

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 534 104 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
04.09.2019 Bulletin 2019/36

(51) Int Cl.:

F28F 1/02 (2006.01)

F28D 1/053 (2006.01)

F28D 1/047 (2006.01)

F28F 9/02 (2006.01)

(21) Application number: 18461523.5

(22) Date of filing: 28.02.2018

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD TN

(71) Applicant: Valeo Autosystemy SP. Z.O.O.
32-050 Skawina (PL)

- PEDRAS, Maciej
PL 32-050 Skawina (PL)
- CISAK, Bartłomiej
PL 32-050 Skawina (PL)
- TYRALA, Paweł
PL 32-050 Skawina (PL)

(74) Representative: Bialkowski, Adam
Valeo Systèmes Thermiques
ZA l'Agot
8 rue Louis Lormand
CS 80517 La Verrière
78322 Le Mesnil Saint Denis Cedex (FR)

(72) Inventors:

- ROMANSKI, Grzegorz
PL 32-050 Skawina (PL)

(54) A HEAT EXCHANGER

(57) A high pressure heat exchanger 1 comprising a first manifold 10a and a second manifold 10b connected fluidly by a plurality of tube sets 20 arranged in a spaced manner along the manifolds 10a, 10b, each tube set 20 comprising a first tube 11 and a second tube 12, wherein each of the first and the second tubes 11, 12 comprises an intermediate tube section 11a between two opposing tube end sections 11b, and wherein the manifolds 10a, 10b comprise slots 13 receiving the tube end sections

11b in a fluid-tight manner, wherein in the tube set 20, at least the first tube 11 comprises a bent tube section 11c between the tube end section 11b and the intermediate tube section 11a, so that the intermediate tube sections 11a of the first and second tubes 11, 12 run substantially in a parallel and spaced manner to each other, while the tube end tube sections 11b are stacked on each other within a single slot 13.

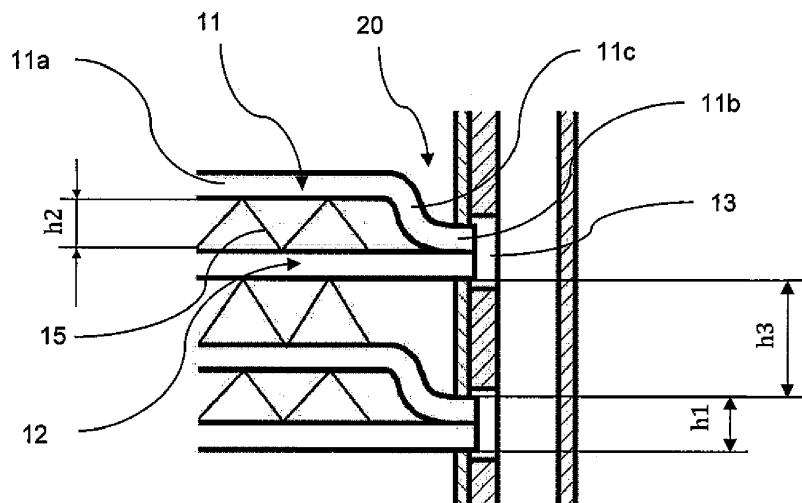


Fig. 3

Description**FIELD OF THE INVENTION**

[0001] The invention relates to a heat exchanger, especially to a high pressure heat exchanger for automotive industry.

BACKGROUND OF THE INVENTION

[0002] In known heat exchangers, configured to exchange heat between two fluids, it is common to provide two manifolds connected fluidly by plurality of tubes. One of the fluids is guided between said manifolds via these tubes, while the second fluid is guided around and in a space between the tubes to enable heat exchange. The tubes can be for example flat tubes. The tubes are secured in the manifolds in a fluid-tight manner.

[0003] When the fluid traveling between the manifolds and in the tubes is a high pressure fluid, like R744 (CO₂), the heat exchanger has to be adapted accordingly. In particular, high pressure fluid imposes additional design constraints on the heat exchanger, as the pressure of the fluid necessitates higher mechanical resistance of its components. This pressure can exceed 120 bars.

