TECHNICAL FIELD
Cross-reference to Related Applications
[0001] This application claims the benefit of Korean Patent Application No.
2017-0096435, filed on July 28, 2017, in the Korean Intellectual Property Office, the disclosure of which is incorporated
herein in its entirety by reference.
Technical Field
[0002] The present invention relates to a positive electrode for a secondary battery, and
a lithium secondary battery including the same.
BACKGROUND ART
[0003] Demand for secondary batteries as an energy source has been significantly increased
as technology development and demand with respect to mobile devices have increased,
and, among these secondary batteries, lithium secondary batteries having high energy
density, high operating potential, long cycle life, and low self-discharging rate
have been commercialized and widely used.
[0004] Recently, there is an increasing demand for high-capacity, high energy density, and
low-cost lithium secondary batteries as the lithium secondary batteries have been
used as a power source of a medium and large-sized device such as an electric vehicle,
and, accordingly, studies for using low-cost nickel (Ni), manganese (Mn), or iron
(Fe) in replacement of expensive cobalt (Co) have been actively carried out.
[0005] One of major research projects of the lithium secondary battery is to improve stability
of the battery using a high-capacity and high-output electrode active material while
realizing the same.
[0006] Currently, lithium secondary batteries are designed for use in a specific voltage
range (typically, 4.4 V or less) to ensure durability and stability. However, a cell
potential may unintentionally rise above the range, wherein the sudden rise in the
cell potential causes delithiation of a positive electrode material to generate a
large amount of tetravalent Co and Ni ions, a side reaction, such as generation of
gas or oxidation of an electrolyte solution, accordingly occurs, and this results
in degrading the performance of the cell.
[0007] Also, if the overcharged state exceeding the allowable current or voltage is continued,
it may cause serious problems in stability, for example, the cell may explode or ignite.
Particularly, a lithium secondary battery used in a medium and large-sized battery
pack, as a power source of electric vehicles and hybrid vehicles, is required to have
a long lifetime, and, at the same time, it is more important to secure the stability
because of the characteristics that a plurality of battery cells are densely packed.
[0008] With respect to a conventional secondary battery, a method of venting high-pressure
internal gas at regular intervals or forming a passage through which gas may be discharged
has been adopted to prevent a swelling phenomenon of the battery due to high temperature
and high pressure in the battery or the resulting explosion of the battery.
[0009] However, this method is merely to check the state of the battery periodically, and
the stability of the battery may not be sufficiently secured.
[0010] Therefore, there is a need to develop a battery which escapes from the risk of ignition
or explosion due to the generation of gas when the battery is overcharged and is improved
in stability.
DISCLOSURE OF THE INVENTION
TECHNICAL PROBLEM
[0011] An aspect of the present invention provides a positive electrode for a lithium secondary
battery which may secure stability of the battery by interrupting a charge current
during overcharge in order to prevent ignition or explosion during the overcharge.
[0012] Another aspect of the present invention provides a lithium secondary battery including
the positive electrode for a lithium secondary battery.
TECHNICAL SOLUTION
[0013] According to an aspect of the present invention, there is provided a positive electrode
for a secondary battery including a positive electrode active material layer formed
on a positive electrode collector,
wherein the positive electrode active material layer has a double-layer structure
which includes a first positive electrode active material layer formed on the positive
electrode collector and a second positive electrode active material layer formed on
the first positive electrode active material layer,
the first positive electrode active material layer includes a first positive electrode
active material, a conductive agent, and a gas generating agent generating gas during
overcharge, and
the second positive electrode active material layer includes a second positive electrode
active material.
[0014] According to another aspect of the present invention, there is provided a lithium
secondary battery including the positive electrode for a lithium secondary battery,
a negative electrode, and a separator disposed between the positive electrode and
the negative electrode.
ADVANTAGEOUS EFFECTS
[0015] Since a positive electrode according to the present invention includes a gas generating
agent in a first positive electrode active material layer of a double-layer structured
positive electrode active material layer, gas is generated by the gas generating agent
included in the first positive electrode active material layer at an overcharge voltage,
and a charge current is accordingly interrupted to terminate overcharge. Thus, stability
of a battery may be improved.
