Field of invention
[0001] The present invention relates to a fractional slot multi winding set electrical machine,
relates to a wind turbine and further relates to a method for controlling a fractional
slot dual three-phase winding set electrical machine or a wind turbine.
Art Background
[0002] An electrical machine may comprise a stator comprising a stator yoke having plural
teeth alternating with plural slots. Furthermore, the electrical machine may comprise
a rotor on which plural permanent magnets are mounted. The rotor may be rotatably
supported to allow rotation of the rotor relative to the stator, while a gap is present
between ends of the teeth of the stator and the poles of the rotor. In the slots of
the stator, one or more winding sets may be arranged, in particular in multiple turns.
[0003] A fractional slot topology refers to a configuration, wherein the ratio of the number
of slots divided by the number of poles is not an integer but a rational number. It
has been observed that fractional slot topologies may be inherently prone to parasitic
air gap sub-harmonic frequencies which may cause issues such as undesirable air gap
forces and losses within the rotor house. Although the fractional slot concentrated
winding (FSCW) generator may show a beneficial electromagnetic performance, the concentrated
winding may also lead to a decrease in cooling surface area when compared to integer
slot distributed winding topology electrical machines due to the reduction in end
winding surface area. Similarly, the magnets of a permanent magnet FSCW may be more
susceptible to demagnetization during fault conditions (such as short-circuits) than
an equivalent distributed winding machine.
[0004] Thus, there may be a need for a fractional slot multi winding set electrical machine
where parasitic air gap sub-harmonic frequencies are reduced, where effective cooling
is achieved and demagnetization during fault conditions is reduced, The document
EP 3 051 670 A1 discloses a winding design for a stator of an electric machine.
Summary of the Invention
[0005] This need may be met by the subject matter according to the independent claims. Advantageous
embodiments of the present invention are described by the dependent claims.
[0006] According to an embodiment of the present invention it is provided a fractional slot
multi winding set electrical machine, comprising: at least one section (segmented
or non-segmented), in particular at least two or at least three sections, forming
a whole circumference in a circumferential direction, each section having a stator
portion and a rotor portion, the stator portion of each section comprising a number
of slots alternating with teeth along the circumferential direction; a first winding
set; at least one second winding set, wherein the first and second winding sets are
arranged at least partly in the slots, in particular according to a concentrated winding
topology, the rotor portion of each section comprising a number of poles of plural
magnets separated by a gap from the teeth.
[0007] The fractional slot multi winding set electrical machine is characterized in that
the ratio of the number of slots and the number of poles is not an integer but a rational
number. The multi winding set electrical machine refers to an electrical machine which
may have two or more winding sets, each winding set may have plural wires to provide
plural phases, such as for example three phases, four phases, five phases or even
more phases. Each winding set comprises a number of wires arranged at least partly
within slots of the stator.
[0008] The electrical machine may be composed of exactly one section which forms a ring,
i.e. a whole circumference in the circumferential direction. Alternatively, the electrical
machine may be composed of at least two or at least three or even more sections which
when assembled form a ring, i.e. a whole circumference in the circumferential direction.
The stator portion and the rotor portion in each section may be separate from each
other (not being connected to each other) to allow the assembled machine to rotate
the rotor relative to the stator. All sections may be configured in a same manner
or at least in a similar manner. The electrical machine may be configured as a generator
for generating electrical energy or a motor for producing mechanical rotation. The
electrical machine may comprise in particular a relatively high number of sections
which may contribute for decreasing parasitic air gap sub-harmonic frequencies and/or
which may contribute to reduce the demagnetization of the permanent magnets during
fault conditions and may also contribute to improving the cooling.
[0009] According to an embodiment of the present invention, the number of slots is greater
than or equal to 9 and the number of poles is greater than or equal to 10. Thereby,
technical advantages regarding reduction of undesired frequencies and reduction of
demagnetization of the permanent magnets may be achieved.
[0010] According to an embodiment of the present invention, the number of slots is 12 and
the number of poles is 10 or the number of slots is 9 and the number of poles is 12
or the number of slots is 9 and the number of poles is 8 or the number of slots is
9 and the number of poles is 10 or the number of slots is 12 and the number of poles
is 14. Other configurations are possible, e.g. multiples of these slot/pole numbers.
[0011] According to an embodiment of the present invention, a number of sections is between
three to 11 or at least 12 or at least 13 or at least 14 or at least 15 or at least
16 sections or greater. The higher the number of sections, the better parasitic air
gap sub-harmonic frequencies may be reduced, demagnetization may be reduced and cooling
may be improved.
[0012] According to an embodiment of the present invention, the at least one second winding
set comprises exactly one second winding set, wherein in particular one wire of one
phase (e.g. A1+) of the first winding set and one wire of one phase (e.g. A2-) of
the second winding sets are at least partly arranged in one slot of the plural slots
side by side in the circumferential direction. Thereby, a dual electrical machine
is provided having exactly two winding sets. In particular, the winding scheme may
be a concentrated winding scheme. The dual winding set electrical machine may have
the advantage to be of simple construction, while allowing segmentation of the electrical
machine for transportation, simplifying the transportation.