[0004] However, at the same time, efficiency requirements pose further demands on the heat exchanger, and consequently render an optimal design even more problematic to achieve.

[0005] In case of heat exchangers comprising flat tubes, the manifolds have slots with shape corresponding to the cross-section of the tubes. The flat tubes are mounted in these slots. As the number of tubes is linked to the efficiency of the heat exchange, it is generally preferable to increase the number of tubes to improve the heat exchange between fluids. However, as the number of tubes grows, the distance between the consecutive slots in the manifold decreases. At some point, the distance becomes too small to ensure a proper mechanical resistance of the manifold, given that the fluid which travels through the tubes and which enters said manifold operates at high pressure.

[0006] It is therefore an object of the invention to provide a high pressure heat exchanger which would offer efficient operation without sacrificing its mechanical resistance, and which thus would be safe to operate.

SUMMARY OF THE INVENTION

[0007] The object of the invention is a high pressure heat exchanger comprising a first manifold and a second manifold connected fluidly by a plurality of tube sets arranged in a spaced manner along the manifolds, each tube set comprising a first tube and a second tube, wherein in each of the first and the second tubes comprises an intermediate tube section between two opposing tube end sections, and wherein the manifolds comprise slots receiving the tube end sections in a fluid-tight manner,

wherein in the tube set, at least the first tube comprises a bent tube section between the tube end section and the intermediate tube section, so that the intermediate tube sections of the first and second tubes run substantially in a parallel and spaced manner to each other, while the tube end tube sections are stacked on each other within a single slot.

[0008] Preferably, the bent tube section comprises two opposing turns.

[0009] Preferably, both the first tube and the second tube comprise bent tube sections.

[0010] Preferably, the spaces between the tubes in a tube set have equal height to the spaces between the tube sets.

[0011] Preferably, a flow disruptor is arranged in a space between the first tube and the second tube in the tube set.

[0012] Preferably, a flow disruptor is arranged in a space between the tube sets.

[0013] Preferably, a tube height h1 of flat tubes is between 2 mm and 3 mm, a flow disruptor height h2 is between 1,7mm and 2,5 mm, and a material height h3 between consecutive slots is $(2*h2)-a$, a being between 0,4 and 0,8 mm.

[0014] Preferably, a third tube is located between the first tube and the second tube, so that the end sections of the tubes 11, 12, 16 are stacked on each other within a single slot.

[0015] Preferably, a tube height h1 of flat tubes is between 2 mm and 3 mm, a flow disruptor height h2 is between 1,7mm and 2,5 mm, and a material height h3 between consecutive slots is $(3*h2)-a$, a being between 0,4 and 0,8 mm.

BRIEF DESCRIPTION OF DRAWINGS

[0016] Examples of the invention will be apparent from and described in detail with reference to the accompanying drawings, in which:

40

Fig. 1 shows a known heat exchanger with flat tubes in partial cross-section;

45

Fig. 2 shows the heat exchanger of Fig. 1 in greater detail;

Fig. 3 shows a heat exchanger according to the invention in a first embodiment;

50

Fig. 4 shows a heat exchanger according to the invention in a second embodiment;

55

Fig. 5 shows a heat exchanger according to the invention in a third embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

[0017] Fig. 1 shows a known heat exchanger with flat

tubes 11 in partial cross-section. The heat exchanger 1 comprises a plurality of flat tubes 11 for guiding the first fluid, in particular a fluid operating at high pressure, for example R744. These tubes 11 are connected at their end portions with manifolds 10a, 10b. The flat tubes 11 are arranged in horizontally parallel rows so that the first fluid can enter through the block 30 into the first manifold 10a, travel through the first column of tubes 11, reach the second manifold 10b and make a U-turn, returning to the first manifold 10a via second column of tubes 11, and then exit through outlet channel in the manifold 10a and the connecting block 30.

[0018] Fig. 2 shows the heat exchanger of Fig. 1 in greater detail. The flat tubes 11 are placed in slots 13 of the manifold 10b (in a consecutive manner along the vertical direction). The other ends of the tubes 11 are situated in manifold 10a in an analogous manner. The heat exchanger further comprises flow disruptors 15, which disrupt the flow of the second fluid, in order to improve the heat exchange with the first fluid. The tube height h_1 is slightly smaller than manifold material height h_3 between consecutive slots 13. The flow disruptor 15 has a height h_2 . As the height of the disruptor 15 approaches the h_1 value, h_3 also decreases, which is detrimental to the manifolds strength. The following embodiments propose avoiding this negative dependency.