[0016] With respect to a conventional positive electrode composed of a single-layered positive
electrode active material layer, there was a limitation in that the application of
a high-capacity positive electrode active material with relatively low stability was
limited, but, in the present invention, since stability problems do not occur even
if the high-capacity positive electrode active material is applied to an upper positive
electrode active material layer, a secondary battery having energy density higher
than a conventional battery may be prepared.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The following drawings attached to the specification illustrate preferred examples
of the present invention by example, and serve to enable technical concepts of the
present invention to be further understood together with detailed description of the
invention given below, and therefore the present invention should not be interpreted
only with matters in such drawings.
[0018] FIG. 1 is a graph illustrating an overcharge test of lithium secondary batteries
prepared in Examples 1 and 2 and Comparative Examples 1 to 3 of the present invention.
MODE FOR CARRYING OUT THE INVENTION
[0019] Hereinafter, the present invention will be described in more detail.
[0020] It will be understood that words or terms used in the specification and claims shall
not be interpreted as the meaning defined in commonly used dictionaries. It will be
further understood that the words or terms should be interpreted as having a meaning
that is consistent with their meaning in the context of the relevant art and the technical
idea of the invention, based on the principle that an inventor may properly define
the meaning of the words or terms to best explain the invention.
[0021] A positive electrode for a secondary battery according to an embodiment of the present
invention is:
a positive electrode including a positive electrode active material layer formed on
a positive electrode collector, wherein the positive electrode active material layer
has a double-layer structure which includes a first positive electrode active material
layer formed on the positive electrode collector and a second positive electrode active
material layer formed on the first positive electrode active material layer, the first
positive electrode active material layer includes a first positive electrode active
material, a conductive agent, and a gas generating agent generating gas during overcharge,
and the second positive electrode active material layer includes a second positive
electrode active material.
[0022] Hereinafter, the positive electrode for a secondary battery according to the present
invention will be described in more detail.
[0023] First, the positive electrode includes a positive electrode active material layer
formed on a positive electrode collector.
[0024] The positive electrode collector is not particularly limited as long as it has conductivity
without causing adverse chemical changes in the battery, and, for example, stainless
steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel that
is surface-treated with one of carbon, nickel, titanium, silver, or the like may be
used. Also, the positive electrode collector may typically have a thickness of 3 µm
to 500 µm, and microscopic irregularities may be formed on the surface of the collector
to improve the adhesion of the positive electrode active material. The positive electrode
collector, for example, may be used in various shapes such as that of a film, a sheet,
a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
[0025] The positive electrode active material layer according to the present invention has
a double-layer structure which includes a first positive electrode active material
layer formed on the positive electrode collector and a second positive electrode active
material layer formed on the first positive electrode active material layer.
[0026] Since the double-layer structured positive electrode active material layer is used,
application of a high-capacity positive electrode active material, which has not been
applied to a single-layer structured positive electrode active material layer due
to stability problems, is possible, and, accordingly, energy density of a secondary
battery may be increased.
[0027] For example, in a case in which a single-layer structured positive electrode active
material layer is used, since continuous charge may occur even during overcharge,
swelling, ignition, or explosion may occur. Also, in a case in which stability is
improved by adding a gas generating agent to the single-layer structured positive
electrode active material layer, a large amount of the gas generating agent is required
and, in this case, the energy density of the battery is reduced, but, in the present
invention, since gas is generated at an overcharge voltage by adding the gas generating
agent to a lower layer of the double-layer structured positive electrode active material
layer, overcharge is terminated by interrupting a charge current, and thus, stability
of the battery may be improved while minimizing the reduction of the energy density.
[0028] The first positive electrode active material layer may include a first positive electrode
active material, a conductive agent, and a gas generating agent generating gas during
overcharge.
[0029] The first positive electrode active material layer may include a first positive electrode
active material having a structurally stable olivine structure. Specifically, the
first positive electrode active material layer may include an olivine-structured first
positive electrode active material represented by Formula 1 below.
