[0001] The disclosure relates to a vehicle lamp, and more particularly to a transparent
vehicle lamp that is adapted to be a turn signal or a brake light.
[0002] A conventional vehicle lamp includes a light emitting member, a lens adapted for
transmitting light that is emitted from the light emitting member, and a shell. The
lens has a light incident surface adapted for allowing a light beam to propagate therethrough,
a light output surface adapted for allowing the light beam to be output therefrom,
a back spaced apart from the light output surface, and a reflecting surface adapted
for reflecting the light beam incident from the light incident surface toward the
light output surface. The shell is disposed for receiving the lens, and fully covers
the back of the lens. The conventional vehicle lamp is usually disposed for lighting,
direction indicating and brake warning. However, the conventional vehicle lamp has
simple function and dull appearance, so that the structure of the conventional vehicle
lamp is required to be innovated to increase the uniqueness and the value of the products.
[0003] Therefore, the object of the disclosure is to provide a transparent vehicle lamp
that can alleviate at least one of the drawbacks of the prior art.
[0004] According to the disclosure, the transparent vehicle lamp includes at least one lens
and a first light emitting member. The at least one lens has a main body portion and
a first light input portion. An optical axis extends through the main body portion
in a front-rear direction. The first light input portion is connected to one of two
opposite sides of the main body portion, and is spaced apart from the optical axis.
The main body portion has a reflecting surface intersecting with the optical axis,
a coupling surface connected to a periphery of the reflecting surface, and a light
output surface spaced apart from the reflecting surface and the coupling surface along
the optical axis such that the image of a scenery toward which the coupling surface
faces is formed on the light output surface. The first light input portion has a first
light input surface. The first light emitting member emits light toward the first
light input surface. A first light beam emitted from the first light emitting member
firstly propagates toward the optical axis through the first light input surface,
and is then reflected by the reflecting surface toward the light output surface.
[0005] Other features and advantages of the disclosure will become apparent in the following
detailed description of the embodiment with reference to the accompanying drawings,
of which:
Figure 1 is a front perspective view of an embodiment of a transparent vehicle lamp
according to the disclosure;
Figure 2 is a fragmentary top sectional view of the embodiment;
Figure 3 is a front perspective view of one of lenses of the embodiment;
Figure 4 is a front perspective view of the other one of lenses of the embodiment;
Figure 5 is a front schematic view of the embodiment, illustrating that an inverted
image of scenery which is disposed behind the embodiment can be observed from a light
output surface of the embodiment; and
Figure 6 is a fragmentary top sectional view of a variation of the embodiment.
[0006] Referring to Figures 1 and 2, the embodiment of a transparent vehicle lamp according
to the disclosure is adapted to be a turn signal or a brake light. The transparent
vehicle lamp includes two lenses 1 fixedly connected to each other, a first light
emitting member 2, a second light emitting member 3 and a shell 4. An optical axis
(L) extends through the lenses 1 in a front-rear direction. The lenses 1 are arranged
along the optical axis (L).
[0007] Referring to Figures 2 to 4, each of the lenses 1 has a main body portion 11, a first
light input portion 12 and a second light input portion 13. The first and second light
input portions 12, 13 are spaced apart from the optical axis (L), and are respectively
connected to two opposite sides of the main body portion 11.
[0008] The main body portion 11 has a reflecting surface 111 intersecting with the optical
axis (L), a coupling surface 112 connected to a periphery of the reflecting surface
111, and a light output surface 113 spaced apart from the reflecting surface 111 and
the coupling surface 112 along the optical axis L such that the image of a scenery
toward which the coupling surface 112 faces is formed on the light output surface
113. The reflecting surface 111 has a plurality of curved reflecting surface parts
114 protruding toward the light output surface 113, and adapted for uniforming light.