[0013] In each of the slots of the stator, a wire of a phase of the first winding set may
be arranged as well as a wire of a phase of the second winding set. The two wires
commonly arranged in one slot may be insulated from each other appropriately. The
turning direction of the one wire of the one phase of the first winding set may be
opposite to the winding direction of the one wire of one phase of the second winding
set. Other winding topologies may be possible.
[0014] According to an embodiment of the present invention, any wire of any winding set
of any phase is wound in at least one turn around a tooth thereby at least partly
occupying two slots adjacent to the tooth. In particular, any wire of any winding
set of any phase may essentially occupy half of each of the two slots adjacent to
the tooth around which this wire is wound. Thereby, a concentrated winding scheme
may be supported.
[0015] According to an embodiment of the present invention, each winding set comprises a
common connection point at which one respective end of all wires of this winding set
are connected with each other. The common connection point may also be referred to
as a star connection point. Thereby, a star configuration is supported.
[0016] According to an embodiment of the present invention, other ends of all wires of one
phase for one winding set are connected with each other and are connectable to a converter
input of the respective phase for the respective winding set.
[0017] For each section the electrical machine may comprise for each phase for each winding
set at least one or a series connection of coils, for example two, corresponding to
that phase and which are formed by winding the wire in two opposing directions around
two teeth which may be spaced apart in the circumferential direction such that other
teeth are in between. The series connection of the two coils for each phase for one
section may be connected in parallel with a corresponding series connection of two
coils of this phase for any of the other sections.
[0018] According to an embodiment of the present invention, the at least one second winding
set comprises two, three, four or even more winding sets. Thereby, multiple winding
set electrical machines may be provided which may have more than two winding sets.
[0019] According to an embodiment of the present invention, a number of wires of each of
the winding sets is equal to the number of sections times a number of phases, wherein
the number of phases is three or four of five or even greater. Thereby, the wires
of the different sections may essentially be connected electrically in parallel to
each other for the respective phases and the respective winding sets.
[0020] According to an embodiment of the present invention, the electrical machine further
comprises a cooling system including cooling ducts at least within the teeth (in particular
running along a radial direction), wherein a cooling capacity is scaled down for higher
number of sections. By increasing the number of sections, the cooling surface area
may be increased leading to a larger overall cooling surface area and therefore a
more efficient transfer of losses from the machine to the cooling medium may be enabled.
Thereby, scaling back the required cooling to reduce the costs is enabled.
[0021] According to an embodiment of the present invention it is provided a wind turbine
comprising a rotor shaft with plural rotor blades and a machine according to one of
the preceding embodiments which has the rotor mechanically coupled with the rotor
shaft. Upon rotation of the rotor shaft driven by wind energy, the rotor of the machine
rotates thereby inducing electrical currents in the multiple winding sets, thereby
generating electrical energy.
[0022] It should be understood that features, individually or in any combination, disclosed,
described or explained with respect to a fractional slot multi winding set electrical
machine may also be applied, individually or in any combination, to a method for controlling
a fractional slot dual three-phase winding set electrical machine or a wind turbine
according to embodiments of the present invention and vice versa.
[0023] According to an embodiment of the present invention it is provided a method for controlling
a fractional slot multiple (e.g. dual) three-phase winding set electrical machine
or a wind turbine according to one of the preceding claims, comprising controlling
a first AC-DC converter connected to the first winding set and a second AC-DC converter
connected to the second winding set such that first electric currents carried in the
first winding set are (e.g. 30° for a dual machine, different for higher number of
winding sets) phase shifted relative to respective second electric currents carried
in the second winding set.
[0024] By achieving a 30° phase shift between the electrical currents of the two winding
sets, the inherent harmonics and ripples may be efficiently eliminated alleviating
the parasitic air gap forces and rotor loss issues. In particular, when the electrical
machine is configured having a 12 slot/10 pole topology, the generator performance
due to the improved phase winding factor may be improved. The electrical machine may
also have a topology of 12 slots and 14 poles in each section.
[0025] According to an embodiment of the present invention, a first current of an A phase
of the first three-phase winding set is generated to be essentially 30° phase shifted
relative to a second current of an A phase of the second three-phase winding set,
wherein a first current of a B phase of the first three-phase winding set is generated
to be essentially 30° phase shifted relative to a second current of a B phase of the
second three-phase winding set, wherein a first current of a C phase of the first
three-phase winding set is generated to be essentially 30° phase shifted relative
to a second current of a C phase of the second three-phase winding set.
[0026] The aspects defined above and further aspects of the present invention are apparent
from the examples of embodiment to be described hereinafter and are explained with
reference to the examples of embodiment. The invention will be described in more detail
hereinafter with reference to examples of embodiment but to which the invention is
not limited.
Brief Description of the Drawings
[0027] Embodiments of the present invention are now described with reference to the accompanying
drawings. The invention is not limited to the described or illustrated embodiments.
