Technical Field
[0001] The present invention relates to a thermal transfer sheet, a printing sheet, and
a thermal transfer printing apparatus.
Background Art
[0002] Thermal transfer printers have been widely used which print letters, characters,
images, and the like onto an image receiving sheet or any other body to be transferred
by using a thermal transfer sheet (ink ribbon). The thermal transfer sheet includes
a ribbon (support layer), which is a long strip, and a dye layer disposed on the ribbon,
and, optionally, a protective layer and a hot-melt ink layer.
[0003] In the known thermal transfer sheet, dye layers for three colors of yellow, magenta,
and cyan and a protective layer are sequentially arranged in a plane direction, and,
optionally, a detection mark is formed of an ink containing a pigment, such as carbon
black or aluminum, between each dye layer or between a dye layer and the adjacent
protective layer. A thermal transfer printing apparatus reads the detection mark of
the thermal transfer sheet loaded therein to determine a print start position and
identify the type and the size of the thermal transfer sheet. However, securing regions
where detection marks are formed between the dye layers increases the full length
of the thermal transfer sheet, accordingly increasing the amount of the substrate
to be used and increasing manufacturing cost. In addition, when detection marks are
formed on a base film by printing, scattered ink may be printed at unwanted positions,
leading to defects in thermal transfer images.
[0004] PTL 1 discloses a thermal transfer sheet including dye layers for two or more colors
that are sequentially arranged in a plane direction, wherein any of the dye layers
has a two-layer structure and one layer of the two-layer structure forms a detection
mark having a difference in color from the adjacent portion. However, since the step
of forming a further detection layer (dye layer) is required for the detection mark,
the manufacturing cost increases. In addition, when a high-resolution image is printed,
the color properties of the image may vary.
[0005] PTLs 2 and 3 each disclose a thermal transfer dye sheet including a yellow dye layer,
a magenta dye layer, and a cyan dye layer, wherein the yellow dye layer has a print
region (detection mark) for a binary code or the like producing a difference in optical
density capable of being detected by a printer, the print region being formed by varying
the thickness of the yellow dye. However, since the thickness of the dye layer is
varied so as to produce a difference in optical density, color properties in high-resolution
printing may vary.
[0006] PTLs 4 and 5 each disclose a thermal transfer sheet including dye layers for one
or more colors sequentially arranged in a plane direction and a detection layer disposed
between the substrate and the dye layers or between the substrate and a rear surface
layer. However, since the step of forming the detection layer is required, the manufacturing
cost increases.
PTL 1: Japanese Patent No. 5799525
PTL 2: European Patent No. 1872960
PTL 3: European Patent No. 2035233
PTL 4: Japanese Patent No. 5760763
PTL 5: Japanese Patent Application Publication No. 2013-1047
Summary of Invention
[0007] Accordingly, the present invention takes account of such circumstances and an object
of the present invention is to provide a thermal transfer sheet capable of being identified
by a thermal transfer printing apparatus, as well as being capable of preventing color
property changes in high-resolution printing and reducing production cost. Also, it
is an object of the present invention to provide a printing sheet capable of being
identified by a thermal transfer printing apparatus. Furthermore, it is an object
of the present invention to provide a thermal transfer printing apparatus configured
to identify the thermal transfer sheet or a printing sheet loaded therein and perform
printing operation.
[0008] According to the present invention, a thermal transfer sheet includes a dye layer
and a protective layer disposed on one surface of a substrate, wherein the protective
layer contains an invisible light absorbing material and is provided with an identification
mark having at least one of a recessed portion and a protruding portion.
[0009] According to one aspect of the present invention, the identification mark has a protruding
strip or a recessed strip.
[0010] According to one aspect of the present invention, the protruding strip or the recessed
strip extends in a transverse direction of the sheet.
[0011] According to one aspect of the present invention, the identification mark is located
at a periphery of the protective layer that is not transferred to printing paper.
[0012] According to the present invention, a thermal transfer printing apparatus includes
a thermal head and a platen roll and in which the thermal head heats the thermal transfer
sheet according to the present invention to transfer a dye onto a printing paper while
the thermal transfer sheet and the printing paper, lying one on the other, are transported
between the thermal head and the platen roll, thus forming an image on the printing
paper and transferring the protective layer onto the image. The thermal transfer printing
apparatus includes a detector disposed between a feeder feeding the thermal transfer
sheet and the thermal head, the detector detecting the identification mark, a memory
storing a table in which a type of the thermal transfer sheet and a pattern of the
identification mark are associated with each other, and an identification unit referring
to the table and identifying the thermal transfer sheet fed from the feeder based
on the pattern detected by the detector.
[0013] According to one aspect of the present invention, the pattern of the identification
mark is represented by the number of strips or portions, a width, a shape or a position
of the identification mark.
[0014] According to the present invention, a thermal transfer printing apparatus includes
a thermal head and a platen roll and in which the thermal head heats a thermal transfer
sheet including a dye layer and a protective layer containing an invisible light absorbing
material to transfer a dye onto a printing paper while the thermal transfer sheet
and the printing paper, lying one on the other, are transported between the thermal
head and the platen roll, thus forming an image on the printing paper and transferring
the protective layer onto the image. The thermal transfer printing apparatus includes
a detector disposed between a feeder feeding the thermal transfer sheet and the thermal
head, the detector applying invisible light to the protective layer and measuring
an intensity of invisible light transmitted through or reflected from the protective
layer, a memory storing a table in which a type of the thermal transfer sheet and
the intensity are associated with each other, and an identification referring to the
table and identifying the thermal transfer sheet fed from the feeder based on a measurement
result of the detector.
[0015] According to one aspect of the present invention, the table contains printing conditions
associated with each type of the thermal transfer sheet, and printing operation is
performed under the printing conditions associated with the type of the thermal transfer
sheet identified by the identification unit.