[Formula 1] Li
1+a1Fe
1-x1M
x1(PO
4-y1)X
y1
In Formula 1,
M is at least one element selected from the group consisting of aluminum (Al), magnesium
(Mg), nickel (Ni), cobalt (Co), manganese (Mn), titanium (Ti), gallium (Ga), copper
(Cu), vanadium (V), niobium (Nb), zirconium (Zr), cerium (Ce), indium (In), zinc (Zn),
and yttrium (Y), X is at least one element selected from the group consisting of fluorine
(F), sulfur (S), and nitrogen (N), -0.5≤a1≤0.5, 0≤x1≤0.5, and 0≤y1≤0.3.
[0030] The first positive electrode active material may be included in an amount of 8.9
wt% to 88.9 wt%, for example, 30 wt% to 70 wt% based on a total weight of the first
positive electrode active material layer.
[0031] The gas generating agent generating gas during overcharge, which is included in the
first positive electrode active material layer according to the present invention,
may include at least one selected from the group consisting of lithium carbonate and
lithium oxalate.
[0032] For example, the overcharge voltage may be 4.5 volt or more, preferably 4.8 V or
more, and more preferably 5 V or more. In a case in which the above-described gas
generating agent is included, gas is generated while the gas generating agent is decomposed
at 4.5 V or more. For example, with respect to Li
2CO
3, gas may be generated by the following reactions.
2Li
2CO
3 → 2Li
2O + CO + CO
2 + 1/2 O
2
7Li
2CO
3 → Li
2C
2 + 6Li
2O + 5CO
2 + 5/2O
2
[0033] A peeling-off phenomenon at an interface between the first positive electrode active
material layer and the positive electrode collector occurs due to the gas generated
from the gas generating agent. Also, since swelling of the first positive electrode
active material layer occurs due to the generated gas and a volume of the gas generating
agent is simultaneously reduced, electrical resistance of the first positive electrode
active material layer is significantly increased. Accordingly, the charge current
is interrupted and an overcharge end voltage is reached.
[0034] Particularly, in a case in which the olivine-structured first positive electrode
active material is used with the gas generating agent, a volumetric shrinkage of the
first positive electrode active material occurs due to delithiation above the overcharge
voltage. Specifically, a volume of the olivine-structured first positive electrode
active material shrinks while lithium in the first positive electrode active material
is deintercalated above the overcharge voltage, and, as a result, the volume changes
rapidly at a high voltage of 4.5 V or more in comparison to other active materials
or materials. Thus, time for reaching the overcharge end voltage may be further accelerated
due to a swelling effect caused by the gas generating agent during the overcharge,
changes in volume of the first positive electrode active material layer caused by
the olivine-structured first positive electrode active material, and the peeling-off
phenomenon at the interface due to the above effect.
[0035] The gas generating agent may be included in an amount of 10 wt% to 90 wt%, for example,
30 wt% to 60 wt% based on the total weight of the first positive electrode active
material layer. For example, in a case in which the gas generating agent is included
in an amount of less than 10 wt% based on the total weight of the first positive electrode
active material layer, since the peeling-off phenomenon of the first positive electrode
active material layer due to the generation of gas during the overcharge may be delayed,
the stability may be deteriorated, and, in a case in which the gas generating agent
is included in an amount of greater than 90 wt%, since the amount of the first positive
electrode active material is relatively decreased, the energy density is reduced and
resistance of the first positive electrode active material may be increased during
the overcharge or a synergistic effect of charge termination due to the volume change
may be reduced.
[0036] Any conductive agent may be used as the conductive agent included in the first positive
electrode active material layer without particular limitation as long as it has electron
conductivity without causing adverse chemical changes. Examples of the conductive
agent may be graphite such as natural graphite or artificial graphite; carbon based
materials such as carbon black, acetylene black, Ketjen black, channel black, furnace
black, lamp black, thermal black, and carbon fibers; powder or fibers of metal such
as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide whiskers
and potassium titanate whiskers; conductive metal oxides such as titanium oxide; or
conductive polymers such as polyphenylene derivatives, and at least one thereof may
be included.
