used to create a scale from zero to 100,
respectively. In the grayscale analysis, the mean and standard deviations of the baseline,
frosted glass, and every test lens was recorded. For each lens, a scaled value was
calculated according to the equation: scaled value equals the mean grayscale value
(lens minus baseline) divided by the mean grayscale value (frosted glass minus baseline)
times by 100. Three to five test lenses are analyzed, and the results are averaged.
[0146] Water content was measured gravimetrically. Lenses were equilibrated in packing solution for 24
hours. Each of three test lens are removed from packing solution using a sponge tipped
swab and placed on blotting wipes which have been dampened with packing solution.
Both sides of the lens are contacted with the wipe. Using tweezers, the test lens
are placed in a tared weighing pan and weighed. The two more sets of samples are prepared
and weighed. All weight measurements were done in triplicate, and the average of those
values used in the calculations. The wet weight is defined as the combined weight
of the pan and wet lenses minus the weight of the weighing pan alone.
[0147] The dry weight was measured by placing the sample pans in a vacuum oven which has
been preheated to 60°C for 30 minutes. Vacuum was applied until the pressure reaches
at least 1 inch of Hg is attained; lower pressures are allowed. The vacuum valve and
pump are turned off and the lenses are dried for at least 12 hours; typically overnight.
The purge valve is opened allowing dry air or dry nitrogen gas to enter. The oven
is allowed reach atmospheric pressure. The pans are removed and weighed. The dry weight
is defined as the combined weight of the pan and dry lenses minus the weight of the
weighing pan alone. The water content of the test lens was calculated as follows:

[0148] The average and standard deviation of the water content were calculated and the average
value reported as the percent water content of the test lens.
[0149] The
refractive index (RI) of a contact lens was measured by a Leica ARIAS 500 Abbe refractometer in manual
mode or by a Reichert ARIAS 500 Abbe refractometer in automatic mode with a prism
gap distance of 100 microns. The instrument was calibrated using deionized water at
20°C (+/- 0.2 °C). The prism assembly was opened and the test lens placed on the lower
prism between the magnetic dots closest to the light source. If the prism is dry,
a few drops of saline were applied to the bottom prism. The front curve of the lens
was against the bottom prism. The prism assembly was then closed. After adjusting
the controls so that the shadow line appeared in the reticle field, the refractive
index was measured. The RI measurement was made on five test lenses. The average RI
calculated from the five measurements was recorded as the refractive index as well
as its standard deviation.
[0150] Oxygen permeability (Dk) was determined by the polarographic method generally described in ISO 9913-1:1996
and ISO 18369-4:2006, but with the following modifications. The measurement was conducted
at an environment containing 2.1% oxygen created by equipping the test chamber with
nitrogen and air inputs set at the appropriate ratio, for example, 1800 mL/min of
nitrogen and 200 mL/min of air. The t/Dk is calculated using the adjusted oxygen concentration.
Borate buffered saline was used. The dark current was measured by using a pure humidified
nitrogen environment instead of applying MMA lenses. The lenses were not blotted before
measuring. Four lenses were stacked instead of using lenses of various thickness (t)
measured in centimeters. A curved sensor was used in place of a flat sensor; radius
was 7.8 mm. The calculations for a 7.8 mm radius sensor and 10% (v/v) air flow are
as follows:

[0151] The edge correction was related to the Dk of the material.
[0152] For all Dk values less than 90 barrers:

[0153] For Dk values between 90 and 300 barrers:

[0154] For Dk values greater than 300 barrers:

