

(11) **EP 3 534 571 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **04.09.2019 Bulletin 2019/36**

(21) Application number: 16921924.3

(22) Date of filing: 15.11.2016

(51) Int Cl.: **H04L 12**/42 (2006.01)

(86) International application number: **PCT/CN2016/105966**

(87) International publication number: WO 2018/090210 (24.05.2018 Gazette 2018/21)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAMF

Designated Validation States:

MA MD

(71) Applicant: Huawei Technologies Co., Ltd. Longgang District Shenzhen, Guangdong 518129 (CN) (72) Inventors:

WANG, Bin
 Shenzhen
 Guangdong 518129 (CN)

 MENG, Wanhong Shenzhen Guangdong 518129 (CN)

(74) Representative: Thun, Clemens
Mitscherlich PartmbB
Patent- und Rechtsanwälte
Sonnenstraße 33
80331 München (DE)

(54) SERVICE PACKET TRANSMISSION METHOD, AND NODE APPARATUS

(57) The present invention discloses a service packet transmission method and a node device, and relates to the field of communications technologies, to resolve a problem, existing in the prior art, of bandwidth waste caused due to that an RPL link is in an idle state. The service packet transmission method provided in the present invention is applied to an ERPS network. At least one ring protection instance is configured for each ERPS ring on the network. Each ring protection instances. Each ring protection sub-instances. Each ring protection sub-instance respectively corresponds to

one RPL port. A status of the RPL port is a blocked state. The method includes: when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet; determining, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path; and forwarding the service packet based on the forwarding path. The present invention is applied to a process of packet transmission on the ERPS network.

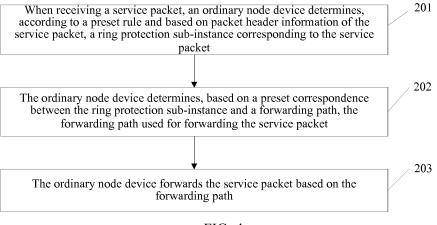


FIG. 4

Description

TECHNICAL FIELD

[0001] The present invention relates to the field of communications technologies, and in particular, to a service packet transmission method and a node device.

1

BACKGROUND

[0002] The ERPS (Ethernet Ring Protection Switching, Ethernet Ring Protection Switching) protocol is a G.8032 protocol defined by the ITU-T (International Telecommunication Union Telecommunication Standardization Sector, International Telecommunication Union Telecommunication Standardization Sector), and is a link layer protocol specially used for Ethernet ring protection. When an Ethernet ring is complete, the ERPS protocol can prevent a broadcast storm caused by a data loop. When a link on the Ethernet ring is disconnected, the ERPS protocol can quickly enable a backup link, to restore a communication channel between nodes on the ring network. [0003] FIG. 1 is a schematic architectural diagram of an existing ERPS network. The ERPS network includes an ERPS ring that includes node devices A, B, C, and D. For ease of description, a link between A and B is referred to as P_{AB}, a link between B and C is referred to as P_{BC}, a link between C and D is referred to as P_{CD} , and a link between A and D is referred to as P_{AD}. The node device D is a protection node. On the node device D, a port connected to the device C is a ring protection link (Ring Protection Link, RPL) port. PCD is an RPL link. When all links on a network are in an up (up) state, as shown in FIG. 1a in FIG. 1, the RPL port is in a blocked (BLOCKED) state. In this case, a protocol status of the ERPS protocol is an idle state, data of the device A and the device D is forwarded by using the link P_{AD} . When the link P_{AD} is disconnected, as shown in FIG. 1b in FIG. 1, in this case, the protocol status of the ERPS protocol is a protection (protection) state, a status of the RPL port is changed from a blocked state to a forwarding state, data between the device A and the device D is forwarded by using the links P_{CD} , P_{BC} , and P_{AB} in turn.

[0004] The inventor finds through study that, as stipulated by the present protocol, normally, the protocol is in the idle (Idle) state, and the backup link cannot be used for data transmission. In this case, all data streams are forwarded by using only one link when the link is normal, and other links are in the idle state, causing bandwidth waste.