[0037] The conductive agent may be included in the first positive electrode active material
layer, and, for example, the conductive agent may be coated on a surface of the first
positive electrode active material. Electrons may move between the positive electrode
collector and the second positive electrode active material layer by the conductive
agent included in the first positive electrode active material layer.
[0038] The conductive agent may be included in an amount of 0.1 wt% to 60 wt%, preferably
1 wt% to 40 wt%, and more preferably 1 wt% to 10 wt% based on the total weight of
the first positive electrode active material layer. In a case in which the conductive
agent is included in the first positive electrode active material layer in an amount
of 0.1 wt% to 60 wt%, an effect of reducing resistance of the secondary battery including
the same may be achieved.
[0039] The first positive electrode active material layer may further selectively include
a binder, if necessary.
[0040] The binder improves the adhesion between first positive electrode active material
particles and the adhesion between the first positive electrode active material and
the current collector. Specific examples of the binder may be polyvinylidene fluoride
(PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl
alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose,
regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene,
an ethylene-propylene-diene polymer (EPDM), a sulfonated EPDM, a styrene-butadiene
rubber (SBR), a fluorine rubber, or various copolymers thereof, and at least one thereof
may be included. The binder may be included in an amount of 1 wt% to 30 wt% based
on the total weight of the first positive electrode active material layer.
[0041] The first positive electrode active material layer may have a thickness of 30 µm
or less, preferably 0.1 µm to 20 µm, and more preferably 1 µm to 10 µm. For example,
in a case in which the thickness of the first positive electrode active material layer
is greater than 30 µm, since the amount of the gas generating agent included relative
to the total amount of the positive electrode active material or capacity is also
increased, a volume of the electrode is increased, and thus, the energy density of
the battery including the same may be reduced.
[0042] Also, the second positive electrode active material layer may include a second positive
electrode active material.
[0043] The second positive electrode active material layer may include a layer-structured
second positive electrode active material with high-capacity characteristics represented
by Formula 2 below.
[Formula 2] Li
1+x(Ni
aCOo
bM'
c)
1-xO
2
In Formula 2, M' is at least one element selected from the group consisting of Mn,
Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn, and Y, 0<a<1, 0<b<1, 0<c<1, and -0.1≤x≤0.2,
preferably 0.3<a<1, 0.1≤b<1, and 0.1≤c<1, and more preferably 0.5≤a<1, 0.1≤b≤0.3,
and 0.1≤c≤0.3.
[0044] For example, the second positive electrode active material represented by Formula
2 may include at least one selected from the group consisting of LiNi
0.6Co
0.2Mn
0.2O
2, LiNi
0.5Co
0.2Mn
0.3O
2, LiNi
0.5Co
0.3Mn
0.2O
2, and LiNi
0.8Co
0.1Mn
0.1O
2, but the present invention is not limited thereto.
[0045] The second positive electrode active material may be included in an amount of 40
wt% to 98.9 wt%, for example, 60 wt% to 98.9 wt% based on a total weight of the second
positive electrode active material layer.
[0046] A positive electrode with high-capacity characteristics may be prepared by using
the layer-structured positive electrode active material with high-capacity characteristics
as the second positive electrode active material layer.
[0047] For example, in a case in which a layer-structured positive electrode active material
layer with high-capacity characteristics is used alone, there may be a possibility
of ignition or explosion due to its stability problem, and, in contrast, in a case
in which an olivine-structured positive electrode active material layer is used alone,
the energy density may be reduced.
[0048] However, both stability and high-capacity effects may be achieved by using the olivine-structured
positive electrode active material with excellent stability and the layer-structured
positive electrode active material with high-capacity characteristics in appropriate
amounts as in the present invention.
[0049] The second positive electrode active material layer may further selectively include
a conductive agent and a binder, if necessary.
[0050] Any conductive agent may be used as the conductive agent included in the second positive
electrode active material layer without particular limitation as long as it has electron
conductivity without causing adverse chemical changes. Examples of the conductive
agent may be graphite such as natural graphite or artificial graphite; carbon based
materials such as carbon black, acetylene black, Ketjen black, channel black, furnace
black, lamp black, thermal black, and carbon fibers; powder or fibers of metal such
as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide whiskers
and potassium titanate whiskers; conductive metal oxides such as titanium oxide; or
conductive polymers such as polyphenylene derivatives, and at least one thereof may
be included.