[0016] According to the present invention, a printing sheet includes a substrate, an intermediate
layer disposed on the substrate, and a receiving layer disposed on the intermediate
layer. The intermediate layer contains an invisible light absorbing material and is
provided with an identification mark including at least one of a recessed portion
and a protruding portion.
[0017] According to one aspect of the present invention, the identification mark includes
a protruding strip or a recessed strip.
[0018] According to the present invention, a thermal transfer printing apparatus includes
a thermal head and a platen roll and in which the thermal head heats the thermal transfer
sheet according to the present invention to transfer a dye onto the printing sheet
according to the present invention while the thermal transfer sheet and the printing
sheet, lying one on the other, are transported between the thermal head and the platen
roll, thus forming an image on the printing sheet and transferring the protective
layer onto the image. The thermal transfer printing apparatus includes a first detector
disposed between a feeder feeding the thermal transfer sheet and the thermal head,
the first detector detecting a first identification mark provided in the protective
layer, a second detector detecting a second identification mark provided in the intermediate
layer, a memory storing a table in which a type of the thermal transfer sheet and
a pattern of the first identification mark are associated with each other and a table
in which a type of the printing sheet and a pattern of the second identification mark
are associated with each other, and an identification unit referring to the tables,
identifying the type of the thermal transfer sheet based on the pattern detected by
the first detector, and identifying the type of the printing sheet based on the pattern
detected by the second detector.
[0019] According to one aspect of the present invention, the thermal transfer printing apparatus
further includes a light source applying invisible light to the thermal transfer sheet
and the printing sheet. The printing sheet is irradiated with invisible light transmitted
through the protective layer, the first detector receives light from the protective
layer, and the second detector receives light from the printing sheet, the light having
been transmitted through the protective layer.
[0020] According to one aspect of the present invention, the protective layer of the thermal
transfer sheet contains an ultraviolet light absorbing material, and the intermediate
layer of the printing sheet contains a fluorescent brightening agent.
Advantageous Effects of Invention
[0021] The present invention enables a thermal transfer printing apparatus to identify thermal
transfer sheets, as well as to prevent color property changes in high-resolution printing
and reduce production cost.
Brief Description of Drawings
[0022]
Fig. 1 is a schematic diagram of the structure of a thermal transfer printing apparatus
according to an embodiment of the present invention.
Fig. 2 is a plan view of a thermal transfer sheet according to the embodiment.
Fig. 3 is a sectional view taken along line III-III shown in Fig. 2.
Figs. 4a and 4b each show the section of a protective layer.
Figs. 5a and 5b are each a plan view of a protective layer.
Figs. 6a and 6b are each a plan view of a protective layer.
Figs. 7a and 7b are each a plan view of a protective layer.
Figs. 8a and 8b are each a plan view of a protective layer.
Fig. 9 is a plan view of a protective layer.
Fig. 10 is a representation of some plan views of protective layers.
Fig. 11 is a plan view of a thermal transfer sheet.
Fig. 12 is a schematic diagram of the structure of a thermal transfer printing apparatus
according to another embodiment.
Fig. 13 is a plan view of a printing sheet.
Figs. 14a and 14b are each a sectional view taken along line XIV-XIV shown in Fig.
13.
Description of Embodiments
[0023] Fig. 1 is a schematic diagram of a thermal transfer printing apparatus according
to an embodiment of the present invention, Fig. 2 is a plan view of a thermal transfer
sheet 5 used in the thermal transfer printing apparatus, and Fig. 3 is a sectional
view of the thermal transfer sheet 5.
[0024] The thermal transfer sheet 5 includes: dye layers 52 containing a dye and a binder
resin and a transfer protective layer (hereinafter referred to as a protective layer
54) that are repetitively and sequentially arranged in a plane direction on one surface
of a substrate 50; and a rear surface layer 57 on the other surface of the substrate
50. The dye layers 52 include yellow (Y) dye layers, magenta (M) dye layers and cyan
(C) dye layers that are sequentially arranged in a plane direction. A dye primer layer
may be disposed between the substrate 50 and the arrangement of the dye layers 52
and the protective layers 54. Also, a rear primer layer may be disposed between the
substrate 50 and the rear surface layer 57.
[0025] The thermal transfer printing apparatus includes a thermal head 1 configured to sublimate
and transfer Y, M and C onto a printing sheet 7 (printing paper, image-receiving paper)
with the thermal transfer sheet 5, thus printing an image and forming a protective
layer over the image.
[0026] A feeder 3 formed by winding the thermal transfer sheet 5 thereon is disposed downstream
from the thermal head 1, and a collecting unit 4 is disposed upstream from the thermal
head 1. The thermal transfer sheet 5 fed from the feeder 3 passes the thermal head
1 and is taken up by the collecting unit 4.
[0027] A rotatable platen roll 2 is disposed below the thermal head 1. A printing unit 40,
which includes the thermal head 1 and the platen roll 2, pinches the printing sheet
7 and the thermal transfer sheet 5 and heats the thermal transfer sheet 5 to transfer
dyes onto the printing sheet 7, thus forming an image.
[0028] The printing unit 40 also heats the protective layer 54 to transfer the protective
layer onto the image. By increasing transfer energy for forming the protective layer
(printing energy for printing by the printing unit 40), the surface of the protective
layer becomes matt and has a low glossiness; by reducing the transfer energy, the
surface of the protective layer becomes glossy and has a high glossiness.
[0029] A rotatable capstan roller 9a for transporting the printing sheet 7 and a pinch roller
9b for pressing the printing sheet 7 on the capstan roller 9a are disposed upstream
from the thermal head 1.