SUMMARY

[0005] Embodiments of the present invention provide a service packet transmission method and a node device, to resolve a problem, existing in the prior art, of bandwidth waste caused due to that an RPL link is in an idle state. [0006] To achieve the foregoing objective, the follow-

ing technical solutions are used in the embodiments of the present invention:

According to a first aspect, an embodiment of the present invention provides an Ethernet Ring Protection Switching ERPS network, where at least one ring protection instance is configured for each ERPS ring on the ERPS network, each ring protection instance includes at least two ring protection sub-instances, each ring protection sub-instance respectively corresponds to one ring protection link RPL port, and a status of the RPL port is a blocked state.

[0007] It can be learned that, on the ERPS network provided in this embodiment of the present invention, an existing single ring protection instance is subdivided into a plurality of ring protection sub-instances, and a service packet transmitted by using the ring protection instance may be divided, so that corresponding service packets are transmitted by using different ring protection sub-instances. In this way, each ring protection sub-instance respectively corresponds to one RPL port, in other words, each ring protection sub-instance respectively corresponds to one RPL link. Therefore, normally, an RPL link of a ring protection sub-instance is a backup link for the ring protection sub-instance, but for another ring protection sub-instance, the RPL link is a link that can be used for normally performing service packet transmission. Therefore, link bandwidth on the ERPS network can be fully used.

[0008] According to a second aspect, an embodiment of the present invention further provides a service packet transmission method that is applied to the ERPS network in the first aspect. The method is performed by an ordinary node device that does not include an RPL port. The method includes: when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet; determining, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and forwarding the service packet based on the forwarding path.

[0009] The ordinary node device indicated in this embodiment of the present invention is a device that does not include the RPL port. On the ERPS network, there may be one or more ordinary node devices. The preset rule is a rule that is preconfigured in the ordinary node devices, and is used for providing guidance for a node device to determine, after receiving a service packet, based on packet header information of the service packet and according to the preset rule, a ring protection sub-instance corresponding to the service packet.

[0010] According to the service packet transmission method provided in this embodiment of the present invention, a single ring protection instance is divided into a plurality of ring protection sub-instances. Therefore, in this embodiment of the present invention, after receiving the service packet, the ordinary node device needs to

40

25

40

45

determine the ring protection sub-instance corresponding to the service packet, determine, based on the correspondence between the ring protection sub-instance and the forwarding path, the forwarding path corresponding to the ring protection sub-instance, and forward the service packet based on the forwarding path. In this way, for a ring protection sub-instance, an RPL link corresponding to the ring protection sub-instance is a backup path, and when the ring protection sub-instance is normal, cannot be used for service packet transmission. For another ring protection sub-instance, the RPL link is a normal link, and can be used for the service packet transmission. Therefore, according to the service packet transmission method provided in this embodiment of the present invention, network bandwidth of the ERPS network can be fully used.

3

[0011] In a first implementation of this embodiment, the preset rule includes a correspondence between a hash value and the ring protection sub-instance. The hash value is calculated based on the packet header information of the service packet. When the hash value in the preset rule is obtained by performing hash calculation based on a VLAN identifier and a MAC address, correspondingly, a specific implementation of the determining, by an ordinary node device, a ring protection sub-instance corresponding to the service packet includes: when receiving the service packet, calculating, by the ordinary node device based on preset bytes of a virtual local area network (VLAN) identifier and a MAC address that are carried in the packet header information, a hash value corresponding to the service packet; and determining, based on the hash value and according to the preset rule, the ring protection sub-instance corresponding to the service packet. The MAC address is a source MAC address or a destination MAC address. The preset bytes may be all bytes or some bytes.

