

(11) EP 3 485 303 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:14.02.2024 Bulletin 2024/07

(21) Application number: 17828181.2

(22) Date of filing: 30.06.2017

(51) International Patent Classification (IPC):

G02B 5/26 (2006.01)

G02B 5/28 (2006.01)

G02B 5/28 (2006.01)

(52) Cooperative Patent Classification (CPC): **G02B 5/287; G02B 5/285**

(86) International application number: **PCT/US2017/040290**

(87) International publication number: WO 2018/013363 (18.01.2018 Gazette 2018/03)

(54) OPTICAL STACK

OPTISCHER STAPEL
EMPILEMENT OPTIQUE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 12.07.2016 US 201662361246 P

(43) Date of publication of application: 22.05.2019 Bulletin 2019/21

(73) Proprietor: 3M Innovative Properties Company Saint Paul, Minnesota 55133-3427 (US)

(72) Inventors:

WHEATLEY, John A.
 Saint Paul, Minnesota 55133-3427 (US)

 DU, Guanglei Saint Paul, Minnesota 55133-3427 (US)

BENOIT, Gilles J.
 Saint Paul, Minnesota 55133-3427 (US)

BIERNATH, Rolf W.
 Wyoming, Minnesota 55092 (US)

MCLAUGHLIN, Christopher A.
 Saint Paul, Minnesota 55133-3427 (US)

KRISTIE, Sherie A.
 Saint Paul, Minnesota 55133-3427 (US)

(74) Representative: Isarpatent
Patent- und Rechtsanwälte Barth
Charles Hassa Peckmann & Partner mbB
Friedrichstrasse 31
80801 München (DE)

(56) References cited:

WO-A1-99/36808 WO-A1-2014/110101 WO-A1-2016/061192 US-A1- 2008 003 419 US-A1- 2009 323 180 US-A1- 2015 146 166 US-B1- 6 451 414 US-B1- 6 549 254

P 3 485 303 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

20

40

Background

Description

[0001] Optical filters can be utilized to selectively transmit light of different wavelengths or different polarizations. Optical filters are useful in a variety of optical systems such as detector systems. US 6 549 254 B1 describes an optical Bragg reflection filter based on liquid crystals comprising multiple layers having a birefringence gradient to suppress side-lobes of the reflection spectrum. WO 99/36808 A1 describes an optical filter having multiple repetitive layer components for reflection of light in the infrared region while transmitting light in the visible region of the solar spectrum. At least one component absorbs or reflects within the reflection region of the optical filter. WO 2016/061 192 A1 describes an optical film comprising a stack of microlayers having overlapping harmonic reflection bands.

1

Summary

[0002] In some aspects of the present description according to claim 1, an optical stack including an oriented polymeric multilayer optical film and a first non-birefringent optical filter disposed adjacent the multilayer optical film is provided. The oriented polymeric multilayer optical film has a first reflection band with a first band edge having a variation across a length or a width of the multilayer optical film. The first band edge, at normal incidence, has a design wavelength λ and a characteristic deviation about the design wavelength Δ . The first non-birefringent optical filter has a first blocking band which, at normal incidence, comprises wavelengths between λ - Δ /2 and $\lambda+\Delta/2$, such that the optical stack has a band edge variation reduced by at least 60 percent compared the variation in the first band edge. At normal incidence, the first reflection band includes a wavelength range having a width of at least Δ that is outside of the first blocking band. [0003] In some aspects of the present description, an optical system including an oriented polymeric multilayer optical film having a first reflection band with a first band edge, and a sensor in optical communication with the oriented polymeric multilayer optical film is provided.

Brief Description of the Drawings

[0004]

FIGS. 1A-1D are schematic cross-sectional views of optical stacks;

FIG. 2 is a schematic cross-sectional view of an optical stack having a spatially variant layer;

FIG. 3A is a plot of transmittance at normal incidence through an oriented polymeric multilayer optical film as a function of wavelength;

FIG. 3B is a plot of transmittance at normal incidence through the oriented polymeric multilayer optical film of FIG. 3A and through a non-birefringent optical filter as a function of wavelength;

FIG. 3C is a plot of transmittance at normal incidence through the oriented polymeric multilayer optical film of FIG. 3A and through one or two non-birefringent optical filters as a function of wavelength;

FIG. 3D is schematic illustration of an overall blocking band of an optical stack at normal incidence;

FIGS. 4A-7B are plots of transmittance as a function of wavelength for reflection bands and absorbing bands of optical stacks not encompassed by the wording of the claims;

FIG. 8 is a graph illustrating the concept of full-width at half-maximum;

FIG. 9 is a schematic cross-sectional view of an optical filter;

FIGS. 10A-10C are schematic illustrations of optical systems; and

FIGS. 11-18 are plots of percent transmission versus wavelength for optical filters.

Detailed Description

[0005] In the following description, reference is made to the accompanying drawings that forms a part hereof and in which various embodiments are shown by way of illustration. The drawings are not necessarily to scale. It is to be understood that other embodiments are contemplated and may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting

[0006] Oriented polymeric multilayer optical films are useful in a wide variety of applications such as reflective polarizers or mirrors in backlight systems and optical filters in detector systems. Such films can be designed to have reflection bands in a wide variety of wavelength ranges depending on the intended application.

[0007] Oriented polymeric multilayer optical films having a reflection band often exhibit variation in one or both band edges of the reflection band. This variation can be objectionable is some applications. According to the present description, it has been found that utilizing an optical stack that includes both an oriented (and thus birefringent) polymeric multilayer optical film and a nonbirefringent optical filter can provide a substantially reduced (e.g., by at least 60 percent, or by at least 70 percent, or by at least 80 percent) band edge variation compared to the oriented polymeric multilayer optical film alone while providing a wide blocking band (e.g., a reflection band) that would not be easily obtained with a non-birefringent optical filter alone.

[0008] The combination of the oriented polymeric multilayer optical film and the non-birefringent optical filter results in an overall blocking band for the optical stack. The oriented polymeric multilayer optical film is typically a reflector for one or both of two orthogonal polarization states. The non-birefringent optical filter has a blocking

25

30

40

45

4

band that can be a reflection band (e.g., utilizing alternating non-birefringent layers having different refractive indices) or an absorbing band (e.g., utilizing dyes or pigments which absorb in a desired wavelength range). In some embodiments, the non-birefringent optical filter is reflective and the overall blocking band is a reflection band, and in some embodiments the non-birefringent optical filter is absorptive and the overall blocking band is absorptive in some wavelengths and reflective at other wavelengths.

[0009] In some embodiments, the optical stacks of the present description have an overall blocking band which has a designed shift with incidence angle. Such optical stacks can create an angle selective element for certain wavelengths that can be used to provide an angle limited reception zone for a sensor, to provide a limited angle of emission for a light source, or to provide a limited angle of view for a marker, for example.

[0010] The optical stacks of the present description further provide a way to produce a customized blocking band without incurring the expense of producing a custom designed oriented polymeric multilayer optical film. The non-birefringent filter (or filters) can be selected to have a blocking band which overlaps a band edge (or both band edges) of a reflection band of an oriented polymeric multilayer optical film and which extends in to a desired band edge to provide a customized blocking band

[0011] FIG. 1A is a schematic cross-sectional view of optical stack 100 including first and second layers 110 and 114. One of the first and second layers 110 and 114 is an oriented polymeric multilayer optical film and the other of the first and second layers 110 and 114 is a nonbirefringent optical filter. Light 140 is incident on the first layer 110 and the second layer 114 at normal incidence, while light 142 is incident on the first layer 110 at an oblique incidence angle of α (angle between light ray and normal vector to the first layer 110). The light 140 or 142 may be transmitted first through the oriented polymeric multilayer optical film and then through the non-birefringent optical filter, or the light 140 or 142 may be transmitted first through the non-birefringent optical filter and then through the oriented polymeric multilayer optical film. The first and second layers 110 and 114 may be disposed immediately adjacent each other as illustrated in FIG. 1A, or an air gap or an intermediate layer may be disposed between the first and second layers as illustrated in FIGS. 1B and 1C, respectively.

[0012] The wavelength of a band edge of a reflection band or of a blocking band of interference filters typically depends on incidence angle α and typically shifts to lower wavelengths with increasing incidence angles. Incidence angle or angle of incidence refers to the angle between an incident light ray and a normal to the surface on which the light ray is incident (e.g., oblique incidence angle α of light 142). Normal incidence refers to a zero incidence angle. Properties of reflection bands or blocking bands, such as band edge wavelengths, may be specified at

normal incidence or at an oblique incidence angle. The oblique incidence angle used in comparing shifts of reflection or blocking bands from the corresponding bands at normal incidence can be selected to be 45 degrees or 60 degrees, for example.

[0013] The oriented polymeric multilayer optical film may be a mirror film or a reflective polarizer film, for example. The oriented polymeric multilayer optical film has a first reflection band having a first band edge (e.g., left band edge) and may also have a second band edge (e.g., right band edge). The oriented polymeric multilayer optical film may also have a second reflection band (e.g., a higher order harmonic of the first reflection band). In some embodiments, the oriented polymeric multilayer optical film is a comb filter having a plurality of reflection bands with pass bands between the reflection bands. The oriented polymeric multilayer optical film and the non-birefringent optical filter can be made using any of the techniques described elsewhere herein.

[0014] The non-birefringent optical filter can be any filter in which the optically active layer(s) have isotropic refractive indices. Examples include interference filters having a plurality of alternating layers of differing isotropic refractive indices, as described further elsewhere herein, and include filters having an absorbing layer (e.g., dye or pigment layer) with isotropic complex refractive indices. Isotropic dyes or pigments may be considered a non-birefringent optical filter even if the dyes or pigments are disposed on or in an oriented substrate. Non-isotropic dyes or pigments, such as the iodine layer in an iodine stained polyvinyl alcohol absorbing polarizer, are not non-birefringent optical filters, as used herein, since the iodine molecules are oriented and provide a birefringent complex refractive index that is different in the x- and ydirections (referring to the x-y-z coordinate system of FIG. 1A).

[0015] The wavelength ranges of the reflection and blocking bands can be selected based in the intended application. In some embodiments, one or all of the band edges are located, at normal incidence, in a range of 300 nm, or 400 nm to 2500 nm, or 2000 nm, or 1200 nm, or 900 nm, or 700 nm.

[0016] FIG. 1B is a schematic cross-sectional view of optical stack 100b including first and second layers 110b and 114b with an air gap therebetween. One of the first and second layers 110b and 114b is an oriented polymeric multilayer optical film and the other of the first and second layers 110b and 114b is a first non-birefringent optical filter.