[0030] The printing sheet 7 is wound on a printing paper roll 6 and fed from the printing
paper roll 6. The printing sheet 7 may be a known one. A driving section 30, which
includes the printing paper roll 6, the capstan roller 9a, and the pinch roller 9b,
feeds the printing sheet 7 (transports the printing sheet forward) and takes up the
printing sheet (transports the printing sheet backward).
[0031] The printing sheet 7 that has been subjected to image formation and transfer of the
protective layer in the printing unit 40 is cut into a printed cut sheet 7a with a
cutter 8 on the downstream side. The printed cut sheet 7a is ejected through an ejection
port (not shown).
[0032] In the present embodiment, the protective layer 54 of the thermal transfer sheet
5 contains an invisible light absorbing material. The invisible light absorbing material
may be, for example, a fluorescent brightening agent, an ultraviolet light absorbing
material, or an infrared light absorbing material. A detector 20 suitable for a type
of the invisible light absorbing material is disposed in the vicinity of the feeder
3.
[0033] If the protective layer 54 contains a fluorescent brightening agent, a fluorescence
sensor is used as the detector 20, and the protective layer 54 is irradiated with
ultraviolet light. The detector 20 receives fluorescence emitted from the protective
layer 54 to measure the fluorescence intensity. If the protective layer 54 contains
an ultraviolet light absorbing material or an infrared light absorbing material, an
ultraviolet sensor or an infrared sensor is used as the detector 20, and the protective
layer 54 is irradiated with ultraviolet light or infrared light. The detector 20 measures
the intensity (reflectance or transmittance) of light reflected from or transmitted
through the protective layer 54. Ultraviolet light refers to a radiation having a
maximum absorption wavelength (λmax) range of 280 nm or more and 400 nm or less. Infrared
light refers to a radiation having a maximum absorption wavelength (λmax) range of
780 nm or more and 1 mm or less. The wavelength range of visible light is from more
than 400 nm to less than 780 nm.
[0034] The protective layer 54 has an identification mark 55 therein, and the measurement
value of the detector 20 corresponding to the portion of the identification mark 55
is different from the measurement value of the detector 20 corresponding to the region
other than the portion of the identification mark 55.
[0035] For example, the identification mark 55 may be defined by a recessed portion having
a thickness smaller than the region other than the portion of the identification mark
55, as shown in Fig. 3 and Fig. 4a. Alternatively, the identification mark 55 may
be defined by a protruding portion having a thickness larger than the region other
than the portion of the identification mark 55, as shown in Fig. 4b.
[0036] For example, the identification mark 55 may be defined by a protruding or recessed
strip (line pattern) extending in the width direction (the transverse direction (short
length direction) of the sheet perpendicular to the longitudinal direction of the
sheet) of the thermal transfer sheet. In this instance, when the detector 20 irradiates
the protective layer 54 of the thermal transfer sheet 5 fed and transported from the
feeder 3 with ultraviolet light or infrared light and scans the protective layer 54
in the longitudinal direction, the measurement value varies at an edge of the identification
mark 55. The detector 20 thus detects the pattern of the identification mark 55 represented
by the number of strips or portions, the width, the shape, the position or the like
of the mark.
[0037] For example, in the case of the protective layer 54 containing a fluorescent brightening
agent, the position at which the detector 20 starts receiving fluorescence corresponds
to the front edge of the protective layer 54. Subsequently, the position at which
the fluorescence intensity increases (decreases) corresponds to the edge of one of
the ends of the identification mark 55, and then, the position at which the fluorescence
intensity decreases (increases) corresponds to the edge of the other end of the identification
mark 55. The position from which the detector 20 no longer receives fluorescence corresponds
to the rear edge of the protective layer 54.
[0038] Plural types of thermal transfer sheet 5 may be loaded in the thermal transfer printing
apparatus. The type of thermal transfer sheet 5 and the pattern (the number of strips
or portions, the width, the shape, or the position) of the identification mark 55
are recorded in association with each other in a table T in a memory 12 that will
be described later herein. For example, the number of strips of the identification
mark 55 may vary depending on the type of thermal transfer sheet 5, as shown in Figs.
5a and 5b. For example, the width of the identification mark 55 denoted by w1 or w2
may vary depending on the type of thermal transfer sheet 5, as shown in Figs. 6a and
6b. For example, the position of the identification mark 55 in the longitudinal direction
of the thermal transfer sheet may vary depending on the type of thermal transfer sheet
5, as shown in Figs. 7a and 7b. For example, the identification mark 55 may be formed
on a part in the transverse direction of the sheet, and the position of the identification
mark 55 in the transverse direction of the sheet may vary depending on the type of
thermal transfer sheet 5, as shown in Figs. 8a and 8b. The type of thermal transfer
sheet 5 may be represented by a combination of the number of strips or portions, the
width, the shape, the position and the like of the identification mark 55.
[0039] The identification mark 55 defined by a protruding strip or a recessed strip may
extend in the longitudinal direction of the sheet, as shown in Fig. 9. The identification
mark 55 is not necessarily in the shape of a straight line but may be in the shape
of a wavy line. The identification mark 55 is not limited to a line pattern and may
be a checkered pattern or a pattern in a shape of hart, star, spade or the like, as
shown in Fig. 10.
[0040] A control device 10 controls the operation of members or components of the thermal
transfer printing apparatus and operates for identification of the thermal transfer
sheet 5 and printing. The control device 10 is a computer including a CPU (central
processing unit) and a memory 12 including a flash memory, a ROM (Read-only Memory),
and/or a RAM (Random Access Memory). The memory 12 stores a control program and the
above-mentioned table T. The CPU executes the control program to implement an identification
unit 11.