[0012] In a second implementation of this embodiment, the preset rule includes a correspondence between a value of a preset field of the service packet and the ring protection sub-instance. In this implementation, a correspondence between the preset field and the ring protection sub-instance is manually specified and saved as the preset rule. When the preset rule includes a correspondence between a VLAN identifier field and the ring protection sub-instance and a correspondence between a priority field and the ring protection sub-instance, correspondingly, the determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection subinstance corresponding to the service packet specifically includes: obtaining, by the ordinary node device, values of the priority field and the VLAN identifier field in the packet header information when receiving the service packet; and determining, based on the values of the priority field and the VLAN identifier field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0013] It should be noted that, the first implementation

and the second implementation of the preset rule may be applied to a process in which particular processing needs to be performed on a service packet. For example, when a service packet of a same type is transmitted in a ring protection instance, service packets of different priorities need to be forwarded by using different ring protection sub-instances. Alternatively, when a receiving end is a same destination MAC address, and relatively many service packets are sent to the receiving end, service packets for a same destination MAC address are forwarded by using different ring protection sub-instances, to scatter the service packets to different transmission

[0014] In a third implementation of this embodiment, the preset rule includes a correspondence between a service type and the ring protection sub-instance. In the implementation, different ring protection sub-instances are used for transmitting services of different types. Correspondingly, the determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection subinstance corresponding to the service packet specifically includes: obtaining, by the ordinary node device, a service type field in the packet header information of the service packet when receiving the service packet, where the service type field is used for indicating a service type of the service packet; and determining, based on the service type field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0015] The third implementation of the preset rule is mainly applied to a process in which when service packets of a plurality of types are transmitted in a ring protection instance, the types of the service packets need to be distinguished by using ring protection sub-instances. [0016] According to a third aspect, an embodiment of the present invention further provides a service packet transmission method. The method may also be applied to the ERPS network in the first aspect. The method is performed by a protection node device that includes at least one RPL port. The method includes: when receiving a service packet, determining, by a protection node device according to a preset rule and based on packet header information of the service packet, a ring protection subinstance corresponding to the service packet; determining, by the protection node device, whether an RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as a port used for receiving the service packet; and if the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, determining, by the protection node device based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet, and forwarding the service packet based on the forwarding path.

[0017] The protection node device discards the service

20

25

40

45

50

55

packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding and that is determined by the protection node device is the same as the port used for receiving the service packet.

[0018] According to the service packet transmission method provided in this embodiment of the present invention, compared with that an RPL port of a protection node blocks all service packets in the prior art, in this embodiment of the present invention, the protection node device does not block all service packets, but can forward the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, that is, blocks only the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet.

[0019] According to a fourth aspect, the present invention further provides a node device, to perform the steps in the method in the second aspect. A function of the node device may be implemented by using hardware, or may be implemented by hardware executing corresponding software. The hardware or the software includes one or more modules corresponding to the foregoing function. [0020] In a possible embodiment, a structure of the node device includes a processor, a memory, a transceiver, and a bus. The processor is configured to support the node device in performing a corresponding function in the foregoing method. The memory is configured to be coupled to the processor, and the memory stores a program instruction and data necessary to the node device. The transceiver is configured to send data to another device or receive data sent by another device. Optionally, the node device further includes a communications interface, and the communications interface is configured to support the node device in communicating with another device.

[0021] In another possible embodiment, the node device includes: a receiving unit, configured to receive a service packet; a processing unit, configured to: determine, according to a preset rule and based on packet header information of the service packet received by the receiving unit, a ring protection sub-instance corresponding to the service packet; and determine, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and a sending unit, configured to forward the service packet based on the forwarding path determined by the processing unit.

[0022] According to a fifth aspect, an embodiment of the present invention provides a node device, to perform the steps in the method in the third aspect. A function of the node device may be implemented by using hardware, or may be implemented by hardware executing corresponding software. The hardware or the software includes one or more modules corresponding to the fore-

going function.