The coupling surface 112 is a flat surface such that, the coupling surfaces 112 of
the lenses 1 can be smoothly coupled together. In this embodiment, the coupling surfaces
112 of the lenses 1 abut against each other, and the light output surfaces 113 of
the lenses 1 face away from each other. As such, one of the light output surfaces
113 which is disposed in front of the other one of the light output surfaces 113 faces
forwardly, and the other one of the light output surfaces 113 faces rearwardly.
[0009] The first light input portion 12 has a first light input surface 121 disposed at
one of the two opposite sides of the lens 1, and a first connecting surface 122 connected
between the coupling surface 112 and the first light input surface 121. The second
light input portion 13 has a second light input surface 131 disposed at the other
one of the two opposite sides of the lens 1, and spaced apart from the first light
input surface 121, and a second connecting surface 132 connected between the coupling
surface 112 and the second light input surface 131. The coupling surface 112 cooperates
with the first connecting surface 122 and the second connecting surface 132 to form
a continuous flat surface. In such manner, the continuous flat surface of one of the
lenses 1 can abut against the continuous flat surface of the other one of the lenses
1 so as to fittingly couple the lenses 1 together. In this embodiment, the first light
input portion 12 and the second light input portion 13 are not located on the optical
axis (L), and are symmetrically disposed about the optical axis (L). In other embodiments,
the first and second light input portions 12, 13 may be arranged in other manners.
It should be noted that, in other embodiments, the number of the light input portions
12, 13 may be varied, for example, each of the lenses 1 may be provided with only
one light input portion. The first light emitting member 2 is disposed on one side
of the first light input portion 12, and emits light toward the first light input
surface 121. The second light emitting member 3 is disposed on one side of the second
light input portion 13, and emits light toward the second light input surface 131.
In this embodiment, each of the first and the second light emitting members 2, 3 is
configured as a light emitting diode (LED), and the configurations of the first and
second light emitting members 2, 3 may be varied in other embodiments.
[0010] Referring to Figures 2, 3 and 5, the shell 4 receives the lenses 1, and is adapted
to be mounted to a vehicle (not shown). The shell 4 has a surrounding portion 41 fully
covering the first light input portions 12, the second light input portions 13, the
first light emitting members 2 and the second light emitting embers 3. In such manner,
only the main body portions 11 of the lenses 1 are visible from both front and the
rear (i.e., the remaining portions of the lenses 1 are not visible), and the appearance
of the transparent vehicle lamp is simple and neat.
[0011] First light beams emitted from the first light emitting members 2 respectively and
firstly propagate toward the optical axis (L) through the first light input surfaces
121 of the lenses 1, and are then respectively reflected by the reflecting surfaces
111 of the lenses 1 toward the light output surfaces 113 of the lenses 1. Similarly,
second light beams emitted from the second light emitting members 3 respectively and
firstly propagate toward the optical axis (L) through the second light input surfaces
131 of the lenses 1, and are then respectively reflected by the reflecting surfaces
111 toward the light output surfaces 113. It should be noted that, the transparent
vehicle lamp is designed according to the Total Internal Reflection (TIR) theory,
so that the reflecting surfaces 113 can totally reflect most of the light beams at
a specific incident angle. In such manner, the light beams can be effectively utilized,
and the shape and the brightness of the projected area are satisfied to the regulation
requirements. In addition, the reflecting surface parts 114 of the reflecting surface
111 of each of the lenses 1 form a diffusion structure so as to improve the diffusing
effectiveness and the uniform effectiveness of the light beams.
[0012] It should be noted that, in this embodiment, since the lenses 1 are arranged along
the optical axis (L) and the light output surfaces 113 of the lenses 1 respectively
face forwardly and rearwardly, the light beams emit from both front and rear sides
of the transparent vehicle lamp. As a result, the vehicle can indicate signals forwardly
and rearwardly, and the convenience of the indicating operation is improved. In addition,
the first and second light beams emitted from the first emitting member 2 and the
second emitting member 3 can both be transmitted through the lenses 1, so that the
cost of mounting the emitting members is decreased. The transparent vehicle lamp may
be applied to a motorcycle and other types of vehicles.