[0051] The conductive agent may be included in an amount of 0.1 wt% to 30 wt%, preferably
1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt% based on the total weight of
the second positive electrode active material layer. In a case in which the conductive
agent is included in the second positive electrode active material layer in an amount
of 0.1 wt% to 30 wt%, an effect of reducing resistance of the secondary battery including
the same may be achieved.
[0052] The binder improves the adhesion between second positive electrode active material
particles and the adhesion between the first positive electrode active material layer
and the second positive electrode active material layer. Specific examples of the
binder may be polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene
copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose
(CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone,
tetrafluoroethylene, polyethylene, polypropylene, an ethylene-propylene-diene polymer
(EPDM), a sulfonated EPDM, a styrene-butadiene rubber (SBR), a fluorine rubber, or
various copolymers thereof, and at least one thereof may be included. The binder may
be included in an amount of 1 wt% to 30 wt% based on the total weight of the second
positive electrode active material layer.
[0053] A thickness of the second positive electrode active material layer is not particularly
limited, and the second positive electrode active material layer may be formed by
changing the thickness according to capacity of the secondary battery to be prepared.
[0054] Also, according to the present invention, an electrochemical device including the
positive electrode may be prepared. The electrochemical device may specifically be
a battery or a capacitor, and, for example, may be a lithium secondary battery.
[0055] The lithium secondary battery specifically includes a positive electrode, a negative
electrode disposed to face the positive electrode, a separator disposed between the
positive electrode and the negative electrode, and an electrolyte, wherein the positive
electrode is as described above. Also, the lithium secondary battery may further selectively
include a battery container accommodating an electrode assembly of the positive electrode,
the negative electrode, and the separator, and a sealing member sealing the battery
container.
[0056] In the lithium secondary battery, the negative electrode includes a negative electrode
collector and a negative electrode active material layer disposed on the negative
electrode collector.
[0057] The negative electrode collector is not particularly limited as long as it has high
conductivity without causing adverse chemical changes in the battery, and, for example,
copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless
steel that is surface-treated with one of carbon, nickel, titanium, silver, or the
like, and an aluminum-cadmium alloy may be used. Also, the negative electrode collector
may typically have a thickness of 3 µm to 500 µm, and, similar to the positive electrode
collector, microscopic irregularities may be formed on the surface of the collector
to improve the adhesion of a negative electrode active material. The negative electrode
collector, for example, may be used in various shapes such as that of a film, a sheet,
a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
[0058] The negative electrode active material layer selectively includes a binder and a
conductive agent in addition to the negative electrode active material.
[0059] A compound capable of reversibly intercalating and deintercalating lithium may be
used as the negative electrode active material. Specific examples of the negative
electrode active material may be a carbonaceous material such as artificial graphite,
natural graphite, graphitized carbon fibers, and amorphous carbon; a metallic compound
alloyable with lithium such as silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc
(Zn), bismuth (Bi), indium (In), magnesium (Mg), gallium (Ga), cadmium (Cd), a Si
alloy, a Sn alloy, or an Al alloy; a metal oxide which may be doped and undoped with
lithium such as SiO
β(0 < β < 2), SnO
2, vanadium oxide, and lithium vanadium oxide; or a composite including the metallic
compound and the carbonaceous material such as a SiC composite or a Sn-C composite,
and any one thereof or a mixture of two or more thereof may be used. Also, a metallic
lithium thin film may be used as the negative electrode active material. Furthermore,
both low crystalline carbon and high crystalline carbon may be used as the carbon
material. Typical examples of the low crystalline carbon may be soft carbon and hard
carbon, and typical examples of the high crystalline carbon may be irregular, planar,
flaky, spherical, or fibrous natural graphite or artificial graphite, Kish graphite,
pyrolytic carbon, mesophase pitch-based carbon fibers, meso-carbon microbeads, mesophase
pitches, and high-temperature sintered carbon such as petroleum or coal tar pitch
derived cokes.