[0017] FIG. 1C is a schematic cross-sectional view of optical stack 100c including first, second and third layers 110c, 114c and 116c. One of the first, second and third layers 110c, 114c and 116c is an oriented polymeric multilayer optical film and a different one of the first, second and third layers 110c, 114c and 116c is a first non-birefringent optical filter. The remaining layer may be an adhesive layer, for example, and/or may be a second non-birefringent optical filter (e.g., a dyed adhesive layer). In

35

40

45

some embodiments, first layer 110c is an oriented polymeric multilayer optical film, second layer 114c is a first non-birefringent optical filter, and third layer 116c is an intermediate layer. In some embodiments, the intermediate layer is an adhesive layer, and in some embodiments, the intermediate layer includes one or more dyes or pigments which may include one or more polarizing dyes or pigments. In some embodiments, the intermediate layer is an oriented polymeric layer such as oriented polyethylene terephthalate (PET).

[0018] FIG. 1D is a schematic cross-sectional view of optical stack 100d including first and second layers 110d and 114d. One of the first and second layers 110d and 114d is an oriented polymeric multilayer optical film and the other of the first and second layers 110d and 114d is a first non-birefringent optical filter. Optical stack 100d is curved about one axis (the x-axis) or about two orthogonal axes (the x-axis and the y-axis). Optical stack 100d can be formed using a thermoforming process or an inmold forming process. In some embodiments, first and second layers 110d and 114d are formed as separate layers which are subsequent formed (e.g., thermoformed) into the curved shape illustrated in FIG. 1D. In some embodiments, an in-mold process is used where the oriented polymeric multilayer optical film is prepared and placed into a mold and a material with a wavelength selective dye or pigment is injected into the mold to form the non-birefringent optical filter. Additional layers may be formed between the oriented polymeric multilayer optical film and the non-birefringent optical filter. In some embodiments, the in-mold forming results in an oriented polymeric multilayer optical film curved about at least one axis (e.g., curved about two orthogonal axes). In other embodiments, the in-mold forming results in a flat oriented polymeric multilayer optical film.

[0019] FIG. 2 is a schematic cross-sectional view of optical stack 200 including first and second layers 210 and 214. One of the first and second layers 210 and 214 is an oriented polymeric multilayer optical film and the other of the first and second layers 210 and 214 is a nonbirefringent optical filter. The first layer 210 is spatially variant and includes holes or discontinuities 218. In some embodiments, first layer 210 is an oriented polymeric multilayer optical film and holes or discontinuities 218 are holes through the oriented polymeric multilayer optical film that can be formed by die cutting, for example. In some embodiments, first layer 210 is a non-birefringent optical filter and holes or discontinuities 218 are discontinuities which can be formed by using a mask in depositing the non-birefringent optical filter. For example, the non-birefringent optical filter can be formed by depositing an absorbing material or depositing a reflective stack of alternating layers onto a substrate or directly onto the oriented polymeric multilayer optical film. The depositing can be done through a mask resulting in a patterned nonbirefringent optical filter. The depositing can include printing or spraying an absorbing material, or sputtering or vapor depositing a reflective stack of alternating layers, for example. In some embodiments, first layer 210 is a non-birefringent optical filter that is discontinuous across a length or a width of the non-birefringent optical filter.

[0020] In some embodiments, an optical stack includes an oriented polymeric multilayer optical film having a reflection band with a first band edge having a variation across a length or a width of the multilayer optical film, and a first non-birefringent optical filter having a blocking band and being disposed adjacent the multilayer optical film. Such reflection and blocking bands are schematically illustrated in FIGS. 3A-3D.

[0021] FIG. 3A is a plot of transmittance at normal incidence through an oriented polymeric multilayer optical film as a function of wavelength and provides a schematic illustration of a first reflection band 352 of the oriented polymeric multilayer optical film. First reflection band 352 exhibits a variation across a length or a width (for example, the length of the film may be the dimension along the y-direction and the width of the film may be the dimension along the x-direction, referring to the x-y-z coordinate system illustrated in FIGS. 1A-2) of the multilayer optical film indicated in the figure by the dashed lines. First reflection band 352 has first and second band edges 354 and 356 having design or nominal wavelengths of λ_1 and λ_2 , respectively, and characteristic deviations about the design wavelengths of Δ_1 and Δ_2 , respectively. Unless specified differently, the characteristic deviations Δ_1 and Δ_2 refer to the standard deviation of the first and second band edge wavelengths, respectively, about the design or nominal wavelengths λ_1 and λ_2 , respectively. [0022] FIG. 3B is a plot of transmittance at normal incidence through the oriented polymeric multilayer optical film of FIG. 3A and through a non-birefringent optical filter as a function of wavelength, and provides a schematic illustration of a first blocking band 362 of the non-birefringent optical filter. The first blocking band 362, which can be an absorbing band or a reflection band, has first and second band edges 364 and 366, respectively. The first band edge 364 is at a wavelength lower than λ_1 - $\Delta_1/2$, and the second band edge 366 is at a wavelength higher than λ_1 + $\Delta_1/2$. The first reflection band 352 includes a wavelength range 358 which has a width of at least Δ_1 that is outside of the first blocking band 362. The wavelength range 358 identified in FIG. 3B extends from the second band edge 366 to the design or nominal wavelength λ_2 .

[0023] FIG. 3C is a plot of transmittance at normal incidence through the oriented polymeric multilayer optical film of FIG. 3A and through one or two non-birefringent optical filters as a function of wavelength, and provides a schematic illustration of first and second blocking bands 362a and 362b of the one or two non-birefringent optical filters. In some embodiments, two distinct non-birefringent optical filters are used with one filter providing the first blocking band 362a and the other filter used to provide the second blocking band 362b. In some embodiments, more than two non-birefringent optical filters are included in the optical stack. For example, in some ap-

30

plications it may be desired to block light in one or more wavelength ranges outside of the ranges of any of the bands 352, 362a and 362b. In some embodiments, a single non-birefringent optical filter having two or more blocking bands are used to provide both the first blocking band 362a and the second blocking band 362b. For example, the first and second blocking bands 362a and 362b may be reflection bands which are different order harmonics provided by alternating non-birefringent first and second layers. For example, the second blocking band 362b may be a primary reflection band and the first blocking band 362a may be a second order harmonic of the second blocking band 362b.

[0024] FIG. 3D is schematic illustration of an overall blocking band 367 provided by the combination of the first reflection band 352 and the first and second blocking bands 362a and 362b illustrated in FIG. 3C. In some embodiments, the optical filter includes one but not both of the first and second blocking bands 362a and 362b. In some embodiments, the first non-birefringent optical filter is a non-birefringent reflector and the overall blocking band 367 is an overall reflection band. The overall blocking band 367 has a third band width 368 at normal incidence which is greater than the first band width (λ_2 - λ_1) of the first reflection band 352 at normal incidence. In some embodiments, the overall blocking band 367 has a third band width 368 at normal incidence which is greater than the first band width $(\lambda_2 - \lambda_1)$ of the first reflection band 352 at normal incidence by a factor of at least 1.3 or at least 1.5. The overall blocking band 367 has first and second band edges 364d and 366d established primarily by the first band edge 364a of the first blocking band 362a and the second band edge 366b of the second blocking band 362b. As described further elsewhere herein, in some embodiments, one or both of first and second band edges 364d and 366d has a shift between normal incidence and an oblique incidence angle (e.g., 45 or 60 degrees) that is equal to the corresponding shift in the first band edge 364a or the second band edge 366b. The shift between normal incidence normal incidence and the oblique incidence angle of one or both of first and second band edges 364d and 366d may be different from a corresponding shift in the first and second band edges 354 and 356 of the first reflection band 352. [0025] In some embodiments, an optical stack includes an oriented polymeric multilayer optical film having a first reflection band (e.g., reflection band 352) with a first band edge (e.g., band edge 354 or band edge 356) having a variation across a length or a width of the multilayer optical film, and a first non-birefringent optical filter disposed adjacent the multilayer optical film. The first band edge, at normal incidence, has a design wavelength λ (e.g., wavelength λ_1 or λ_2 depicted in FIG. 3A) and a characteristic deviation about the design wavelength $\boldsymbol{\Delta}$ (e.g., wavelength Δ_1 or Δ_2 depicted in FIG. 3A). The first nonbirefringent optical filter has a first blocking band (e.g., blocking band 362 depicted in FIG. 3B or blocking band 362b depicted in FIG. 3C), the first blocking band, at normal incidence, including wavelengths between λ - Δ /2 and λ + Δ /2. At normal incidence, the first reflection band includes a wavelength range having a width (e.g., the width of the wavelength range 358 depicted in FIG. 3B) of at least Δ that is outside of the first blocking band.

[0026] FIG. 4A is a schematic illustration of a first reflection band 452 of an oriented polymeric multilayer optical film and a first blocking band 462 of a non-birefringent optical filter, both at normal incidence. The first reflection band 452 has first and second band edges 454 and 456 at normal incidence at wavelengths of λ_1 and λ_2 , respectively, and the first blocking band has first and second band edges 464 and 466 at normal incidence at wavelengths of λ_3 and λ_4 , respectively.

[0027] In some cases not encompassed by the wording of the claims, the band edge 454 is at an undesired wavelength and the blocking band 462 is utilized to extend the wavelengths blocked by the optical stack to a desired band edge wavelength corresponding to the first band edge 464. In some embodiments, an optical stack includes an oriented polymeric multilayer optical film (e.g., first layer 110) and a first non-birefringent optical filter (e.g., second layer 114) adjacent the multilayer optical film. The oriented polymeric multilayer optical film has a first reflection band 452 with a first band edge 454 at normal incidence at an undesired band edge wavelength λ_1 . The first non-birefringent optical filter has a first blocking band 462 which, at normal incidence, includes the undesired band edge wavelength λ_1 and has a second band edge 466 at a first desired band edge wavelength λ3.

[0028] In some examples not encompassed by the wording of the claims, a method of modifying a first reflection band of an oriented polymeric multilayer optical film is provided. The method includes the steps of: providing the oriented polymeric multilayer optical film (e.g., first layer 110) having the first reflection band 452, the first reflection band 452 having a band edge 454 at a first wavelength λ_1 at normal incidence; determining a desired normal incidence band edge wavelength λ_3 ; selecting a non-birefringent optical filter (e.g., second layer 114) having a first blocking band 462, the first blocking band 462 having the desired normal incidence band edge wavelength λ_3 and including the first wavelength λ_1 at normal incidence; and positioning the non-birefringent reflector in optical communication with the oriented polymeric multilayer optical film. The term "optical communication" as applied to two objects means that light can be transmitted from one to the other either directly or indirectly using optical methods (for example, reflection, diffraction, refraction).