[0155] Non-edge corrected Dk was calculated from the reciprocal of the slope obtained from
the linear regression analysis of the data wherein the x variable was the center thickness
in centimeters and the y variable was the t/Dk value. On the other hand, edge corrected
Dk was calculated from the reciprocal of the slope obtained from the linear regression
analysis of the data wherein the x variable was the center thickness in centimeters
and the y variable was the edge corrected t/Dk value. The resulting Dk value was reported
in barrers.
[0156] Wettability of lenses was determined by a Wilhelmy plate method using a Cahn DCA-315 instrument
at room temperature and using deionized water as the probe solution. The experiment
was performed by dipping the lens specimen of known parameter into the packing solution
of known surface tension while measuring the force exerted on the sample due to wetting
by a sensitive balance. The advancing contact angle of the packing solution on the
lens is determined from the force data collected during sample dipping. The receding
contact angle is likewise determined from force data while withdrawing the sample
from the liquid. The Wilhelmy plate method is based on the following formula: Fg =
γρcosθ - B, wherein F = the wetting force between the liquid and the lens (mg), g
= gravitational acceleration (980.665 cm/sec
2), γ = surface tension of probe liquid (dyne/cm), ρ = the perimeter of the contact
lens at the liquid/lens meniscus (cm), θ = the dynamic contact angle (degree), and
B = buoyancy (mg). B is zero at the zero depth of immersion. Four test strips were
cut from the central area of the contact lens. Each strip was approximately 5 mm in
width and equilibrated in packing solution. Then, each sample was cycled four times,
and the results were averaged to obtain the advancing and receding contact angles
of the lens.
[0157] The
mechanical properties of the contact lenses were measured by using a tensile testing machine such as an
Instron model 1122 or 5542 equipped with a load cell and pneumatic grip controls.
Minus one diopter lens is the preferred lens geometry because of its central uniform
thickness profile. A dog-bone shaped sample cut from a -1.00 power lens having a 0.522
inch length, 0.276 inch "ear" width and 0.213 inch "neck" width was loaded into the
grips and elongated at a constant rate of strain of 2 inches per minute until it breaks.
The center thickness of the dog-bone sample was measured using an electronic thickness
gauge prior to testing. The initial gauge length of the sample (Lo) and sample length
at break (Lf) were measured. At least five specimens of each composition were measured,
and the average values were used to calculate the percent elongation to break: percent
elongation = [(Lf - Lo)/Lo] x 100.
[0158] The tensile modulus was calculated as the slope of the initial linear portion of
the stress-strain curve; the units of modulus are pounds per square inch or psi. The
tensile strength was calculated from the peak load and the original cross-sectional
area: tensile strength = peak load divided by the original cross-sectional area; the
units of tensile strength are psi.
[0159] Toughness was calculated from the energy to break and the original volume of the
sample: toughness = energy to break divided by the original sample volume; the units
of toughness are in-lbs/in
3.
[0160] PQ1 uptake was measured chromatographically. The HPLC was calibrated using a series of standard
PQ1 solutions having concentrations 2, 4, 6, 8, 12 and 15 µg/mL. Lenses were placed
into polypropylene contact lens cases with 3 mL of Optifree Replenish or similar lens
solution (PQ1 concentration = 10 micrograms/mL) which is commercially available from
Alcon. A control lens case, containing 3 mL of solution, but no contact lens was also
prepared. The lenses and control solutions were stored at room temperature for 72
hours. 1 mL of solution was removed from each of the samples and controls and mixed
with trifluoroacetic acid (10 µL). The analysis was conducted using HPLC/ELSD and
a Phenomenex Luna C5 (4.6 mm x 5 mm; 5 µm particle size) column with the following
equipment and conditions: Agilent 1200 HPLC or equivalent with an ELSD operating at
T= 100°C, Gain = 12, Pressure = 4.4 bar, Filter = 3s; ELSD parameters may vary from
instrument to instrument; using mobile phase A of water (0.1% TFA) and mobile phase
B of acetonitrile (0.1% TFA), a column temperature of 40°C and an injection volume
of 100 µL. An elution profile was used and listed in Table A. A calibration curve
was created by plotting the peak area value as a function of the concentration of
the PQ1 standard solutions. The concentration of PQ1 in a sample was then calculated
by solving the quadratic equation representing the calibration curve. Three lenses
were run for each analysis, and the results were averaged. PQ1 uptake was reported
as the percentage loss of PQ1 after soak with lens compared to the PQ1 present in
the control without lens.
Table A. HPLC Elution Profile
| Time (minutes) |
% A |
% B |
Flow Rate (mL/min) |
| 0.00 |
100 |
0 |
1.2 |
| 1.00 |
100 |
0 |
1.2 |
| 5.00 |
0 |
100 |
1.2 |
| 8.50 |
0 |
100 |
1.2 |
| 8.60 |
100 |
0 |
1.2 |
| 11.00 |
100 |
0 |
1.2 |
[0161] The amount of cholesterol absorbed by a contact lens was determined by a LC-MS method
(lipid uptake in the data tables). Lenses were soaked in a cholesterol solution and then extracted
with dichloromethane. The dichloromethane extract was evaporated and reconstituted
with a heptane/isopropanol mixture with subsequent analysis by LC-MS. The results
were reported as micrograms of cholesterol per lens. A deuterated cholesterol internal
standard was used to improve accuracy and precision of the method.
[0162] A cholesterol stock solution was prepared by placing 15.0 ± 0.5 milligrams of cholesterol
into a wide-mouth 10 mL glass volumetric flask followed by dilution with isopropanol.
[0163] A cholesterol soak solution was prepared by placing 0.430 ± 0.010 grams of lysozyme
(purity = 93%), 0.200 ± 0.010 grams of albumin, and 0.100 ± 0.010 grams of β-lactoglobulin
into a 200 mL glass volumetric flask, adding approximately 190 milliliters of PBS
to the flask, and swirling to dissolve the contents. 2 Milliliters of the cholesterol
stock solution was then added and diluted to volume with PBS. The volumetric flask
was capped and shaken well. The concentration of the cholesterol soak solution was
approximately 15 µg/mL. Note: The mass of these components may be adjusted to account
for lot-to-lot purity variability so that the target concentrations can be achieved.
[0164] Six contact lenses were removed from their packages and blotted with lint-free paper
towels to remove excess packing solution. The lenses were placed into six separate
8 mL glass vials (one lens per vial), and 3.0 mL of the cholesterol soak solution
was added to each vial. The vials were capped and placed into a New Brunswick Scientific
incubator-shaker for 72 hours at 37°C and 100 rpm. After incubation, each lens was
rinsed three times with PBS in 100 mL beakers and placed into a 20-mL scintillation
vial.
[0165] To each lens-containing scintillation vial, 5 mL of dichloromethane and 100 µL of
the internal standard solution were added. After a minimum of 16 hours of extraction
time, the supernatant liquid was transferred into a 5 mL disposable glass culture
tube. The tube was placed into the Turbovap and the solvent completely evaporated.
Place 1mL of the diluent into the culture tube and re-dissolve the contents. The aforementioned
diluent was a 70:30 (v/v) mixture of heptane and isopropanol. The diluent was also
the mobile phase. The resulting solution was carefully transferred into an autosampler
vial and ready for LC-MS analysis.
[0166] An internal standard stock solution was prepared by weighing approximately 12.5 +
2 mg of deuterated cholesterol (2,2,3,4,4,6-d6-cholesterol) in a 25 mL volumetric
flask followed by dilution with the diluent. The concentration of the internal standard
stock solution was approximately 500 µg/mL.
[0167] An internal standard solution was prepared by placing 1.0 mL of the internal standard
stock solution in a 50mL volumetric flask followed by dilution to volume with diluent.
The concentration of this intermediate internal standard solution is approximately
10 µg/mL.
[0168] A reference standard stock solution was prepared by weighing approximately 50 + 5
mg of cholesterol in a 100 mL volumetric flask followed by dilution with diluent.
The concentration of the cholesterol in this reference stock solution is approximately
500 µg/mL.
[0169] Working standard solutions were then made according to Table 2 by placing the appropriate
amount of standard solutions into the listed 25-mL, 50-mL or 100-mL volumetric flasks.
After the standard solutions were added to the volumetric flasks, the mixture was
diluted to volume with diluent and swirled well.
Table B. Working Standard Solution Formulations
| Working Standard Name |
Volume of Internal Standard Solution (mL) |
Volume of Reference Standard Stock Solution (µL) |
Final Volume (mL) |
Approximate Cholesterol Concentration (µg/mL) |
| Std 1 |
10 |
20 |
100 |
0.10 |
| Std 2 |
5 |
25 |
50 |
0.25 |
| Std 3 |
5 |
50 |
50 |
0.50 |
| Std 4 |
5 |
100 |
50 |
1.00 |
| Std 5 |
2.5 |
125 |
25 |
2.50 |
| Std 6 |
2.5 |
250 |
25 |
5.00 |
[0170] The following LC-MS analysis was performed:
- (1) Make 6 injections of the "Std4" to evaluate system suitability. The RSD% of the
peak areas for the working standards and the internal standards must be < 5% and RSD(%)
of their peak area ratios must be < 7% to pass system suitability.
- (2) Inject working standards 1-6 to create a calibration curve. The square of the
correlation coefficient (r2) must be > 0.99.
- (3) Inject test samples followed by a bracketing standard (Std4). The peak area ratio
of the bracketing standard must be within ± 10% of the averaged peak area ratio from
the system suitability injections.
[0171] A calibration curve was constructed by plotting the peak area ratio (reference std/internal
std) value that corresponds to the concentration of each working standard solution.
The concentration of cholesterol in sample is calculated by solving a quadratic equation.
Typical equipment and their settings for the LC-MS analysis are listed below and shown
in Tables C and D. The values for the instrument tune parameters may change each time
the mass spectrometer is tuned.
Turbovap Conditions:
[0172]
Temperature: 45°C
Time: 30 minutes or more to dryness
Gas: nitrogen @ 5psi
HPLC Conditions:
[0173]
HPLC: Thermo Accela HPLC Instrument or equivalent
HPLC Column: Agilent Zorbax NH2 (4.6 mm x 150 mm; 5 µm particle size)
Mobile Phase: 70% heptane and 30% isopropanol
Column Temperature: 30 °C
Injection Volume: 25 µL
Flow Rate: 1000 µL/min
Table C. Mass Spectrometry Conditions
| Thermo Finnigan TSQ Quantum Ultra |
| MS Settings |
Value |
| Ionization |
APCI |
| Polarity |
Positive |
| Scan type |
SIM |
| APCI probe position |
D |
| Mass (m/z) of Reference Standards |
369.2 |
| Mass (m/z) of Internal Standards |
375.3 |
| Mass width (m/z) |
1.0 |
| Scan time (s) |
0.10 |
| Data type |
centroid |
| Peak Width Q3 (FWHM) |
0.40 |
| Skimmer Offset (V) |
10 |
Table D. Tune Parameters
| Instrument Tune Parameters |
Value |
| Discharge Current (arbitrary units): |
20 |
| Capillary temperature (°C): |
240 |
| Vaporizer Temperature (°C): |
500 |
| Tube lens offset (V): |
68 |
| Sheath gas pressure (arbitrary units): |
20 |
| Auxiliary gas flow (arbitrary units): |
15 |
[0174] The amount of lysozyme uptake by a contact lens was measured by a HPLC-UV method.
Lysozyme uptake was determined as the difference of lysozyme content in phosphatebuffered
saline solution (PBS) before contact lenses are immersed and the concentration in
the test solution after 72 hours of lens immersion at 37°C.
[0175] A lysozyme soak solution was prepared by placing 0.215 ± 0.005 grams of lysozyme
(purity = 93%) into a 100 mL volumetric flask followed by adding 50 mL of PBS to dissolve
the lysozyme by swirling followed by dilution to volume with PBS. The resulting lysozyme
soak solution was filtered/sterilized using a Millipore Stericup filtration device.
The concentration of the lysozyme soak solution is approximately 2000 µg/mL. The mass
of lysozyme may be adjusted to account for lot-to-lot purity variability so that a
2000 µg/mL concentration can be achieved.
[0176] Three contact lenses were removed from their packages and blotted with lint-free
paper towel to remove excess packing solution. The lenses were placed into three separate
8 mL glass vials (one lens per vial). 1.5 mL of the lysozyme soak solution was added
to each vial. The vials were capped and inspected to ensure each lens was completely
immersed in the soak solution. As control samples, 1.5 mL of lysozyme soak solution
were added into three separate 8 mL glass vials. The samples were then incubated on
a New Brunswick Scientific incubator-shaker for 72 hours at 37°C and 100 rpm.
[0177] A diluent was prepared by mixing 900 mL water, 100 mL acetonitrile and 1 mL trifluoroacetic
acid into a 1L glass bottle.
[0178] A lysozyme stock solution was prepared by placing 0.240 ± 0.010 grams of lysozyme
(purity = 93%) into a 100 mL volumetric flask followed by dilution to volume with
diluent. The concentration of the lysozyme stock solution is approximately 2200 µg/mL.
[0179] As shown in Table E, a series of working standard solutions was prepared by mixing
the appropriate amounts of lysozyme stock solution with diluent using 5 mL volumetric
flasks.
Table E. Working Standards
| Working Standard Name |
Volume of Stock Solution (mL) |
Final Volume (mL) |
Approximate Lysozyme Concentration (µg/mL) |
| Std 1 |
1.135 |
5 |
500 |
| Std 2 |
1.815 |
5 |
800 |
| Std 3 |
2.725 |
5 |
1200 |
| Std 4 |
3.635 |
5 |
1600 |
| Std 5 |
4.540 |
5 |
2000 |
| Std 6 (stock) |
- |
- |
2200 |
[0180] A 10% (v/v) solution was prepared by adding 1 mL of trifluoroacetic acid into a 10
mL glass volumetric flask followed by dilution with HPLC water. Samples for HPLC-UV
analysis were prepared as follows: (1) by placing 1000 µL of test sample and 10 µL
of the 10% TFA solution into an autosampler vial or (2) by placing 1000 µL of reference
standard and 10 µL of reference standard diluent into an autosampler vial.
[0181] The analysis involved the following steps:
- (1) Perform 6 injections of the "Std4" to evaluate system suitability. The RSD% of
the peak areas and retention times must be < 0.5% to pass system suitability.
- (2) Inject working standards 1-6 to create a calibration curve. The square of the
correlation coefficient (r2) must be > 0.99.
- (3) Inject test samples followed by a bracketing standard (Std4). The peak area of
the bracketing standard must be ± 1% of the averaged peak areas from the system suitability
injections.
[0182] A calibration curve was constructed by plotting the peak area value that corresponds
to the concentration of each lysozyme working standard solution. The concentration
of lysozyme in the test samples was calculated by solving a linear equation. Typical
equipment and their settings are listed below or shown in Table F.
Instrument: Agilent 1200 HPLC with UV detection (or equivalent HPLC-UV)
Detection: UV @ 280 nm (5 nm bandwidth)
HPLC Column: Phenomenex Luna C5 (50 x 4.6 mm) or Agilent PLRP-S (50 x 4.6 mm)
Mobile Phase A: H2O (0.1% TFA)
Mobile Phase B: Acetonitrile (0.1% TFA)
Column Temperature: 40 °C
Injection Volume: 10 µL
Table F. HPLC Run Conditions
| Time (minutes) |
% A |
% B |
Flow Rate (mL/min) |
| 0.0 |
95 |
5 |
1.2 |
| 4.0 |
5 |
95 |
1.2 |
| 4.1 |
95 |
5 |
1.2 |
| 6.5 |
95 |
5 |
1.2 |
[0183] Alternatively, lysozyme uptake was measured as follows. A lysozyme solution was prepared
from chicken egg white (Sigma, L7651) at a concentration of 2 mg/mL in phosphate saline
buffer supplemented by sodium bicarbonate at 1.37g/L and D-glucose at 0.1 g/L.
[0184] Three lenses for each test sample were tested using each protein solution, and three
were tested using PBS as a control solution. The test lenses were blotted on sterile
gauze to remove packing solution and aseptically transferred, using sterile forceps,
into sterile 24 well cell culture plates (one lens per well) each well containing
2 mL of the lysozyme solution. Each lens was fully immersed in the solution. As controls,
2 mL of the lysozyme solution was placed in wells without a contact lens.
[0185] The plates were sealed using parafilm to prevent evaporation and dehydration and
placed onto an orbital shaker and incubated at 35°C with agitation at 100 rpm for
72 hours. After the 72 hour incubation period, the lenses were rinsed 3 to 5 times
by dipping lenses into 200 mL of PBS. The lenses were blotted on a paper towel to
remove excess PBS and transferred into sterile conical tubes (1 lens per tube), each
tube containing a volume of PBS determined based upon an estimate of lysozyme uptake
expected based upon on each lens composition. The lysozyme concentration in each tube
to be tested must be within the albumin standards range as described by the manufacturer
(0.05 micrograms to 30 micrograms). Samples known to uptake a level of lysozyme lower
than 100 µg per lens were diluted 5 times. Samples known to uptake levels of lysozyme
higher than 500 µg per lens were diluted 20 times.
[0186] Lysozyme uptake was determined using on-lens bicinchoninic acid method using QP-BCA
kit (Sigma, QP-BCA) following the procedure described by the manufacturer and was
calculated by subtracting the optical density measured on PBS soaked lenses from the
optical density determined on lenses soaked in lysozyme solution. The optical density
was measured using a Synergy II Micro-plate reader capable of reading optical density
at 562 nm.
[0187] The invention is now described with reference to the following examples. Before describing
several exemplary embodiments of the invention, it is to be understood that the invention
is not limited to the details of construction or process steps set forth in the following
description. The invention is capable of other embodiments and of being practiced
or being carried out in various ways.
[0188] The following abbreviations will be used throughout the Examples and have the following
meanings:
BC: back curve plastic mold
FC: front curve plastic mold
NVP: N-vinylpyrrolidone (Acros or Aldrich)
DMA: N, N-dimethylacrylamide (Jarchem)
HEMA: 2-hydroxyethyl methacrylate (Bimax)
NMMA: N-methyl methacrylamide (Monomer Polymer)
VMA: N-vinyl N-methyl acetamide (Aldrich)
AA: acrylic acid
MAA: methacrylic acid (Acros)
VINAL: N-[(ethenyloxy)carbonyl]-β-alanine; CAS #148969-96-4
ACA1: 3-acrylamidopropanoic acid
ACA2: 5-acrylamidopropanoic acid
CBT: 1-Propanaminium, N-(2-carboxyethyl)-N,N-dimethyl-3-[(1-oxo-2-propen-1-yl)amino]-,
inner salt; carboxybetaine; CAS 79704-35-1
SBT: 1-Propanaminium, N,N-dimethyl-N-[3-[(1-oxo-2-propen-1-yl)amino]propyl]-3-sulfo-,
inner salt; sulfobetaine; CAS 80293-60-3
PBT: 3,5-Dioxa-8-aza-4-phosphaundec-10-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-,
inner salt, 4-oxide (9CI); phosphobetaine; CAS 163674-35-9
Q Salt or METAC: 2-(methacryloyloxy)ethyl trimethylammonium chloride
AMPS: 2-acrylamido-2-methylpropane sulfonic acid
HPMA: 2-hydroxypropyl methacrylate
HEAA: 2-hydroxyethyl acrylate
Bis-HEAA: N,N-bis(2-hydroxyethyl) acrylamide
GMMA: 2,3-dihydroxypropyl methacrylate
HBMA: 2-hydroxybutyl methacrylate
Blue HEMA: 1-amino-4-[3-(4-(2-methacryloyloxy-ethoxy)-6-chlorotriazin-2-ylamino)-4-sulfophenylamino]anthraquinone-2-sulfonic
acid, as described in US Patent No. 5,944,853
pVMA: poly(N-vinyl N-methyl acetamide) Mw = 570KDa or 628KDa
PVP: poly(N-vinylpyrrolidone) (ISP Ashland) K90
EGDMA: ethylene glycol dimethacrylate (Esstech)
TEGDMA: tetraethylene glycol dimethacrylate (Esstech)
TMPTMA: trimethylolpropane trimethacrylate (Esstech)
TAC: Triallyl Cyanurate (Polysciences)
MBA: methylene bisacrylamide (Aldrich)
Tegomer V-Si 2250: diacryloxypolydimethylsiloxane (Evonik)
Irgacure 819: bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (BASF or Ciba Specialty
Chemicals)
Irgacure 1870: blend of bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphineoxide
and 1-hydroxy-cyclohexyl-phenyl-ketone (BASF or Ciba Specialty Chemicals)
mPDMS: monomethacryloxypropyl terminated mono-n-butyl terminated polydimethylsiloxane
(800-1000 MW) (Gelest)
HO-mPDMS: mono-(2-hydroxy-3-methacryloxypropyl)-propyl ether terminated mono-n-butyl
terminated polydimethylsiloxane (400-1000 MW) (Ortec or DSM-Polymer Technology Group)
TRIS: 3-methacryloxypropyl tris(trimethylsiloxy)silane
SiMAA: 2-propenoic acid, 2-methyl-2-hydroxy-3-[3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propoxy]propyl
ester (Toray)
SA2: N-(2,3-dihydroxylpropyl) N-(3-tetra(dimethylsiloxy)dimethylbutylsilane)propyl)
