(19)
(11) EP 3 518 625 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
31.07.2019  Patentblatt  2019/31

(21) Anmeldenummer: 19153652.3

(22) Anmeldetag:  25.01.2019
(51) Internationale Patentklassifikation (IPC): 
H05B 33/08(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
KH MA MD TN

(30) Priorität: 26.01.2018 DE 102018101796

(71) Anmelder: Siteco Beleuchtungstechnik GmbH
83301 Traunreut (DE)

(72) Erfinder:
  • Hofinger, Christoph
    83236 Übersee (DE)

(74) Vertreter: Schmidt, Steffen 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)

   


(54) TREIBERSCHALTUNG ZUR STROMVERSORGUNG EINER ODER MEHRERER LEDS


(57) Die Erfindung betrifft eine Treiberschaltung zur Stromversorgung von einer oder mehreren LEDs, umfassend eine regelbare Konstantstromquelle zum Anschluss einer oder mehrerer in Reihe geschalteter LEDs, und einen Strommesswiderstand, der in Reihe mit der einen oder den mehreren LEDs geschaltet ist, wobei die Treiberschaltung dazu eingerichtet ist, über einen Spannungsabfall des Strommesswiderstands den Strom durch die eine oder die mehreren LEDs zu bestimmen, um den Strom auf einen vorgegebenen Wert zu regeln, wobei die Treiberschaltung ferner dazu eingerichtet ist, den Strommesswiderstand auf wenigstens zwei verschiedene Werte zu schalten, wobei auf den niedrigeren der beiden Werte zur Messung des Stroms durch die eine oder die mehreren LEDs in einem höheren Strombereich und auf den niedrigeren der beiden Werte für eine Messung des Stroms durch die einen oder die mehreren LEDs in einem niedrigeren Strombereich geschaltet wird.




Beschreibung


[0001] Die Erfindung betrifft eine Treiberschaltung zur Stromversorgung einer oder mehrerer LEDs, insbesondere eine Treiberschaltung, die eine Regelung auf einen Stromwert zur Erzielung einer gewünschten Dimmung der LEDs umfasst. Unter einer LED ist jede Halbleiterlichtquelle zu verstehen, worunter auch organische Halbleiterlichtquellen, sogenannte OLEDs, zu zählen sind.

[0002] Die Treiberschaltung der eingangs genannten Art werden typischerweise in zwei verschiedenen Varianten realisiert. Zum einen gibt es eine Pulsweitenmodulationsansteuerung bei der LED-Strom mit pulsweitenmoduliertem Signal an- und abgeschaltet wird. Zum anderen gibt es ein analoges Verfahren, bei dem der Strom ohne Unterbrechung auf einen gewünschten Wert geregelt werden kann. Das Pulsweitenmodulationsverfahren wird jedoch für Allgemeinbeleuchtung als nicht bevorzugt angesehen, da es zu Stroboskopeffekten, insbesondere Störungen von Kameras oder Störungen von Barcode-Scannern kommen kann. Außerdem werden auch gesundheitliche Auswirkungen durch den Stroboskopeffekt befürchtet.

[0003] Somit ist die analoge Stromregelung bevorzugt. Eine typische Schaltung nach dem Stand der Technik ist in Figur 1 dargestellt. Eine LED-Last, welche eine oder mehrere LEDs umfassen kann, wird durch eine integrierte Schaltung gesteuert. Die integrierte Schaltung weist einen Eingang CS auf, an welcher ein Messwiderstand RCS zur Erde angeschlossen ist. Durch den Messwiderstand RCS fließt im eingeschalteten Zustand der gleiche Strom, welcher durch die LED-Last fließt. Der Spannungsabfall über RCS wird im integrierten Schaltkreis gemessen und zur Regelung einer gewünschten Stromstärke für die LED-Last im integrierten Schaltkreis verwendet.

[0004] Ein Nachteil dieser Art der analogen Stromregelung ist jedoch, dass bei kleinen Stromwerten der Spannungsabfall am Messwiderstand sehr klein werden kann. Durch Ströme die sich unweigerlich in der Schaltung, z.B. aus Schalttransistoren ergeben, wird demnach bei kleinen Stromwerten die Auswertung des Spannungsabfalls über dem Strommesswiderstand für die Regelung des Stromes unbrauchbar. Somit ergibt sich bei einer derartigen analogen Stromregelung ein minimaler unterer Wert, bis zu dem die Stromregelung zuverlässig erfolgen kann. Eine Möglichkeit, um zu noch kleineren Stromwerten zu gelangen, wäre es, den Wert des Strommesswiderstandes zu erhöhen. Das hat aber zur Folge, dass die Verlustleistung an dem Widerstand bei höheren Strömen zu großen Verlusten führt und sogar thermische Probleme auftreten können.