Fig. 1 schematically illustrates in a sectional view a section of a fractional slot
multi winding set electrical machine according to an embodiment of the present invention;
Fig. 2 schematically illustrates a circuit diagram of winding sets of a fractional
slot multi winding set electrical machine according to an embodiment of the present
invention;
Fig. 3 illustrates a wind turbine according to an embodiment of the present invention;
Fig. 4 illustrates a graph of a cooling surface area achieved in embodiments of the
present invention;
Fig. 5 illustrates a graph of a fault current as achieved according to embodiments
of the present invention;
Fig. 6 illustrates curves of torque ripple as achieved in embodiments of the present
invention and
Fig. 7 illustrates graphs of a torque as observed for embodiments of the present invention.
Detailed Description
[0028] The illustration in the drawings is in schematic form. It is noted that in different
figures, similar or identical elements are provided with the same reference signs
or with reference signs, which are different from the corresponding reference signs
only within the first digit.
[0029] Fig. 1 schematically illustrates one section 100 of a fractional slot multi winding
set electrical machine according to an embodiment of the present invention in a sectional
view having an axial direction 101 being perpendicular to the drawing plane. At least
one, for example three, sections 100 form a whole circumference in the circumferential
direction 103 of the fractional slot multi winding set electrical machine.
[0030] In particular, the section 100 is configured as a dual winding set section for the
electrical machine, wherein each winding set has three phases. The phases are labelled
A, B, C and the first winding set and the second winding set are labelled with numbers
"1" and "2", respectively. The stator portion 102 comprises 12 slots 105 alternating
with teeth 107 along the circumferential direction 103. Furthermore, the section 100
comprises a first winding set comprising wires for the phases A1, B1 and C1. In particular,
the first winding set comprises a wire 109 for phase A1+ wherein the wire 109 is wound
around one of the teeth 107 and occupies about a half of one of the slots 105. In
particular, the wire 109 is wound around the tooth 107 which is labelled "A1+". The
wire 109 is then led to another tooth 107 which is labelled "A1-" and is turned around
this tooth in the opposite turning direction. Thus, the wire 109 forms two coils around
two teeth (labelled as "A1+" and "A1-").
[0031] One end of the wire 109 is connected with respective ends of all other phases or
wires of the first winding set, i.e. the wires 111 and the wire 113 at a common connection
point N1, as illustrated in Fig. 2. The wire 111 is first wound around a tooth 107
labelled as "B1-", led to the tooth labelled "B1+" and turned around this tooth in
the opposite direction. Finally, the wire 113 is turned in one or more winding turns
around the tooth 107 labelled as "C1+", is then led to the tooth labelled "C1-" and
is turned around this tooth in the opposite direction. The wires 109, 111 and 113
all belong to the first winding set (labelled in Fig. 2 as 125).
[0032] The second winding set (labelled in Fig. 2 as 127) comprises the wire 115 which is
wound around the tooth labelled "A2-" which is then led to the tooth which is labelled
"A2+" and turned in an opposite direction around this tooth. The second winding set
further comprises the wires 117 (for phase B2) and the wire 119 (for phase C2).
[0033] The section 100 comprises the stator portion 102 and the (radially outer) rotor portion
104 having a gap g between ends of teeth and poles. The rotor portion comprises a
number of poles, in the illustrated embodiment poles of ten magnets 121 which are
mounted on a ring section 123 which may be supported to rotate relative to the stator
portion 102. The stator 106 comprises the teeth 107.
[0034] The section 100 illustrated in Fig. 1 further comprises a not in detail illustrated
cooling system including cooling fluid ducts within the stator yoke 106 which may
comprise an inlet or an outlet 145, 147. Due to a relatively high number of sections
100 comprised in the electrical machine, the cooling surface may be relatively large
or larger than conventionally observed. Thereby, the cooling may be improved.
[0035] Fig. 2 schematically illustrates the electrical connectivity of the first winding
set 125 and the second winding set 127 for three sections such as section 100 illustrated
in Fig. 1. As can be appreciated from Fig. 2, the first winding set 125 comprises
for the phase U1 a parallel connection of three series connections of coils which
are labelled A1-, A1, A1-', A1', A1-", A1" which are formed by winding the wires 109
(for the first section), 109' (for the second section) and 109" (for the third section),
respectively, around teeth as is illustrated for example in Fig. 1. Further, the first
winding set 125 comprises for the phase V1 a parallel connection of three series connections
of coils which are labelled B1-, B1, B1-', B1', B1-", B1" which are formed by winding
the wires 111, 111' and 111", respectively, around teeth as is illustrated for example
in Fig. 1. Further, the first winding set 125 comprises for the phase W1 a parallel
connection of three series connections of coils which are labelled C1-, C1, C1-',
C1', C1-", C1" which are formed by winding the wires 113, 113' and 113", respectively,
around teeth as is illustrated for example in Fig. 1.