acrylamide
mPEG 950 : polyethylene glycol mono-methacrylate (Aldrich)
D3O: 3,7-dimethyl-3-octanol (Vigon)
TAM: t-amyl alcohol (BASF)
3E3P: 3-ethyl 3-pentanol
DI water: deionized water
IPA: isopropyl alcohol
Norbloc: 2-(2'-hydroxy-5-methacrylyloxyethylphenyl)-2H-benzotriazole (Janssen)
PP: polypropylene which is the homopolymer of propylene
TT: Tuftec which is a hydrogenated styrene butadiene block copolymer (Asahi Kasei
Chemicals)
Z: Zeonor which is a polycycloolefin thermoplastic polymer (Nippon Zeon Co Ltd)
EXAMPLES
[0189] Preparation of Poly(N-vinyl N-methyl acetamide) (pVMA): 380 mL (3.48 mol) of distilled
N-vinyl-N-methyl acetamide and 187 mg (1.14 mmol) of azobisisobutyronitrile were added
to a 3-neck round bottom flask fitted with reflux condenser, magnetic stirring bar
and thermocouple and purged of oxygen gas for 2 hours by bubbling nitrogen gas through
the reaction mixture. Then, the reaction mixture was heated at 75oC for 24 hours during
which time the reaction mixture solidified. The reaction product was quenched in air
and isolated by work-up procedure 1 or work-up procedure 2. Work-up Procedure 1: The
reaction product was dissolved in 800 mL of methylene chloride at 40°C and cooled
to room temperature. The solution was poured into 2L of cold diethyl ether with manual
stirring to afford a white solid after decanting off the solvents. The solid product
was air dried followed by vacuum drying overnight at 50oC. The precipitated product
was ground into a fine white powder and vacuum dried overnight at 50°C (85% yield).
Work-up Procedure 2: The reaction product was dissolved in water and dialyzed extensively
in dialysis membrane tubing (Spectra Pore MWCO 3500) and freeze dried (LABCONCO, Freezone
® Triad
™ freeze dry system, Model # 7400030) or spray dried (BUCHI mini spray dryer, Model
# B-290). The molecular weight was determined by Size Exclusion Chromatography with
Multi-Angle Light Scattering (SEC-MALS). The SEC-MALS setup employed methanol (with
10 mM LiBr) as the mobile phase at a flow rate of 0.6 mL/min at 50 °C. Three Tosoh
Biosciences TSK-gel columns in series were used [SuperAW3000 4 um, 6.0 mm ID x 15
cm (PEO/DMF Exclusion Limit = 60,000 g/mole), SuperAW4000 6 um, 6.0 mm ID x 15 cm
(PEO/DMF Exclusion Limit = 400,000 g/mole) and a SuperAW5000 7 um, 6.0 mm ID x 15
cm (PEO/DMF Exclusion Limit = 4,000,000 g/mole)] with an online Agilent 1200 UV/VIS
diode array detector, a Wyatt Optilab rEX interferometric refractometer, and a Wyatt
miniDAWN Treos multiangle laser scattering (MALS) detector (λ=658nm). A dη/dc value
of 0.1829 mL/g at 30 °C (λ=658 nm) was used for absolute molecular weight determination.
Absolute molecular weights and polydispersity data were calculated using the Wyatt
ASTRA 6.1.1.17 SEC/LS software package. The weight average molecular weight typically
varied from about 500 KDa to about 700 KDa, and the polydispersity varied from about
1.8 to about 2.8.
Examples 1-15
[0190] Each reactive mixture was formed by mixing the reactive components listed in Tables
1 and 2, filtering through a 3 µm filter using a heated or unheated stainless steel
or glass syringe, and then degassed by applying vacuum at ambient temperature for
about 10-20 minutes. In a glove box with a nitrogen gas atmosphere and less than 0.1
percent oxygen gas, about 75-100 µL of the reactive mixture were dosed using an Eppendorf
pipet at room temperature into the FC made of Zeonor. The BC made of a 55:45 (w/w)
blend of Z:PP was then placed onto the FC. The molds were equilibrated for at least
twelve hours in the glove box prior to dosing. Eight trays, each containing eight
such mold assemblies, were placed on a mirrored metallic plate and quartz plates were
placed on top of the trays to maintain proper fit and alignment. The plate was transferred
into an adjacent glove box maintained at 60-65°C, and the lenses were cured from the
top for 20 minutes using TL03 lights having intensity of 4-5 mW/cm
2. Reactive monomer mixtures exhibiting high viscosities at room temperature were dosed
into molds in the heated glove box. The light source was about six inches above the
trays. A detailed description of the curing process and apparatus can be found in
US Patent No. 8,937,110.
[0191] The lenses were manually de-molded with most lenses adhering to the FC and released
by suspending about 64-112 lenses in about one liter of 70% IPA for about one hour,
followed by washing with 25% IPA, two times with DI, and finally two times with borate
buffered packaging solution. Each washing step lasted between 10 and 30 minutes. Lab
scale lens release is typically performed in jars on a laboratory roller. A person
of ordinary skill recognizes that the exact lens release process can be varied depending
on the lens formulation and mold materials, regarding the concentrations of the aqueous
isopropanol solutions, the number of washings with each solvent, and the duration
of each step. The purpose of the lens release process is to release all of the lenses
without defects and transition from diluent swollen networks to the packaging solution
swollen hydrogels. The lenses were transferred into vials and subsequently sterilized
by autoclaving at 122°C for 30 minutes. The physical and mechanical properties of
the sterile lenses were measured and listed in Table 3.
TABLE 1
| Component |
Ex 1 |
Ex 2 |
Ex 3 |
Ex 4 |
Ex 5 |
Ex 6 |
| OH-mPDMS (n=15) |
30 |
30 |
30 |
30 |
30 |
30 |
| OH-mPDMS (n=4) |
28 |
28 |
28 |
28 |
0 |
28 |
| [OH-mPDMS (n=4)] : [OH-mPDMS (n=15)] |
0.93 |
0.93 |
0.93 |
0.93 |
0 |
0.93 |
| SiMAA |
0 |
0 |
0 |
0 |
28 |
0 |
| [SiMAA]: [OH-mPDMS (n=15]) |
0 |
0 |
0 |
0 |
0.93 |
0 |
| DMA |
28.89 |
26.89 |
24.89 |
22.89 |
19.89 |
19.89 |
| HEMA |
7 |
7 |
7 |
7 |
7 |
7 |
| Blue HEMA |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
| PVP K90 |
3 |
5 |
7 |
9 |
12 |
12 |
| EGDMA |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
| Norbloc |
2 |
2 |
2 |
2 |
2 |
2 |
| CGI 1870 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
| Diluent |
23 |
23 |
23 |
23 |
23 |
23 |
| D3O |
100 |
100 |
100 |
100 |
100 |
100 |
TABLE 2
| Component |
Ex 7 |
Ex 8 |
Ex 9 |
Ex 10 |
Ex 11 |
Ex 12 |
Ex 13 |
Ex 14 |
Ex 15 |
| OH-mPDMS (n=15) |
30 |
30 |
30 |
30 |
30 |
30 |
28 |
27 |
27 |
| OH-mPDMS (n=4) |
28 |
28 |
28 |
28 |
25 |
25 |
25 |
24.5 |
24 |
| [OH-mPDMS (n=15)]: [OH-mPDMS (n=4)] |
0.93 |
0.93 |
0.93 |
0.93 |
0.83 |
0.83 |
0.89 |
0.91 |
0.89 |
| DMA |
16.89 |
14.89 |
11.89 |
9.89 |
14.89 |
12.90 |
11.89 |
10.89 |
8.89 |
| HEMA |
7 |
7 |
7 |
7 |
7 |
7 |
7 |
7 |
7 |
| Blue HEMA |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
| PVP K90 |
15 |
17 |
20 |
22 |
20 |
22 |
25 |
27.5 |
30 |
| EGDMA |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
| Norbloc |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
| CGI 1870 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
| Diluent |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
| D3O |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
TABLE 3
| Ex |
Wt. % PVP |
DCA (adv., rec) |
WC |
% Haze |
Mechanicals |
Dk |
Lipids (ug/lens) |
| M (psi) |
%ETB |
| 1 |
3 |
89 (9), 26 (5) |
39.2 (0.3) |
3 (0) |
99 (7) |
103 (31) |
120 |
11.34 (0.41) |
| 2 |
5 |
62 (6), 28 (7) |
41.3 (0.4) |
5(0) |
101 (8) |
100 (36) |
131 |
11.47 (0.44) |
| 3 |
7 |
63 (6), 30 (4) |
41.5 (0.3) |
5(1) |
104 (7) |
93 (29) |
134 |
12.41 (0.87) |
| 4 |
9 |
36 (15), 29 (10) |
41.4 (0.3) |
5(1) |
104 (8) |
89 (25) |
129 |
11.74 (0.57) |
| 5 |
12 |
17 (17), 26 (8) |
41 (0) |
7 (11) |
134(11) |
205 (28) |
104 |
NT |
| 6 |
12 |
12 (10), NR |
42.0 (0.2) |
8 (1) |
106 (7) |
105 (41) |
158 |
12.19 (0.57) |
| 7 |
15 |
9 (10), 30 (9) |
41.5 (0.6) |
10 (1) |
132(18) |
106 (35) |
139 |
10.89 (0.48) |
| 8 |
17 |
36 (10), 16 (12) |
42.1 (0.4) |
13 (1) |
117(7) |
131 (48) |
118 |
11.85 (0.84) |
| 9 |
20 |
30 (9), 9 (11) |
42.9 (0.2) |
15 (1) |
124(11) |
131 (66) |
125 |
10.14 (0.89) |
| 11 |
20 |
44 (7), 23 (9) |
45.1 (0.3) |
10 (1) |
102(15) |
88 (25) |
120 |
9.88 (0.60) |
| 10 |
22 |
33 (12), 9 (10) |
41.4 (0.5) |
16 (1) |
145 (11) |
142 (50) |
NT |
8.75 (0.39) |
| 12 |
22 |
21 (13), 3 (7) |
44.6 (0.2) |
16 (1) |
127(15) |
91 (23) |
146 |
9.31 (0.09) |
| 13 |
25 |
63 (5), 36 (6) |
52.9 (0.6) |
11 (1) |
108 (9) |
232 (62) |
119 |
NT |
| 14 |
27.5 |
NT |
NT |
NT |
NT |
NT |
NT |
NT |
| 15 |
30 |
72 (13) |
51 (1) |
13 (1) |
120 (8) |
252 (33) |
98 |
NT |
[0192] Examples 1-15 prepared contact lenses from formulations having 3 to 30 wt% PVP and
a mixture of two hydroxyl functional silicone components (HO-mPMDS having 4 and 15
repeating units). The lenses having 15-30 wt% PVP displayed haze values of 16% or
less, which is far better than the haze values displayed by Comparative Examples 3-5.
Examples 7-13 also displayed desirably low advancing contact angles (9°-63°), as well
as a desirable balance of other properties, including water content, modulus, Dk and
lipid uptake. This is particularly surprising given that these formulations contain
less than 15 wt% hydrophilic monomer (DMA).
[0193] Comparing Example 5, which contained SiMAA instead of_HO-mPDMS, n=4, with Example
6, it Example 6 displayed a Dk value which was 50% higher than Example 5 (158 barrers
v. the 104 barrers), and lower modulus value (106 psi v. 132 psi) while maintaining
similar water content, haze and contact angle values.
Examples 16-24
[0194] Each reactive mixture was formed by mixing the reactive components listed in Table
4, filtering through a 3 µm filter using a heated or unheated stainless steel or glass
syringe, and then degassed by applying vacuum at ambient temperature for about 10-20
minutes. In a glove box with a nitrogen gas atmosphere and less than 0.1 percent oxygen
gas, about 75-100 µL of the reactive mixture were dosed using an Eppendorf pipet at
room temperature into the FC made of Zeonor. The BC made of a 55:45 (w/w) blend of
Z:PP was then placed onto the FC. The molds were equilibrated for at least twelve
hours in the glove box prior to dosing. Eight trays, each containing eight such mold
assemblies, were placed on a mirrored metallic plate and quartz plates were placed
on top of the trays to maintain proper fit and alignment. The plate was transferred
into an adjacent glove box maintained at 60-65°C, and the lenses were cured from the
top for 15 minutes using TL03 lights having intensity of 4-5 mW/cm
2. Reactive monomer mixtures exhibiting high viscosities at room temperature were dosed
into molds in the heated glove box. The light source was about six inches above the
trays. A detailed description of the curing process and apparatus can be found in
U.S. Patent No. 8,937,110.
[0195] The lenses were manually de-molded with most lenses adhering to the FC and released
by suspending about 64-112 lenses in about one liter of 70% IPA for about one hour,
followed by washing with 25% IPA, two times with DI, and finally two times with borate
buffered packaging solution. Each washing step lasted between 10 and 30 minutes. Lens
release is typically performed in jars on a laboratory roller. A person of ordinary
skill recognizes that the exact lens release process can be varied depending on the
lens formulation and mold materials, regarding the concentrations of the aqueous isopropanol
solutions, the number of washings with each solvent, and the duration of each step.
The purpose of the lens release process is to release all of the lenses without defects
and transition from diluent swollen networks to the packaging solution swollen hydrogels.
The lenses were transferred into vials and subsequently sterilized by autoclaving
at 122°C for 30 minutes. The physical and mechanical properties of the sterile lenses
were measured and listed in Table 5.
TABLE 4
| Component |
Ex 16 |
Ex 17 |
Ex 18 |
Ex 19 |
Ex 20 |
Ex 21 |
Ex 22 |
Ex 23 |
Ex 24 |
| OH-mPDMS (n=15) |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
| OH-mPDMS (n=4) |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
| [OH-mPDMS (n=15)]: [OH-mPDMS (n=4)] |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
| NVP |
10.35 |
9.35 |
8.35 |
6.85 |
5.35 |
5.35 |
2.85 |
1.85 |
0 |
| DMA |
10.35 |
9.35 |
8.35 |
6.85 |
5.35 |
5.35 |
2.85 |
1.85 |
0.7 |
| HEMA |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
| Blue HEMA |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
| PVP K90 |
5 |
7 |
9 |
12 |
12.5 |
15 |
20 |
22 |
25 |
| pVMA Mw= 628KDa |
0 |
0 |
0 |
0 |
2.5 |
0 |
0 |
0 |
0 |
| mPEG 950 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
| MAA |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
| EGDMA |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
| TAC |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
| Norbloc |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
| CGI 819 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
| Diluent |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
| D3O |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
TABLE 5
| Ex |
Wt.% PVP |
DCA (adv, rec) |
WC |
% Haze |
Mechanicals |
Dk |
Lysozyme (µg/lens) |
PQ1 |
Lipids (µg/ lens) |
| M (psi) |
%ETB |
| 16 |
5 |
95 (7), 32 (4) |
44.1 (0.2) |
5 (1) |
106 (9) |
90 (21) |
118 |
370 (15) |
2.52 (0.55) |
10.01 (0.46) |
| 17 |
7 |
78 (8), 26 (6) |
45.5 (0.3) |
5 (0) |
112 (12) |
107 (31) |
117 |
382 (11) |
1.25 (1.92) |
10.29 (0.75) |
| 18 |
9 |
64 (6), 29 (4) |
45.4 (0.1) |
5 (1) |
134 (15) |
73 (23) |
139 |
317(11) |
0.93 (1.46) |
10.15 (0.26) |
| 19 |
12 |
52 (8), 27 (4) |
43.8 (0.4) |
8 (0) |
137 (16) |
69 (27) |
134 |
244 (8) |
0.93 (2.21) |
10.79 (0.57) |
| 20 |
12.5 PVP + 2.5 pVMA |
25 (15), 25 (9) |
48.5 (0.1) |
14(0) |
127 (12) |
63 (20) |
129 |
160 (18) |
2.49 (1.91) |
8.99 (0.22) |
| 15 (18), 10 (15) |
46.4 (0.3) |
15(2) |
134 (18) |
44 (20) |
136 |
97 ± 9 |
| 21 |
15 |
18 (14), 16 (10) |
46.3 (0.2) |
9 (9) |
135 (13) |
68 (16) |
132 |
139 (8) |
NT |
9.36 (0.23) |
| 15 |
32 (11), 24 (12) |
45.2 (0.5) |
8 (1) |
140 (8) |
49 (15) |
136 |
113 ± 19 |
| 22 |
20 |
32 (7), 22 (8) |
45.4 (0.5) |
12(0) |
148 (12) |
165 (34) |
130 |
101 (21) |
NT |
10.81 (0.51) |
| 23 |
22 |
63 (35), 14 (4) |
45.7 (0.3) |
18 (2) |
164 (9) |
199 (24) |
141 |
195 (72) |
NT |
10.39 (0.37) |
| 24 |
25 |
45 (6), 25 (11) |
47.8 (0.2) |
41 (2) |
165 (13) |
202 (18) |
127 |
550 (36) |
NT |
9.83 (0.28) |
[0196] Formulations of Examples 16 to 24 show that lenses having 15% or more PVP were made
displaying acceptable haze and contact angles.
Examples 25-33
[0197] Each reactive mixture is formed by mixing the reactive components listed in Table
6, filtering through a 3 µm filter using a heated or unheated stainless steel or glass
syringe, and then degassing by applying vacuum at ambient temperature for about 10-60
minutes depending on the reactive mixture's viscosity. In a glove box with a nitrogen
gas atmosphere and less than 0.1 percent oxygen gas, about 75-100 µL of the reactive
mixture is dosed using an Eppendorf pipet at room temperature into the FC made of
Zeonor. The BC made of a 55:45 (w/w) blend of Z:PP is then placed onto the FC; alternatively,
FC and BC made from 90:10 (w/w) Z:PP or from only PP may be used. The molds are equilibrated
for at least twelve hours in the glove box prior to dosing. Eight trays, each containing
eight such mold assemblies, are placed on a mirrored metallic plate and quartz plates
are placed on top of the trays to maintain proper fit and alignment. The plate is
transferred into an adjacent glove box maintained at 60-65°C, and the lenses are cured
from the top for 15 minutes using TLO3 bulbs having intensity of 3-4 mW/cm
2. Reactive monomer mixtures exhibiting high viscosities at room temperature are dosed
into molds in the heated glove box. The light source is about six inches above the
trays. A detailed description of the curing process and apparatus can be found in
US Patent No. 8,937,110.
[0198] The lenses are manually de-molded with most lenses adhering to the FC and releasing
by suspending about 64-112 lenses in about one liter of 70% IPA for about one hour,
followed by washing with 70% IPA, two times with DI, and finally two times with borate
buffered packaging solution. Each washing step lasts between 10 and 30 minutes. Lens
release is typically performed in jars on a laboratory roller. A person of ordinary
skill recognizes that the exact lens release process can be varied depending on the
lens formulation and mold materials, regarding the concentrations of the aqueous isopropanol
solutions, the number of washings with each solvent, and the duration of each step.
The purpose of the lens release process is to release all of the lenses without defects
and transition from diluent swollen networks to the packaging solution swollen hydrogels.
The lenses are transferred into vials and subsequently sterilized by autoclaving at
122 °C for 30 minutes. The physical and mechanical properties of the sterile lenses
are measured and listed in Table 7.
[0199] Formulations of Examples 25 to 33 show that lenses having 15% or more pVMA were made
displaying acceptable haze and contact angles, although these lenses were not as wettable
as similar lenses containing PVP instead of pVMA.
TABLE 6
| Component |
Ex 25 |
Ex 26 |
Ex 27 |
Ex 28 |
Ex 29 |
Ex 30 |
Ex 31 |
Ex 32 |
Ex 33 |
| OH-mPDMS (n=15) |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
31 |
| OH-mPDMS (n=4) |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
25 |
| [OH-mPDMS (n=15)]: [OH-mPDMS (n=4)] |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
0.81 |
| NVP |
10.35 |
9.35 |
8.35 |
6.85 |
5.35 |
4.35 |
2.85 |
1.85 |
0 |
| DMA |
10.35 |
9.35 |
8.35 |
6.85 |
5.35 |
4.35 |
2.85 |
1.85 |
0.7 |
| HEMA |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
11.33 |
| Blue HEMA |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
| pVMA Mw=570KDa |
5 |
7 |
9 |
12 |
15 |
17 |
20 |
22 |
25 |
| mPEG 950 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
| MAA |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
| EGDMA |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
0.75 |
| TAC |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
| Norbloc |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
1.75 |
| CGI 819 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
0.25 |
| Diluent |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
30 |
| D3O |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
TABLE 7
| Lens |
Wt. % PVMA |
DCA (adv, rec) |
WC (wt%) |
% Haze |
Mechanicals |
Dk |
Lysozyme (µg/lens) |
PQ1 |
Lipids (µg/ lens) |
| M (psi) |
% ETB |
| Ex 25 |
5.0 |
68(8), 19(17) |
48(0) |
4(0) |
96(8) |
174(52) |
103 |
375(7) |
0 (0.4) |
1.66(0.09) |
| Ex 26 |
7.0 |
51(13), 18(14) |
50(0) |
4(0) |
91(10) |
185(50) |
105 |
434(5) |
1.0 (0.4) |
1.55(0.09) |
| Ex 27 |
9.0 |
16(16), 19(7) |
49(0) |
4(0) |
99(6) |
190(40) |
111 |
445(28) |
1.0 (0.1) |
1.62(0.10) |
| Ex 28 |
12.0 |
16(13), 12(15) |
50(0) |
7(0) |
98(6) |
158(39) |
107 |
391(12) |
5.8 (0.3) |
1.67(0.09) |
| Ex 29 |
15.0 |
31(14), 27(15) |
50(0) |
10(0) |
112(10) |
150(47) |
133 |
214(1) |
-1.0 (0.2) |
1.52(0.11) |
| Ex 30 |
17.0 |
82(9), 15(14) |
50(0) |
13(0) |
114(10) |
201(36) |
126 |
118(4) |
2.9 (0.1) |
2.25(0.46) |
| Ex. 31 |
20.0 |
87(13), 18(19) |
49(0) |
18(0) |
125(10) |
150(36) |
156 |
74(43) |
1.9 (0.4) |
4.30(1.82) |
| Ex. 32 |
22.0 |
93(19), 10(13) |
48(0) |
33(2) |
150(8) |
190(28) |
139 |
85(33) |
2.9 (0.70) |
2.92(0.56) |
| Ex. 33 |
25.0 |
91(30), 25(10) |
48(0) |
72(6) |
146(7) |
184(47) |
137 |
474(92) |
3.8 (0.3) |
1.85(0.41) |
1. A silicone hydrogel formed from a reactive monomer mixture comprising:
a. at least one hydroxyalkyl (meth)acrylate monomer;
b. at least one first mono-functional hydroxyl-substituted poly(disubstituted siloxane)
having 4 to 8 siloxane repeating units;
c. at least one second hydroxyl-substituted poly(disubstituted siloxane) selected
from the group consisting of mono-functional hydroxyl-substituted poly(disubstituted
siloxane) having 10 to 200 or 10-100 siloxane repeating units, multifunctional hydroxyl-substituted
poly(disubstituted siloxanes) having 10 to 200 or 10-100 siloxane repeating units,
and mixtures thereof;
d. at least 15 wt% at least one polyamide, based on the total weight of reactive components
in the reactive monomer mixture; and
e. optional further constituents.
2. The silicone hydrogel of claim 1, wherein the polyamide is present in the reactive
mixture in an amount between 15.1 weight percent and 40 weight percent or between
15.1 and 30 wt%, based on the total weight of all reactive components in the reactive
monomer mixture.
3. The silicone hydrogel of claims 1 or 2, wherein the polyamide is selected from the
group essentially consisting of cyclic polyamides, acyclic polyamides, and mixtures
thereof.
4. The silicone hydrogel of claim 3, wherein the polyamide comprises repeating units
selected from Formula I, Formula II and Formula IV