[0023] In a possible embodiment, a structure of the node device includes a processor, a memory, a transceiver, and a bus. The processor is configured to support the node device in performing a corresponding function in the foregoing method. The memory is configured to be coupled to the processor, and the memory stores a program instruction and data necessary to the node device. The transceiver is configured to send, by the node device, data to another device or receive data sent by another device. Optionally, the node device further includes a communications interface, and the communications interface is configured to support the node device in communicating with another device.

[0024] In another possible embodiment, the node device includes: a receiving unit, configured to receive a service packet; a processing unit, configured to: determine, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet; determine whether an RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as a port used for receiving the service packet; and when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, determine, based on a preset correspondence between the ring protection subinstance and a forwarding path, the forwarding path used for forwarding the service packet; and a sending unit, configured to forward the service packet based on the forwarding path determined by the processing unit.

[0025] According to a sixth aspect, the present invention provides a computer storage medium, to store a computer software instruction used by the node device in the fourth aspect, and the computer storage medium includes a program designed to perform the foregoing aspects.

[0026] According to a seventh aspect, the present invention provides a computer storage medium, to store a computer software instruction used by the node device in the fifth aspect, and the computer storage medium includes a program designed to perform the foregoing aspects.

BRIEF DESCRIPTION OF DRAWINGS

[0027]

FIG. 1 is a schematic architectural diagram of an ERPS network for which an ERPS ring protection instance is configured in the prior art;

FIG. 2 is a schematic architectural diagram of an ERPS network for which an ERPS ring protection sub-instance is configured according to an embodiment of the present invention;

FIG. 3 is a schematic structural diagram of a computer device according to an embodiment of the

40

45

present invention;

FIG. 4 is a schematic flowchart of a service packet transmission method according to an embodiment of the present invention;

FIG. 5 is a schematic structural diagram of a service packet encapsulated by using the 802.1 Q protocol according to an embodiment of the present invention;

FIG. 6 is a schematic flowchart of another service packet transmission method according to an embodiment of the present invention;

FIG. 7 is a schematic structural diagram of ERPS semi-ring networking according to an embodiment of the present invention;

FIG. 8 is a schematic structural diagram of networking in which the ERPS semi-ring networking shown in FIG. 7 is applied to multicast dual feed and selective receiving according to an embodiment of the present invention;

FIG. 9 is a schematic structural diagram of an ordinary node device according to an embodiment of the present invention; and

FIG. 10 is a schematic structural diagram of a protection node device according to an embodiment of the present invention.

DESCRIPTION OF EMBODIMENTS

[0028] The following first explains related technical terms for an ERPS network as follows:

Ring protection instance: A plurality of logical ERPS rings are obtained through virtualization by using one physical ring, and each logical ERPS ring is referred to as one ring protection instance.

[0029] RPL (Ring Protection Link, ring protection link) port: The RPL port may be any port on any node device on an ERPS network. Each instance corresponds to one RPL port. When an ERPS ring is normal, to be specific, when there is no faulty link on the ERPS ring, a status of the RPL port is a blocked (BLOCKED) state.

[0030] It should be noted that, a difference between the RPL port and a common port is that, when the ERPS ring is normal, to be specific, when there is no faulty link on the ERPS ring, the RPL port is in the blocked state, and the common port is in a forwarding state; when there is a faulty link on the ERPS ring, a common port corresponding to the faulty link is switched from the forwarding state to the blocked state, and the RPL port is switched from the blocked state to the forwarding (Forwarding) state.

[0031] Protection node: A node on which the RPL port is located is referred to as a protection node (RPL OWN-ER), configured to control a status of the RPL port.

[0032] Ordinary node: Another node that does not include the RPL port and that is on the ERPS network.

[0033] RPL: A link on which the RPL port is located. Normally, the RPL port is in the blocked state, and therefore, the RPL link cannot be used for normal data for-

warding, and is a backup link.

[0034] Control virtual local area network (Control VLAN): A virtual wireless local area network used for managing an ERPS protocol state packet.

[0035] Ring network states stipulated by the ERPS protocol are as follows:

[0036] Idle (Idle) state: A state when connections of links on a ring network are all normal and the RPL port is in the blocked state.