[0019] Fig. 3 shows a heat exchanger according to the invention in a first embodiment. The invention differs from the heat exchanger discussed in relation to Figs. 1 and 2 in The example is explained relative to manifold 10b, but this description applies to manifold 10a in an analogous manner. A plurality of tube sets 20, each comprising a first tube 11 and a second tube 12, is arranged along the manifold 10b in a spaced manner. Each of the first and the second tubes 11, 12 comprises an intermediate tube section 11 a between two opposing tube end sections 11b. The manifolds 10a, 10b comprise slots 13, in which the tube end sections 11b of tubes 11, 12 are mounted in a fluid-tight manner. Within the tube set 20, at least the first tube 11 comprises a bent tube section 11c between the tube end section 11b and the intermediate tube section 11 a. The intermediate tube sections 11 a of the first and second tubes 11, 12 then run substantially in a parallel and spaced manner to each other, while the tube end sections 11 b are stacked on each other within a single slot 13. Because at least one of the tubes 11, 12 is bent in this manner, the distance between the consecutive slots 12 is enlarged. It is therefore clear that by the term 'bent' it is understood any shape which allows providing two sections of the tube, preceding the bend and following the bend, which would run in parallel but in shifted relation, as shown in the drawings. For example, the first tube 11 is bent so that it has two opposing bends (i.e. forms a chicane). Preferably, the tube bent section 11 c is located close to the tube end section 11 b. Consequently, the disruptors 15 can occupy most of the space between the tubes and prevent excessive bypassing of the second fluid. In the example of Fig. 3, the

second tube 12 is a straight (i.e. non-bent) flat tube, which nevertheless comprises an intermediate portion 11 a and a tube end section 11 b, the tube end section 10b being placed in the slot 13.

[0020] The arrangement according to the invention improves mechanical resistance of the header, and at the same time allows application of known, standard flow disrupters 15. The number of tubes applied along the manifold consequently can also be greater.

[0021] Fig. 4 shows a heat exchanger according to the invention in a second embodiment. This embodiment differs from the first embodiment in that a third tube 16 is present in the tube set 20. It has the same shape as the first tube 11, but is arranged inversely and stacked below the second tube 12.

[0022] For embodiment with three tubes in one header slot, the tube height h_1 is preferably between 3 mm and 4,5 mm, the flow disruptor height h_2 is between 1,7mm and 2,5 mm, and the material height h_3 between the consecutive tube slots 13 is $(3*h_2)$ -a, which is between 0,4 and 0,8 mm.

[0023] For the above examples the boundary values of the ranges are understood to be not excluded.

[0024] Fig. 5 shows a heat exchanger according to the invention in a third embodiment. It differs from the previous embodiments in that both the first tube 11 and the second tube 12 comprise tube bent sections 11 c, and there is no flat tube between them. The disruptors 15 can be located between the tubes 11, 12 and/or between the consecutive tube sets 20.

[0025] For embodiments with two tubes in one header slot, the tube height h_1 is preferably between 2 mm and 3 mm, the flow disruptor height h_2 is between 1,7mm and 2,5 mm, and the material height h_3 between the consecutive tube slots 13 is $(2*h_2)$ -a, which is between 0,4 and 0,8 mm.

[0026] For the above examples the boundary values of the ranges are understood to be not excluded.

[0027] The spaces between the tubes in a tube set 20 can have equal height to the spaces between the tube sets 20. This can enable applying identical flow distributors 15.

[0028] Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of drawings, the disclosure, and the appended claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to the advantage.