wherein
R1 is independently a hydrogen atom or methyl;
X is a direct bond, -(CO)-, or -(CO)-NH-Re-, wherein Re is a C1 to C3 alkyl group;
Ra is selected from H, straight or branched, substituted or unsubstituted C1 to C4 alkyl groups;
Rb is selected from H, straight or branched, substituted or unsubstituted C1 to C4 alkyl groups, amino groups having up to two carbon atoms, amide groups having up
to four carbon atoms, and alkoxy groups having up to two carbon groups;
Rc is selected from H, straight or branched, substituted or unsubstituted C1 to C4 alkyl groups;
Rd is selected from H, straight or branched, substituted or unsubstituted C1 to C4 alkyl groups;
wherein the number of carbon atoms in Ra and Rb taken together is 8 or less, optionally 6 or less, and wherein the number of carbon
atoms in Rc and Rd taken together is 8 or less.
5. The silicone hydrogel of claim 3, wherein:
(a) the cyclic polyamide is prepared from at least one of α-lactam, β-lactam, γ-lactam,
δ-lactam, and ε-lactam; or
(b) the cyclic polyamide comprises repeating units of Formula IV

wherein
R1 is independently a hydrogen atom or methyl; f is a number from 1 to 10, or 8 or less,
or 6 or less, or 2 to 6, or 3, or 2, and
X is a direct bond, -(CO)-, or -(CO)-NH-Re-, wherein Re is a C1 to C3 alkyl group.
6. The silicone hydrogel of claim 3, wherein the polyamide is a copolymer; optionally:
(a) wherein the copolymer comprises at least 80 mole percent of the repeating units
selected from NVP, VMA, DMA, NVA, and mixtures thereof; or
(b) wherein the copolymer further comprises at least one repeating unit selected from
the group consisting of N-vinyl amides, acrylamides, hydroxyalkyl (meth)acrylates,
alkyl(meth)acrylates, N-vinylpyrrolidone, N,N-dimethylacrylamide, 2-hydroxyethyl methacrylate,
vinyl acetate, acrylonitrile, hydroxypropyl methacrylate, 2-hydroxyethyl acrylate,
methyl methacrylate, butyl methacrylate, methacryloxypropoyl tristrimethylsiloxysilane,
siloxane substituted acrylates or methacrylates, and mixtures thereof.
7. The silicone hydrogel of claim 1, wherein the polyamide is selected from polyvinylpyrrolidone
(PVP), polyvinylmethyacetamide (PVMA), polydimethylacrylamide (PDMA), polyvinylacetamide
(PNVA), poly(hydroxyethyl(meth)acrylamide), polyacrylamide, and copolymers and mixtures
thereof; optionally
(a) wherein the polyamide is PVP; or
(b) wherein the polyamide is PVMA.
8. The silicone hydrogel of any of the foregoing claims further comprising at least one
additional hydrophilic monomer; optionally
(a) wherein the additional hydrophilic monomer is selected from the group consisting
of ethylene glycol vinyl ether (EGVE), di(ethylene glycol) vinyl ether (DEGVE), N-vinyl
pyrrolidone (NVP), 1-methyl-3-methylene-2-pyrrolidone, 1-methyl-5-methylene-2-pyrrolidone,
5-methyl-3-methylene-2-pyrrolidone; 1-ethyl-5-methylene-2-pyrrolidone, N-methyl-3-methylene-2-pyrrolidone,
5-ethyl-3-methylene-2-pyrrolidone, 1-n-propyl-3-methylene-2-pyrrolidone, 1-n-propyl-5-methylene-2-pyrrolidone,
1-isopropyl-3-methylene-2-pyrrolidone, 1-isopropyl-5-methylene-2-pyrrolidone, N-vinyl-N-methyl
acetamide (VMA), N-vinyl-N-ethyl acetamide, N-vinyl-N-ethyl formamide, N-vinyl formamide,
N-vinyl acetamide, N-vinyl isopropylamide, allyl alcohol, N-vinyl caprolactam, N-2-hydroxyethyl
vinyl carbamate, N-carboxy-β-alanine N-vinyl ester; N-carboxyvinyl-β-alanine (VINAL),
N-carboxyvinyl-α-alanine and mixtures thereof; or
(b) wherein the additional hydrophilic monomer is selected from N,N-dimethylacrylamide,
N-vinylpyrrolidone, N-vinyl-N-methyl acetamide, N-vinyl acetamide, and 1-methyl-5-methylene-2-pyrrolidone;
or
(c) wherein the additional hydrophilic monomer comprises N-vinylpyrrolidone, N,N-dimethylacrylamide,
and mixtures thereof.
9. The silicone hydrogel of any of the foregoing claims wherein
(a) said hydroxyalkyl (meth)acrylate monomer is selected from the group consisting
of 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl
(meth)acrylate, 2,3-dihydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate,
3-hydroxybutyl (meth)acrylate, 1-hydroxypropyl-2-(meth)acrylate, 2-hydroxy-2-methylpropyl
(meth)acrylate, 3-hydroxy-2,2-dimethyl-propyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate,
glycerol (meth)acrylate, polyethylene glycol monomethacrylate, and mixtures thereof;
or
(b) said hydroxyalkyl (meth)acrylate monomer is selected from the group consisting
of 2-hydroxyethyl methacrylate, glycerol methacrylate, 2-hydroxypropyl methacrylate,
hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethyl-propyl methacrylate, and mixtures
thereof or 2-hydroxyethyl methacrylate, 3-hydroxy-2,2-dimethyl-propyl methacrylate,
hydroxybutyl methacrylate or glycerol methacrylate and mixtures thereof.
10. The silicone hydrogel of any of the foregoing claims, wherein the first mono-functional
hydroxyl-substituted poly(disubstituted siloxane) has the structure shown Formula
VI-1

wherein
Z is selected from O, N, S or NCH2CH2O, when Z is O or S R2 is not present;
R1 is independently H or methyl;
R2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
amide, ether, and combinations thereof; R3 and R4 may be independently selected from methyl, ethyl or phenyl, or may be methyl;
n is 4-8, and
R5 is selected from straight or branched C1 to C8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, and combinations thereof; or R5 is methyl or straight or branched C4 alkyl, either of which may optionally be substituted with hydroxyl.
11. The silicone hydrogel of claim 1 or 10, wherein the second hydroxyl-substituted poly(dialkylsiloxane)
comprises a compound of Formula VI-2
wherein Z is selected from O, N, S or NCH2CH2O, when Z is O or S R2 is not present;
R1 is independently H or methyl;
R2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
and which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 may be independently selected from methyl, ethyl or phenyl, or may be methyl;
n is the number of siloxane units and is from 10 to 200; and
R5 is selected from straight or branched C1 to C8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, and combinations thereof.
12. The silicone hydrogel of any of the foregoing claims wherein:
(a) the total weight percent of the first mono-functional hydroxyl-substituted poly(dialkylsiloxane)
and the second hydroxyl-substituted poly(dimethylsiloxane) is between 40 and 70 wt%
or 45 to 70 wt%; and/or
(b) wherein the first mono-functional hydroxyl-substituted poly(disubstituted siloxane)
and the second hydroxyl-substituted poly(disubstituted siloxane) are present in the
reactive monomer mixture in concentrations that provide a weight ratio, of the first
mono-functional hydroxyl-substituted poly(disubstituted siloxane) to the second hydroxyl-substituted
poly(disubstituted siloxane) of between 0.1 to 1.3; and/or
(c) wherein the weight ratio of the first mono-functional hydroxyl-substituted poly(dialkylsiloxane)
to the second hydroxyl-substituted poly(dimethylsiloxane) is between 0.1 and 1 or
0.4 and 1.
13. The silicone hydrogel of any of the foregoing claims, further comprising at least
one additional silicone-containing component selected from the group consisting of
non-hydroxyl silicone-containing monomers, macromers, cross-linking agents.
14. The silicone hydrogel of claim 11 wherein n=4-8 in the first mono-functional hydroxyl-substituted
poly(disubstituted siloxane) and n=10-20 in the second hydroxyl-substituted poly(disubstituted
siloxane).
15. The silicone hydrogel of claim 2, wherein the average number of siloxane repeating
units of the first mono-functional hydroxyl-substituted poly(dialkylsiloxane) is 4
and the average number of siloxane repeating units of the second hydroxyl-substituted
poly(dimethylsiloxane) is between 10 and 20.
16. The silicone hydrogel of claim 8, wherein the total weight percent of additional hydrophilic
monomer is between 5 and 30 wt.%, or 8 to 25 wt%.
17. The silicone hydrogel of any preceding claim, further comprising at least one cross-linking
agent selected from the group consisting of bifunctional crosslinkers, trifunctional
crosslinkers, tetrafunctional crosslinkers, multifunctional crosslinkers, and mixtures
thereof.
18. The silicone hydrogel of any of claim 11, wherein the second mono-functional hydroxyl-substituted
poly(disubstituted siloxane) is selected from the group consisting of hydroxyl-substituted
poly(disubstituted siloxane) of Formula VI-2, wherein n is from 10 to 20, a difunctional
hydroxyl-substituted poly(disubstituted siloxane) of Formula XI, and mixtures thereof