[0005] Eine Regelung auf niedrige Stromwerte war im Stand der Technik demnach nur durch die Regelung nach dem Pulsweitenmodulationsverfahren möglich. Es wurden auch kombinierte Verfahren angewandt, indem in einem unteren Strombereich das Pulsweitenmodulationsverfahren und einem höheren Strombereich die analoge Stromregelung wie vorhergehend beschrieben angewandt wurde, um einen größeren Dimmbereich für LEDs bereitzustellen. Dies hat jedoch wieder den vorhergehend beschriebenen Nachteil des Stroboskopeffekts bei niedrigen Stromwerten.

[0006] Aufgabe der vorliegenden Erfindung ist es daher, eine Treiberschaltung zur Stromversorgung von LEDs bereitzustellen, welche einen möglichst weiten Strombereich zur Erzielung eines großen Dimmbereichs abdeckt und die Nachteile einer Pulsweitenmodulation dabei vermeidet.

[0007] Gelöst wird die Aufgabe durch eine Treiberschaltung zur Stromversorgung von einer oder mehreren LEDs gemäß Anspruch 1.

[0008] Eine Besonderheit der Treiberschaltung der vorliegenden Erfindung besteht darin, dass der Strommesswiderstand auf wenigstens zwei verschiedene Werte geschaltet wird, wobei der niedrigere der beiden Werte zur Messung des Stroms durch die LEDs in einem niedrigeren Strombereich und der höhere der beiden Werte zur Messung des Stroms durch die LEDs in einem höheren Strombereich angewandt wird. Dadurch wird der Strommesswiderstand an den jeweils zu messenden Strombereich angepasst, so dass der Spannungsabfall über den Strommesswiderstand einen akzeptablen Wert annimmt, welcher von der Treiberschaltung leicht verarbeitet werden kann. Dadurch ist ein Messen auch von kleinen Strömen möglich. Ferner ist die am Strommesswiderstand umgesetzte Leistung begrenzt, weil im höheren Strombereich ein niedrigerer Messwiderstand ausgewählt wird. Dadurch werden die Verlustleistung und die daraus resultierenden thermischen Probleme begrenzt.

[0009] Gemäß einer bevorzugten Ausführungsform ist der Messwiderstand durch wenigstens zwei parallel geschaltete Widerstände gebildet, von denen wenigstens einer der beiden Widerstände elektronisch zu- oder abschaltbar ist. Beispielsweise sind die beiden Widerstände, welche zusammen den Strommesswiderstand bilden, parallel zueinander im Stromkreis der LEDs zur Erde geschaltet, wobei in einem der beiden parallelen Zweige ein elektronischer Schalter vorgesehen ist, der geöffnet oder geschlossen werden kann. Dadurch wird der Strommesswiderstand entweder nur durch einen der beiden Widerstände (wenn der Schalter geöffnet ist) oder durch beide parallel geschaltete Widerstände (wenn der Schalter geschlossen ist) gebildet. Dadurch lassen sich zwei verschiedene Werte für den Strommesswiderstand realisieren. Es können auch mehr als nur zwei Widerstände parallel vorgesehen sein. Ferner können auch mehr als nur ein elektronischer Schalter vorgesehen sein. Es kann auch jeder der parallel geschalteten Widerstände mit einem elektronischen Schalter in Reihe geschaltet sein, wobei in diesem Fall wenigstens einer der Schalter beim Betrieb der LED geschlossen ist.

[0010] Gemäß einer bevorzugten Ausführungsform erfolgt die elektronische Zu- und Abschaltung des wenigstens einen Widerstandes durch Ansteuern eines Gates von einem Feldeffekttransistor, FET, dessen Source und Drain in Reihe zu dem Widerstand geschaltet ist. Ein FET hat im geschlossenen Zustand zwischen Source und Drain einen sehr geringen Widerstand, so dass der Widerstand des Feldeffekttransistors selbst vernachlässigbar ist. Insbesondere ist der Innenwiderstand des FET weitgehend thermisch stabil, so dass Messfehler durch einen sich verändernden Innenwiderstand des FED minimiert werden.

[0011] Gemäß einer bevorzugen Ausführungsform kann der FET mit einem Microcontroller angesteuert werden. Der Microcontroller muss bei dieser Ausführungsform lediglich eine Spannung erzeugen, welche an das Gate anzulegen ist, um den FET zwischen Source und Drain zu öffnen bzw. zu schließen. Im Vergleich zu einem elektronischen Schalter, der durch ein Relais gebildet ist, ist eine solche Schaltung einfacher aufzubauen und lässt sich auch vollständig als integrierte Schaltung realisieren.