[0041] The identification unit 11 refers to the table T and identifies the type of thermal
transfer sheet 5 from the detection result of the detector 20 for the identification
mark 55. In the table T, suitable printing conditions (printing speed, energy applied
for printing), the type of printing sheet 7 to be used, and other information may
be recorded in association with each type of thermal transfer sheet 5. If the type
of the printing sheet 7 loaded in the thermal transfer printing apparatus is not suitable
for the type of the identified thermal transfer sheet 5, the control device 10 may
output an alarm sound or a warning sign or may cancel the printing operation.
[0042] The structure of the thermal transfer sheet 5 will now be described.
[Substrate]
[0043] The substrate 50 used for the thermal transfer sheet 5 may be any known thermal transfer
sheet, provided that it is resistant to heat to some extent and has some strength.
Examples of such a substrate include polyethylene terephthalate films, 1,4-polycyclohexylenedimethylene
terephthalate films, polyethylene naphthalate films, polyphenylene sulfide films,
polystyrene films, polypropylene films, polysulfone films, aramid films, polycarbonate
films, polyvinyl alcohol films, cellulose derivatives, such as cellophane and cellulose
acetate, polyethylene films, polyvinyl chloride films, nylon films, polyimide films,
ionomer films, and other resin films.
[0044] The thickness of the substrate 50 is generally approximately 0.5 µm or more and 50
µm or less and is preferably approximately 3.0 µm or more and 10 µm or less. The substrate
50 may be subjected to surface treatment to improve the adhesion to the layer to come
into contact with the substrate 50. The surface treatment may be corona discharge
treatment, flame treatment, ozone treatment, ultraviolet treatment, radiation treatment,
surface roughening treatment, chemical treatment, plasma treatment, grafting treatment,
or any other known treatment for improving the surface of the resin. One or two or
more of surface treatment techniques may be applied.
[0045] Among those surface treatment techniques, corona discharge treatment or plasma treatment
are advantageous for low-cost production. Optionally, the substrate 50 may be provided
with an undercoat layer on one or both of the surfaces thereof. Primer treatment for
forming the undercoat layer may be performed by applying a primer liquid onto the
unstretched plastic film extruded from a melt extruder and stretching the film. A
rear primer layer (adhesive layer) may be formed between the substrate 50 and the
rear surface layer 57 by coating. The rear primer layer may be formed of, for example,
polyester-based resin, polyacrylate-based resin, polyvinyl acetate-based resin, polyurethane-based
resin, styrene acrylate-based resin, polyacrylamide-based resin, polyamide-based resin,
polyether-based resin, polystyrene-based resin, polyethylene-based resin, polypropylene-based
resin, vinyl-based resin, such as polyvinyl chloride resin, polyvinyl alcohol resin,
and polyvinylidene chloride resin, polyvinyl acetal-based resin, such as polyvinyl
acetoacetal and polyvinyl butyral, and cellulose-based resin.
[Dye Layer]
[0046] Preferably, materials prepared by melting or dispersing a sublimable dye in a binder
resin are used for the dye layers 52. Examples of the sublimable dye include diarylmethane-based
dyes; triarylmethane-based dyes; thiazole-based dyes; merocyanine dyes; pyrazolone
dyes; methine-based dyes; indoaniline-based dyes; azomethine-based dyes, such as acetophenoneazomethine,
pyrazoloazomethine, imidazolazomethine, imidazoazomethine, and pyridoneazomethine;
xanthene-based dyes; oxazine-based dyes; cyanostyrene-based dyes, such as dicyanostyrene
and tricyanostyrene; thiazine-based dyes; azine-based dyes; acridine-based dyes; benzene
azo-based dyes; azo dyes, such as pyridone azo, thiophene azo, isothiazole azo, pyrrole
azo, pyrazole azo, imidazole azo, thiadiazole azo, triazole azo, and disazo; spiropyran-based
dyes; indolinospiropyran-based dyes; fluorane-based dyes; rhodamine lactam-based dyes;
naphthoquinone-based dyes; anthraquinone-based dyes; and quinophthalone-based dyes.
[0047] The sublimable dye content in each dye layer is 5% by mass or more and 90% by mass
or less, preferably 20% by mass or more and 80% by mass or less, relative to the total
solid content of the dye layer. By controlling the content of the sublimable dye to
be used, a preferred print density can be achieved, and degradation in storability
can be reduced.
[0048] The binder resin used to hold the dye is, in general, resistant to heat and appropriately
compatible with the dye. Examples of the binder resin include cellulose-based resins,
such as ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxy cellulose, hydroxypropyl
cellulose, methyl cellulose, cellulose acetate, and cellulose butyrate; vinyl-based
resins, such as polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polyvinyl
acetoacetal, and polyvinylpyrrolidone; acrylic resins, such as poly(meth)acrylates
and poly(meth)acrylamide; polyurethane-based resins; polyamide-based resins; and polyester-based
resins. Among these binder resins, cellulose-based resins, vinyl-based resins, acrylic
resins, urethane-based resins, polyester-based resins, and the like are preferred
in terms of, for example, heat resistance and dye transferability. Vinyl-bases resins
are more preferred, and polyvinyl butyral, polyvinyl acetoacetal, and the like are
particularly preferred.
[0049] The dye layers 52 may contain an additive, such as a release agent, inorganic particles,
or organic particles. The release agent may be silicone oil, phosphoric acid ester,
or the like. The inorganic particles may be particles of carbon black, aluminum, molybdenum
disulfide, or the like. The organic particles may be polyethylene wax particles or
the like.
[0050] The dye layers 52 may be formed by applying a coating liquid, which is prepared by
dissolving or dispersing any of the above-cited dyes, the binder resin, and optionally
added additives in an appropriate organic solvent or water, onto one of the surfaces
of the substrate 50 by a known method, such as gravure printing, screen printing,
or reverse roll coating using a gravure plate, and drying the applied coating liquid.