[0029] The shifts of the band edges of the reflection and blocking bands depend on the construction of the optical stack (e.g., on the refractive indices uses in the non-birefringent optical filter as described further elsewhere herein). FIGS. 4B and 4C shows the reflection and blocking bands at an oblique angle of incidence for two different examples, not encompassed by the wording of

the claims, which provide the normal incidence reflection and blocking bands illustrated in FIG. 4A.

[0030] FIG. 4B is a schematic illustration of a first reflection band 452b (corresponding to first reflection band 452) and a first blocking band 462b (corresponding to first blocking band 462) at an oblique incidence angle. The first and second band edges 454b and 456b of the first reflection band 452b have shifted from wavelengths of λ_1 and λ_2 to wavelengths of λ_1 and λ_2 , respectively, and the first and second band edges 464b and 466b of the first blocking band 462b has shifted from wavelengths of λ_3 and λ_4 to wavelengths of λ_3 and λ_4 , respectively. The shift from λ_i to λ_i' (i.e., the absolute value of the difference in λ_i and λ_i') for any i from 1 to 4, may the same or different (e.g., the shifts may differ by a factor of at least 1.3 or at least 1.5) from any other shift.

[0031] FIG. 4C is a schematic illustration of a first reflection band 452c (corresponding to first reflection band 452) and a first blocking band 462c (corresponding to first blocking band 462) at an oblique incidence angle in an embodiment where the optical stack has the reflection and blocking bands 452 and 462, respectively, illustrated in FIG. 4A at normal incidence, but has differing shifts from the example of FIG. 4B, which is not encompassed by the wording of the claims. The first and second band edges 454c and 456c of the first reflection band 452c have shifted from wavelengths of λ_1 and λ_2 to wavelengths of λ "₁ and λ "₂, respectively, and the first and second band edges 464c and 466c of the first blocking band 462c has shifted from wavelengths of λ_3 and λ_4 to wavelengths of λ "₃ and λ "₄, respectively. A passband has opened between λ_4 and λ_1 . In the example illustrated in FIG. 4B, the first reflection band 452b and the first blocking band 462b overlap at both normal and oblique incidence, while in the example illustrated in FIG. 4C, which is not encompassed by the wording of the claims, the first reflection band 452c and the first blocking band 462c overlap at normal incidence but not at the oblique angle of incidence. In other examples, the first reflection band and the first blocking band overlap at the oblique angle of incidence but not at normal incidence.

[0032] The shift of band edge with incidence angle can be controlled by the selection of materials used in the oriented polymeric multilayer optical film and in the nonbirefringent optical filter. For example, the refractive indices of alternating layers in the oriented polymeric multilayer optical film can be adjusted to adjust how rapidly the band edge(s) of the reflection band of the multilayer optical film shifts with incidence angle. Higher refractive indices result in lower band edge shifts due to refraction bending the light rays closer to the normal direction which results in a shorter path length through the layer. In some examples not encompassed by the wording of the claims, the non-birefringent optical filter includes a plurality of alternating layers (e.g., of the form ...ABABABA...) as described further elsewhere herein. The alternating layers can be alternating inorganic layers (both A and B inorganic), alternating polymeric layers (both A and B polymeric), or a polymeric layer alternating with an inorganic layer (one of A and B inorganic and the other polymeric). In some examples not encompassed by the wording of the claims, lower refractive index materials are used for the non-birefringent optical filter than for the oriented polymeric multilayer optical film and the blocking band of the non-birefringent optical filter shifts more rapidly with incidence angle than the reflection band of the oriented polymeric multilayer optical film. Utilizing an inorganic material for at least one of A and B allows a higher refractive index material to be used than what is typically available for oriented polymeric layers. This allows a non-birefringent optical filter to be constructed which has a band shift smaller than that of the oriented polymeric multilayer optical film.

[0033] In some examples not encompassed by the wording of the claims, an optical stack includes an oriented polymeric multilayer optical film having a first reflection band (e.g., reflection band 452 or 453b) having a first band width $(\lambda_2 - \lambda_1)$ at normal incidence and having a first band edge (e.g., band edge 454 or 454b) that has a first shift (e.g., λ_1 - λ'_1) between normal incidence and an incidence angle of 60 degrees. The optical stack also includes a first non-birefringent optical filter having a first blocking band (e.g., blocking band 462 or 462b) having a second band width $(\lambda_4 - \lambda_3)$ at normal incidence and having a second band edge (e.g., band edge 464 or 464b) that has a second shift (e.g., λ_3 - λ'_3) between normal incidence and an incidence angle of 60 degrees. In some embodiments, the first band width is different from the second band width, and the first shift is different from the second shift. For example, the first band width may be greater than the second band width and the first shift may be greater than the second shift. In this case, the optical stack can provide the wide bandwidth of an oriented polymeric multilayer optical film with the low shift of band edge with incidence angle provided by a non-birefringent interference filter, for example. In some examples not encompassed by the wording of the claims, the first band width is at least 1.3 or 1.5 times the second band width. In some embodiments, the first shift is at least 1.3 or 1.5 times the second shift. In some examples not encompassed by the wording of the claims, the first blocking band is an absorbing band that has little or no shift with incidence angle.

[0034] In some examples not encompassed by the wording of the claims, the non-birefringent blocking filter includes two blocking bands or two non-birefringent blocking filters each including a blocking band is provided. One or both of the blocking bands may overlap with a band edge of the oriented polymeric multilayer optical film at normal incidence. This is illustrated in FIG. 5 which is a schematic illustration of a first reflection band 552 of an oriented polymeric multilayer optical film and first and second blocking bands 562a and 562b of one or two non-birefringent optical filters, all at normal incidence. In some examples not encompassed by the wording of the claims, the first reflection band 552 and the first and second

blocking bands 562a and 562b shift with incidence angle such that both of the first and second blocking bands 562a and 562b overlap with band edges of the first reflection band 552 at an oblique incidence angle (e.g., 45 or 60 degrees). In other examples not encompassed by the wording of the claims, the first reflection band 552 and the first and second blocking bands 562a and 562b shift with incidence angle such that one or both of the first and second blocking bands 562a and 562b do not overlap with band edges of the first reflection band 552 at an oblique incidence angle (e.g., 45 or 60 degrees). In still other examples not encompassed by the wording of the claims, one or both of the first and second blocking bands 562a and 562b do not overlap with a band edge of the first reflection band 552 at normal incidence, but do overlap with a band edge of the first reflection band 552 at an oblique incidence angle.

[0035] FIGS. 6A-6B schematically illustrates first reflection band 652 and first blocking band 662 which overlap at normal incidence (shown in FIG. 6A) and which do not overlap at an oblique incidence angle (shown in FIG. 6B). The first reflection band 652 has band edges at λ_1 and at normal incidence and at λ'_1 and λ'_2 , respectively, at the oblique incidence angle. The first blocking band 662 has band edges at λ_3 and λ_4 at normal incidence and at λ'_3 and λ'_4 , respectively, at the oblique incidence angle. A passband is present between λ'_2 and λ'_3 at the oblique incidence angle. The oblique incidence angle may be 45 degrees or 60 degrees, for example.

[0036] FIGS. 7A-7B schematically illustrates first reflection band 752 and first blocking band 762 which do not overlap at normal incidence (shown in FIG. 7A) and which do overlap at an oblique incidence angle (shown in FIG. 7B). The first reflection band 752 has band edges at λ_1 and λ_2 at normal incidence and at λ'_1 and λ'_2 , respectively, at the oblique incidence angle. The first blocking band 762 has band edges at λ_3 and λ_4 at normal incidence and at λ'_3 and λ'_4 , respectively, at the oblique incidence angle. A passband is present between λ_4 and λ_1 at normal incidence which is not present at the oblique incidence angle. The oblique incidence angle may be 45 degrees or 60 degrees, for example.

[0037] Band shift patterns different from those shown in FIGS. 6A - 7B are also possible. In some examples not encompassed by the wording of the claims, the blocking band partially overlaps the reflection band at normal incidence and extends to the right of a right band edge of the reflection band at normal incidence. In this case, the relative shifts of the band edges can be selected such that the band width of the resulting overall blocking band of the optical stack narrows with increasing incidence angle. In some examples not encompassed by the wording of the claims, the blocking band partially overlaps the reflection band at normal incidence and extends to the left of a left band edge of the reflection band at normal incidence. In this case, the relative shifts of the band edges can be selected such that the band width of the resulting overall blocking band of the optical stack widens

with incidence angle and/or opens a passband (e.g., a passband between λ "₄ and λ "₁ is present in FIG. 4C). In some examples not encompassed by the wording of the claims, the blocking band at least partially overlaps the reflection band at normal incidence and does not extend beyond the reflection band at normal incidence. In this case, the relative shifts of the band edges can be selected such that the overall blocking band expands and/or opens a passband (for example the wavelength range from λ'_2 to λ'_3 depicted in FIG. 6B is a passband where transmission is allowed; this passband is not present in FIG. 6A). In some examples not encompassed by the wording of the claims, the blocking band does not overlap the reflection band at normal incidence and is positioned to the left of the left band edge of the reflection band. In this case, the relative shifts of the band edges can be selected such that the overall blocking band narrows and/or a passband narrows or closes (for example the wavelength range from λ_4 to λ_1 depicted in FIG. 7A is a passband where transmission is allowed; this passband is closed in FIG. 7B). In some examples not encompassed by the wording of the claims, the blocking band does not overlap the reflection band at normal incidence and is positioned to the right of the right band edge of the reflection band. In this case, the relative shifts of the band edges can be selected such that a passband between the reflection band and the blocking band widens with increasing incidence angle.

[0038] In some examples not encompassed by the wording of the claims, the oriented polymeric multilayer optical film has a plurality of reflection bands. In some examples not encompassed by the wording of the claims, the oriented polymeric multilayer optical film is a comb filter having a plurality of passbands between adjacent reflection bands. In some examples not encompassed by the wording of the claims, at least some of the passbands shift under the blocking band or shift out from under the blocking band as the angle of incidence varies. FIG. 8 is a graph illustrating the concept of fullwidth at half-maximum ("FWHM"). The curve 850 represents a function of wavelength that can correspond to a transmittance, 1 minus a transmittance, an absorbance, a reflectance, an output spectrum of a light source, or an input spectrum of a sensor, for example. In order to quantify relevant features of the curve 850, a baseline value B of the curve 850, a peak value P of the curve 850, and an intermediate value H of the curve 850, halfway between P and B are identified in FIG. 8. The curve 850 intersects with the value H at the points p1 and p2, whose wavelength values equal the short wavelength band edge λa and the long wavelength band edge λb , respectively, of the band 869. The short and long wavelength band edges can be used to calculate two other parameters of interest: the width (full-width at half-maximum, or "FWHM") of the band 869, which equals λb - λa ; and the center wavelength of the band 869, which equals (λa+ λb)/2. Note that the center wavelength may be the same as or different from the peak wavelength (point p3) of the

40

45

band 869, depending on how symmetrical or asymmetrical the curve 850 is.