[0012] Gemäß einer bevorzugten Ausführungsform entspricht das Maximum des niedrigeren Strombereichs dem Minimum des höheren der beiden Strombereiche. Wenn in dieser Schaltung der zu messende Strom die Grenze der beiden Strombereiche erreicht, schaltet die Treiberschaltung den Strommesswiderstand um, um den Spannungsabfall an dem Strommesswiderstand entsprechend zu verringern bzw. zu erhöhen.

[0013] Gemäß einer alternativen Ausführungsform können die beiden Strombereiche jedoch auch teilweise überlappen. Dadurch werden häufige Schaltvorgänge zwischen den Strommesswiderständen verhindert, falls der zu messende Strom durch die LEDs zufällig genau im Bereich zwischen den beiden Strombereichen pendelt. Beispielsweise kann der Messwiderstand beim Erreichen des Maximum des unteren Strombereichs auf den niedrigeren Wert umgeschaltet werden und umgekehrt erst beim Erreichen des Minimum des höheren Strombereichs wieder auf den höheren Wert geschaltet werden. Durch diese Art Hysterese wird verhindert, dass häufige Schaltvorgänge bei geringen Stromschwankungen um die Grenze zwischen den Strombereichen auftreten, die sich als Flackern der LED bemerkbar machen könnten.

[0014] Gemäß einer bevorzugten Ausführungsform kann der Strommesswiderstand wenigstens zwei Werte annehmen, wobei der niedrigere Wert zwischen 0,1 Ohm und 0,5 Ohm und der höhere der beiden Werte zwischen 0,9 Ohm und 1,7 Ohm liegt. Bei einem Versorgungsstrom, der typischerweise zwischen 20 mA und 1 A beträgt, und bei einem Strommesswiderstand, der bei etwa 200 mA umgeschaltet wird, kann die Verlustleistung auf maximal 0,5 W begrenzt werden.

[0015] Gemäß einer bevorzugten Ausführungsform kann der niedrigere Strombereich 20 mA bis 200 mA umfassen und der höhere Strombereich 200 mA bis 1 A umfassen. Es kann auch vorgesehen sein, dass die Strombereiche auch überlappen, wie vorhergehend beschrieben, so dass z.B. der niedrigere Strombereich einen Maximalwert von 250 mA umfasst, während der höhere Strombereich einen Minimalwert von 150 mA umfasst.

[0016] Gemäß einer bevorzugten Ausführungsform kann der Strommesswiderstand auch mehr als nur zwei Werte, z.B. drei oder vier Werte, für drei oder vier Strombereiche annehmen.

[0017] Weitere Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden Beschreibung einer bevorzugten Ausführungsform, die in Verbindung mit den Figuren gegeben wird, deutlich. In den Figuren ist Folgendes dargestellt:
Figur 1
zeigt eine LED-Treiberschaltung gemäß dem Stand der Technik.
Figur 2
zeigt eine LED-Treiberschaltung gemäß einer Ausführungsform der vorliegenden Erfindung.


[0018] Eine Ausführungsform einer Treiberschaltung für LEDs gemäß der vorliegenden Erfindung ist in Figur 2 dargestellt. Ähnlich wie eine Treiberschaltung aus dem Stand der Technik, die in Figur 1 dargestellt ist, wird eine LED-Last 3, welche durch eine oder mehrere LEDs gebildet sein kann (in den Figuren nur eine LED dargestellt) über eine Versorgungsspannung, die von einem integrierten Schaltkreis 2 bereitgestellt wird, angesteuert. Der integrierte Schaltkreis 2 sorgt für eine Konstantstromversorgung durch die LED-Last 3. Ein Konstantstrom lässt sich einstellen (in der Figur nicht dargestellt), um eine gewünschte Dimmung der LED-Last zu erzeugen. Ferner kann die LED-Last durch die integrierte Schaltung ein- und ausgeschaltet werden. Dazu ist an einem Ausgang GATE des integrierten Schaltkreises 2 ein Feldeffektransistor 4 angeschlossen, der die LED-Last 3 mit Erde verbindet, wenn er geschlossen. In diesem Stromkreis ist ein Widerstand RCS vorgesehen. Durch diesen Widerstand RCS fließt daher der gleiche Strom, welcher auch durch die LED-Last 3 fließt. Der Spannungsabfall über den Widerstand RCS wird an einem Eingang CS der integrierten Schaltung 2 gemessen und dient zur Steuerung des Konstantstroms durch die LED. Soweit ist die Schaltung gemäß der vorliegenden Erfindung auch gleich zu der in Figur 1 dargestellten Schaltung nach dem Stand der Technik.