[0013] When the first and second light beams are not emitted from the first and second light
emitting members 2, 3, the image of the scenery which is located at a rear side of
the transparent vehicle lamp can be observed from the light output surface 113 of
the front lens 1. Similarly, the image of the scenery which is located at a front
side of the transparent vehicle lamp can be observed from the light output surface
113 of the rear lens 1. With such configuration, the light output area of the transparent
vehicle lamp may function as a scenery image forming area, and a special visual effectiveness
can be achieved.
[0014] It should be noted that, in this embodiment, each of the lenses 1 is a convex lens,
and is adapted to form a real and inverted image.
[0015] As shown in Figures 1 and 6, a variation of the embodiment may include only one lens
1. The variation of the embodiment may be used as an indicating signal which projects
the light beams forwardly or an indicating signal which projects the light beams rearwardly.
The shell 4 may be modified to correspond to the variation of the embodiment in shape.
The variation of the embodiment can also form a real and inverted image of the scenery.
[0016] In conclusion, with the configurations of the transparent vehicle lamp, the specialty
and the product value of the transparent vehicle lamp are increased so as to raise
the competitiveness of the product, and an increase in volume of the transparent vehicle
lamp can be prevented.
[0017] In the description above, for the purposes of explanation, numerous specific details
have been set forth in order to provide a thorough understanding of the embodiment.
It will be apparent, however, to one skilled in the art, that one or more other embodiments
may be practiced without some of these specific details. It should also be appreciated
that reference throughout this specification to "one embodiment," "an embodiment,"
an embodiment with an indication of an ordinal number and so forth means that a particular
feature, structure, or characteristic may be included in the practice of the disclosure.
It should be further appreciated that in the description, various features are sometimes
grouped together in a single embodiment, figure, or description thereof for the purpose
of streamlining the disclosure and aiding in the understanding of various inventive
aspects.
1. A transparent vehicle lamp including:
at least one lens (1) having a main body portion (11), an optical axis (L) extending
through said main body portion (11) in a front-rear direction, and a first light input
portion (12) that is connected to one of two opposite sides of said main body portion
(11), and that is spaced apart from the optical axis (L), said main body portion (11)
having a reflecting surface (111) that intersects with the optical axis (L), and a
light output surface (113), said first light input portion (12) having a first light
input surface (121); and
a first light emitting member (2) facing said first light input surface (121), a first
light beam emitted from said first light emitting member (2) firstly propagating toward
the optical axis (L) through said first light input surface (121), and being then
reflected by said reflecting surface (111) toward said light output surface (113);
characterized in that said main body portion (11) further having a coupling surface (112) that is connected
to a periphery of said reflecting surface (111), said light output surface (113) being
spaced apart from said reflecting surface (111) and said coupling surface (112) along
the optical axis (L) such that the image of a scenery toward which said coupling surface
(112) faces is formed on said light output surface (113).
2. The transparent vehicle lamp as claimed in Claim 1, further characterized in that said at least one lens (1) is a convex lens, and is adapted to form a real and inverted
image.
3. The transparent vehicle lamp as claimed in Claim 1, characterized by a shell (4) receiving said at least one lens (1), and having a surrounding portion
(41) that fully covers said first light input portion (12) and said first light emitting
member (2).
4. The transparent vehicle lamp as claimed in Claim 1, further characterized in that said coupling surface (112) is a flat surface.
5. The transparent vehicle lamp as claimed in Claim 4, further characterized in that said first light input portion (12) further has a first connecting surface (122)
connected between said coupling surface (112) and said first light input surface (121),
and cooperating with said coupling surface (112) to form a continuous flat surface.
6. The transparent vehicle lamp as claimed in Claim 1, further characterized in that said reflecting surface (111) has a plurality of curved reflecting surface parts
(114) protruding toward said light output surface (113).