[0040] In some examples not encompassed by the wording of the claims, the curve 850 represents 1 minus the transmittance through a non-birefringent optical filter or through an oriented polymeric multilayer optical film. In some examples not encompassed by the wording of the claims, the curve 850 represents an output band of a light source. In some examples not encompassed by the wording of the claims, the curve 850 represents an input band for a sensor. In examples not encompassed by the wording of the claims, where curve 850 represents 1 minus a transmittance of a blocking band or of a reflection band, the value H may be greater than 0.6 (transmittance no more than 0.4 or 40 percent), greater than 0.7 (transmittance no more than 0.3 or 30 percent), greater than 0.8 (transmittance no more than 0.2 or 20 percent), or greater than 0.9 (transmittance no more than 0.1 or 10 percent). The value P may be greater than 0.7 (transmittance no more than 0.3 or 30 percent), greater than 0.8 (transmittance no more than 0.2 or 20 percent), or greater than 0.9 (transmittance no more than 0.1 or 10 percent). The value B may be less than 0.5 (transmittance at least 0.5 or 50 percent), less than 0.4 (transmittance at least 0.6 or 60 percent), less than 0.3 (transmittance at least 0.7 or 70 percent), or less than 0.2 (transmittance at least 0.8 or 80 percent).

[0041] FIG. 9 is a cross-sectional view of filter 913 which includes a plurality of alternating first layers 957 and second layers 959. Filter 913 can be an oriented polymeric multilayer optical film or a non-birefringent optical filter depending on the selection of the first and second layers 957 and 959. In some examples not encompassed by the wording of the claims, the alternating first and second layers 957 and 959 are alternating polymeric layers having different refractive indices.

[0042] In some examples not encompassed by the wording of the claims, the alternating first and second layers 957 and 959 are alternating polymeric layers where at least one of the first and second layers 957 and 959 are oriented polymeric layers. Such polymeric filters (e.g., mirrors or reflective polarizers) are generally described in U.S. Pat. Nos. 5,882,774 (Jonza et al.); 5,962,114 (Jonza et al.); 5,965,247 (Jonza et al.); 6,939,499 (Merrill et al.); 6,916,440 (Jackson et al.); 6,949,212 (Merrill et al.); and 6,936,209 (Jackson et al.); for example.

[0043] In brief summary, a polymeric multilayer optical film can be made by coextruding a plurality of alternating polymeric layers (e.g., hundreds of layers), uniaxially or substantially uniaxially stretching the extruded film (e.g., in a linear or parabolic tenter) to orient the film in the case of a polarizer or biaxially stretching the film to orient the film in the case of a mirror.

[0044] In some examples not encompassed by the wording of the claims, a non-birefringent optical filter used in an optical stack is formed by depositing an absorbing material (e.g., by one or more of printing, spray-

ing, and laminating the absorbing material) onto a separate substrate or directly onto the oriented polymeric multilayer optical film. If a separate substrate is used, after depositing the non-birefringent optical filter onto the substrate, the substrate can optionally be laminated to the oriented polymeric multilayer optical film.

[0045] In some examples not encompassed by the wording of the claims, the alternating first and second layers 957 and 959 are alternating non-birefringent layers. The alternating non-birefringent layers can be deposited onto a substrate and the substrate positioned adjacent to (and optionally laminated to) an oriented polymeric multilayer optical film for form an optical stack, or the alternating non-birefringent layers can be deposited directly onto an oriented polymeric multilayer optical film for form an optical stack. In some examples not encompassed by the wording of the claims, the alternating non-birefringent layers is deposited using one or more of atomic layer deposition, sputtering, chemical vapor deposition, and layer-by-layer self-assembly.

[0046] In some examples not encompassed by the wording of the claims, the alternating first and second layers 957 and 959 are alternating inorganic layers. In this case, the filter 913 may be referred to as a dielectric mirror. Such dielectric mirrors can be made by depositing alternate low and high index layers of inorganic materials using thin-film deposition techniques known in the art. For example, alternating layers of ${\rm TiO}_2$ and ${\rm SiO}_2$ can be evaporated onto a substrate or onto an oriented multilayer optical film to provide a reflective non-birefringent optical filter. Other oxides or metal-doped oxides can also be used, including, for example, zinc oxide or metal-doped zinc oxide, and metal-doped silicon oxide. For example, Al-doped ZnO or Al-doped SiO $_{\rm X}$ can be used as inorganic layers.

[0047] In other examples not encompassed by the wording of the claims, one of the alternating first and second layers 957 and 959 is polymeric and the other of the alternating first and second layers 957 and 959 is inorganic. For example, an inorganic second layer 959 can be vapor deposited or sputtered onto a polymeric first layer 957, then another polymeric first layer 957 can be coated onto the inorganic second layer 959. Another inorganic second layer 959 can then be deposited onto the coated polymeric first layer 957 and the process repeated until a desired number of layers is formed. The polymeric first layers can be formed using a vacuum coater similar to the coater described in U.S. Pat. No. 5,440,446 (Shaw et al.) and U.S. Pat. No. 7,018,713 (Padiyath et al). to deposit a monomer layer and curing the monomer layer by exposure to actinic radiation (e.g., ultra-violet radiation). For example, a stack of alternating layers of cured acrylate polymer (e.g., having a refractive index in a range of 1.4 to 1.6) and an oxide (e.g., a metal oxide having a refractive index in a range of 1.8 to 3.0) can be used to provide a reflective non-birefringent optical filter. The oxide can be a metal-doped oxide such as Al-doped ZnO. Refractive index can refer to the refractive index determined at a wavelength of a center of a desired reflection band or at a standard fixed wavelength such as 550 nm, for example.

[0048] In other examples not encompassed by the wording of the claims, a filter 913 having alternating inorganic layers and a different filter 913 having alternating oriented polymeric layers are placed adjacent each other to form an optical stack of the present description. The two filters can be laminated together through an adhesive layer or the inorganic filter can be deposited layer by layer onto the polymeric filter using the layer-by-layer self-assembly methods of U.S. Pat. Pub. No. 2015/0285956 (Schmidt et al.).

[0049] Whether polymeric or inorganic layers are used, reflection is provided when a pair of adjacent layers (optical repeat unit) has a total optical thickness (physical thickness of a layer times the refractive index of the layer) of half of a wavelength. By adjusting the thickness of the layers through the stack of the layers, a desired reflection band or reflection bands can be provided.

[0050] FIG. 10A is a schematic illustration of optical system 1001a including light source 1022 and optical filter 1000a. A light ray 1040a is emitted by the light source 1022 and transmitted through optical filter 1000a. Optical filter 1000a may be any of the optical stacks of the present description or may be an oriented polymeric multilayer optical film having a first reflection band with a first band edge. FIG. 10B is a schematic illustration of optical system 1001b including sensor 1024 and optical filter 1000b. A light ray 1040b is transmitted through optical filter 1000b and is received by the sensor 1024. Optical filter 1000b may be any of the optical stacks of the present description or may be an oriented polymeric multilayer optical film having a first reflection band with a first band edge. Optical filter 1000b may be configured to limit light transmitted into the sensor 1024 to a desired input band for the sensor 1024. In some embodiments, an optical system includes both a light source and a sensor. For example, a light source may be included in optical system 1001b disposed to provide the light ray 1040b which may reflect off of a marker (e.g., a white tee shirt, reflective tape, markers in a sign, license plates such as retroreflective license plates, etc.) before passing through optical filter 1000b or a sensor may be included in optical system 1000a to receive the light ray 1040a directly or after the light ray 1040a has reflected off of a marker, for example. In some embodiments, the optical stacks of the present description are used to provide angular limitations of light passing through the filter. For example, an optical stack can block light emitted by a light source at normal incidence and transmit light of the same wavelength at an oblique incidence angle. As another example, an optical stack can transmit light emitted by a light source at normal incidence and block light of the same wavelength at an oblique incidence angle.

[0051] FIG. 10C is a schematic illustration of optical system 1001c which includes the optical systems 1001a and 1001b described in reference to FIGS. 10A-B and

which further includes marker 1030 which is in optical communication with light source 1022 and sensor 1024. Marker 1030 includes reflector 1032 and layer 1034. Reflector 1032 may be or may include one or more of a specular reflector, a diffuse reflector, a semi-specular reflector, and a retroreflector. Layer 1034 can be an optical filter suitable for a given application, for example. In some embodiments, layer 1034 is an optical stack of the present description, which can be used, for example, as an angle limiting filter for the marker 1030. In other embodiments, layer 1034 is omitted.

[0052] Other uses of optical filters in optical systems are described in co-pending U.S. Pat. App. No. 62/347776 (Wheatley et al.) filed on June 9, 2016.

[0053] In some embodiments, an optical system is provided which includes an optical filter and further includes one or both of a light source and a sensor in optical communication with the optical filter. The optical filter may be any of the optical stacks of the present description or may be an oriented polymeric multilayer optical film having a first reflection band with a first band edge. In some embodiments, the optical system includes the light source which may be configured to produce light in an output band. In some embodiments, the output band is a narrow band (e.g., a band having a full-width at half-maximum of no more than 40 nm). In some embodiments, the light source is a light emitting diode (LED), a laser, or a laser diode, for example. In some embodiments, the optical system includes the sensor which may be configured to receive light in an input band. In some embodiments, the input band is a narrow band (e.g., a band having a fullwidth at half-maximum of no more than 40 nm) which may be established by an optical bandpass filter disposed at an entrance to the sensor. In some embodiments, the first reflection band of the optical stack overlaps the output band and/or the input band at normal incidence, but not at an oblique incidence angle (e.g., 45 or 60 degrees). For example, the first reflection band may correspond to reflection band 652 and the output band and/or the input band may be in a wavelength range of λ_3 to λ_4 depicted in FIG. 6A. At normal incidence the range of λ_3 to λ_4 overlaps the range of λ_1 to λ_2 and at an oblique incidence angle, the range of λ_3 to λ_4 does not overlap the range of λ'_1 to λ'_2 . In other embodiments, the first reflection band overlaps the output band and/or the input band an oblique incidence angle (e.g., 45 or 60 degrees), but not at normal incidence. For example, the first reflection band may correspond to reflection band 752 and the output band and/or input band may be in a wavelength range of λ_3 to λ_4 depicted in FIG. 7A. At normal incidence the range of λ_3 to λ_4 does not overlap the range of λ_1 to λ_2 and at an oblique incidence angle, the range of λ_3 to λ_4 does overlap the range of λ_1 to λ_2 . In some embodiments, the optical system includes both the light source and the sensor where the sensor, the light source and the optical stack are in optical communication with each other as described further elsewhere herein.