[0060] Also, the binder and the conductive agent may be the same as those previously described
in the positive electrode.
[0061] The negative electrode active material layer may be prepared by coating a composition
for forming a negative electrode, which is prepared by dissolving or dispersing selectively
the binder and the conductive agent as well as the negative electrode active material
in a solvent, on the negative electrode collector and drying the coated negative electrode
collector, or may be prepared by casting the composition for forming a negative electrode
on a separate support and then laminating a film separated from the support on the
negative electrode collector.
[0062] In the lithium secondary battery, the separator separates the negative electrode
and the positive electrode and provides a movement path of lithium ions, wherein any
separator may be used as the separator without particular limitation as long as it
is typically used in a lithium secondary battery, and particularly, a separator having
high moisture-retention ability for an electrolyte as well as low resistance to the
transfer of electrolyte ions may be used. Specifically, a porous polymer film, for
example, a porous polymer film prepared from a polyolefin-based polymer, such as an
ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene
copolymer, and an ethylene/methacrylate copolymer, or a laminated structure having
two or more layers thereof may be used. Also, a typical porous nonwoven fabric, for
example, a nonwoven fabric formed of high melting point glass fibers or polyethylene
terephthalate fibers may be used. Furthermore, a coated separator including a ceramic
component or a polymer material may be used to secure heat resistance or mechanical
strength, and the separator having a single layer or multilayer structure may be selectively
used.
[0063] Also, the electrolyte used in the present invention may include an organic liquid
electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type
polymer electrolyte, a solid inorganic electrolyte, or a molten-type inorganic electrolyte
which may be used in the preparation of the lithium secondary battery, but the present
invention is not limited thereto.
[0064] Specifically, the electrolyte may include an organic solvent and a lithium salt.
[0065] Any organic solvent may be used as the organic solvent without particular limitation
so long as it may function as a medium through which ions involved in an electrochemical
reaction of the battery may move. Specifically, an ester-based solvent such as methyl
acetate, ethyl acetate, γ-butyrolactone, and ε-caprolactone; an ether-based solvent
such as dibutyl ether or tetrahydrofuran; a ketone-based solvent such as cyclohexanone;
an aromatic hydrocarbon-based solvent such as benzene and fluorobenzene; or a carbonate-based
solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methylethyl carbonate
(MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate
(PC); an alcohol-based solvent such as ethyl alcohol and isopropyl alcohol; nitriles
such as R-CN (where R is a linear, branched, or cyclic C2-C20 hydrocarbon group and
may include a double-bond aromatic ring or ether bond); amides such as dimethylformamide;
dioxolanes such as 1,3-dioxolane; or sulfolanes may be used as the organic solvent.
Among these solvents, the carbonate-based solvent may be preferably used, and a mixture
of a cyclic carbonate (e.g., ethylene carbonate or propylene carbonate) having high
ionic conductivity and high dielectric constant, which may increase charge/discharge
performance of the battery, and a low-viscosity linear carbonate-based compound (e.g.,
ethylmethyl carbonate, dimethyl carbonate, or diethyl carbonate) may be more preferably
used. In this case, the performance of the electrolyte solution may be excellent when
the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about
1:1 to about 1:9.
[0066] The lithium salt may be used without particular limitation as long as it is a compound
capable of providing lithium ions used in the lithium secondary battery. Specifically,
LiPF
6, LiClO
4, LiAsF
6, LiBF
4, LiSbF
6, LiAlO
4, LiAlCl
4, LiCF
3SO
3, LiC
4F
9SO
3, LiN(C
2F
5SO
3)
2, LiN(C
2F
5SO
2)
2, LiN(CF
3SO
2)
2, LiCl, LiI, or LiB(C
2O
4)
2 may be used as the lithium salt. The lithium salt may be used in a concentration
range of 0.1 M to 2.0 M. In a case in which the concentration of the lithium salt
is included within the above range, since the electrolyte may have appropriate conductivity
and viscosity, excellent performance of the electrolyte may be obtained and lithium
ions may effectively move.