[0019] In der erfindungsgemäßen Schaltung nach Figur 2 ist zusätzlich ein zweiter Widerstand RCS2 vorgesehen, welcher parallel zu dem ersten Widerstand RCS geschaltet ist und über einen Halbleiterschalter, z.B. einen Feldeffekttransistor 22 ebenfalls mit Masse verbunden ist. Wenn der Feldeffekttransistor 22 durchgeschaltet ist, d.h. eine leitende Verbindung zwischen Drain und Source besteht, liegt der Widerstand RCS2 parallel zum Widerstand RCS, so dass der Strommesswiderstand für die integrierte Schaltung 2 insgesamt durch die Parallelschaltung von RCS und RCS2 gegeben ist. Das Gate des Feldeffekttransistors 22 liegt an einem Ausgang eines Microcontrollers 24 an und wird durch diesen gesteuert. Ferner stellt der Microcontroller 24 eine Steuerspannung bereit, die auf einen Eingang LD der integrierten Schaltung 2 wirkt, um den Versorgungsstrom durch die LED einzustellen. Der Microcontroller 24 dient in dieser Ausführungsform auch dazu, den Strom für die gewünschte Dimmung der LED-Last einzustellen. Der Microcontroller 24 erzeugt eine der gewünschten Dimmung entsprechenden Steuerspannung, die an den Eingang LD der integrierten Schaltung 2 anliegt, wobei der über die Bereichsumschaltung vom Microcontroller 24 ausgewählte Strommesswiderstand berücksichtigt wird.

[0020] In Betrieb wird von der integrierten Schaltung 2 der Strom durch die LED-Last eingestellt. Zum Dimmen der LED kann ein beliebiger Strom beispielsweise zwischen 20 mA und 1 A eingestellt werden.

[0021] In einem Strombereich von 200 mA bis 1 A legt der Microcontroller eine Spannung an das Gate des Halbleiterschalters, der durch den FET 22 gegeben ist, an, so dass eine Verbindung von Drain zu Source durchgeschaltet ist. In diesem Schaltungszustand sind die Widerstände RCS und RCS2 parallel zueinander mit Erde verbunden. Die Parallelschaltung aus RCS und RCS2 wirkt in diesem Schaltungszustand als Messwiderstand für die Stromregelung der LED-Last. Der integrierte Schaltkreis 2 misst den Spannungsabfall über die Parallelschaltung der Widerstände RCS und RCS2, um den Strom durch die LEDs auf einen konstanten Wert zu regeln.

[0022] Wenn der Strom zur Dimmung der LEDs auf einen geringeren Wert geregelt werden soll, z.B. auf einen Strom in einem Bereich zwischen 20 mA und 200 mA, wird über den Microcontroller 24 der Feldeffekttransistor 22 angesteuert, um die Verbindung zwischen Drain und Source zu öffnen. In diesem Fall fließt der Versorgungsstrom durch die LED-Last 3 nur noch durch den Widerstand RCS, so dass in diesem Schaltungszustand der Messwiderstand zur Bestimmung des Stroms nur durch den Widerstand RCS gegeben ist.

[0023] Somit wird über den Microcontroller 24 der Strommesswiderstand entsprechend einem vorgegebenen Strombereich zwischen zwei Werte umgeschaltet. Im niedrigeren Strombereich ist der Messwiderstand nur durch RCS gegeben, während für den höheren Strombereich der Messwiderstand durch die Parallelschaltung von RCS und RCS2 gegeben ist entsprechend geringer ist. Beispielsweise kann der Widerstand RCS und RCS2 jeweils 1,2 Ohm betragen, so dass im höheren Strombereich von 200 mA bis 1 µA effektiv nur ein Strommesswiderstand von 0,6 Ohm gegeben ist. Dadurch wird die am Messwiderstand umgesetzte Leistung bei größeren Strömen verringert. Da der Strom aber im höheren Messbereich liegt, ist der Spannungsabfall immer noch ausreichend hoch, um eine präzise Strommessung zu ermöglichen. In dem niedrigeren Strommessbereich wird der Messwiderstand entsprechend erhöht, z.B. auf 1,2 Ohm, so dass auch bei den niedrigeren zu messenden Versorgungsströmen noch ein ausreichend hoher Spannungsabfall für den Messwiderstand gegeben ist.