40

50

Examples

[0054] The examples that follow illustrate means of fabrication and test results for optical stacks including a coextruded oriented polymeric multilayer optical film and a non-birefringent optical filter designed to overlap at least one band edge of the polymeric multilayer optical film at normal incidence.

17

Test Methods

[0055] Optical spectra for were measured using a Perkin Elmer Lambda 900 UV/VIS spectrophotometer.

Preparatory Example 1

[0056] An oriented polymeric multilayer optical film was prepared as generally described in U.S. Pat. Nos. 5,882,774 (Jonza et al.). The film included a single multilayer optical packet comprised of 550 alternating layers of high index layers of polyethylene naphthalate (PEN) and low index layers of polymethylmethacrylate (PMMA), and included a protective skin layer of PEN on each side, for a total of 552 layers. The film was extruded and biaxially stretched to produce an oriented polymeric multilayer optical film having the optical spectra shown in FIG. 11 at normal incidence. The optical spectra shown in FIG. 11 includes data taken from multiple sections of the film overlaid to demonstrate the result of process variations. In this example, the optical band edge was at ~ 700 nm and cross-web variation was on the order of 50 nm.

Preparatory Example 2

[0057] An oriented polymeric multilayer optical film was prepared as described generally for Preparatory Example 1. The film was extruded and biaxially stretched to produce an oriented polymeric multilayer optical film having the optical spectra shown in FIG. 12. The optical spectra shown in FIG. 12 includes film data taken at multiple locations which are overlaid to demonstrate the result of process variations. The curves labeled C1, C3, C8, C11, C17 and C24 correspond to crossweb positions across the film a 2.8 inches, 4.7, inches, 13.8 inches, 19.3 inches, 30.3 inches and 43.2 inches from an end of the film. In this example, the optical band edge was at ~800 nm and cross-web variation was on the order of 50 nm.

Example 1

[0058] A non-birefringent band edge correction filter in the form of a hybrid organic/inorganic interference filter was deposited using the vacuum deposition procedures generally described in U.S. Pat. No. 7,018,713 (Padiyath et al.). For the purposes of this Example, the hybrid filter was deposited onto a PET film substrate and subsequently laminated onto the multilayer optical film stack

described as Preparatory Example 1 to produce an optical stack. Alternatively, the hybrid filter could have been directly coated onto the multilayer optical film stack of Preparatory Example 1.

[0059] The hybrid filter, which was a non-birefringent optical filter, was designed as a 12 layer stack with high index (n=1.983 at 681 nm) inorganic layers (ZnO:Al) at 98.3 nm thickness alternating with low index (n=1.488 at 681 nm) organic polymer layers at 114.4 nm thickness. The optical spectra of this hybrid non-birefringent correction filter are shown in FIG. 13.

[0060] After lamination of hybrid filter of this Example onto the oriented polymeric multilayer optical film of Preparatory Example 1, the resulting optical spectra was measured with results displayed in FIG. 14. The resulting band edge wavelength shifted to that of the hybrid filter at ~ 660 nm with cross-web variation reduced from ~ 50 nm to less than 5 nm.

Example 2

20

[0061] The same hybrid filter formed on PET that was used for Example 1 was laminated onto the oriented polymeric multilayer optical film of Preparatory Example 2 to produce an optical stack. The resulting optical spectra was measured with results displayed in FIG. 15. The curves labeled L1, L3, L8, L11, L17 and L24 correspond to C1, C3, C8, C11, C17 and C24, respectively, of FIG. 12. The resulting measurements showed the band edge wavelength to shift to that of the hybrid filter at ~ 660nm with cross-web variation reduced from ~ 50 nm to less than 5 nm.

Example 3

[0062] This Example demonstrates the use of an absorptive dye layer to provide correction to band edge of a multilayer optical film. An oriented polymeric multilayer optical film was produce as in Preparatory Example 1 and had the spectra shown in FIG. 16 (and also shown as curve 1882 in FIG. 18). For this Example, a sample of 1/8" thick Acrylite 257-0 GP Red (Cyro Corporation) was used as a non-birefringent optical filter. This material contained a spectrally sharp absorbing dye in an acrylic host as shown in the transmission spectrum of FIG. 17 (also shown as curve 1884 in FIG. 18). It absorbs heavily below about 610 nm, and has a sharp transition to high transmission at higher wavelengths.

[0063] The Acrylite 257-0 GP Red layer was placed adjacent the oriented polymeric multilayer optical film to produce an optical stack which was a notch filter at normal incidence with a passband 1860 having peak transmission at about 640 nm with a full-width half-maximum of about 55 nm as shown in FIG. 18. Since the absorber band edge does not shift with incidence angle and the oriented polymeric multilayer optical film interference filter shifts to lower wavelengths with increasing incidence angle, the transmission notch closes quickly as a function

55

15

20

25

30

35

40

50

55

of angle. Transmission through the optical stack was observed to shift from red to black as the angle of incidence changed from normal to about 30 degrees.

19

[0064] Descriptions for elements in figures should be understood to apply equally to corresponding elements in other figures, unless indicated otherwise. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations can be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this disclosure be limited only by the accompanying claims.

Claims

1. An optical stack (100) comprising:

(352) with a first band edge (354) having a variation across a length or a width of the multilayer optical film, the first band edge (354), at normal incidence, having a design wavelength λ and a characteristic deviation about the design wavelength Δ ; and a first non-birefringent optical filter (110, 114, 116) disposed adjacent the multilayer optical film and having a first blocking band (362, 362a), the first blocking band (362, 362a), at normal incidence, comprising wavelengths between $\lambda\text{--}$ $\Delta/2$ and $\lambda+\Delta/2$, such that the optical stack (100) has a band edge variation reduced by at least 60 percent compared to the variation in the first band edge (354), wherein, at normal incidence, the first reflection band (352) includes a wavelength range having a width of at least Δ that is

an oriented polymeric multilayer optical film

(110, 114, 116) having a first reflection band

2. The optical stack (100) of claim 1, wherein the first blocking band (362, 362a) is a reflection band.

outside of the first blocking band (362, 362a).

- 3. The optical stack (100) of claim 2, wherein the first non-birefringent optical filter is a non-birefringent reflector.
- 4. The optical stack (100) of claim 1, wherein the first blocking band (362, 362a) is an absorbing band.
- 5. The optical stack (100) of claim 1, further comprising a second non-birefringent optical filter (110, 114, 116), the first reflection band (352) having a second band edge (356) having a second design wavelength at normal incidence, the second non-birefringent op-

tical filter having a second blocking band (362b) comprising the second design wavelength.

6. An optical system (1001a-c) comprising the optical stack (100) of any one of claims 1 to 5 and further comprising one or both of a light source (1022) and a sensor (1024) in optical communication with the optical stack (100).

Patentansprüche

1. Ein optischer Stapel (100), aufweisend:

eine ausgerichtete polymere mehrschichtige optische Folie (110, 114, 116), die ein erstes Reflexionsband (352) mit einer ersten Bandkante (354) aufweist, die eine Variation über eine Länge oder eine Breite der mehrschichtigen optischen Folie hinweg aufweist, wobei die erste Bandkante (354), bei normaler Inzidenz, eine Designwellenlänge λ und eine charakteristische Abweichung um die Designwellenlänge A aufweist, und

einen ersten nicht doppelbrechenden optischen Filter (110, 114, 116), der angrenzend an die mehrschichtige optische Folie angeordnet ist und ein erstes Sperrband (362, 362a) aufweist, das erste Sperrband (362, 362a), bei normaler Inzidenz, aufweisend Wellenlängen zwischen λ - Δ /2 und λ + Δ /2 derart, dass der optische Stapel (100) eine Bandkantenvariation aufweist, die um mindestens 60 Prozent im Vergleich zu der Variation in der ersten Bandkante (354) reduziert ist, wobei, bei normaler Inzidenz, das erste Reflexionsband (352) einen Wellenlängenbereich einschließt, der eine Breite von mindestens A aufweist, die außerhalb des ersten Sperrbands (362,362a) liegt.

- 2. Der optische Stapel (100) nach Anspruch 1, wobei das erste Sperrband (362, 362a) ein Reflexionsband
- 45 3. Der optische Stapel (100) nach Anspruch 2, wobei der erste nicht doppelbrechende optische Filter ein nicht doppelbrechender Reflektor ist.
 - Der optische Stapel (100) nach Anspruch 1, wobei das erste Sperrband (362, 362a) ein absorbierendes Band ist.
 - 5. Der optische Stapel (100) nach Anspruch 1, ferner aufweisend einen zweiten nicht doppelbrechenden optischen Filter (110, 114, 116), wobei das erste Reflexionsband (352) eine zweite Bandkante (356) aufweist, die eine zweite Designwellenlänge bei normaler Inzidenz aufweist, wobei der zweite nicht doppel-

10

15

brechende optische Filter ein zweites Sperrband (362b) aufweist, aufweisend die zweite Designwellenlänge.

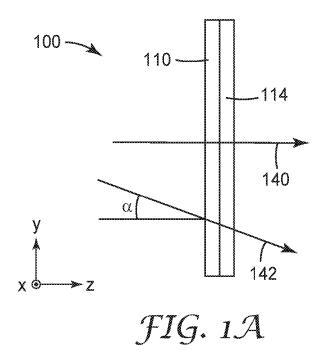
6. Ein optisches System (1001a-c), aufweisend den optischen Stapel (100) nach einem der Ansprüche 1 bis 5 und ferner aufweisend eine oder beide einer Lichtquelle (1022) und eines Sensors (1024) in optischer Kommunikation mit dem optischen Stapel (100). à incidence normale, le second filtre optique non biréfringent ayant une seconde bande de blocage (362b) comprenant la seconde longueur d'onde de conception.

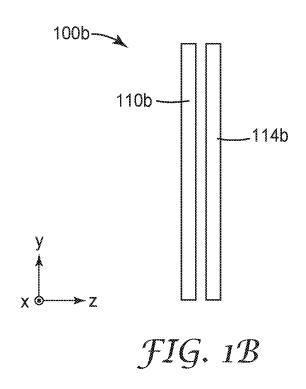
6. Système optique (1001a-c) comprenant l'empilement optique (100) selon l'une quelconque des revendications 1 à 5 et comprenant en outre l'un et/ou l'autre d'une source de lumière (1022) et d'un capteur (1024) en communication optique avec l'empilement optique (100).