[0051] The organic solvent may be toluene, methyl ethyl ketone, ethanol, isopropyl alcohol,
cyclohexanone, dimethylformamide [DMF], or the like. Each dye layer, when dried, has
a thickness of approximately 0.2 µm or more and 6.0 µm or less, preferably approximately
0.2 µm or more and 3.0 µm or less.
[Protective Layer]
[0052] The protective layer 54 is made of a resin conventionally used for forming a protective
layer, to which a fluorescent brightening agent, an ultraviolet light absorbing material,
or an infrared light absorbing material is added. Examples of the resin used for forming
a protective layer include polyester resin, polystyrene resin, acrylic resin, polyurethane
resin, acryl urethane resin, vinyl chloride-vinyl acetate copolymer, silicone-modified
resins of these resins, and mixtures of these resins.
[0053] Examples of the fluorescent brightening agent include fluorescein-based compounds,
thioflavin-based compounds, eosin-based compounds, rhodamine-based compounds, coumarin-based
compounds, imidazole-based compounds, oxazole-based compounds, triazole-based compounds,
carbazole-based compounds, pyridine-based compounds, imidazolone-based compounds,
naphthalic acid derivatives, stilbenedisulfonic acid derivatives, stilbenetetrasulfonic
acid derivatives, and stilbenehexasulfonic acid derivatives.
[0054] Examples of the ultraviolet light absorbing material include organic ultraviolet
light absorbing materials, such as benzotriazole-based compounds, triazine-based compounds,
benzophenone-based compounds, and benzoate-based compounds, and inorganic ultraviolet
light absorbing materials, such as titanium oxide, zinc oxide, cerium oxide, iron
oxide, and barium sulfate. In particular, benzotriazole-based compounds are preferably
used.
[0055] Examples of the infrared light absorbing material include diimonium-based compounds,
aluminum-based compounds, phthalocyanine-based compounds, dithiol-based organic metal
complexes, cyanine-based compounds, azo-based compounds, polymethine-based compounds,
quinone-based compounds, diphenylmethane-based compounds, triphenylmethane-based compounds,
and oxol-based compounds.
[0056] The protective layer 54 may be formed by, for example, gravure printing application
of a coating liquid containing the above-described resin to which an above-described
fluorescent brightening agent, ultraviolet light absorbing material or infrared light
absorbing material is added, followed by drying. The plate cylinder used in the gravure
printing has very small recesses called cells in the surface thereof. The recesses
are filled with the coating liquid, and the coating liquid in the recesses is applied
onto the substrate 50. In the present embodiment, the protective layer 54 having a
recessed or protruding portion (identification mark 55) having a varied thickness
is formed by adjusting the recess or protrusion formed at the surface of the plate
cylinder.
[0057] The thickness of the protective layer 54 (region other than the portion of the identification
mark 55), when dried, is preferably 0.1 µm or more and 2.0 µm or less. The thickness
of the portion of the identification mark 55 is preferably 65% or more and 80% or
less or 125% or more and 150% or less relative to the thickness of the region other
than the portion of the identification mark 55.
[0058] For a recessed identification mark 55, when the thickness of the portion of the identification
mark 55 is 80% or less relative to the thickness of the region other than the portion
of the identification mark 55, the values, detected by the detector 20, of the identification
mark 55 and the other region have a sufficient difference, and thus the identification
mark 55 is easily detected. Also, when the thickness of the portion of the identification
mark 55 is 65% or more relative to the thickness of the region other than the portion
of the identification mark 55, the recess or protrusion of the identification mark
55 will be inconspicuous on the printed cut sheet 7a having a thermally transferred
image.
[0059] For a protruding identification mark 55, when the thickness of the portion of the
identification mark 55 is 125% or more relative to the thickness of the region other
than the portion of the identification mark 55, the values, detected by the detector
20, of the identification mark 55 and the other region have a sufficient difference,
and thus the identification mark 55 is easily detected. Also, when the thickness of
the portion of the identification mark 55 is 150% or less relative to the thickness
of the region other than the portion of the identification mark 55, the recess or
protrusion of the identification mark 55 will be inconspicuous on the printed cut
sheet 7a having a thermally transferred image.
[Rear Surface Layer]
[0060] The thermal transfer sheet 5 includes the rear surface layer 57 on the surface of
the substrate 50 opposite the dye layers 52 and the protective layers 54. The rear
surface layer 57 is disposed on that surface of the substrate 50 to increase the runnability
for the thermal head 1 during printing, as well as heat resistance.
[0061] The rear surface layer 57 is made of a material appropriately selected from the known
thermoplastic resins and the like. Examples of such a thermoplastic resin include
polyester-based resins, polyacrylate-based resins, polyvinyl acetate-based resins,
styrene acrylate-based resins, polyurethane-based resins, polyolefin-based resins,
such as polyethylene-based resins and polypropylene-based resins, polystyrene-based
resins, polyvinyl chloride-based resins, polyether-based resins, polyamide-based resins,
polyimide-based resins, polyamide-imide-based resins, polycarbonate-based resins,
polyacrylamide resin, polyvinyl chloride resin, polyvinyl acetal resins such as polyvinyl
butyral resin and polyvinyl acetoacetal resin, and silicone-modified forms of these
thermoplastic resins.
[0062] A curing agent may be added to the thermoplastic resin. The curing agent may be selected
from the known polyisocyanate resins without particular limitation, and it is desirable
to use an aromatic isocyanate adduct. Examples of such an aromatic polyisocyanate
include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, a mixture of 2,4-toluene
diisocyanate and 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate, tolidine
diisocyanate, p-phenylene diisocyanate, trans-cyclohexane-1,4-diisocyanate, xylylene
diisocyanate, triphenylmethane triisocyanate, and tris(isocyanatophenyl) thiophosphate.