[0036] Similarly, the second winding set 127 comprises for each phase U2, V2, W2 a parallel
connection of a series connection of two coils which are formed by winding the wires
115, 117, 119 and the corresponding primed wires around respective teeth.
[0037] The connection scheme illustrated in Fig. 2 thus represents a connection scheme of
a fractional slot multi winding set electrical machine having exactly three sections
per segment, such as sections as illustrated in Fig. 1. In other embodiments, the
fractional slot multi winding set electrical machine has a total of twelve sections
or thirteen sections or fourteen sections or fifteen sections or sixteen sections
or even a greater number of sections.
[0038] One end of all wires 109, 111, 113 (and the primed versions) are connected to a first
common connection point N1, thereby forming a start configuration. The other ends
for one phase are connected to each other to respective phase connection points 129
for phase U1, 131 for phase V1 and 133 for phase W1. Similarly, the other ends of
the wires of the second winding set 127 are connected to second phase connection points
135, 137, 139 for the phases U2, V2 and W2, respectively.
[0039] The phase connection points 129, 131 and 133 of the first set 125 of windings may
be connected (as U1, V1 and W1) to respective input terminals of a first converter
141. Similarly, the phase connection points 135, 137 and 139 may be connected (as
U2, V2 and W2) to respective input terminals of a second converter 143, in particular
AC-DC converter. The converters 141, 143 are connected to a control system 142 that
is adapted to carry out a method according to an embodiment of the present invention.
[0040] According to other embodiments of the present invention, the fractional slot multi
winding set electrical machine may comprise for example three winding sets or four
winding sets or even a higher number of winding sets which may be connected analogously
to the two winding sets illustrated in Fig. 2. For each additional winding set, an
additional respective converter may be provided and connected.
[0041] The wire 109 of the first winding set may be comprised in a first section, the wire
109' may be comprised in a second section and the wire 109" may be comprised in a
third section of the fractional slot multi winding set electrical machine. Furthermore,
the wire 111 may be comprised in the first section, the wire 111' may be comprised
in the second section and the wire 111" may be comprised in the third section of the
electrical machine. Analogously, the wire 113 may be comprised in a first section,
the wire 113' may be comprised in a second section and the wire 113" may be comprised
in a third section of the electrical machine.
[0042] The first winding set comprises thus nine wires which is equal to the number of sections
(i.e. three sections) times the number of phases (i.e. three phases).
[0043] Fig. 3 schematically illustrates a wind turbine 160 according to an embodiment of
the present invention. The wind turbine 160 comprises a rotor shaft 161 having a hub
163 at which plural rotor blades 165 are connected. The wind turbine 160 further comprises
an electrical machine 150 which may comprise at least one section, for example three,
100 as illustrated in Fig. 1 which form a whole circumference in the circumferential
direction.
[0044] The electrical machine 150 may for example be controlled according to a method for
controlling a fractional slot dual three-phase winding set electrical machine according
to an embodiment of the present invention. Thereby, the first AC-DC converter 141
is connected to the first winding set 125 and the second AC-DC converter 143 is connected
to the second winding set, as illustrated in Fig. 2. The control is such that the
first electric currents 171, 173, 175 carried in the first winding set 125 are essentially
phase shifted, for example 30°, relative to the respective second electric currents
177, 179 and 181.
[0045] By using a dual-three-phase system with a phase shift, for example 30°, between the
systems, the inherent harmonics and ripple may be eliminated alleviating the parasitic
air gap forces and rotor loss issues. Also, by operating the 12 slots/10 pole topology
in this manner may improve the generator performance due to the improved phase winding
factor. Using other fractional slot topologies may result in requiring a higher number
of multi-phase combinations resulting in added costs in converter system modularity.
This technique is also applicable for 12 slots/14 pole rotor combinations.
[0046] By increasing the number of 12 slots/10 poles (12 s/10 p) FSCW sections, the fault
current per coil may be reduced. This may be because the number of coils is greater
thereby the current per coil may be reduced. Further, this may be due to the parallel
arrangement of the 12 s/10 p sections (see Fig. 2), therefore the higher number of
sections, the lower the fault current per coil may be. A lower fault current per coil
may equate to a lower demagnetization risk of the permanent magnet poles directly
opposite the coil which is in a circuit under fault conditions.
[0047] A further advantage of increasing the number of 12 s/10 p sections may be to increase
the cooling surface area of the double layer winding and the air in the air ducts.
This may lead to a larger overall cooling surface area and therefore a more efficient
transfer of losses from the machine to the cooling medium. This could facilitate either
loading the machine slightly higher to achieve a higher output power or scaling down
the required cooling to reduce the cost. 12 x 12s/10 p sections may be considered
which may be divided into six segments of 2 x 12 s/10 p sections. Increasing this
to 14 x and 16 x 12 s/10 p sections has been evaluated which would then require seven
or eight segments, respectively. A higher number of segments may slightly increase
the manufacturing cost, but would also reduce cost and storage, transportation and
lifting due to the smaller size and weight of each segment.