[0067] In order to improve lifetime characteristics of the battery, suppress the reduction
in battery capacity, and improve discharge capacity of the battery, at least one additive,
for example, a halo-alkylene carbonate-based compound such as difluoroethylene carbonate,
pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme,
hexaphosphoric triamide, a nitrobenzene derivative, sulfur, a quinone imine dye, N-substituted
oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium
salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, may be further added to
the electrolyte in addition to the electrolyte components. In this case, the additive
may be included in an amount of 0.1 wt% to 5 wt% based on a total weight of the electrolyte.
[0068] As described above, since the lithium secondary battery including the positive electrode
active material according to the present invention stably exhibits excellent discharge
capacity, output characteristics, and capacity retention, the lithium secondary battery
is suitable for portable devices, such as mobile phones, notebook computers, and digital
cameras, and electric cars such as hybrid electric vehicles (HEVs).
[0069] Thus, according to another embodiment of the present invention, a battery module
including the lithium secondary battery as a unit cell and a battery pack including
the battery module are provided.
[0070] The battery module or the battery pack may be used as a power source of at least
one medium and large sized device of a power tool; electric cars including an electric
vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV);
or a power storage system.
[0071] A shape of the lithium secondary battery of the present invention is not particularly
limited, but a cylindrical type using a can, a prismatic type, a pouch type, or a
coin type may be used.
[0072] The lithium secondary battery according to the present invention may not only be
used in a battery cell that is used as a power source of a small device, but may also
be used as a unit cell in a medium and large sized battery module including a plurality
of battery cells.
[0073] Hereinafter, the present invention will be described in detail, according to specific
examples. The invention may, however, be embodied in many different forms and should
not be construed as being limited to the embodiments set forth herein. Rather, these
example embodiments are provided so that this description will be thorough and complete,
and will fully convey the scope of the present invention to those skilled in the art.
Examples
Example 1
[0074] 50 parts by weight of a LiFePO
4 positive electrode active material, 3 parts by weight of carbon black as a conductive
agent, 3 parts by weight of polyvinylidene fluoride (PVdF) as a binder, and 44 parts
by weight of Li
2CO
3, as a gas generating agent, were mixed in a N-methylpyrrolidone (NMP) solvent to
prepare a first positive electrode active material slurry.
[0075] Separately, 94 parts by weight of a LiNi
0.6Mn
0.2Co
0.2O
2 positive electrode active material, 3 parts by weight of carbon black as a conductive
agent, and 3 parts by weight of PVdF as a binder, were mixed in a NMP solvent to prepare
a second positive electrode active material slurry.
[0076] A 20 µm thick Al foil was coated with the above-prepared first positive electrode
active material slurry and then dried to form a 10 µm thick first positive electrode
active material layer. Subsequently, the second positive electrode active material
slurry was coated on the first positive electrode active material layer, dried, and
then roll-pressed to prepare a positive electrode in which a second positive electrode
active material layer was formed on the first positive electrode active material layer.
[0077] Artificial graphite as a negative electrode active material, a styrene-butadiene
rubber (SBR) as a binder, and carbon black as a conductive agent, were mixed in a
ratio of 92:4:4 (wt%) and added to distilled water as a solvent, to prepare a negative
electrode slurry. A 20 µm thick negative electrode collector (Cu) was coated with
the negative electrode slurry, dried, and then roll-pressed to prepare a negative
electrode.
[0078] After the above-prepared positive electrode and negative electrode were stacked with
a polyethylene separator to prepare an electrode assembly, the electrode assembly
was put in a battery case, and an electrolyte solution, in which 1 M LiPF
6 was dissolved in a solvent in which ethylene carbonate, ethylmethyl carbonate, and
diethyl carbonate were mixed in a ratio of 1:1:1, was injected thereinto to prepare
a lithium secondary battery.
Example 2
[0079] A positive electrode and a lithium secondary battery including the same were prepared
in the same manner as in Example 1 except that 20 parts by weight of a LiFePO
4 positive electrode active material, 3 parts by weight of carbon black as a conductive
agent, 3 parts by weight of polyvinylidene fluoride (PVdF) as a binder, and 74 parts
by weight of Li
2CO
3 as a gas generating agent, were used to prepare a first positive electrode active
material slurry.