Claims

1. A high pressure heat exchanger 1 comprising a first manifold 10a and a second manifold 10b connected fluidly by a plurality of tube sets 20 arranged in a spaced manner along the manifolds 10a, 10b, each

tube set 20 comprising a first tube 11 and a second tube 12, wherein each of the first and the second tubes 11, 12 comprises an intermediate tube section 11 a between two opposing tube end sections 11 b, and wherein the manifolds 10a, 10b comprise slots 13 receiving the tube end sections 11b in a fluid-tight manner, **characterized in that** in the tube set 20, at least the first tube 11 comprises a bent tube section 11c between the tube end section 11 b and the intermediate tube section 11a, so that the intermediate tube sections 11a of the first and second tubes 11, 12 run substantially in a parallel and spaced manner to each other, while the tube end tube sections 11 b are stacked on each other within a single slot 13.

5

10

15

2. A heat exchanger according to any preceding claim, wherein the bent tube section 11c comprises two opposing turns.
3. A heat exchanger according to any preceding claim, wherein both the first tube 11 and the second tube 12 comprise bent tube sections 11c.
4. A heat exchanger according to any preceding claim, wherein the spaces between the tubes in a tube set 20 have equal height to the spaces between the tube sets 20.
5. A heat exchanger according to any preceding claim, wherein a flow disruptor 15 is arranged in a space between the first tube 11 and the second tube 12 in the tube set 20.
6. A heat exchanger according to any preceding claim, wherein a flow disruptor 15 is arranged in a space between the tube sets 20.
7. A heat exchanger according to any preceding claim, wherein a tube height h1 of flat tubes 11, 12 is between 2 mm and 3 mm, a flow disruptor height h2 is between 1,7mm and 2,5 mm, and a material height h3 between consecutive slots 13 is $(2*h2)-a$, a being between 0,4 and 0,8 mm.
8. A heat exchanger according to any of claims 1 to 6, wherein a third tube 16 is located between the first tube 11 and the second tube 12, so that the end sections 11 b of the tubes 11, 12, 16 are stacked on each other within a single slot 13.
9. A heat exchanger according to claim 8, a tube height h1 of flat tubes 11, 12, 16 is between 2 mm and 3 mm, a flow disruptor height h2 is between 1,7mm and 2,5 mm, and a material height h3 between consecutive slots 13 is $(3*h2)-a$, a being between 0,4 and 0,8 mm.