[0048] Finally, the higher number of poles would also lead to a slight reduction in the
torque ripple.
[0049] According to an embodiment of the present invention, a simple fractional slot topology
of 12 slots and 10 poles is utilized combined with the dual three-phase winding with
phase shift to eliminate the parasitic effect of the air gap flux harmonics. In particular
combined with the increase in the number of 12 s/10 p sections may improve the thermal
operation of the generator by increasing the cooling surface area, reducing the demagnetization
risk of the magnets as well as reducing the torque ripple.
[0050] Figs. 4 to 7 illustrate graphs regarding the performance and properties of electrical
machines according to embodiments of the present invention. Thereby, the abscissas
183 denote the number of 12 slot/10 pole sections, such as section 100 illustrated
in Fig. 1, which are comprised in the fractional slot electrical machine.
[0051] The ordinate 185 in Fig. 4 denotes the cooling surface area 185, the ordinate 187
in Fig. 5 denotes the fault current relative to a nominal current. The ordinate 189
in Fig. 6 denotes the torque ripple in units of the nominal torque ripple and the
ordinate 191 in Fig. 7 denotes the torque in units of the nominal torque.
[0052] The curve 193 in Fig. 4 shows that the cooling surface area increases with increasing
number of 12 slot/10 pole sections comprised in the electrical machine. In particular,
Fig. 4 demonstrates how the total cooling area of the generator can be increased by
increasing the number of 12 s/10 p groups. In this case, the increase in area is primarily
due to the increase in the end-winding area as well as the increase of coil area in
the cooling ducts.
[0053] The previously mentioned decrease in peak fault current can also be appreciated in
Fig. 5 as a curve 195. The peak fault current is the leading factor in magnet irreversible
demagnetization. As can be appreciated from Fig. 5, the peak fault current decreases
according to the curve 195 with increasing number of 12 s/10 p sections comprised
in the electrical machine.
[0054] Although embodiments of this application have been detailed regarding the 12 s/10
p combination, other fractional slot concentrated winding pole slot combinations may
equally benefit from this invention, like 11 s/12 p, 9 s/10 p.
[0055] It should be noted that the term "comprising" does not exclude other elements or
steps and "a" or "an" does not exclude a plurality. Also elements described in association
with different embodiments may be combined. It should also be noted that reference
signs in the claims should not be construed as limiting the scope of the claims.
1. Fractional slot multi winding set electrical machine (150), comprising:
at least two sections (100) forming a whole circumference in a circumferential direction
(103), each section having a stator portion (102) and a rotor portion (104),
at least two winding sets (125, 127) each comprising a plurality of phases (A, B,
C),
at least one converter (141, 143) connected to the winding sets (125, 127), the stator
portion of each section comprising:
a number of slots (105) alternating with teeth (107) along the circumferential direction;
for each phase (A, B, C) a wire (109, 109', 109", 111, 111', 111", 1013, 113', 113")
of a first winding set (125);
for each phase (A, B, C) a wire (115, 115', 115", 117, 117', 117", 119, 119', 119")
of at least one second winding set (127),
wherein the first and second winding sets (125, 127) are arranged at least partly
in the slots (105) according to a concentrated winding topology,
the rotor portion (104) of each section comprising:
a number of poles (122) of plural magnets (121) separated by a gap (g) from the teeth
(107).
2. Machine according to the preceding claim, wherein the number of slots (105) per pole
(122) per phase is not an integer.
3. Machine according to the preceding claim, wherein the number of slots (105) is greater
than or equal to 9 and the number of poles (122) is greater than or equal to 10.
4. Machine according to one of the preceding claims,
wherein the number of slots (105) is 12 and the number of poles (122) is 10 or
wherein the number of slots (105) is 9 and the number of poles (122) is 12 or
wherein the number of slots (105) is 9 and the number of poles (122) is 8 or
wherein the number of slots (105) is 9 and the number of poles (122) is 10 or
wherein the number of slots (105) is 12 and the number of poles (122) is 14.
5. Machine according to one of the preceding claims, wherein a number of sections (100)
is between 2 to 11 or at least 12 or at least 13 or at least 14 or at least 15 or
at least 16 sections or greater.
6. Machine according to one of the preceding claims, wherein the at least one second
winding set comprises exactly one second winding set (127),
wherein in particular one wire (109) of one phase (A1+) of the first winding set (125)
and one wire (115) of one phase (A2-) of the second winding sets (127) are at least
partly arranged in one slot (105) of the slots side by side in the circumferential
direction (103).
7. Machine according to one of the preceding claims, wherein any wire of any winding
set of any phase is wound in at least one turn around a tooth thereby at least partly
occupying two slots adjacent to the tooth.
8. Machine according to one of the preceding claims, wherein each winding set (125, 127)
comprises a common connection point (N1, N2) at which one respective end of all wires
(109, 111, 113; 115, 117, 119) of this winding set are connected with each other.