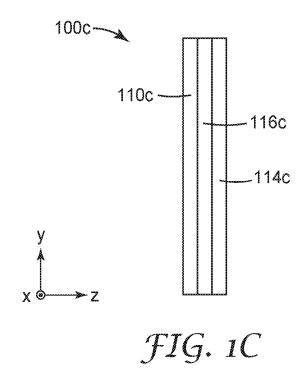
Revendications

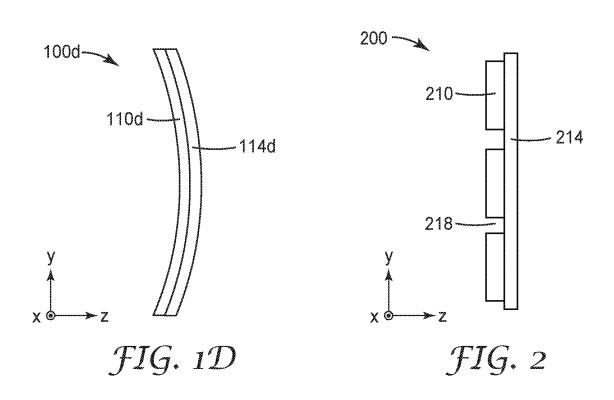
1. Empilement optique (100) comprenant :

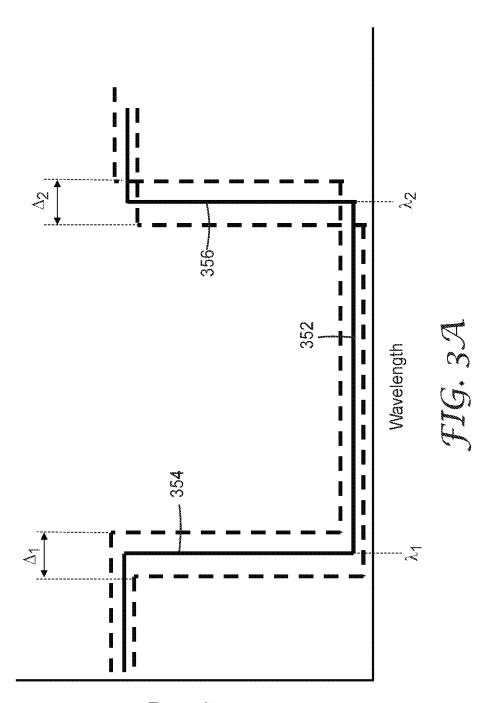
un film optique multicouche polymère orienté (110, 114, 116) ayant une première bande de réflexion (352) avec un premier bord de bande (354) ayant une variation à travers une longueur ou une largeur du film optique multicouche, le premier bord de bande (354), à incidence normale, ayant une longueur d'onde de conception λ et une déviation caractéristique autour de la longueur d'onde de conception Δ ; et un premier filtre optique non biréfringent (110, 114, 116) disposé adjacent au film optique multicouche et ayant une première bande de blocage (362, 362a), la première bande de blocage (362, 362a), à incidence normale, comprenant des longueurs d'onde entre λ - Δ /2 et λ + Δ /2, de telle sorte que l'empilement optique (100) a une variation de bord de bande réduite d'au moins 60 pour cent par comparaison avec la variation dans le premier bord de bande (354), dans lequel, à incidence normale, la première bande de réflexion (352) comporte une plage de lonqueur d'onde avant une largeur d'au moins Δ qui est à l'extérieur de la première bande de blocage (362, 362a).

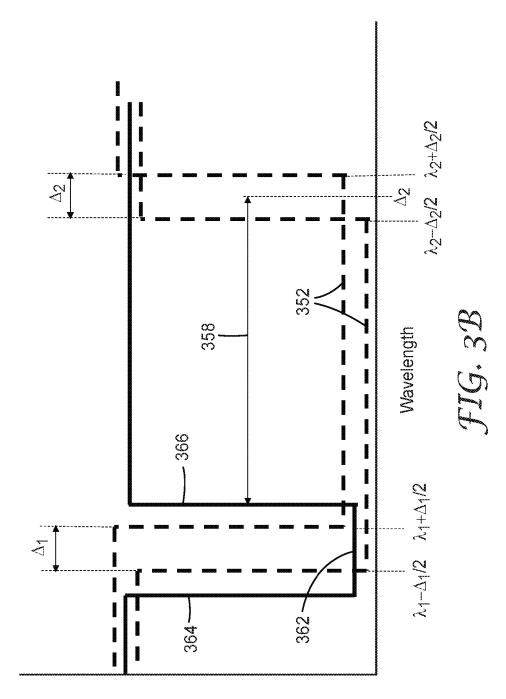

2. Empilement optique (100) selon la revendication 1, dans lequel la première bande de blocage (362, 362a) est une bande de réflexion.

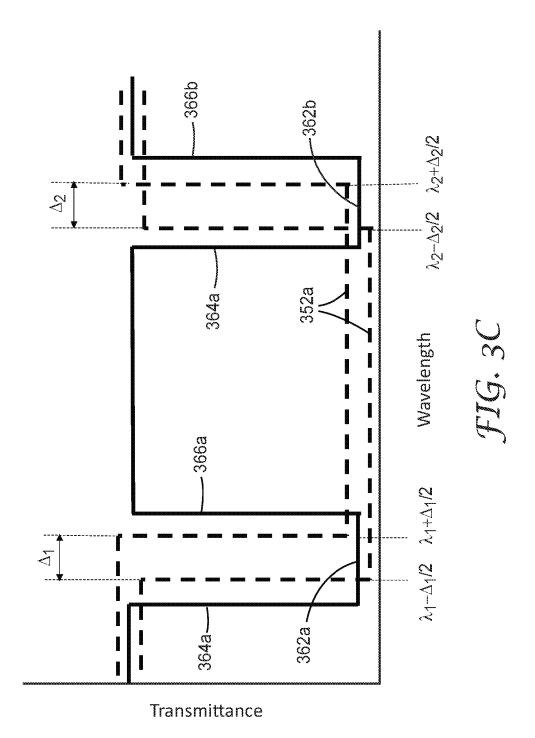

3. Empilement optique (100) selon la revendication 2, dans lequel le premier filtre optique non biréfringent est un réflecteur non biréfringent.

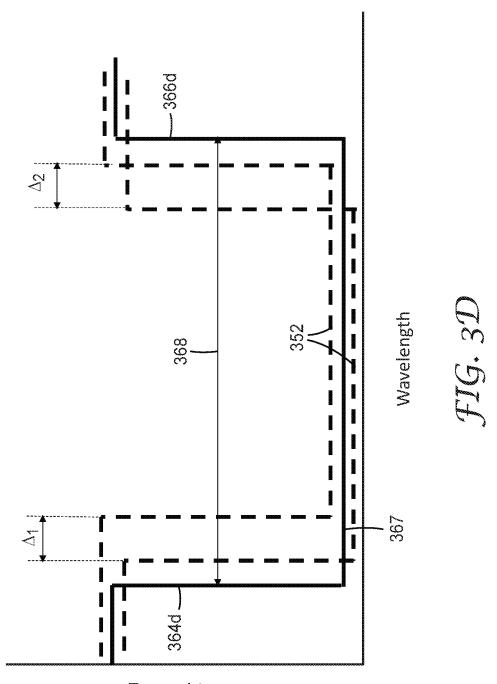

4. Empilement optique (100) selon la revendication 1, dans lequel la première bande de blocage (362, 362a) est une bande d'absorption.

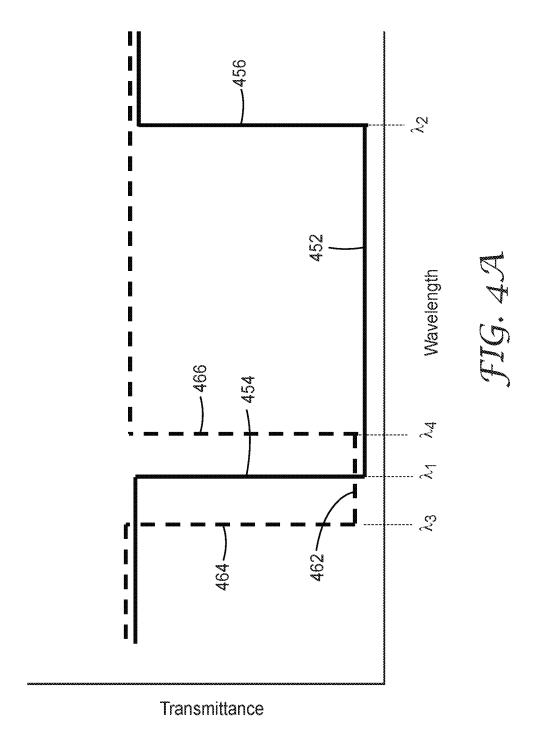

5. Empilement optique (100) selon la revendication 1, comprenant en outre un second filtre optique non biréfringent (110, 114, 116), la première bande de réflexion (352) ayant un second bord de bande (356) ayant une seconde longueur d'onde de conception