[0024] Über den Microcontroller 24 wird ferner eine Steuerspannung ausgegeben, die auf die integrierte Schaltung 12 einwirkt, um die Strommessung entsprechen den ausgewählten Messwiderstand um den entsprechenden Faktor auszugleichen.

[0025] Die vorliegende Erfindung ist nicht auf die dargestellte Schaltung von zwei Widerständen RCS und RCS2 beschränkt. Es können auch mehr als zwei Widerstände parallel geschaltet werden und es können auch mehr als lediglich zwei Strombereiche zur Messung des Stroms vorgesehen sein.

[0026] Die übrige Schaltung zur LED-Stromversorgung entspricht der Ausführungsform im Stand der Technik. Dadurch lässt sich die erfindungsgemäße Bereichsumschaltung für den Messwiderstand auch einfach mit vorhandenen aus dem Stand der Technik bekannten integrierten Schaltkreisen für eine LED-Stromversorgung realisieren.

BEZUGSZEICHENLISTE



[0027] 
2
integrierter Schaltkreis
3
LED-Last
4
Halbleiterschalter, z.B. Feldeffekttransistor
22
Halbleiterschalter, z.B. Feldeffekttransistor
24
Microcontroller
RCS, RCS2
Strommesswiderstand



Ansprüche

1. Treiberschaltung zur Stromversorgung von einer oder mehreren LEDs (3), umfassend eine regelbare Konstantstromquelle zum Anschluss einer oder mehrerer in Reihe geschalteter LEDs (3), und
einen Strommesswiderstand (RCS, RCS2), der in Reihe mit der einen oder den mehreren LEDs geschaltet ist, wobei die Treiberschaltung dazu eingerichtet ist, über einen Spannungsabfall des Strommesswiderstands (RCS, RCS2) den Strom durch die eine oder die mehreren LEDs (3) zu bestimmen, um den Strom auf einen vorgegebenen Wert zu regeln,
dadurch gekennzeichnet, dass die Treiberschaltung ferner dazu eingerichtet ist, den Strommesswiderstand (RCS, RCS2) auf wenigstens zwei verschiedene Werte zu schalten, wobei auf den niedrigeren der beiden Werte zur Messung des Stroms durch die eine oder die mehreren LEDs (3) in einem höheren Strombereich und auf den höheren der beiden Werte für eine Messung des Stroms durch die einen oder die mehreren LEDs (3) in einem niedrigeren Strombereich geschaltet wird.
 
2. Treiberschaltung nach Anspruch 1, wobei die Umschaltung des Strommesswiderstands (RCS, RCS2) durch einen Microcontroller (24) gesteuert ist und der Microcontroller ferner eine Steuerspannung bereitstellt, welche die Stromerzeugung an der Konstantstromquelle entsprechend dem ausgewählten Messwiderstand (RCS, RCS2) einstellt.
 
3. Treiberschaltung nach Anspruch 1 oder 2, wobei der Messwiderstand (RCS, RCS2) durch wenigstens zwei parallel geschaltete Widerstände (RCS, RCS2) gebildet ist, von denen wenigstens einer (RCS2) elektronisch zu- oder abschaltbar ist.
 
4. Treiberschaltung nach Anspruch 3, wobei die elektronische Zu- und Abschaltung des wenigstens einen Widerstands (RCS2) durch ein Ansteuern eines Gates (G) von einem Feldeffekttransistor, FET, (22) erfolgt, dessen Source (S) und Drain (D) in Reihe mit dem Widerstand geschaltet ist.
 
5. Treiberschaltung nach Anspruch 4 mit Rückbezug auf Anspruch 2, wobei das Gate (G) des FET (22) durch den Microcontroller (24) angesteuert wird.
 
6. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei ein Maximum des niedrigeren Strombereichs einem Minimum des höheren der beiden Strombereiche entspricht.
 
7. Treiberschaltung nach einem der Ansprüche 1 bis 5, wobei die beiden Strombereiche teilweise überlappen.
 
8. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei der Strommesswiderstand wenigstens zwei Werte annehmen kann, wobei der niedrigere Wert zwischen 0,1 Ohm und 0,7 Ohm und der höhere Werte zwischen 0,9 Ohm und 1,7 Ohm liegt.
 
9. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei der niedrigere Strombereich 20 mA bis 200 mA umfasst und der höhere Strombereich 200 mA bis 1 A umfasst.
 
10. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei der Strommesswiderstand mehr als zwei Werte, insbesondere drei oder vier Werte annimmt, um zwischen mehr als zwei Strombereichen, insbesondere drei oder vier Strombereichen, umzuschalten.
 




Zeichnung







Recherchenbericht












Recherchenbericht