9. Machine according to one of the preceding claims, wherein other ends of all wires
of one phase for one winding set are connected with each other and are connectable
to a converter (141, 143) input of the respective phase for the respective winding
set.
10. Machine according to one of the preceding claims, wherein the at least one second
winding set comprises two, three, four or even more winding sets.
11. Machine according to one of the preceding claims, wherein a number of wires of each
of the winding sets is equal to the number of sections times a number of phases, wherein
the number of phases is three or four of five or even greater.
12. Machine according to one of the preceding claims, further comprising:
a cooling system (145, 147) including cooling ducts within the teeth, wherein a cooling
capacity is scaled down for higher number of sections.
13. Wind turbine (160), comprising:
a rotor shaft (161) with plural rotor blades (163);
a machine (150) according to one of the preceding claims having the rotor mechanically
coupled with the rotor shaft.
14. Method for controlling a fractional slot dual three-phase winding set electrical machine
(150) or a wind turbine (160) according to one of the preceding claims, comprising:
controlling a first AC-DC converter (141) connected to the first winding set (125)
and a second AC-DC converter (143) connected to the second winding set (127) such
that first electric currents (161, 173, 175) carried in the first winding set are
phase shifted relative to respective second electric currents (177, 179, 181) carried
in the second winding set.
15. Method according to the preceding claim,
wherein a first current (171) of an A phase of the first three-phase winding set (125)
is generated to be phase shifted relative to a second current (177) of an A phase
of the second three-phase winding set (127),
wherein a first current (173) of a B phase of the first three-phase winding set (125)
is generated to be phase shifted relative to a second current (179) of a B phase of
the second three-phase winding set (127),
wherein a first current (175) of a C phase of the first three-phase winding set (125)
is generated to be phase shifted relative to a second current (181) of a C phase of
the second three-phase winding set (127).
1. Elektrische Maschine (150) mit mehreren Bruchlochwicklungssätzen, die Folgendes umfasst:
mindestens zwei Teilstücke (100), die in Umfangsrichtung (103) einen Gesamtumfang
bilden, wobei jedes Teilstück einen Statorabschnitt (102) und einen Rotorabschnitt
(104) aufweist,
mindestens zwei Wicklungssätze (125, 127), die jeweils mehrere Phasen (A, B, C) umfassen,
mindestens einen Stromrichter (141, 143), der an die Wicklungssätze (125, 127) angeschlossen
ist,
wobei der Statorabschnitt jedes Teilstücks Folgendes umfasst:
mehrere Nuten (105) im Wechsel mit Zähnen (107) in Umfangsrichtung,
für jede Phase (A, B, C) einen Draht (109, 109', 109", 111, 111', 111", 1013, 113',
113") eines ersten Wicklungssatzes (125),
für jede Phase (A, B, C) einen Draht (115, 115', 115", 117, 117', 117", 119, 119',
119") mindestens eines zweiten Wicklungssatzes (127),
wobei der erste und der zweite Wicklungssatz (125, 127) einer konzentrierten Wicklungstopologie
entsprechend zumindest teilweise in den Nuten (105) angeordnet sind,
wobei der Rotorabschnitt (104) jedes Teilstücks Folgendes umfasst:
eine Anzahl Pole (122) mehrerer Magneten (121), die durch einen Spalt (g) von den
Zähnen (107) getrennt sind.
2. Maschine nach dem vorhergehenden Anspruch, wobei die Anzahl Nuten (105) pro Pol (122)
pro Phase keine Ganzzahl ist.
3. Maschine nach dem vorhergehenden Anspruch, wobei die Anzahl Nuten (105) größer gleich
9 und die Anzahl Pole (122) größer gleich 10 ist.
4. Maschine nach einem der vorhergehenden Ansprüche,
wobei die Anzahl Nuten (105) 12 und die Anzahl Pole (122) 10 beträgt oder
wobei die Anzahl Nuten (105) 9 und die Anzahl Pole (122) 12 beträgt oder
wobei die Anzahl Nuten (105) 9 und die Anzahl Pole (122) 8 beträgt oder
wobei die Anzahl Nuten (105) 9 und die Anzahl Pole (122) 10 beträgt oder
wobei die Anzahl Nuten (105) 12 und die Anzahl Pole (122) 14 beträgt.
5. Maschine nach einem der vorhergehenden Ansprüche, wobei eine Anzahl Teilstücke (100)
zwischen 2 und 11 oder mindestens 12 oder mindestens 13 oder mindestens 14 oder mindestens
15 oder mindestens 16 Teilstücken oder mehr liegt.
6. Maschine nach einem der vorhergehenden Ansprüche, wobei der mindestens eine zweite
Wicklungssatz genau einen zweiten Wicklungssatz (127) umfasst,
wobei insbesondere ein Draht (109) einer Phase (A1+) des ersten Wicklungssatzes (125)
und ein Draht (115) einer Phase (A2-) der zweiten Wicklungssätze (127) in Umfangsrichtung
(103) nebeneinander zumindest teilweise in einer der Nuten (105) angeordnet sind.