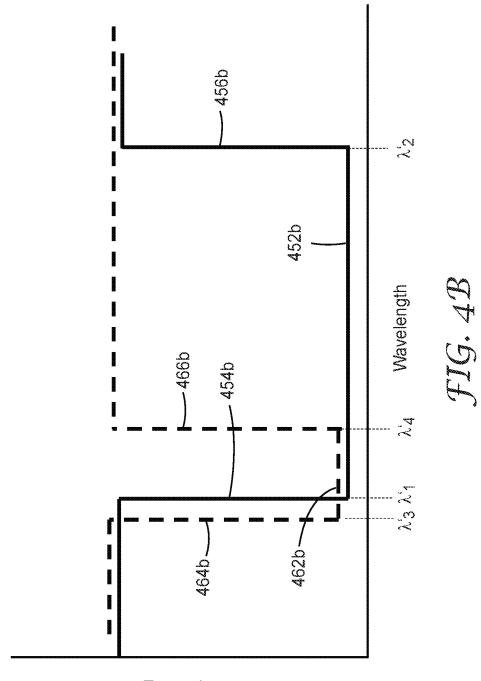

40

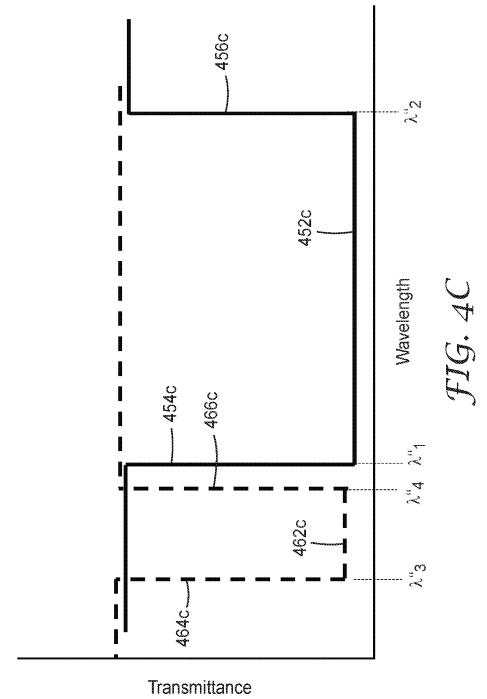


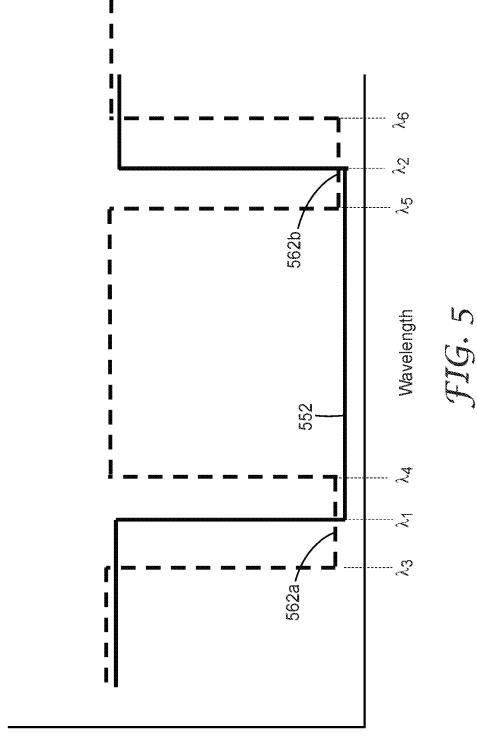



Transmittance

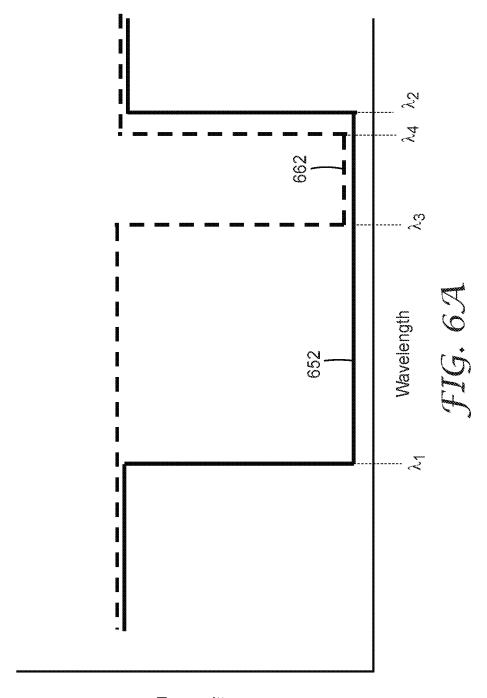

Transmittance


17

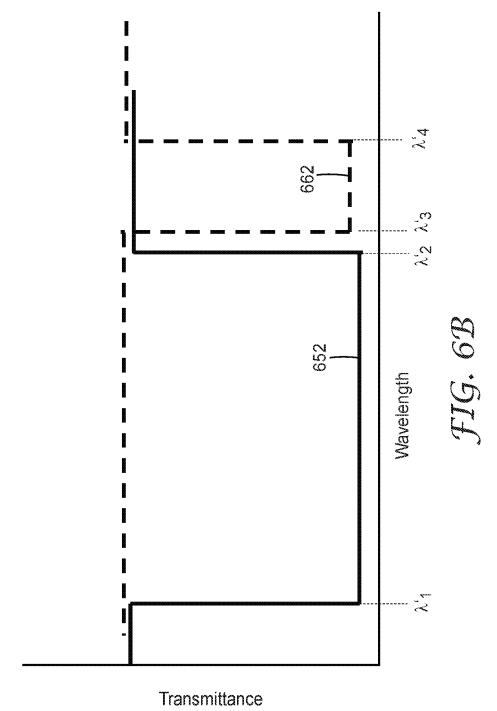

Transmittance

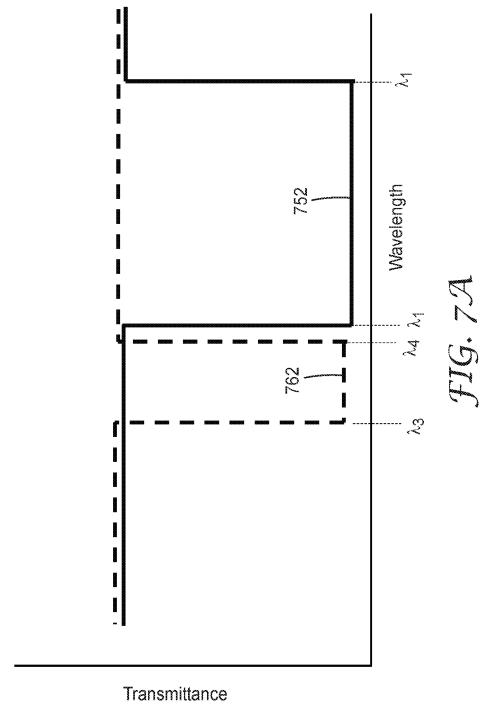


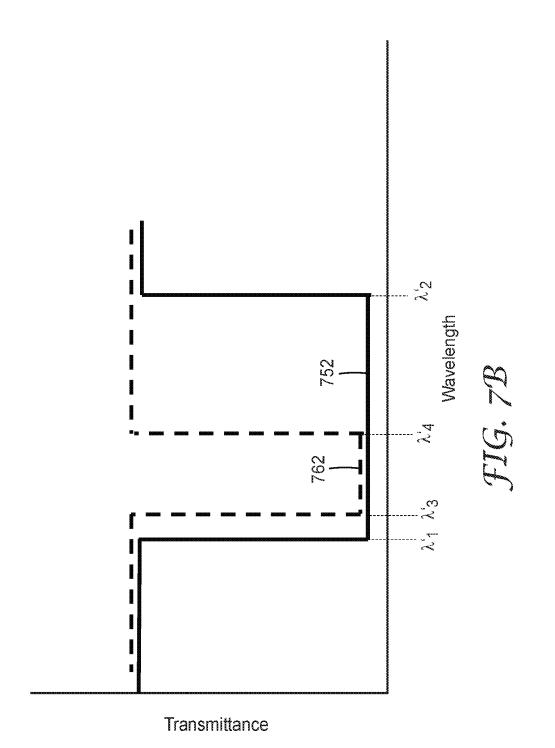
19

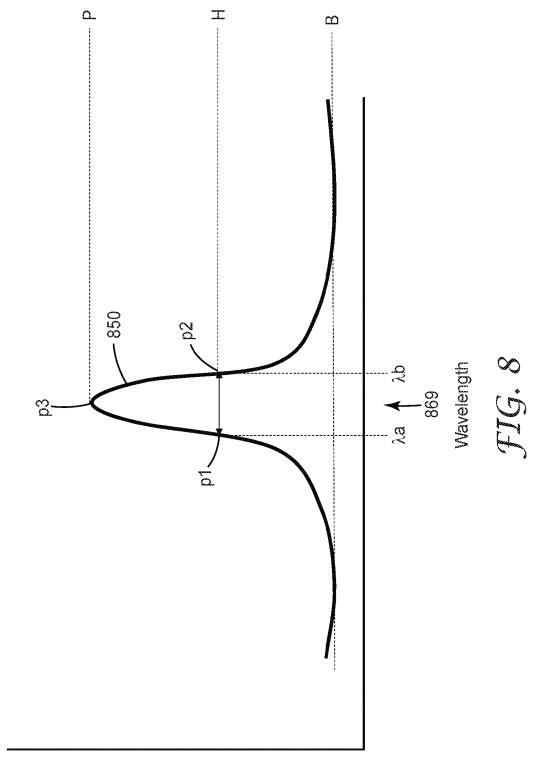


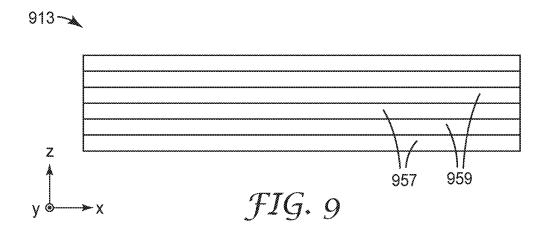
Transmittance

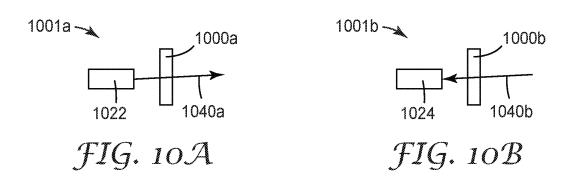


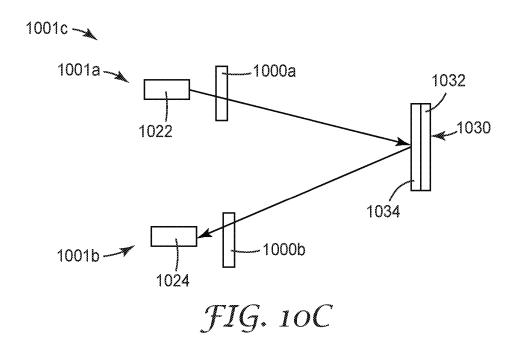


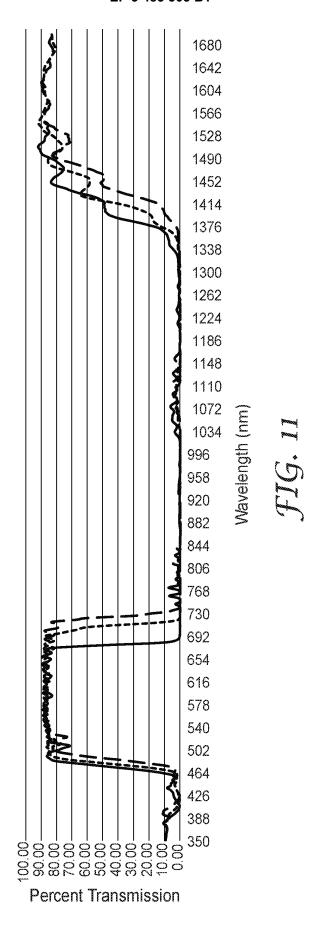

Transmittance

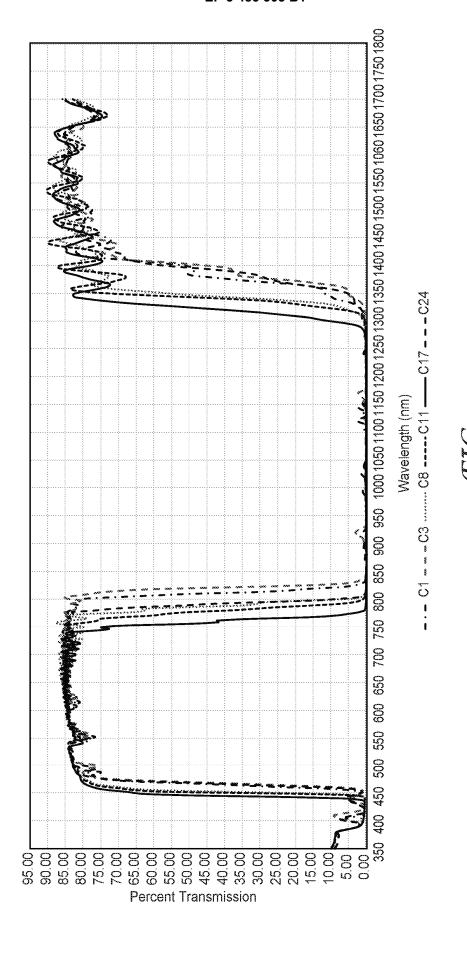

Transmittance

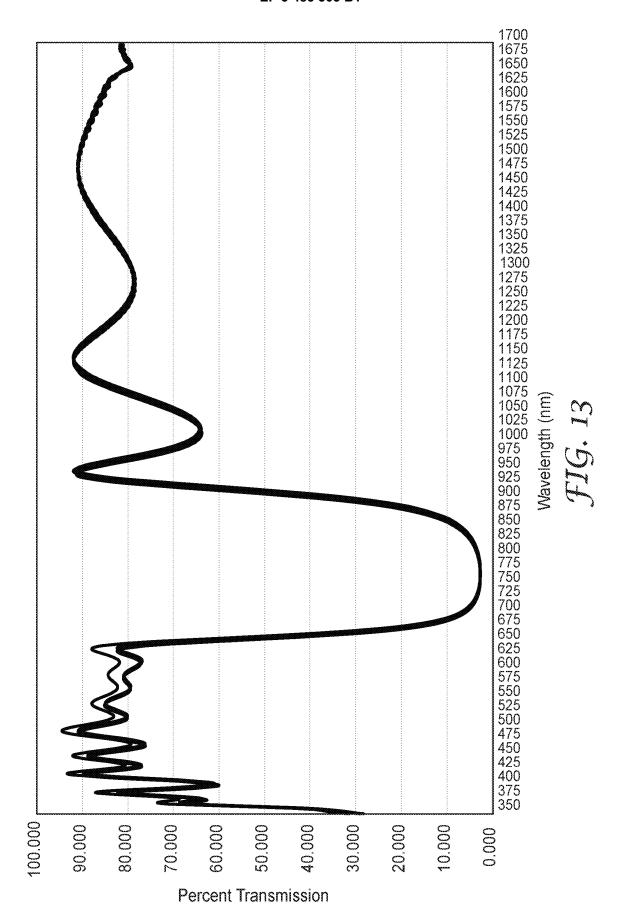


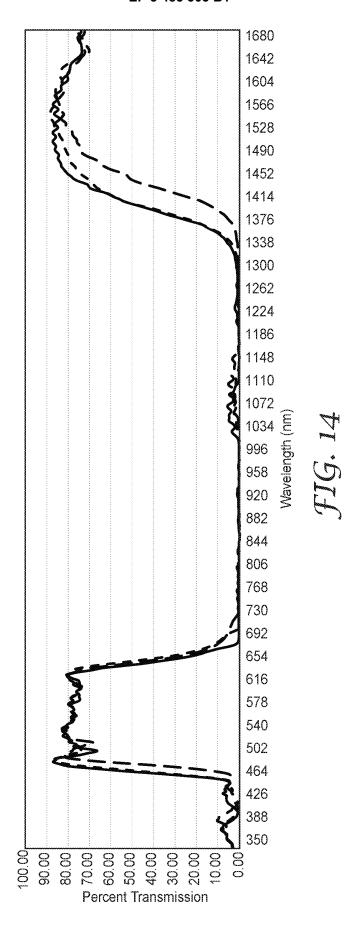