wherein
R1 is independently a hydrogen atom or methyl group;
R15 and R16 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
amido, ether, amino, carboxyl, carbonyl groups and combinations thereof; or are independently
methyl or ethyl; and
n is 10 to 200; 10 to 100; 10 to 50; 10 to 20.
19. The silicone hydrogel of claim 1, wherein the monofunctional hydroxyl substituted,
poly(disubstituted siloxane)s are selected from the group consisting of monofunctional
hydroxyl substituted, poly(dimethylsiloxane) of Formula VIIa-IXb
wherein R1 is methyl or H; n is between 4 and 30, 4-8 or 10-20;
R2 is independently selected from the group consisting of H or a linear, branched, or
cyclic alkyl group containing one to eight carbon atoms, any of which may be further
substituted with at least one hydroxy group, and which may be optionally substituted
with amide, ether, and combinations thereof;
n1 n2 are independently between 4 to 100; 4 to 50; or 4 to 25;
n3 is 1-50, 1-20, or 1-10;
R5 is selected from straight or branched C1 to C8 alkyl groups, which may be optionally substituted with one or more hydroxyl, amide,
ether, polyhydroxyl groups selected from straight or branched C1 to C8 groups having a formula of CfHg(OH)h wherein f=1-8 and g+h=2f+1 and cyclic C1 to C8 groups having a formula of CrHg(OH)h wherein f=1-8 and g+h=2f-1, and combinations thereof; or R5 may be selected from methyl, butyl or hydroxyl substituted C2-C5 alkyl, including hydroxyl ethyl, hydroxyl propyl, hydroxyl butyl, hydroxyl pentyl
and 2,3-dihydroxypropyl;
a is 4-8 for the first hydroxyl-containing silicone component and between 4-100 for
the second hydroxyl-containing silicone component.
20. The silicone hydrogel of any of the foregoing claims, wherein the further constituent
is selected from a diluent, a UV absorbing compound, a medicinal agent, an antimicrobial
compound, a pharmaceutical compound, a nutraceutical compound, a photochromic compound,
a reactive tint, a pigment, a copolymerizable dye, a nonpolymerizable dye, a release
agent, a copolymer, and combinations thereof; optionally
(a) wherein the UV absorbing compound is selected from the group consisting of reactive
2-(2'-hydroxyphenyl)benzotriazoles, 2-hydroxybenzophenones, 2-hydroxyphenyltriazines,
oxanilides, cyanoacrylates, salicylates, 4-hydroxybenzoates, and mixtures thereof;
or
(b) wherein the UV absorbing compound is selected from the group consisting of 2-(2'-hydroxy-5-methacrylyloxyethylphenyl)-2H-benzotriazole,
5-vinyl and 5-isopropenyl derivatives of 2-(2,4-dihydroxyphenyl)-2H-benzotriazole
and 4-acrylates or 4-methacrylates of 2-(2,4-dihydroxyphenyl)-2H-benzotriazole or
2-(2,4-dihydroxyphenyl)-1,3-2H-dibenzotriazole, and mixtures thereof.
21. The silicone hydrogel of any of the foregoing claims, wherein the silicone hydrogel
has an oxygen permeability (Dk) of at least 80 barrers, or 80 to 200 barrers, 90 to
180 barrers, 100 to 160 barrers.
22. The silicone hydrogel of any of foregoing claims, further comprising at least one
charged monomer comprises at least one ionic moiety selected from the group consisting
of anions, cations, zwitterions, betaines, and mixtures thereof.
23. The silicone hydrogel of claim 1 formed from a reactive monomer mixture comprising:
a. At least one hydroxyalkyl (meth)acrylate;
b. a hydroxyl-containing silicone component that comprises a mixture of a first hydroxyl
substituted, linear poly(dialkylsiloxane) of Formula VI,

wherein
Z is selected from O, N, S or NCH2CH2O, when Z is O or S R2 is not present;
R1 is independently H or methyl;
R2 is H or is a linear, branched, or cyclic alkyl group containing one to eight carbon
atoms, any of which may be further substituted with at least one hydroxy group, and
which may be optionally substituted with amide, ether, and combinations thereof;
R3 and R4 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
amide, ether, and combinations thereof; R3 and R4 may be independently selected from methyl, ethyl or phenyl, or may be methyl;
n is 4-8 for the first monofunctional hydroxyl substituted, poly(disubstituted siloxane),
and,
a second hydroxyl substituted, linear poly(dialkylsiloxane) selected from the group
consisting of
a monofunctional hydroxyl substituted, linear poly(dialkylsiloxane) of Formula I,
wherein n is 10 to 20 and R13 is selected from straight or branched C1 to C8 alkyl groups, optionally substituted with one or more hydroxyl, amide, ether, and
combinations thereof; and
a multifunctional hydroxyl substituted, linear poly(dialkylsiloxane) of Formula XI
having 10 to 200, or 10 to 100 siloxane repeating units,

Wherein R1 is independently a hydrogen atom or methyl group;
R15 and R16 are independently a linear, branched, or cyclic alkyl group containing one to eight
carbon atoms, any of which may be further substituted with at least one hydroxy group,
amido, ether, amino, carboxyl, carbonyl groups and combinations thereof; or are independently
methyl or ethyl; and
n is 10 to 200; 10 to 100; 10 to 50; 10 to 20;
wherein a ratio of the second hydroxyl substituted, linear poly(dialkylsiloxane) to
the first hydroxyl substituted, linear poly(dialkylsiloxane) is in a range of 0.1
to 1.3, or 0.4 to 1;
greater than 15 weight percent, based on the total weight of the reactive monomer
mixture, of at least one polyamide selected from the group consisting of PVP, PVMA,
PDMA, PNVA, polyacrylamide, and copolymers and mixtures thereof; and
optionally, methacrylic acid.
24. The silicone hydrogel of claim 23, further comprising at least one additional hydrophilic
monomer is selected from the group consisting of N-vinyl amides, N-vinylimides, N-vinyl lactams, hydrophilic (meth)acrylates, (meth)acrylamides, hydrophilic styrenes,
vinyl ethers, O-vinyl carbonates, O-vinyl carbamates, N-vinyl ureas, other hydrophilic vinyl compounds and mixtures thereof.
25. The silicone hydrogel of any of claims 1-24, wherein the polyamide has a weight average
molecular weight of at least 100,000 Daltons; or greater than 150,000 Daltons; or
between 150,000 to 2,000,000 Daltons, or between 300,000 to 1,800,000 Daltons.
26. The silicone hydrogel of any of claims 1-25 wherein the polyamide is added to the
reaction mixture such that the hydrogel polymerizes around the polyamide, forming
a semi-interpenetrating network.
27. A contact lens comprising the silicone hydrogel of any of claims 1-26.
28. The contact lens of claim 27, wherein:
(a) the lipid uptake is less than 15 µg/lens, or less than 10 µg/lens; and/or
(b) the PQ1 uptake is less than 20%; and/or
(c) the dynamic contact angle is less than 95°, or less than 60°; and/or
(d) the lysozyme uptake is at least 50 µg/lens, at least 100 µg/lens, at least 200
µg/lens at least 500 µg/lens, at least 700 µg/lens or at least 800 µg/lens; 50-1500
µg/lens, 100-1500 µg/lens, or 200-1500 µg/lens.
29. A method of making the silicone hydrogel of any of claims 1-26, the method comprising:
preparing the reactive monomer mixture, and
subjecting the reactive monomer mixture to polymerization conditions to form the silicone
hydrogel;
optionally wherein polymerization of the reaction mixture is initiated using heat
or visible or ultraviolet light.
1. Silikonhydrogel, gebildet aus einer reaktiven Monomerenmischung, umfassend:
a. mindestens ein Hydroxyalkyl(meth)acrylat-Monomer;
b. mindestens ein erstes monofunktionelles hydroxylsubstituiertes Polysiloxan mit
disubstituiertem Siloxan mit 4 bis 8 Siloxan-Wiederholungseinheiten;
c. mindestens ein zweites hydroxylsubstituiertes Polysiloxan mit disubstituiertem
Siloxan ausgewählt aus der Gruppe bestehend aus monofunktionellem hydroxylsubstituiertem
Polysiloxan mit disubstituiertem Siloxan mit 10 bis 200 oder 10-100 Siloxan-Wiederholungseinheiten,
multifunktionellen hydroxylsubstituierten Polysiloxanen mit disubstituiertem Siloxan
mit 10 bis 200 oder 10-100 Siloxan-Wiederholungseinheiten und Mischungen davon;
d. mindestens 15 Gew.-% eines Polyamids, bezogen auf das Gesamtgewicht von reaktiven
Komponenten in der reaktiven Monomerenmischung; und
e. gegebenenfalls weitere Bestandteile.
2. Silikonhydrogel nach Anspruch 1, wobei das Polyamid in der reaktiven Mischung in einer
Menge zwischen 15,1 Gewichtsprozent und 40 Gewichtsprozent oder zwischen 15,1 und
30 Gew.-%, bezogen auf das Gesamtgewicht aller reaktiven Komponenten in der reaktiven
Mischung, vorliegt.
3. Silikonhydrogel nach Anspruch 1 oder 2, wobei das Polyamid aus der Gruppe ausgewählt
ist, die im Wesentlichen aus cyclischen Polyamiden, acyclischen Polyamiden und Mischungen
davon besteht.
4. Silikonhydrogel nach Anspruch 3, wobei das Polyamid Wiederholungseinheiten umfasst,
die aus Formel I, Formel II und Formel IV ausgewählt sind:

wobei
R1 unabhängig für ein Wasserstoffatom oder Methyl steht;
X für eine direkte Bindung, -(CO)- oder -(CO)-NH-Re- steht, wobei Re für eine C1- bis C3-Alkylgruppe steht;
Ra aus H und geraden oder verzweigten, substituierten oder unsubstituierten C1- bis C4-Alkylgruppen ausgewählt ist;
Rb aus H, geraden oder verzweigten, substituierten oder unsubstituierten C1- bis C4-Alkylgruppen, Aminogrupppen mit bis zu zwei Kohlenstoffatomen, Amidgruppen mit bis
zu vier Kohlenstoffatomen und Alkoxygruppen mit bis zu zwei Kohlenstoffgruppen ausgewählt
ist;
Rc aus H und geraden oder verzweigten, substituierten oder unsubstituierten C1- bis C4-Alkylgruppen ausgewählt ist;
Rd aus H und geraden oder verzweigten, substituierten oder unsubstituierten C1- bis C4-Alkylgruppen ausgewählt ist;
wobei die Zahl der Kohlenstoffatome in Ra und Rb zusammengenommen 8 oder weniger, gegebenenfalls 6 oder weniger, beträgt und wobei
die Zahl der Kohlenstoffatome in Rc und Rd zusammengenommen 8 oder weniger beträgt.
5. Silikonhydrogel nach Anspruch 3, wobei:
(a) das cyclische Polyamid aus mindestens einem von α-Lactam, β-Lactam, γ-Lactam,
δ-Lactam und ε-Lactam hergestellt wird oder
(b) das cyclische Polyamid Wiederholungseinheiten der Formel IV