In particular, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and a mixture of
2,4-toluene diisocyanate and 2,6-toluene diisocyanate are preferable. Such a polyisocyanate
resin causes the hydroxy group of the above-described hydroxy-including thermoplastic
resin to form crosslinks, thus increasing the strength and the heat resistance of
the coating film for the rear surface layer 57.
[0063] In addition to the thermoplastic resin, the rear surface layer 57 may contain wax,
a higher fatty acid amide, a phosphate ester compound, metal soap, silicone oil, a
surfactant or any other release agent, fluororesin powder or any other organic powder,
inorganic particles of silica, clay, talc, calcium carbonate, or the like, and other
additives to increase slip properties.
[0064] The rear surface layer 57 is formed by applying a coating liquid, which is prepared
by, for example, dispersing or dissolving the above-cited thermoplastic resin and
optional additives in an appropriate solvent, onto the surface of the substrate 50
opposite the dye layers 52 and the protective layers 54 by a known method, such as
gravure printing, screen printing, or reverse roll coating using a gravure plate,
and drying the applied coating liquid. The thickness of the rear surface layer, when
dried, is preferably 3 µm or less, more preferably 0.1 µm or more and 2 µm or less,
from the viewpoint of increasing heat resistance or the like.
[0065] In printing operation using the thermal transfer sheet 5, the printing sheet 7 and
the Y layer of the dye layers 52 are first caused to correspond in position to each
other, and the thermal head 1 is brought into contact with the platen roll 2 with
the printing sheet 7 and the thermal transfer sheet 5 interposed therebetween. Then,
the printing sheet 7 and the thermal transfer sheet 5 are transported backward by
driving for rotation of the capstan roller 9a and the collecting unit 4. During this
operation, the region of the Y layer is selectively heated by the thermal head 1 on
the basis of image data, so that Y is sublimated and transferred onto the printing
sheet 7 from the thermal transfer sheet 5.
[0066] After the sublimation transfer of Y, the thermal head 1 rises to separate from the
platen roll 2. Subsequently, the printing sheet 7 and the M layer are caused to correspond
in position to each other. In this instance, the printing sheet 7 is transported forward
by a distance corresponding to the print size, while the thermal transfer sheet 5
is transported backward by a distance corresponding to the margin between the Y layer
and the M layer.
[0067] M and C are sublimated to be transferred one after the other onto the printing sheet
7 on the basis of image data in a manner similar to the sublimation transfer of Y,
thus forming an image on the printing sheet 7.
[0068] After the image formation, the printing sheet 7 and the protective layer 54 are caused
to correspond in position to each other, and the protective layer 54 is heated by
the thermal head 1, thus transferred from the thermal transfer sheet 5 onto the printing
sheet 7 so as to cover the image. In the protective layer 54, the portion of the identification
mark 55 has a thickness of 65% or more and 80% or less or 125% or more and 150% or
less relative to the thickness of the region other than the portion of the identification
mark 55. Accordingly, the identification mark 55 in the protective layer after being
transferred cannot be perceived by the naked human eye, not affecting the finished
quality of the resulting printed item.
[0069] From the viewpoint of preventing the appearance of the printed item from being affected
by an unwanted change of the portion of the identification mark 55 caused due to the
storage period or the storage environment of the printed item, the identification
mark 55 may be formed at the periphery of the protective layer 54 that is outside
the print region so as not to be transferred to the printing sheet 7. Also, from the
viewpoint of reducing the effect on the appearance of the printed item, a linear identification
mark 55 may be positioned only at the periphery of the printed item.
[0070] In the present embodiment, since the identification mark 55 is formed in the protective
layer 54 but not in the dye layers 52, color properties are not affected. In gravure
printing, since a coating liquid containing an invisible light absorbing material
for forming the protective layer can be applied after adjusting the recess or protrusion
at the surface of the plate cylinder, the number of application process steps for
forming the identification mark 55 does not increase, and, accordingly, production
cost does not increase. The identification mark 55 may have either a recessed portion
or a protruding portion or both in combination.
[0071] Although the above-described embodiment has described an example in which the pattern
(the number of strips or portions, the width, the shape, the position, or the like)
of the identification mark 55 formed in the protective layer 54 is varied for each
type of thermal transfer sheet 5, the content (added concentration) of the invisible
light absorbing material relative to the resin for forming the protective layer may
be varied for each type of thermal transfer sheet 5 (without varying the thickness
of the protective layer 54). In this instance, the value detected by the detector
20 varies depending on the type of thermal transfer sheet 5. The type of thermal transfer
sheet 5 and the intensity of transmitted light or reflected light are recorded in
association with each other in the table T in the memory 12.
[0072] Also, the invisible light absorbing material added to the resin for forming the protective
layer may be changed for each type of thermal transfer sheet 5. In this instance,
ultraviolet or infrared light absorption wavelength varies depending on the type of
thermal transfer sheet 5. In the table T in the memory 12, absorption wavelength is
recorded in association with each type of thermal transfer sheet 5.
[0073] As shown in Fig. 11, the identification mark 55 may be located at a back end of the
protective layer 54 in the longitudinal direction of the sheet so as to be used as
a detection mark to determine the position of the following dye layer 52 (Y layer).
The identification mark 55 may be located in a region not transferred to the printing
sheet 7, for example, in the vicinity of the Y layer.
[0074] The above-described embodiment has described an example in which the type of thermal
transfer sheet 5 is identified by providing the identification mark 55 (first identification
mark) formed in the protective layer 54. As with the thermal transfer sheet 5, the
printing sheet 7 may be provided with an identification mark (second identification
mark) to identify the type of the printing sheet.