40

45

50

55

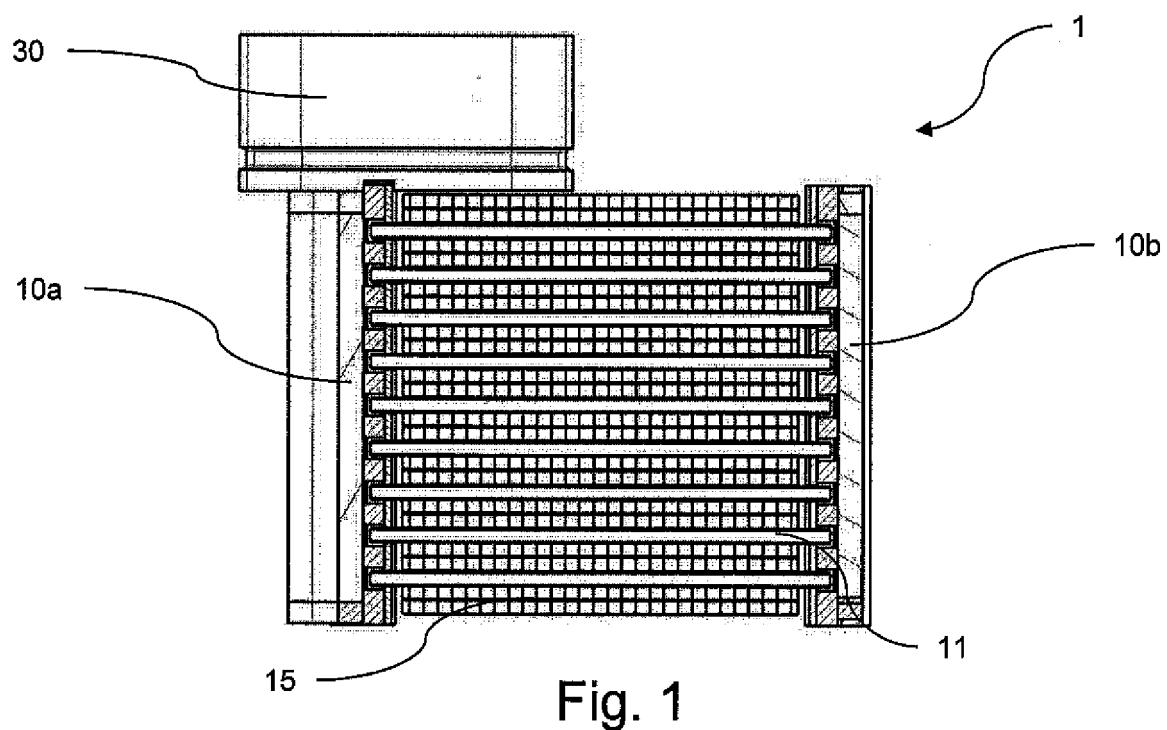


Fig. 1

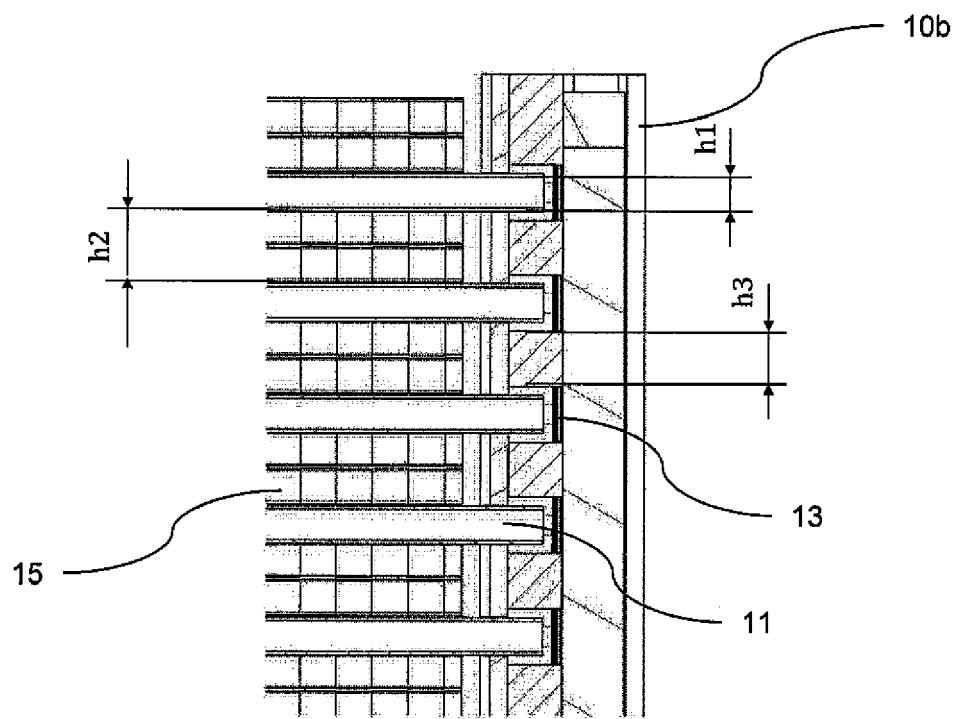


Fig. 2

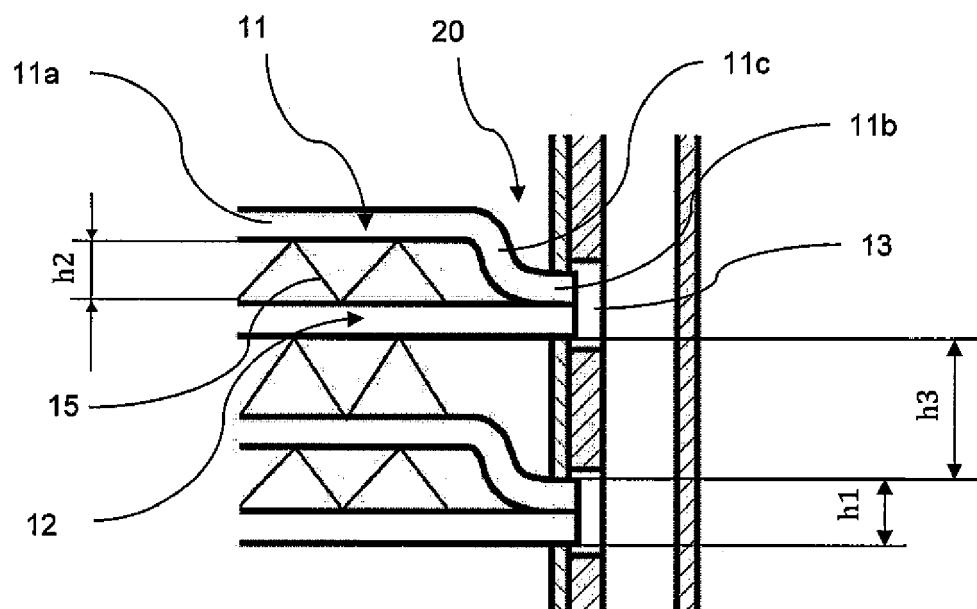


Fig. 3

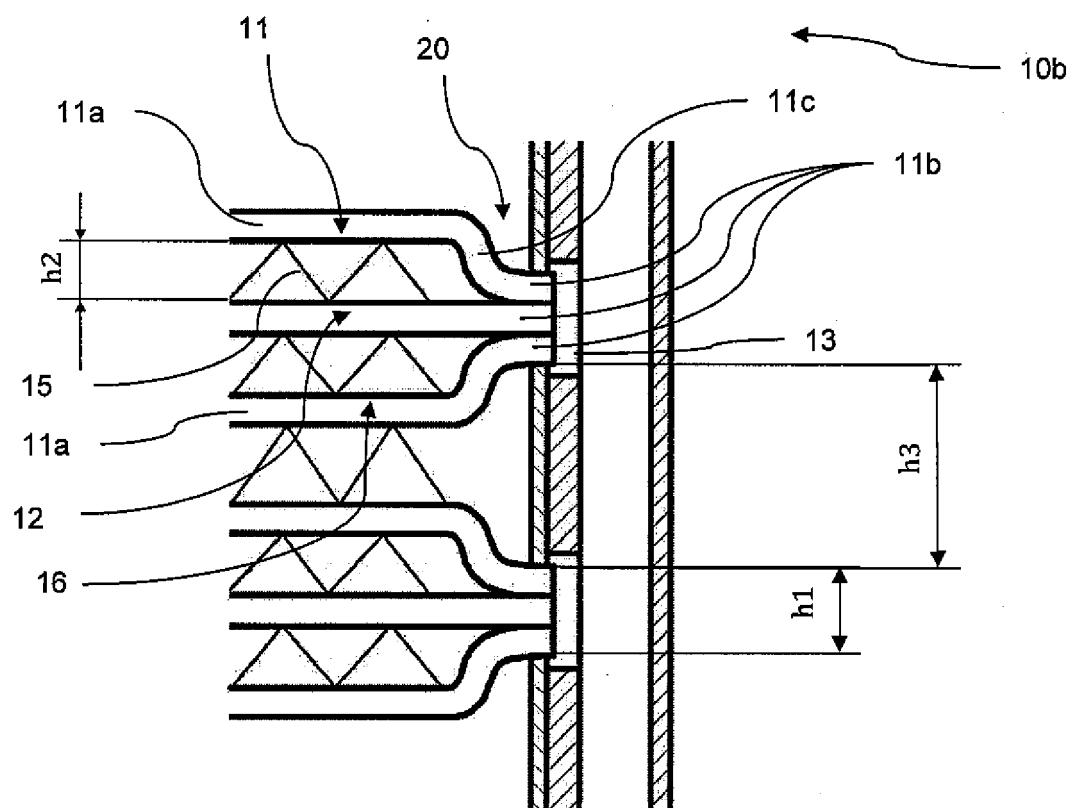


Fig. 4

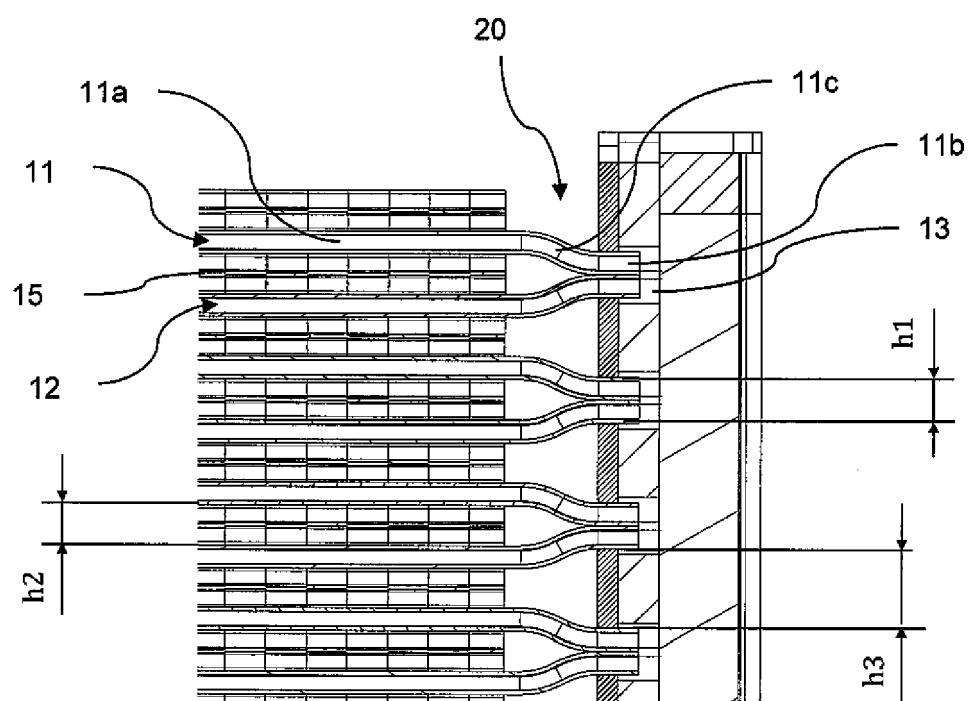


Fig. 5

EUROPEAN SEARCH REPORT

Application Number

EP 18 46 1523

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10 X	JP 2003 166791 A (MITSUBISHI HEAVY IND LTD) 13 June 2003 (2003-06-13) * figures 6,7 *	1-9	INV. F28F1/02 F28D1/053 F28D1/047 F28F9/02
15 X	EP 2 372 288 A1 (VALEO SYSTEMES THERMIQUES [FR]) 5 October 2011 (2011-10-05) * paragraph [0019] - paragraph [0028]; figure 1 *	1-9	