umfasst, wobei
R1 unabhängig für ein Wasserstoffatom oder Methyl steht; f für eine Zahl von 1 bis 10
oder 8 oder weniger oder 6 oder weniger oder 2 bis 6 oder 3 oder 2 steht und
X für eine direkte Bindung, -(CO)- oder -(CO)-NH-Re- steht, wobei Re für eine C1- bis C3-Alkylgruppe steht.
6. Silikonhydrogel nach Anspruch 3, wobei es sich bei dem Polyamid um ein Copolymer handelt,
gegebenenfalls:
(a) wobei das Copolymer mindestens 80 Molprozent der Wiederholungseinheiten umfasst,
die aus NVP, VMA, DMA, NVA und Mischungen davon ausgewählt sind; oder
(b) wobei das Copolymer ferner mindestens eine Wiederholungseinheit umfasst, die aus
der Gruppe bestehend aus N-Vinylamiden, Acrylamiden, Hydroxyalkyl(meth)acrylaten,
Alkyl(meth)acrylaten, N-Vinylpyrrolidon, N,N-Dimethylacrylamid, 2-Hydroxyethylmethacrylat,
Vinylacetat, Acrylnitril, Hydroxypropylmethacrylat, 2-Hydroxyethylacrylat, Methylmethacrylat,
Butylmethacrylat, Methacryloxypropyltristrimethylsiloxysilan, siloxansubstituierten
Acrylaten oder Methacrylaten und Mischungen davon ausgewählt ist.
7. Silikonhydrogel nach Anspruch 1, wobei das Polyamid aus Polyvinylpyrrolidon (PVP),
Polyvinylmethylacetamid (PVMA), Polydimethylacrylamid (PDMA), Polyvinylacetamid (PNVA),
Poly(hydroxyethyl(meth)-acrylamid), Polyacrylamid und Copolymeren und Mischungen davon
ausgewählt ist; gegebenenfalls
(a) wobei es sich bei dem Polyamid um PVP handelt oder
(b) wobei es sich bei dem Polyamid um PVMA handelt.
8. Silikonhydrogel nach einem der vorhergehenden Ansprüche, ferner umfassend mindestens
ein zusätzliches hydrophiles Monomer; gegebenenfalls
(a) wobei das zusätzliche hydrophile Monomer aus der Gruppe bestehend aus Ethylenglykolvinylether
(EGVE), Di(ethylenglykol)vinylether (DEGVE), N-Vinylpyrrolidon (NVP), 1-Methyl-3-methylen-2-pyrrolidon,
1-Methyl-5-methylen-2-pyrrolidon, 5-Methyl-3-methylen-2-pyrrolidon; 1-Ethyl-5-methylen-2-pyrrolidon,
N-Methyl-3-methylen-2-pyrrolidon, 5-Ethyl-3-methylen-2-pyrrolidon, 1-n-Propyl-3-methylen-2-pyrrolidon,
1-n-Propyl-5-methylen-2-pyrrolidon, 1-Isopropyl-3-methylen-2-pyrrolidon, 1-Isopropyl-5-methylen-2-pyrrolidon,
N-Vinyl-N-methylacetamid (VMA), N-Vinyl-N-ethylacetamid, N-Vinyl-N-ethylformamid,
N-Vinylformamid, N-Vinylacetamid, N-Vinylisopropylamid, Allylalkohol, N-Vinylcaprolactam,
N-2-Hydroxyethylvinyl-carbamat, N-Carboxy-β-alanin-N-vinylester; N-Carboxyvinyl-β-alanin
(VINAL), N-Carboxyvinyl-α-alanin und Mischungen davon ausgewählt ist oder
(b) wobei das zusätzliche hydrophile Monomer aus N,N-Dimethylacrylamid, N-Vinylpyrrolidon,
N-Vinyl-N-methylacetamid, N-Vinylacetamid und 1-Methyl-5-methylen-2-pyrrolidon ausgewählt
ist oder
(c) wobei das zusätzliche hydrophile Monomer N-Vinylpyrrolidon, N,N-Dimethylacrylamid
und Mischungen davon umfasst.
9. Silikonhydrogel nach einem der vorhergehenden Ansprüche, wobei
(a) das Hydroxyalkyl(meth)acrylat-Monomer aus der Gruppe bestehend aus 2-Hydroxyethyl(meth)acrylat,
3-Hydroxypropyl(meth)acrylat, 2-Hydroxypropyl-(meth)acrylat, 2,3-Dihydroxypropyl(meth)acrylat,
2-Hydroxybutyl(meth)acrylat, 3-Hydroxybutyl(meth)-acrylat, 1-Hydroxypropyl-2-(meth)acrylat,
2-Hydroxy-2-methylpropyl(meth)acrylat, 3-Hydroxy-2,2-dimethylpropyl(meth)acrylat,
4-Hydroxybutyl-(meth)acrylat, Glycerin(meth)acrylat, Polyethylenglykolmonomethacrylat
und Mischungen davon ausgewählt ist oder
(b) das Hydroxyalkyl(meth)acrylat-Monomer aus der Gruppe bestehend aus 2-Hydroxyethylmethacrylat,
Glycerinmethacrylat, 2-Hydroxypropylmethacrylat, Hydroxybutylmethacrylat, 3-Hydroxy-2,2-dimethyl-propylmethacrylat
und Mischungen davon oder 2-Hydroxyethylmethacrylat, 3-Hydroxy-2,2-dimethyl-propylmethacrylat,
Hydroxybutylmethacrylat oder Glycerinmethacrylat und Mischungen davon ausgewählt ist.
10. Silikonhydrogel nach einem der vorhergehenden Ansprüche, wobei das erste monofunktionelle
hydroxylsubstituierte Polysiloxan mit disubstituiertem Siloxan die in Formel VI-1
gezeigte Struktur aufweist:

wobei
Z aus O, N, S oder NCH2CH2O ausgewählt ist und dann, wenn Z für O oder S steht, R2 nicht vorhanden ist;
R1 unabhängig für H oder Methyl steht;
R2 für H oder eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe substituiert
sein kann und die gegebenenfalls durch Amid, Ether und Kombinationen davon substituiert
sein kann, steht;
R3 und R4 unabhängig für eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe, Amid, Ether
und Kombinationen davon substituiert sein kann, steht; R3 und R4 unabhängig aus Methyl, Ethyl oder Phenyl ausgewählt sein können oder für Methyl stehen
können;
n für 4-8 steht und
R5 aus geraden oder verzweigten C1- bis C8-Alkylgruppen, die gegebenenfalls durch ein oder mehrere Hydroxyl, Amid, Ether und
Kombinationen davon substituiert sein können, ausgewählt ist oder R5 für Methyl oder gerades oder verzweigtes C4-Alkyl, das jeweils gegebenenfalls durch Hydroxyl substituiert sein kann, steht.
11. Silikonhydrogel nach Anspruch 1 oder 10, wobei das zweite hydroxylsubstituierte Poly(dialkylsiloxan)
eine Verbindung der Formel VI-2 umfasst:

wobei
Z aus O, N, S oder NCH2CH2O ausgewählt ist und dann, wenn Z für O oder S steht, R2 nicht vorhanden ist;
R1 unabhängig für H oder Methyl steht;
R2 für H oder eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe substituiert
sein kann und die gegebenenfalls durch Amid, Ether und Kombinationen davon substituiert
sein kann, steht;
R3 und R4 unabhängig für eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe substituiert
sein kann und die gegebenenfalls durch Amid, Ether und Kombinationen davon substituiert
sein kann, steht; R3 und R4 unabhängig aus Methyl, Ethyl oder Phenyl ausgewählt sein können oder für Methyl stehen
können;
n für die Zahl der Siloxaneinheiten steht und für 10 bis 200 steht und
R5 aus geraden oder verzweigten C1- bis C8-Alkylgruppen, die gegebenenfalls durch ein oder mehrere Hydroxyl, Amid, Ether und
Kombinationen davon substituiert sein können, ausgewählt ist.
12. Silikonhydrogel nach einem der vorhergehenden Ansprüche, wobei:
(a) der gesamte Gewichtsprozentanteil des ersten monofunktionellen hydroxylsubstituierten
Poly-(dialkylsiloxan)s und des zweiten hydroxylsubstituierten Poly(dimethylsiloxan)s
zwischen 40 und 70 Gew.-% liegt oder 45 bis 70 Gew.-% beträgt und/oder
(b) wobei das erste monofunktionelle hydroxylsubstituierte Polysiloxan mit disubstituiertem
Siloxan und das zweite hydroxylsubstituierte Polysiloxan mit disubstituiertem Siloxan
in der reaktiven Monomerenmischung in Konzentrationen vorliegen, die ein Gewichtsverhältnis
von erstem monofunktionellem hydroxylsubstituiertem Polysiloxan mit disubstituiertem
Siloxan zu zweitem hydroxylsubstituiertem Polysiloxan mit disubstituiertem Siloxan
zwischen 0,1 und 1,3 liefern; und/oder
(c) wobei das Gewichtsverhältnis von erstem monofunktionellem hydroxylsubstituiertem
Polysiloxan mit disubstituiertem Siloxan zu zweitem hydroxylsubstituiertem Polysiloxan
mit disubstituiertem Siloxan zwischen 0,1 und 1 oder 0,4 und 1 liegt.
13. Silikonhydrogel nach einem der vorhergehenden Ansprüche, ferner umfassend mindestens
eine zusätzliche silikonhaltige Komponente, die aus der Gruppe bestehend aus hydroxylgruppenfreien
silikonhaltigen Monomeren, Makromeren und Vernetzungsmitteln ausgewählt ist.
14. Silikonhydrogel nach Anspruch 11, wobei in dem ersten monofunktionellen hydroxylsubstituierten
Polysiloxan mit disubstituiertem Siloxan n = 4-8 ist und in dem zweiten hydroxylsubstituierten
Polysiloxan mit disubstituiertem Siloxan n = 10-20 ist.
15. Silikonhydrogel nach Anspruch 2, wobei die durchschnittliche Zahl von Siloxan-Wiederholungseinheiten
des ersten monofunktionellen hydroxylsubstituierten Poly(dialkylsiloxan)s 4 beträgt
und die durchschnittliche Zahl von Siloxan-Wiederholungseinheiten des zweiten hydroxylsubstituierten
Poly(dimethylsiloxan)s zwischen 10 und 20 liegt.
16. Silikonhydrogel nach Anspruch 8, wobei der Gesamtgewichtsanteil von zusätzlichem hydrophilem
Monomer zwischen 5 und 30 Gew.-% liegt oder 8 bis 25 Gew.-% beträgt.
17. Silikonhydrogel nach einem der vorhergehenden Ansprüche, ferner umfassend mindestens
ein Vernetzungsmittel, das aus der Gruppe bestehend aus bifunktionellen Vernetzern,
trifunktionellen Vernetzern, tetrafunktionellen Vernetzern, multifunktionellen Vernetzern
Mischungen davon ausgewählt ist.
18. Silikonhydrogel nach Anspruch 11, wobei das zweite monofunktionelle hydroxylsubstituierte
Polysiloxan mit disubstituiertem Siloxan aus der Gruppe bestehend aus hydroxylsubstituiertem
Polysiloxan mit disubstituiertem Siloxan der Formel VI-2, wobei n für 10 bis 20 steht,
einem difunktionellen hydroxalsubstituierten Polysiloxan mit disubstituiertem Siloxan
der Formel XI und Mischungen davon ausgewählt ist:

wobei
R1 unabhängig für ein Wasserstoffatom oder eine Methylgruppe steht;
R15 und R16 unabhängig für eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe, Amido-,
Ether-, Amino-, Carboxyl-, Carbonylgruppen und Kombinationen davon substituiert sein
kann, stehen oder unabhängig für Methyl oder Ethyl stehen und
n für 10 bis 200; 10 bis 100; 10 bis 50; 10 bis 20 steht.
19. Silikonhydrogel nach Anspruch 1, wobei die monofunktionellen hydroxylsubstituierten
Polysiloxane mit disubstituiertem Siloxan aus der Gruppe bestehend aus monofunktionellen
hydroxylsubstituierten Polysiloxanen mit disubstituiertem Siloxan der Formel VIIa-IXb
ausgewählt sind:
wobei R1 für Methyl oder H steht; n zwischen 4 und 30, 4-8 oder 10-20 liegt;
R2 unabhängig aus der Gruppe bestehend aus H oder einer linearen, verzweigten oder cyclischen
Alkylgruppe mit eins bis acht Kohlenstoffatomen, die jeweils weiter durch mindestens
eine Hydroxygruppe substituiert sein kann und die gegebenenfalls durch Amid, Ether
und Kombinationen davon substituiert sein kann, ausgewählt ist;
n1 und n2 unabhängig zwischen 4 bis 100; 4 bis 50 oder 4 bis 25 liegen;
n3 für 1-50, 1-20 oder 1-10 steht;
R5 aus geraden oder verzweigten C1- bis C8-Alkylgruppen, die gegebenenfalls durch eine oder mehrere Hydroxyl-, Amid-, Ether-,
Polyhydroxylgruppen substituiert sein können, die aus geraden oder verzweigten C1- bis C8-Alkylgruppen mit der Formel CfHg(OH)h, wobei f = 1-8 und g + h = 2f + 1, und cyclischen C1- bis C8-Alkylgruppen mit der Formel CfHg(OH)h, wobei f = 1-8 und g + h = 2f - 1, ausgewählt sind, und Kombinationen davon ausgewählt
ist oder R5 aus Methyl, Butyl oder hydroxylsubstituiertem C2-C5-Alkyl einschließlich Hydroxylethyl, Hydroxylpropyl, Hydroxylbutyl, Hydroxylpentyl
und 2,3-Dihydroxypropyl ausgewählt sein kann;
a für die erste hydroxylgruppenhaltige Silikonkomponente für 4-8 steht und für die
zweite hydroxylgruppenhaltige Silikonkomponente zwischen 4-100 liegt.
20. Silikonhydrogel nach einem der vorhergehenden Ansprüche, wobei der weitere Bestandteil
aus einem Verdünnungsmittel, einer UV-absorbierenden Verbindung, einem medizinischen
Mittel, einer antimikrobiellen Verbindung, einer pharmazeutischen Verbindung, einer
nutrazeutischen Verbindung, einer photochromen Verbindung, einem reaktiven Tönungsmittel,
einem Pigment, einem copolymerisierbaren Farbstoff, einem nichtpolymerisierbaren Farbstoff,
einem Trennmittel, einem Copolymer und Kombinationen davon ausgewählt ist; gegebenenfalls
(a) wobei die UV-absorbierende Verbindung aus der Gruppe bestehend aus reaktiven 2-(2'-Hydroxyphenyl)benzotriazolen,
2-Hydroxybenzophenonen, 2-Hydroxyphenyltriazinen, Oxaniliden, Cyanoacrylaten, Salicylaten,
4-Hydroxybenzoaten und Mischungen davon ausgewählt ist oder
(b) wobei die UV-absorbierende Verbindung aus der Gruppe bestehend aus 2-(2'-Hydroxy-5-methacrylyl-oxyethylphenyl)-2H-benzotriazol,
5-Vinyl- und 5-Isopropenylderivaten von 2-(2,4-Dihydroxyphenyl)-2H-benzotriazol und
4-Acrylaten oder 4-Methacrylaten von 2-(2,4-Dihydroxyphenyl)-2H-benzotriazol oder
2-(2,4-Dihydroxyphenyl)-1,3-2H-dibenzotriazol und Mischungen davon ausgewählt ist.
21. Silikonhydrogel nach einem der vorhergehenden Ansprüche, wobei das Silikonhydrogel
eine Sauerstoffdurchlässigkeit (Dk) von mindestens 80 Barrer oder 80 bis 200 Barrer,
90 bis 180 Barrer, 100 bis 160 Barrer aufweist.
22. Silikonhydrogel nach einem der vorhergehenden Ansprüche, ferner umfassend mindestens
ein geladenes Monomer mit mindestens einer ionischen Gruppierung, die aus der Gruppe
bestehend aus Anionen, Kationen, Zwitterionen, Betainen und Mischungen davon ausgewählt
ist.
23. Silikonhydrogel nach Anspruch 1, gebildet aus einer reaktiven Monomerenmischung, umfassend:
a. mindestens ein Hydroxyalkyl(meth)acrylat;
b. eine hydroxylgruppenhaltige Silikonkomponente, die eine Mischung eines ersten hydroxylsubstituierten,
linearen Poly(dialkylsiloxan)s der Formel VI,