[0075] Fig. 12 is a schematic diagram of the structure of a thermal transfer printing apparatus
configured to identify also the type of printing sheet 7, Fig. 13 is a plan view of
a printing sheet 7, and Figs. 14a and 14b are each a sectional view of a printing
sheet 7. While the thermal transfer printing apparatus shown in Fig. 1 is provided
with a detector 20 (first detector), the thermal transfer printing apparatus shown
in Fig. 12 is different in that it is provided with the detector 20 (first detector)
and a detector 60 (second detector).
[0076] The printing sheet 7 has a receiving layer 71 on one surface of a substrate 70 and
a rear surface layer 72 on the other surface. The substrate 70 and the receiving layer
71 are provided with an intermediate layer 73 interposed therebetween to increase
adhesion between the substrate 70 and the receiving layer 71. The printing sheet 7
may include further layers.
[0077] The intermediate layer 73 contains an invisible light absorbing material. The invisible
light absorbing material may be, for example, a fluorescent brightening agent, an
ultraviolet light absorbing material, or an infrared light absorbing material. The
invisible light absorbing material in the intermediate layer 73 is different from
the invisible light absorbing material in the protective layer 54. The detector 20
is suitable for the type of the invisible light absorbing material contained in the
protective layer 54, and the detector 60 is suitable for the type of the invisible
light absorbing material contained in the intermediate layer 73.
[0078] If the intermediate layer 73 contains a fluorescent brightening agent, a fluorescence
sensor is used as the detector 60. The sensor irradiates the printing sheet 7 with
ultraviolet light and receives fluorescence emitted from the printing sheet 7, thus
measuring the fluorescence intensity. If the intermediate layer 73 contains an ultraviolet
light absorbing material or an infrared light absorbing material, an ultraviolet sensor
or an infrared sensor is used as the detector 60, and the printing sheet 7 is irradiated
with ultraviolet light or infrared light, thus measuring the intensity (reflectance
or transmittance) of reflected light or transmitted light.
[0079] If the detector 20 and the detector 60 are disposed close to each other as shown
in Fig. 12, a light source for ultraviolet irradiation may be shared with the detectors.
Ultraviolet light emitted from the light source is transmitted through the protective
layer 54, and the intermediate layer 73 is irradiated with the ultraviolet light.
The ultraviolet light reflected from the intermediate layer 73 or the fluorescence
emitted from the intermediate layer 73 is transmitted through the protective layer
54 and detected by the detector 60.
[0080] The detector 60 may be disposed between the printing unit 40 and the printing paper
roll 6.
[0081] The intermediate layer 73 of the printing sheet 7 has an identification mark 75 therein,
and the measurement value of the detector 60 by measuring the portion of the identification
mark 75 is different from the measurement value of the detector 60 by measuring the
region other than the portion of the identification mark 75
[0082] For example, the identification mark 75 in the intermediate layer 73 may be defined
by a recessed portion having a thickness smaller than the region other than the portion
of the identification mark 75, as shown in Fig. 14a. Alternatively, the identification
mark 75 in the intermediate layer 73 may be defined by a protruding portion having
a thickness larger than the region other than the portion of the identification mark
75, as shown in Fig. 14b.
[0083] For example, the identification mark 75 may be defined by a protruding or recessed
strip (line pattern) extending in the width direction (the transverse direction (short
length direction) of the sheet perpendicular to the longitudinal direction of the
sheet) of the printing sheet 7. In this instance, when the detector 60 irradiates
the printing sheet 7 fed and transported from the printing paper roll 6 with ultraviolet
light or infrared light and scans the printing sheet 7 in the longitudinal direction,
the measurement value varies at an edge of the identification mark 75. The detector
thus can detect the pattern of the identification mark 75 represented by the number
of strips or portions, the width, the shape, the position and the like of the mark.
Identification marks 75 are provided at regular intervals.
[0084] For example, in the case of the intermediate layer 73 containing a fluorescent brightening
agent, the position at which the intensity of fluorescence received by the detector
60 increases (decreases) corresponds to the edge of one of the ends of the identification
mark 75, and then, the position at which the fluorescence intensity decreases (increases)
corresponds to the edge of the other end of the identification mark 75.
[0085] Plural types of printing sheet 7 may be loaded in the thermal transfer printing apparatus.
The type of printing sheet 7 and the pattern (the number of strips or portions, the
width, the shape, and the position) of the identification mark 75 are recorded in
association with each other in the table T in the memory 12. For example, the number
of strips, the width, the position or the like of the identification mark 75 varies
depending on the type of printing sheet 7.
[0086] The identification unit 11 refers to the table T and identifies the type of printing
sheet 7 from the detection result of the detector 60 for the identification mark 75.
[0087] In the table T, preferred combinations between thermal transfer sheets 5 and printing
sheets 7 may be registered. If the type of thermal transfer sheet 5 and the type of
printing sheet 7 that have been identified by the identification unit 11 do not correspond
to any of the registered combinations, the control device 10 may output an alarm sound
or a warning sign or may cancel the printing operation.
[0088] After printing operation in the printing unit 40, a cutter 8 cuts the printing sheet
7 in the width direction at the boundary between a region for a printed cut sheet
and a region for a margin. The region for a printed cut sheet is ejected as the printed
cut sheet 7a through the ejection port. On the other hand, the region for a margin
is cut off as a margin piece and collected in a collection container (not shown) disposed
right under the cutter 8.
[0089] The image is printed slightly larger than the region for the printed cut sheet. Thus,
the image is printed over the entire surface of the printed cut sheet 7a even if the
cutting position of the cutter 8 is slightly shifted.
[0090] The above-cited identification mark 75 may be formed in the region of a margin that
will be collected as a margin piece.
[0091] The substrate 70 of the printing sheet 7 may be high-quality paper, coated paper,
resin-coated paper, art paper, cast-coated paper, paperboard, synthetic paper (polyolefin-based
paper, polystyrene-based paper), synthetic resin or emulsion-impregnated paper, synthetic
rubber latex-impregnated paper, synthetic resin internally added paper, cellulose
fiber paper, or the like. The thickness of the substrate 70 may be, but is not limited
to, approximately 10 µm or more and 300 µm or less.