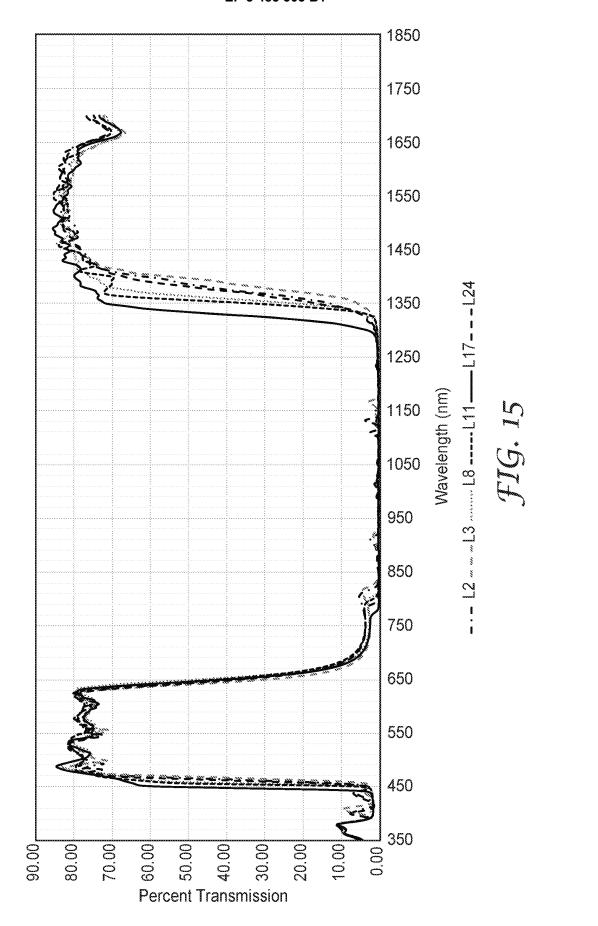

26

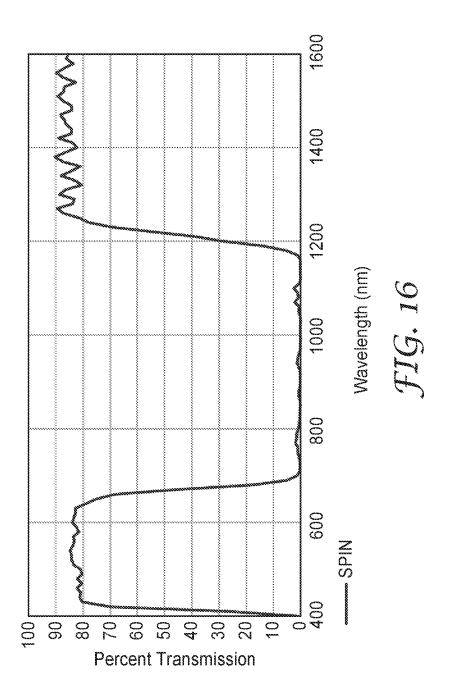


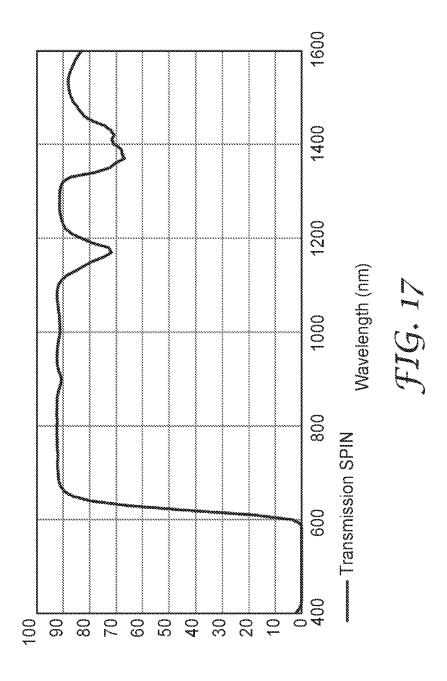

Function of Wavelength

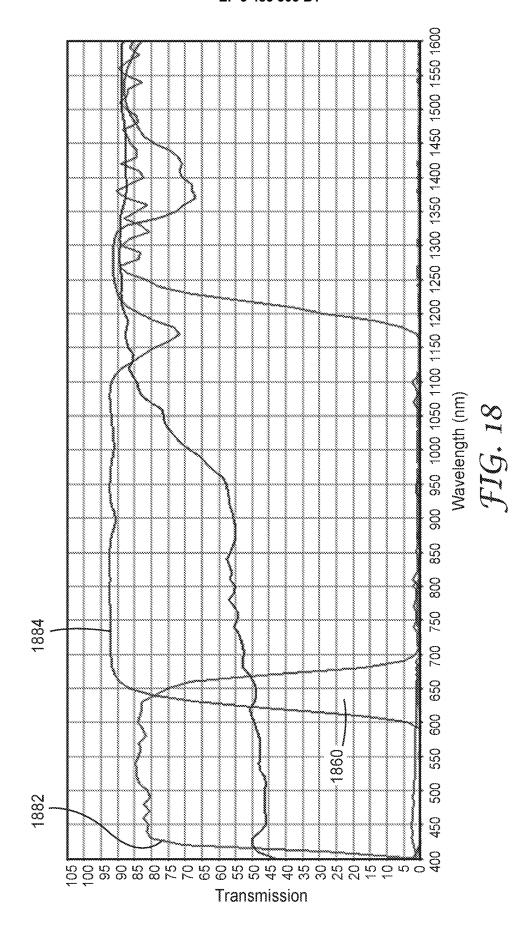












EP 3 485 303 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6549254 B1 [0001]
- WO 9936808 A1 [0001]
- WO 2016061192 A1 **[0001]**
- US 5882774 A, Jonza [0042] [0056]
- US 5962114 A, Jonza [0042]
- US 5965247 A, Jonza [0042]
- US 6939499 B, Merrill **[0042]**

- US 6916440 B, Jackson [0042]
- US 6949212 B, Merrill [0042]
- US 6936209 B, Jackson [0042]
- US 5440446 A, Shaw [0047]
- US 7018713 B, Padiyath [0047] [0058]
- US 20150285956 A, Schmidt [0048]
- US 62347776, Wheatley [0052]