7. The transparent vehicle lamp as claimed in Claim 1, further
characterized in that:
said at least one lens (1) further has a second light input portion (13) connected
to the other of the opposite sides of said main body portion (11), spaced apart from
said first light input portion (12) and the optical axis (L), and having a second
light input surface (131); and
said transparent vehicle lamp further comprising a second light emitting member (3),
a second light beam emitted from said second light emitting member (3) firstly propagating
toward the optical axis (L) through said second light input surface (131), and being
then reflected by said reflecting surface (111) toward said light output surface (113).
8. The transparent vehicle lamp as claimed in Claim 1, characterized by two said lenses (1) fixedly connected to each other, and arranged along the optical
axis (L), said coupling surfaces (112) of said lenses (1) abutting against each other,
said light output surfaces (113) of said lenses (1) facing away from each other.
9. The transparent vehicle lamp as claimed in Claim 8, further characterized in that said coupling surfaces (112) are flat surfaces.
10. The transparent vehicle lamp as claimed in Claim 8, further characterized by a shell (4) receiving said lenses (1), and having a surrounding portion (41) that
fully covers said first light input portions (12) of said lenses (1) and said first
light emitting members (2).
Amended claims in accordance with Rule 137(2) EPC.
1. A transparent vehicle lamp including:
at least one lens (1) having a main body portion (11), an optical axis (L) extending
through said main body portion (11) in a front-rear direction, and a first light input
portion (12) that is connected to one of two opposite sides of said main body portion
(11), and that is spaced apart from the optical axis (L), said main body portion (11)
having a reflecting surface (111) that intersects with the optical axis (L), and a
light output surface (113), said first light input portion (12) having a first light
input surface (121); and
a first light emitting member (2) facing said first light input surface (121), a first
light beam emitted from said first light emitting member (2) firstly propagating toward
the optical axis (L) through said first light input surface (121), and being then
reflected by said reflecting surface (111) toward said light output surface (113);
characterized in that said main body portion (11) further has a coupling surface (112) that is connected
to a periphery of said reflecting surface (111), that is a flat surface and that faces
a scenery, said light output surface (113) is spaced apart from said reflecting surface
(111) and said coupling surface (112) along the optical axis (L), and said first light
input portion (12) further has a first connecting surface (122) connected between
said coupling surface (112) and said first light input surface (121) and cooperating
with said coupling surface (112) to form a continuous flat surface.
2. The transparent vehicle lamp as claimed in Claim 1, further characterized in that said at least one lens (1) is a convex lens.
3. The transparent vehicle lamp as claimed in Claim 1, characterized by a shell (4) receiving said at least one lens (1), and having a surrounding portion
(41) that fully covers said first light input portion (12) and said first light emitting
member (2).
4. The transparent vehicle lamp as claimed in Claim 1, further characterized in that said reflecting surface (111) has a plurality of curved reflecting surface parts
(114) protruding toward said light output surface (113).
5. The transparent vehicle lamp as claimed in Claim 1, further
characterized in that:
said at least one lens (1) further has a second light input portion (13) connected
to the other of the opposite sides of said main body portion (11), spaced apart from
said first light input portion (12) and the optical axis (L), and having a second
light input surface (131); and
said transparent vehicle lamp further comprising a second light emitting member (3),
a second light beam emitted from said second light emitting member (3) firstly propagating
toward the optical axis (L) through said second light input surface (131), and being
then reflected by said reflecting surface (111) toward said light output surface (113).
6. The transparent vehicle lamp as claimed in Claim 1, characterized by two said lenses (1) fixedly connected to each other, and arranged along the optical
axis (L), said coupling surfaces (112) of said lenses (1) abutting against each other,
said light output surfaces (113) of said lenses (1) facing away from each other.
7. The transparent vehicle lamp as claimed in Claim 6, further characterized in that said coupling surfaces (112) are flat surfaces.
8. The transparent vehicle lamp as claimed in Claim 6, further characterized by a shell (4) receiving said lenses (1), and having a surrounding portion (41) that
fully covers said first light input portions (12) of said lenses (1) and said first
light emitting members (2) .