7. Maschine nach einem der vorhergehenden Ansprüche, wobei ein Draht eines beliebigen
Wicklungssatzes einer beliebigen Phase mit mindestens einer Windung um einen Zahn
gewickelt ist und dadurch zumindest teilweise zwei neben dem Zahn liegende Nuten belegt.
8. Maschine nach einem der vorhergehenden Ansprüche, wobei jeder Wicklungssatz (125,
127) einen gemeinsamen Verbindungspunkt (N1, N2) umfasst, an dem alle Drähte (109,
111, 113; 115, 117, 119) dieses Wicklungssatzes an jeweils einem Ende miteinander
verbunden sind.
9. Maschine nach einem der vorhergehenden Ansprüche, wobei andere Enden aller Drähte
einer Phase für einen Wicklungssatz miteinander verbunden sind und sich an einen Eingang
des Stromrichters (141, 143) der jeweiligen Phase für den jeweiligen Wicklungssatz
anschließen lassen.
10. Maschine nach einem der vorhergehenden Ansprüche, wobei der mindestens eine zweite
Wicklungssatz zwei, drei, vier oder noch mehr Wicklungssätze umfasst.
11. Maschine nach einem der vorhergehenden Ansprüche, wobei eine Anzahl Drähte jedes der
Wicklungssätze der Anzahl von Teilstücken mal einer Anzahl Phasen entspricht, wobei
die Anzahl Phasen drei oder vier oder fünf oder noch mehr beträgt.
12. Maschine nach einem der vorhergehenden Ansprüche, die ferner Folgendes umfasst:
ein Kühlsystem (145, 147) mit Kühlkanälen in den Zähnen, wobei eine Kühlleistung für
eine größere Anzahl Teilstücke reduziert ist.
13. Windenergieanlage (160), die Folgendes umfasst:
eine Rotorwelle (161) mit mehreren Rotorblättern (163),
eine Maschine (150) nach einem der vorhergehenden Ansprüche, bei der der Rotor mechanisch
mit der Rotorwelle gekoppelt ist.
14. Verfahren zum Steuern einer elektrischen Maschine (150) mit zwei Dreiphasen-Bruchlochwicklungssätzen
oder einer Windenergieanlage (160) nach einem der vorhergehenden Ansprüche, das Folgendes
umfasst:
derartiges Steuern eines ersten Gleichrichters (141), der an den ersten Wicklungssatz
(125) angeschlossen ist, und eines zweiten Gleichrichters (143), der an den zweiten
Wicklungssatz (127) angeschlossen ist, dass erste elektrische Ströme (161, 173, 175)
in dem ersten Wicklungssatz in Bezug auf jeweilige zweite elektrische Ströme (177,
179, 181) in dem zweiten Wicklungssatz phasenverschoben sind.
15. Verfahren nach dem vorhergehenden Anspruch,
wobei ein erster Strom (171) einer Phase A des ersten Dreiphasen-Wicklungssatzes (125)
so erzeugt wird, dass er in Bezug auf einen zweiten Strom (177) einer Phase A des
zweiten Dreiphasen-Wicklungssatzes (127) phasenverschoben ist,
wobei ein erster Strom (173) einer Phase B des ersten Dreiphasen-Wicklungssatzes (125)
so erzeugt wird, dass er in Bezug auf einen zweiten Strom (179) einer Phase B des
zweiten Dreiphasen-Wicklungssatzes (127) phasenverschoben ist,
wobei ein erster Strom (175) einer Phase C des ersten Dreiphasen-Wicklungssatzes (125)
so erzeugt wird, dass er in Bezug auf einen zweiten Strom (181) einer Phase C des
zweiten Dreiphasen-Wicklungssatzes (127) phasenverschoben ist.
1. Machine électrique munie d'ensembles d'enroulements multiples à nombre fractionnaire
d'encoches (150), comprenant :
au moins deux sections (100) formant une circonférence totale dans une direction circonférentielle
(103), chaque section ayant une partie de stator (102) et une partie de rotor (104),
au moins deux ensembles d'enroulements (125, 127) comprenant chacun une pluralité
de phases (A, B, C),
au moins un convertisseur (141, 143) connecté aux ensembles d'enroulements (125, 127),
la partie de stator de chaque section comprenant :
un certain nombre d'encoches (105) alternées avec des dents (107) le long de la direction
circonférentielle ;
pour chaque phase (A, B, C), un fil (109, 109', 109", 111, 111', 111'', 113, 113',
113") d'un premier ensemble d'enroulements (125) ;
pour chaque phase (A, B, C), un fil (115, 115', 115'', 117, 117', 117", 119, 119',
119") d'au moins un second ensemble d'enroulements (127),
dans laquelle les premier et second ensembles d'enroulements (125, 127) sont agencés
au moins partiellement dans les encoches (105) conformément à une topologie d'enroulement
concentré,
la partie de rotor (104) de chaque section comprenant :
un certain nombre de pôles (122) de plusieurs aimants (121) séparés des dents (107)
par un espace (g).