[0092] The receiving layer 71 contains a binder resin and a release agent. The binder resin
may be a known resin material that can easily receive the dyes contained in the dye
layers of the thermal transfer sheet. The release agent is intended to facilitate
easy release of the thermal transfer sheet from the dye layers and may be silicone
oil, polyethylene wax, amide wax, or a fluorine-based or phosphate ester-based surfactant,
or the like.
[0093] The rear surface layer 72 may be a layer having a desired function, appropriately
selected in accordance with the use of the printing sheet 7. For example, a rear surface
layer 72 having a function to facilitate the transfer of the printing sheet 7 or a
function to prevent curling is preferably used.
[0094] For the intermediate layer 73, an invisible light absorbing material is added to
a known resin functioning as a good adhesive between the substrate 70 and the receiving
layer 71. Examples of such a resin include polyurethane resin, acrylic resin, polyethylene
resin, polypropylene resin, and epoxy resin.
[0095] The thickness of the intermediate layer 73 (region other than the portion of the
identification mark 75), when dried, is preferably 0.1 µm or more and 2.0 µm or less.
The thickness of the portion of the identification mark 75 is preferably 65% or more
and 80% or less or 125% or more and 150% or less relative to the thickness of the
region other than the portion of the identification mark 75.
[0096] For a recessed identification mark 75, when the thickness of the portion of the identification
mark 75 is 80% or less relative to the thickness of the region other than the portion
of the identification mark 75, the values, detected by the detector 60, of the identification
mark 75 and the other region have a sufficient difference, and thus the identification
mark 75 is easily detected. Also, when the thickness of the portion of the identification
mark 75 is 65% or more relative to the thickness of the region other than the portion
of the identification mark 75, the recess or protrusion of the identification mark
75 will appear inconspicuously at the surface of the receiving layer 71. If the identification
mark 75 is formed in a region for a margin, the recess or protrusion will not appear
at the surface of the printed cut sheet 7a.
[0097] For a protruding identification mark 75, when the thickness of the portion of the
identification mark 75 is 125% or more relative to the thickness of the region other
than the portion of the identification mark 75, the values, detected by the detector
60, of the identification mark 75 and the other region have a sufficient difference,
and thus the identification mark 75 is easily detected. Also, when the thickness of
the portion of the identification mark 75 is 150% or less relative to the thickness
of the region other than the portion of the identification mark 75, the recess or
protrusion of the identification mark 75 will be inconspicuous on the printed cut
sheet 7a having a thermally transferred image. If the identification mark 75 is formed
in a region for a margin, the recess or protrusion will not appear at the surface
of the printed cut sheet 7a, as described above.
[0098] The identification mark 75 may have either a recessed portion or a protruding portion
or both in combination.
[0099] Although an example in which the pattern (the number of strips or portions, the width,
the shape, the position, and the like) of the identification mark 75 is varied for
each type of printing sheet 7, the content of the invisible light absorbing material
in the intermediate layer 73 may be varied for each type of printing sheet 7 (without
varying the thickness of the intermediate layer 73). In this instance, the value (received
light intensity) detected by the detector 60 varies depending on the type of printing
sheet 7. Types of printing sheet 7 and detection values are recorded in association
with each other in the table T in the memory 12.
[0100] When the detector 20 and the detector 60 are disposed close to each other so as to
share the ultraviolet emission light source with each other and detect the identification
mark 55 and the identification mark 75 in a state where the protective layer 54 and
the printing sheet 7 lie one on the other, as shown in Fig. 12, the identification
mark 55 and the identification mark 75 may be detected simultaneously or independently.
[0101] For simultaneously detecting the identification mark 55 and the identification mark
75, if the invisible light absorbing material in the protective layer 54 and the invisible
light absorbing material in the intermediate layer 73 are the same, it is difficult
to determine which the identification mark 55 or the identification mark 75 has produced
a change in light intensity detected by the detector.
[0102] For simultaneously detecting the identification mark 55 and the identification mark
75, it is therefore preferable that the invisible light absorbing material contained
in the protective layer 54 and the invisible light absorbing material contained in
the intermediate layer 73 be different from each other. Particularly in view of the
quality of printed items (printed cut sheets 7a) to be produced, it is preferable
that the protective layer 54 contains an ultraviolet light absorbing material, while
the intermediate layer 73 contains a fluorescent brightening agent.
[0103] The intermediate layer 73 is irradiated with ultraviolet light transmitted through
the identification mark 55 of the protective layer 54. From the viewpoint of reducing
the attenuation of ultraviolet light by the transmission through the identification
mark 55 so that the intermediate layer 73 can be irradiated with ultraviolet with
a sufficient intensity, the identification mark 55 is preferably defined by a recessed
form.
[0104] The present invention is not limited to the above described embodiments as they are,
and the elements thereof may be modified without departing from the scope and spirit
of the invention when the invention is implemented. Also, appropriate combinations
of the elements or components disclosed in the above-described embodiments can lead
to various inventions. For example, some of the elements used in the embodiments may
be omitted. Furthermore, some elements used in an embodiment may be combined with
elements used in another embodiment as required.
Reference Signs List
[0106]
- 1
- thermal head
- 2
- platen roll
- 3
- feeder
- 4
- collecting unit
- 5
- thermal transfer sheet
- 7
- printing sheet
- 10
- control device
- 11
- identification unit
- 12
- memory
- 20
- detector (first detector)
- 40
- printing unit
- 50
- Substrate
- 52
- dye layer
- 54
- protective layer
- 55
- identification mark
- 60
- detector (second detector)
- 75
- identification mark