20 A	US 2008/105419 A1 (OH KWANGHEON [KR] ET AL) 8 May 2008 (2008-05-08) * paragraph [0028] - paragraph [0039]; figures 3-5 *	1-9	
25 A	EP 3 150 953 A1 (DANFOSS MICRO CHANNEL HEAT EXCHANGER (JIAXING) CO LTD [CN]) 5 April 2017 (2017-04-05) * paragraph [0030] - paragraph [0032]; figure 7 *	1-9	
30			TECHNICAL FIELDS SEARCHED (IPC)
			F28F F28D
35			
40			
45			
50 1	The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 30 August 2018	Examiner Jessen, Flemming
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 18 46 1523

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-08-2018

10	Patent document cited in search report	Publication date	Patent family member(s)		Publication date
	JP 2003166791 A	13-06-2003	NONE		
15	EP 2372288 A1	05-10-2011	EP 2372288 A1	05-10-2011	
			ES 2400086 T3	05-04-2013	
			FR 2958384 A1	07-10-2011	
			SI 2372288 T1	30-04-2013	
20	US 2008105419 A1	08-05-2008	NONE		
25	EP 3150953 A1	05-04-2017	CN 103983126 A	13-08-2014	
			EP 3150953 A1	05-04-2017	
			JP 2017519961 A	20-07-2017	
			KR 20170012878 A	03-02-2017	
			US 2017138675 A1	18-05-2017	
			WO 2015180661 A1	03-12-2015	
30					
35					
40					
45					
50					
55					

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82