2. Machine selon la revendication précédente, dans laquelle le nombre d'encoches (105)
par pôle (122) par phase n'est pas un nombre entier.
3. Machine selon la revendication précédente, dans laquelle le nombre d'encoches (105)
est supérieur ou égal à 9 et le nombre de pôles (122) est supérieur ou égal à 10.
4. Machine selon l'une des revendications précédentes,
dans laquelle le nombre d'encoches (105) est de 12 et le nombre de pôles (122) est
de 10 ou
dans laquelle le nombre d'encoches (105) est de 9 et le nombre de pôles (122) est
de 12 ou
dans laquelle le nombre d'encoches (105) est de 9 et le nombre de pôles (122) est
de 8 ou
dans laquelle le nombre d'encoches (105) est de 9 et le nombre de pôles (122) est
de 10 ou
dans laquelle le nombre d'encoches (105) est de 12 et le nombre de pôles (122) est
de 14.
5. Machine selon l'une des revendications précédentes, dans laquelle un nombre de sections
(100) est entre 2 et 11 ou d'au moins 12 ou d'au moins 13 ou d'au moins 14 ou d'au
moins 15 ou d'au moins 16 sections ou supérieur.
6. Machine selon l'une des revendications précédentes, dans laquelle l'au moins un second
ensemble d'enroulements comprend exactement un second ensemble d'enroulements (127),
dans laquelle en particulier un fil (109) d'une phase (A1+) du premier ensemble d'enroulements
(125) et un fil (115) d'une phase (A2-) des seconds ensembles d'enroulements (127)
sont au moins partiellement agencés dans une encoche (105) parmi les encoches côte
à côte dans la direction circonférentielle (103).
7. Machine selon l'une des revendications précédentes, dans laquelle un quelconque fil
d'un quelconque ensemble d'enroulements d'une quelconque phase est enroulé sur au
moins un tour autour d'une dent, occupant ainsi au moins partiellement deux encoches
adjacentes à la dent.
8. Machine selon l'une des revendications précédentes, dans laquelle chaque ensemble
d'enroulements (125, 127) comprend un point de connexion commun (N1, N2) auquel une
extrémité respective de tous les fils (109, 111, 113 ; 115, 117, 119) de cet ensemble
d'enroulements sont connectées les unes aux autres.
9. Machine selon l'une des revendications précédentes, dans laquelle les autres extrémités
de tous les fils d'une phase pour un ensemble d'enroulements sont connectées les unes
aux autres et sont aptes à être connectées à une entrée de convertisseur (141, 143)
de la phase respective pour l'ensemble d'enroulements respectif.
10. Machine selon l'une des revendications précédentes, dans laquelle l'au moins un second
ensemble d'enroulements comprend deux, trois, quatre ensembles d'enroulements ou même
plus.
11. Machine selon l'une des revendications précédentes, dans laquelle un nombre de fils
de chacun des ensembles d'enroulements est égal au nombre de sections multiplié par
un nombre de phases, dans laquelle le nombre de phases est de trois ou quatre ou cinq
ou même supérieur.
12. Machine selon l'une des revendications précédentes, comprenant en outre :
un système de refroidissement (145, 147) incluant des conduits de refroidissement
à l'intérieur des dents, dans laquelle une capacité de refroidissement est réduite
pour un nombre supérieur de sections.
13. Éolienne (160), comprenant :
un arbre de rotor (161) ayant plusieurs pales de rotor (163) ;
une machine (150) selon l'une des revendications précédentes ayant le rotor mécaniquement
couplé avec l'arbre de rotor.
14. Procédé de commande d'une machine électrique munie d'ensembles d'enroulements triphasés
doubles à nombre fractionnaire d'encoches (150) ou d'une éolienne (160) selon l'une
des revendications précédentes, comprenant :
la commande d'un premier convertisseur alternatif-continu, CA-CC (141) connecté au
premier ensemble d'enroulements (125) et d'un second convertisseur CA-CC (143) connecté
au second ensemble d'enroulements (127) de sorte que des premiers courants électriques
(161, 173, 175) transportés dans le premier ensemble d'enroulements sont déphasés
par rapport à des seconds courants électriques respectifs (177, 179, 181) transportés
dans le second ensemble d'enroulements.
15. Procédé selon la revendication précédente,
dans lequel un premier courant (171) d'une phase A du premier ensemble d'enroulements
triphasé (125) est généré pour être déphasé par rapport à un second courant (177)
d'une phase A du second ensemble d'enroulements triphasé (127),
dans lequel un premier courant (173) d'une phase B du premier ensemble d'enroulements
triphasé (125) est généré pour être déphasé par rapport à un second courant (179)
d'une phase B du second ensemble d'enroulements triphasé (127),
dans lequel un premier courant (175) d'une phase C du premier ensemble d'enroulements
triphasé (125) est généré pour être déphasé par rapport à un second courant (181)
d'une phase C du second ensemble d'enroulements triphasé (127).