wobei
Z aus O, N, S oder NCH2CH2O ausgewählt ist und dann, wenn Z für O oder S steht, R2 nicht vorhanden ist;
R1 unabhängig für H oder Methyl steht;
R2 für H oder eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe substituiert
sein kann und die gegebenenfalls durch Amid, Ether und Kombinationen davon substituiert
sein kann, steht;
R3 und R4 unabhängig für eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe, Amid, Ether
und Kombinationen davon substituiert sein kann, steht; R3 und R4 unabhängig aus Methyl, Ethyl oder Phenyl ausgewählt sein können oder für Methyl stehen
können;
n für das erste monofunktionelle hydroxylsubstituierte Polysiloxan mit disubstituiertem
Siloxan für 4-8 steht, und
eines zweiten hydroxylsubstituierten, linearen Poly(dialkylsiloxan)s, ausgewählt aus
der Gruppe bestehend aus
einem monofunktionellen hydroxylsubstituierten, linearen Poly(dialkylsiloxan) der
Formel I, wobei n für 10 bis 20 steht und R13 aus geraden oder verzweigten C1- bis C8-Alkylgruppen, die gegebenenfalls durch ein oder mehrere Hydroxyl, Amid, Ether und
Kombinationen davon substituiert sind, ausgewählt ist; und
einem multifunktionellen hydroxylsubstituierten, linearen Poly(dialkylsiloxan) der
Formel XI mit 10 bis 200 oder 10 bis 100 Siloxan-Wiederholungseinheiten,

wobei R1 unabhängig für ein Wasserstoffatom oder eine Methylgruppe steht;
R15 und R16 jeweils für eine lineare, verzweigte oder cyclische Alkylgruppe mit eins bis acht
Kohlenstoffatomen, die jeweils weiter durch mindestens eine Hydroxygruppe, Amido-,
Ether-, Amino-, Carboxyl-, Carbonylgruppen und Kombinationen davon substituiert sein
kann, stehen oder unabhängig für Methyl oder Ethyl stehen und
n für 10 bis 200; 10 bis 100; 10 bis 50; 10 bis 20 steht;
umfasst;
wobei das Verhältnis von zweitem hydroxylsubstituiertem, linearem Poly(dialkylsiloxan)
zu erstem hydroxylsubstituiertem, linearem Poly-(dialkylsiloxan) in einem Bereich
von 0,1 bis 1,3 oder 0,4 bis 1 liegt;
mehr als 15 Gew.-%, bezogen auf das Gesamtgewicht der reaktiven Monomerenmischung,
mindestens eines Polyamids, das aus der Gruppe bestehend aus PVP, PVMA, PDMA, PNVA,
Polyacrylamid und Copolymeren und Mischungen davon ausgewählt ist;
und
gegebenenfalls Methacrylsäure.
24. Silikonhydrogel nach Anspruch 23, ferner umfassend ein zusätzliches hydrophiles Monomer,
das aus der Gruppe bestehend aus N-Vinylamiden, N-Vinylimiden, N-Vinyllactamen, hydrophilen (Meth)acrylaten, (Meth)acrylamiden, hydrophilen Styrolen,
Vinylethern, O-Vinylcarbonaten, O-Vinylcarbamaten, N-Vinylharnstoffen, anderen hydrophilen Vinylverbindungen und Mischungen davon ausgewählt
ist.
25. Silikonhydrogel nach einem der Ansprüche 1-24, wobei das Polyamid ein gewichtsmittleres
Molekulargewicht von mindestens 100.000 Dalton oder mehr als 150.000 Dalton oder zwischen
150.000 bis 2.000.000 Dalton oder zwischen 300.000 bis 1.800.000 Dalton aufweist.
26. Silikonhydrogel nach einem der Ansprüche 1-25, wobei das Polyamid derart zu der Reaktionsmischung
gegeben wird, dass das Hydrogel unter Ausbildung eines semiinterpenetrierenden Netzwerks
um das Polymer herum polymerisiert.
27. Kontaktlinse, umfassend das Silikonhydrogel nach einem der Ansprüche 1-26.
28. Kontaktlinse nach Anspruch 27, wobei:
(a) die Lipidaufnahme weniger als 15 µg/Linse oder weniger als 10 µg/Linse beträgt
und/oder
(b) die PQ1-Aufnahme weniger als 20 % beträgt und/oder
(c) der dynamische Kontaktwinkel weniger als 95° oder weniger als 60° beträgt und/oder
(d) die Lysozymaufnahme mindestens 50 µg/Linse, mindestens 100 µg/Linse, mindestens
200 µg/Linse, mindestens 500 µg/Linse, mindestens 700 µg/Linse oder mindestens 800
µg/Linse; 50-1500 µg/Linse, 100-1500 µg/Linse oder 200-1500 µg/Linse beträgt.
29. Verfahren zur Herstellung des Silikonhydrogels nach einem der Ansprüche 1-26, bei
dem man:
die reaktive Monomerenmischung herstellt und
die reaktive Monomerenmischung Polymerisationsbedingungen unterwirft, um das Silikonhydrogel
zu bilden;
gegebenenfalls wobei die Polymerisation der Reaktionsmischung unter Verwendung von
Wärme oder sichtbarem oder ultraviolettem Licht initiiert wird.
1. Hydrogel de silicone formé à partir d'un mélange de monomères réactifs comprenant
:
a. au moins un monomère de (méth)acrylate d'hydroxyalkyle ;
b. au moins un premier poly(siloxane disubstitué) substitué par hydroxyle monofonctionnel
ayant 4 à 8 motifs répétitifs de siloxane ;
c. au moins un deuxième poly(siloxane disubstitué) substitué par hydroxyle choisi
dans le groupe constitué par un poly(siloxane disubstitué) substitué par hydroxyle
monofonctionnel ayant 10 à 200 ou 10 à 100 motifs répétitifs de siloxane, des poly(siloxanes
disubstitués) substitués par hydroxyle multifonctionnels ayant 10 à 200 ou 10 à 100
motifs répétitifs de siloxane, et des mélanges correspondants ;
d. au moins 15 % en poids d'au moins un polyamide, sur la base du poids total de composants
réactifs dans le mélange de monomères réactifs ; et
e. des constituants supplémentaires éventuels.
2. Hydrogel de silicone selon la revendication 1, le polyamide étant présent dans le
mélange réactif en une quantité comprise entre 15,1 pour cent en poids et 40 pour
cent en poids ou entre 15,1 et 30 % en poids, sur la base du poids total de tous les
composants réactifs dans le mélange de monomères réactifs.
3. Hydrogel de silicone selon la revendication 1 ou 2, le polyamide étant choisi dans
le groupe essentiellement constitué par des polyamides cycliques, des polyamides acycliques
et des mélanges correspondants.
4. Hydrogel de silicone selon la revendication 3, le polyamide comprenant des motifs
répétitifs choisis parmi la formule I, la formule II et la formule IV
R1 étant indépendamment un atome d'hydrogène ou méthyle ;
X étant une liaison directe, -(CO)-, ou -(CO)-NH-Re-, Re étant un groupe alkyle en C1 à C3 ;
Ra étant choisi parmi H, des groupes alkyle en C1 à C4 linéaires ou ramifiés, substitués ou non substitués ;
Rb étant choisi parmi H, des groupes alkyle en C1 à C4 linéaires ou ramifiés, substitués ou non substitués, des groupes amino ayant jusqu'à
deux atomes de carbone, des groupes amide ayant jusqu'à quatre atomes de carbone et
des groupes alcoxy ayant jusqu'à deux atomes de carbone ;
Rc étant choisi parmi H, des groupes alkyle en C1 à C4 linéaires ou ramifiés, substitués ou non substitués ;
Rd étant choisi parmi H, des groupes alkyle en C1 à C4 linéaires ou ramifiés, substitués ou non substitués ;
le nombre d'atomes de carbone dans Ra et Rb pris ensemble étant de 8 ou moins, éventuellement 6 ou moins, et le nombre d'atomes
de carbone dans Rc et Rd pris ensemble étant de 8 ou moins.
5. Hydrogel de silicone selon la revendication 3,
(a) le polyamide cyclique étant préparé à partir d'au moins un élément parmi un α-lactame,
un β-lactame, un γ-lactame, un δ-lactame, et un ε-lactame ; ou
(b) le polyamide cyclique comprenant des motifs répétitifs de formule IV