Comparative Example 1
[0080] A lithium secondary battery was prepared in the same manner as in Example 1 except
that a positive electrode having a single positive electrode active material layer,
which was prepared by coating an Al foil with the second positive electrode active
material slurry prepared in Example 1, drying, and then roll-pressing the coated Al
foil, was used.
Comparative Example 2
[0081] 86 parts by weight of a LiNi
0.6Mn
0.2Co
0.2O
2 positive electrode active material, 3 parts by weight of carbon black as a conductive
agent, 3 parts by weight of PVdF as a binder, and 8 parts by weight of Li
2CO
3, as a gas generating agent, were mixed in a NMP solvent to prepare a positive electrode
active material slurry.
[0082] A lithium secondary battery was prepared in the same manner as in Example 1 except
that a positive electrode having a single positive electrode active material layer,
which was prepared by coating an Al foil with the above-prepared positive electrode
active material slurry, drying, and then roll-pressing the coated Al foil, was used.
In this case, the amount of the gas generating agent included in the entire positive
electrode was the same as the amount of the gas generating agent included in the entire
positive electrode of Example 2.
Comparative Example 3
[0083] 94 parts by weight of Li
2CO
3 as a gas generating agent, 3 parts by weight of carbon black as a conductive agent,
and 3 parts by weight of PVdF as a binder, were mixed in a NMP solvent to prepare
a first slurry.
[0084] Separately, 94 parts by weight of a LiNi
0.8Mn
0.1Co
0.1O
2 positive electrode active material, 3 parts by weight of carbon black as a conductive
agent, and 3 parts by weight of PVdF as a binder, were mixed in a NMP solvent to prepare
a second slurry.
[0085] A positive electrode and a lithium secondary battery including the same were prepared
in the same manner as in Example 1 except that a first positive electrode active material
layer and a second positive electrode active material layer were formed by respectively
using the above-prepared first slurry and second slurry.
Experimental Example 1: Overcharge Test
[0086] An overcharge test was performed by using the secondary batteries prepared in Examples
1 and 2 and Comparative Examples 1 to 3. Specifically, after each of the secondary
batteries was charged at 0.3 C to a full charge voltage (4.25 V) and cut-off charged
at 0.05 C, each secondary battery was subjected to a rest period of 3 hours to stabilize
the voltage. After the cell voltage was stabilized, each secondary battery was overcharged
at 1 C to a voltage of 6.4 V.
[0087] In this regard, FIG. 1 is a graph illustrating the overcharge test of the lithium
secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 3 of
the present invention.
[0088] With respect to the lithium secondary batteries of Examples 1 and 2, it may be confirmed
that, since overcharge occurs at 4.8 V or more, the voltage was rapidly increased,
and, accordingly, it may be considered that an overcharge end voltage was quickly
reached.
[0089] With respect to Comparative Example 1, since the NMC-based positive electrode active
material having a full charge voltage of 4.2 V to 4.3 V was included, the voltage
was temporarily increased during overcharge at 4.3 V or more, but, since the gas generating
agent was not included, there was no point where electrical resistance rapidly increased,
and thus, it was considered that an overcharge end voltage was not reached.
[0090] Also, with respect to Comparative Example 2 in which the gas generating agent was
added to the single-layer structured positive electrode active material layer, since
the gas generating agent was included, it was confirmed that the resistance was more
increased at a high voltage than Comparative Example 1. However, since an effect of
increasing the resistance of the single-layer structure of Comparative Example 2 was
smaller than those of the double-layer structures of Examples 1 and 2, a voltage rise
rate was found to be insignificant.
[0091] Since Examples 1 and 2 further included the LFP-based positive electrode active material,
which increased the resistance at a high voltage, in the first positive electrode
active material layer, the voltage rise rate may be further increased in comparison
to Comparative Example 3 which did not include a positive electrode active material
in the first positive electrode active material layer, and, accordingly, it was confirmed
that an overcharge end voltage was reached more quickly.