R1 étant indépendamment un atome d'hydrogène ou méthyle ; f étant un nombre de 1 à 10,
ou 8 ou moins, ou 6 ou moins, ou 2 à 6, ou 3, ou 2, et X étant une liaison directe,
-(CO)-, ou -(CO)-NH-Re-, Re étant un groupe alkyle en C1 à C3.
6. Hydrogel de silicone selon la revendication 3, le polyamide étant un copolymère ;
éventuellement :
(a) le copolymère comprenant au moins 80 pour cent en moles des motifs répétitifs
choisis parmi NVP, VMA, DMA, NVA, et des mélanges correspondants ; ou
(b) le copolymère comprenant en outre au moins un motif répétitif choisi dans le groupe
constitué par des N-vinylamides, des acrylamides, des (méth)acrylates d'hydroxyalkyle,
des (méth)acrylates d'alkyle, la N-vinylpyrrolidone, le N,N-diméthylacrylamide, le
méthacrylate de 2-hydroxyéthyle, l'acétate de vinyle, l'acrylonitrile, le méthacrylate
d'hydroxypropyle, l'acrylate de 2-hydroxyéthyle, le méthacrylate de méthyle, le méthacrylate
de butyle, le méthacryloxypropoyl-tristriméthylsiloxysilane, des acrylates ou méthacrylates
substitués par siloxane, et des mélanges correspondants.
7. Hydrogel de silicone selon la revendication 1, le polyamide étant choisi parmi une
polyvinylpyrrolidone (PVP), un polyvinylméthylacétamide (PVMA), un polydiméthylacrylamide
(PDMA), un polyvinylacétamide (PNVA), un poly(hydroxyéthyl(méth)acrylamide), un polyacrylamide,
et des copolymères et des mélanges correspondants ; éventuellement
(a) le polyamide étant une PVP ; ou
(b) le polyamide étant un PVMA.
8. Hydrogel de silicone selon l'une quelconque des revendications précédentes comprenant
en outre au moins un monomère hydrophile supplémentaire ; éventuellement
(a) le monomère hydrophile supplémentaire étant choisi dans le groupe constitué par
éther de vinyle d'éthylène glycol (EGVE), éther de vinyle de diéthylèneglycol (DEGVE),
N-vinylpyrrolidone (NVP), 1-méthyl-3-méthylène-2-pyrrolidone, 1-méthyl-5-méthylène-2-pyrrolidone,
5-méthyl-3-méthylène-2-pyrrolidone, 1-éthyl-5-méthylène-2-pyrrolidone, N-méthyl-3-méthylène-2-pyrrolidone,
5-éthyl-3-méthylène-2-pyrrolidone, 1-n-propyl-3-méthylène-2-pyrrolidone, 1-n-propyl-5-méthylène-2-pyrrolidone,
1-isopropyl-3-méthylène-2-pyrrolidone, 1-isopropyl-5-méthylène-2-pyrrolidone, N-vinyl-N-méthylacétamide
(VMA), N-vinyl-N-éthylacétamide, N-vinyl-N-éthylformamide, N-vinylformamide, N-vinylacétamide,
N-vinylisopropylamide, alcool allylique, N-vinylcaprolactame, N-2-hydroxyéthyl-vinyl-carbamate,
ester de N-vinyle de N-carboxy-β-alanine, N-carboxyvinyl-β-alanine (VINAL), N-carboxyvinyl-α-alanine
et des mélanges correspondants ; ou
(b) le monomère hydrophile supplémentaire étant choisi parmi N,N-diméthylacrylamide,
N-vinylpyrrolidone, N-vinyl-N-méthylacétamide, N-vinylacétamide et 1-méthyl-5-méthylène-2-pyrrolidone
; ou
(c) le monomère hydrophile supplémentaire comprenant N-vinylpyrrolidone, N,N-diméthylacrylamide,
et des mélanges correspondants.
9. Hydrogel de silicone selon l'une quelconque des revendications précédentes,
(a) ledit monomère de (méth)acrylate d'hydroxyalkyle étant choisi dans le groupe constitué
par (méth)acrylate de 2-hydroxyéthyle, (méth)acrylate de 3-hydroxypropyle, (méth)acrylate
de 2-hydroxypropyle, (méth)acrylate de 2,3-dihydroxypropyle, (méth)acrylate de 2-hydroxybutyle,
(méth)acrylate de 3-hydroxybutyle, 2-(méth)acrylate de 1-hydroxypropyle, (méth)acrylate
de 2-hydroxy-2-méthyl-propyle, (méth)acrylate de 3-hydroxy-2,2-diméthyl-propyle, (méth)acrylate
de 4-hydroxybutyle, (méth)acrylate de glycérol, monométhacrylate de polyéthylène glycol,
et des mélanges correspondants ; ou
(b) ledit monomère de (méth)acrylate d'hydroxyalkyle étant choisi dans le groupe constitué
par méthacrylate de 2-hydroxyéthyle, méthacrylate de glycérol, méthacrylate de 2-hydroxypropyle,
méthacrylate d'hydroxybutyle, méthacrylate de 3-hydroxy-2,2-diméthyl-propyle, et des
mélanges correspondants ou méthacrylate de 2-hydroxyéthyle, méthacrylate de 3-hydroxy-2,2-diméthyl-propyle,
méthacrylate d'hydroxybutyle ou méthacrylate de glycérol et des mélanges correspondants.
10. Hydrogel de silicone selon l'une quelconque des revendications précédentes, le premier
poly(siloxane disubstitué) substitué par hydroxyle monofonctionnel ayant la structure
présentée dans la formule VI-1
Z étant choisi parmi O, N, S ou NCH2CH2O, lorsque Z est O ou S R2 n'est pas présent ;
R1 étant indépendamment H ou méthyle ;
R2 étant H ou un groupe alkyle linéaire, ramifié ou cyclique contenant un à huit atomes
de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué par au
moins un groupe hydroxy, et qui peut éventuellement être substitué par amide, éther
et des combinaisons correspondantes ;
R3 et R4 étant indépendamment un groupe alkyle linéaire, ramifié ou cyclique contenant un
à huit atomes de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué
par au moins un groupe hydroxy, amide, éther, et des combinaisons correspondantes
; R3 et R4 pouvant être indépendamment choisis parmi méthyle, éthyle ou phényle, ou pouvant
être méthyle ;
η étant 4 à 8, et
R5 étant choisi parmi des groupes alkyle en C1 à C8 linéaires ou ramifiés, qui peuvent éventuellement être substitués par un ou plusieurs
hydroxyles, amides, éthers, et des combinaisons correspondantes ; ou R5 étant méthyle ou alkyle en C4 linéaire ou ramifié, l'un ou l'autre parmi lesquels pouvant éventuellement être substitué
par hydroxyle.
11. Hydrogel de silicone selon la revendication 1 ou 10, le deuxième poly(dialkylsiloxane)
substitué par hydroxyle comprenant un composé de formule VI-2
Z étant choisi parmi O, N, S ou NCH2CH2O, lorsque Z est O ou S R2 n'est pas présent ;
R1 étant indépendamment H ou méthyle ;
R2 étant H ou un groupe alkyle linéaire, ramifié ou cyclique contenant un à huit atomes
de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué par au
moins un groupe hydroxy, et qui peut éventuellement être substitué par amide, éther
et des combinaisons correspondantes ;
R3 et R4 étant indépendamment un groupe alkyle linéaire, ramifié ou cyclique contenant un
à huit atomes de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué
par au moins un groupe hydroxy, et qui peut éventuellement être substitué par amide,
éther, et des combinaisons correspondantes ; R3 et R4 pouvant être indépendamment choisis parmi méthyle, éthyle ou phényle, ou pouvant
être méthyle ;
η étant le nombre de motifs siloxane et étant de 10 à 200 ; et
R5 étant choisi parmi des groupes alkyle en C1 à C8 linéaires ou ramifiés, qui peuvent éventuellement être substitués par un ou plusieurs
hydroxyles, amides, éthers, et des combinaisons correspondantes.
12. Hydrogel de silicone selon l'une quelconque des revendications précédentes,
(a) le pourcentage en poids total du premier poly(dialkylsiloxane) substitué par hydroxyle
monofonctionnel et le deuxième poly(diméthylsiloxane) substitué par hydroxyle étant
compris entre 40 et 70 % en poids ou de 45 à 70 % en poids ; et/ou
(b) le premier poly(siloxane disubstitué) substitué par hydroxyle monofonctionnel
et le deuxième poly(siloxane disubstitué) substitué par hydroxyle étant présents dans
le mélange de monomères réactifs en des concentrations qui fournissent un rapport
en poids, du premier poly(siloxane disubstitué) substitué par hydroxyle monofonctionnel
sur le deuxième poly(siloxane disubstitué) substitué par hydroxyle compris entre 0,1
et 1,3 ; et/ou
(c) le rapport en poids du premier poly(dialkylsiloxane) substitué par hydroxyle monofonctionnel
sur le deuxième poly(diméthylsiloxane) substitué par hydroxyle étant compris entre
0,1 et 1 ou entre 0,4 et 1.
13. Hydrogel de silicone selon l'une quelconque des revendications précédentes, comprenant
en outre au moins un composant supplémentaire contenant une silicone choisi dans le
groupe constitué par des monomères, des macromères et des agents de réticulation contenant
une silicone non hydroxylés.
14. Hydrogel de silicone selon la revendication 11, n = 4 à 8 dans le premier poly(siloxane
disubstitué) substitué par hydroxyle monofonctionnel et n = 10 à 20 dans le deuxième
poly(siloxane disubstitué) substitué par hydroxyle.
15. Hydrogel de silicone selon la revendication 2, le nombre moyen de motifs répétitifs
de siloxane du premier poly(dialkylsiloxane) substitué par hydroxyle monofonctionnel
étant de 4 et le nombre moyen de motifs répétitifs de siloxane du deuxième poly(diméthylsiloxane)
substitué par hydroxyle étant compris entre 10 et 20.
16. Hydrogel de silicone selon la revendication 8, le pourcentage en poids total de monomère
hydrophile supplémentaire étant compris entre 5 et 30 % en poids, ou de 8 à 25 % en
poids.
17. Hydrogel de silicone selon une quelconque revendication précédente, comprenant en
outre au moins un agent de réticulation choisi dans le groupe constitué par des agents
de réticulation bifonctionnels, des agents de réticulation trifonctionnels, des agents
de réticulation tétrafonctionnels, des agents de réticulation multifonctionnels et
des mélanges correspondants.
18. Hydrogel de silicone selon la revendication 11, le deuxième poly(siloxane disubstitué)
substitué par hydroxyle monofonctionnel étant choisi dans le groupe constitué par
un poly(siloxane disubstitué) substitué par hydroxyle de formule VI-2, n étant de
10 à 20, un poly(siloxane disubstitué) substitué par hydroxyle difonctionnel de formule
XI, et des mélanges correspondants
R1 étant indépendamment un atome d'hydrogène ou un groupe méthyle ;
R15 et R16 étant indépendamment un groupe alkyle linéaire, ramifié ou cyclique contenant un
à huit atomes de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué
par au moins un groupe hydroxy, des groupes amido, éther, amino, carboxyle, carbonyle
et des combinaisons correspondantes ; ou étant indépendamment méthyle ou éthyle ;
et
n étant 10 à 200 ; 10 à 100 ; 10 à 50 ; 10 à 20.
19. Hydrogel de silicone selon la revendication 1, les poly(siloxanes disubstitués) substitués
par hydroxyle monofonctionnels étant choisis dans le groupe constitué par un poly(diméthylsiloxane)
substitué par hydroxyle monofonctionnel de formule VIIa à IXb
R1 étant méthyle ou H ; n étant compris entre 4 et 30, 4 à 8 ou 10 à 20 ;
R2 étant indépendamment choisi dans le groupe constitué par H ou un groupe alkyle linéaire,
ramifié ou cyclique contenant un à huit atomes de carbone, l'un quelconque parmi lesquels
pouvant être en outre substitué par au moins un groupe hydroxy, et qui peut éventuellement
être substitué par amide, éther et des combinaisons correspondantes ;
n1 n2 étant indépendamment compris entre 4 et 100 ; 4 et 50 ; ou 4 et 25 ;
n3 étant 1 à 50, 1 à 20, ou 1 à 10 ;
R5 étant choisi parmi des groupes alkyle en C1 à C8 linéaires ou ramifiés, qui peuvent éventuellement être substitués par un ou plusieurs
groupes hydroxyle, amide, éther, polyhydroxyle choisis parmi des groupes en C1 à C8 linéaires ou ramifiés ayant une formule CfHg(OH)h dans laquelle f = 1 à 8 et g + h = 2f + 1 et des groupes en C1 à C8 cycliques ayant une formule CfHg(OH)h dans laquelle f = 1 à 8 et g + h = 2f - 1, et des combinaisons correspondantes ;
ou
R5 pouvant être choisi parmi alkyle en C2-C5 substitué par méthyle, butyle ou hydroxyle, y compris hydroxyléthyle, hydroxylpropyle,
hydroxylbutyle, hydroxylpentyle et 2,3-dihydroxypropyle ;
a étant de 4 à 8 pour le premier composant de silicone contenant hydroxyle et entre
4 à 100 pour le deuxième composant de silicone contenant hydroxyle.
20. Hydrogel de silicone selon l'une quelconque des revendications précédentes, le constituant
supplémentaire étant choisi parmi un diluant, un composé absorbant des UV, un agent
médicinal, un composé antimicrobien, un composé pharmaceutique, un composé nutraceutique,
un composé photochromique, une teinture réactive, un pigment, un colorant copolymérisable,
un colorant non polymérisable, un agent de libération, un copolymère, et des combinaisons
correspondantes ; éventuellement
(a) le composé absorbant des UV étant choisi dans le groupe constitué par des 2-(2'-hydroxyphényl)benzotriazoles,
des 2-hydroxybenzophénones, des 2-hydroxyphényltriazines, des oxanilides, des cyanoacrylates,
des salicylates, des 4-hydroxybenzoates, et des mélanges correspondants ; ou
(b) le composé absorbant des UV étant choisi dans le groupe constitué par le 2-(2'-hydroxy-5-méthacrylyloxyéthylphényl)-2H-benzotriazole,
des dérivés 5-vinyle et 5-isopropényle de 2-(2,4-dihydroxyphényl)-2H-benzotriazole
et des 4-acrylates ou 4-méthacrylates de 2-(2,4-dihydroxyphényl)-2H-benzotriazole
ou de 2-(2,4-dihydroxyphényl)-1,3-2H-dibenzotriazole, et des mélanges correspondants.
21. Hydrogel de silicone selon l'une quelconque des revendications précédentes, l'hydrogel
de silicone ayant une perméabilité à l'oxygène (Dk) d'au moins 80 barrers, ou de 80
à 200 barrers, 90 à 180 barrers, 100 à 160 barrers.
22. Hydrogel de silicone selon l'une quelconque des revendications précédentes, comprenant
en outre au moins un monomère chargé comprenant au moins un groupement ionique choisi
dans le groupe constitué par des anions, des cations, des zwitterions, des bétaïnes,
et des mélanges correspondants.
23. Hydrogel de silicone selon la revendication 1 formé à partir d'un mélange de monomères
réactifs comprenant :
a. au moins un (méth)acrylate d'hydroxyalkyle ;
b. un composant de silicone contenant hydroxyle qui comprend un mélange d'un premier
poly(dialkylsiloxane) linéaire, substitué par hydroxyle de formule VI,

Z étant choisi parmi O, N, S ou NCH2CH2O, lorsque Z est O ou S R2 n'est pas présent ;
R1 étant indépendamment H ou méthyle ;
R2 étant H ou un groupe alkyle linéaire, ramifié ou cyclique contenant un à huit atomes
de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué par au
moins un groupe hydroxy, et qui peut éventuellement être substitué par amide, éther
et des combinaisons correspondantes ;
R3 et R4 étant indépendamment un groupe alkyle linéaire, ramifié ou cyclique contenant un
à huit atomes de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué
par au moins un groupe hydroxy, amide, éther, et des combinaisons correspondantes
; R3 et R4 pouvant être indépendamment choisis parmi méthyle, éthyle ou phényle, ou pouvant
être méthyle ;
n étant 4 à 8 pour le premier poly(siloxane disubstitué) substitué par hydroxyle monofonctionnel,
et,
un deuxième poly(dialkylsiloxane) linéaire substitué par hydroxyle choisi dans le
groupe constitué par
un poly(dialkylsiloxane) linéaire substitué par hydroxyle monofonctionnel de formule
I, n étant 10 à 20 et R13 étant choisi parmi des groupes alkyle en C1 à C8 linéaires ou ramifiés, éventuellement substitués par un ou plusieurs hydroxyles,
amides, éthers, et des combinaisons correspondantes ; et
un poly(dialkylsiloxane) linéaire substitué par hydroxyle multifonctionnel de formule
XI ayant 10 à 200, ou 10 à 100 motifs répétitifs de siloxane,

R1 étant indépendamment un atome d'hydrogène ou un groupe méthyle ;
R15 et R16 étant indépendamment un groupe alkyle linéaire, ramifié ou cyclique contenant un
à huit atomes de carbone, l'un quelconque parmi lesquels pouvant être en outre substitué
par au moins un groupe hydroxy, des groupes amido, éther, amino, carboxyle, carbonyle
et des combinaisons correspondantes ; ou étant indépendamment méthyle ou éthyle ;
et
n étant 10 à 200 ; 10 à 100 ; 10 à 50 ; 10 à 20 ;
un rapport du deuxième poly(dialkylsiloxane) linéaire substitué par hydroxyle sur
le premier poly(dialkylsiloxane) linéaire substitué par hydroxyle étant dans une plage
de 0,1 à 1,3 ou de 0,4 à 1 ;
plus de 15 pour cent en poids, sur la base du poids total du mélange de monomères
réactifs, d'au moins un polyamide choisi dans le groupe constitué par PVP, PVMA, PDMA,
PNVA, un polyacrylamide, et des copolymères et des mélanges correspondants ; et éventuellement,
de l'acide méthacrylique.
24. Hydrogel de silicone selon la revendication 23, comprenant en outre au moins un monomère
hydrophile supplémentaire qui est choisi dans le groupe constitué par des N-vinylamides, des N-vinylimides, des N-vinyllactames, des (méth)acrylates hydrophiles, des (méth)acrylamides, des styrènes
hydrophiles, des éthers de vinyle, des O-vinylcarbonates, des O-vinylcarbamates, des N-vinylurées, d'autres composés vinyliques hydrophiles et des mélanges correspondants.
25. Hydrogel de silicone selon l'une quelconque des revendications 1 à 24, le polyamide
ayant un poids moléculaire moyen en poids d'au moins 100 000 Daltons ; ou supérieur
à 150 000 Daltons ; ou compris entre 150 000 et 2 000 000 Daltons, ou compris entre
300 000 et 1 800 000 Daltons.
26. Hydrogel de silicone selon l'une quelconque des revendications 1 à 25, le polyamide
étant ajouté au mélange réactionnel de sorte que l'hydrogel polymérise autour du polyamide,
formant un réseau semi-interpénétrant.
27. Lentille de contact comprenant l'hydrogel de silicone selon l'une quelconque des revendications
1 à 26.
28. Lentille de contact selon la revendication 27,
(a) l'absorption de lipides étant inférieure à 15 pg/lentille, ou inférieure à 10
pg/lentille ; et/ou
(b) l'absorption de PQ1 étant inférieure à 20 % ; et/ou
(c) l'angle de contact dynamique étant inférieur à 95°, ou inférieur à 60° ; et/ou
(d) l'absorption de lysozymes étant d'au moins 50 pg/lentille, d'au moins 100 pg/lentille,
d'au moins 200 pg/lentille, d'au moins 500 pg/lentille, d'au moins 700 pg/lentille
ou d'au moins 800 pg/lentille ; 50 à 1 500 pg/lentille, 100 à 1 500 pg/lentille, ou
200 à 1 500 pg/lentille.
29. Procédé de fabrication de l'hydrogel de silicone selon l'une quelconque des revendications
1 à 26, le procédé comprenant :
la préparation du mélange de monomères réactifs, et
la soumission du mélange de monomères réactifs à des conditions de polymérisation
pour former l'hydrogel de silicone ;
éventuellement, la polymérisation du mélange réactionnel étant initiée en utilisant
de la chaleur ou de la lumière visible ou ultraviolette.