0 [0037] Protection (Protection) state: A state when a link on the ring network is disconnected, and the status of the RPL port is switched to the forwarding state.

[0038] Pending (Pending) state: An intermediate state when a link is faulty and is recovered on the ring network but the link has not been switched back to the idle state. [0039] Currently, each ring protection instance on the ERPS network corresponds to one RPL port. In this embodiment, to further subdivide an existing ring protection instance, each ring protection instance is divided into at least two ring protection sub-instances, and each ring protection sub-instance respectively corresponds to one RPL port.

[0040] An embodiment of the present invention provides an ERPS network. As shown in FIG. 2, the ERPS network includes an ERPS ring that includes devices A, B, C, D, E, and F. At least one ring protection instance is configured for the ERPS ring. For one of the at least one ring protection instance, the ring protection instance includes at least two ring protection sub-instances. Each ring protection sub-instance corresponds to a different management VLAN, and each ring protection sub-instance is respectively used for transmitting a service packet that satisfies a particular condition. Each ring protection sub-instance respectively corresponds to one RPL port. For example, the ring protection instance includes a ring protection sub-instance 1 and a ring protection sub-instance 2, an RPL port corresponding to the ring protection sub-instance 1 is a port that is on the device D and that connects the device D to the device E, and an RPL port corresponding to the ring protection subinstance 2 is a port that is on the device B and that connects the device B to the device A.

[0041] On the ERPS network shown in FIG. 2, the node device B and the node device D are protection devices. A device that does not include the RPL port is referred to as an ordinary node device. For example, the node devices A, C, E, and F in FIG. 2 are ordinary node devices.

[0042] It can be learned that, on the ERPS network provided in this embodiment of the present invention, an existing single ring protection instance is subdivided into a plurality of ring protection sub-instances, and a service packet transmitted by using the ring protection instance may be divided, so that corresponding service packets are transmitted by using different ring protection sub-instances. In this way, each ring protection sub-instance respectively corresponds to one RPL port, in other words, each ring protection sub-instance respectively corre-

sponds to one RPL link. Therefore, normally, an RPL link of a ring protection sub-instance is a backup link for the ring protection sub-instance, but for another ring protection sub-instance, the RPL link is a link that can be used for normally performing service packet transmission. Therefore, link bandwidth on the ERPS network can be fully used.

[0043] As shown in FIG. 3, the protection node devices and the ordinary node devices in FIG. 2 may be implemented by using a computer device (or system) in FIG. 3. [0044] FIG. 3 is a schematic diagram of a computer device according to an embodiment of the present invention. The computer device 100 includes at least one processor 101, a communications bus 102, a memory 103, and at least one communications interface 104.

[0045] The processor 101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit, ASIC), or one or more integrated circuits configured to control execution of a program in the solutions of the present invention.

[0046] The communications bus 102 may include a path for transmitting information between the foregoing components. The communications interface 104 is configured to communicate with another device or communications network.

[0047] The memory 103 may be a read-only memory (read-only memory, ROM) or another type of static storage device that can store static information and a static instruction, a random access memory (random access memory, RAM), or another type of dynamic storage device that can store information and an instruction; or may be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM) or another compact disc storage medium, optical disc storage medium (including a compact disc, a laser disc, an optical disc, a digital versatile disc, a Blu-ray disc, or the like) and magnetic disk storage medium, another magnetic storage device, or any other medium that can be configured to carry or store expected program code in a form of an instruction or a data structure and that is accessible by a computer, but is not limited thereto. The memory may independently exist and be connected to the processor by using the bus. Alternatively, the memory may be integrated with the processor.

[0048] The memory 103 is configured to store application program code for performing this solution of the present invention, and the processor 101 controls the performing. The processor 101 is configured to execute the application program code stored in the memory 103. **[0049]** During specific implementation, in an embodiment, the processor 101 may include one or more CPUs, for example, a CPU 0 and a CPU 1 in FIG. 3.

[0050] During specific implementation, in an embodiment, the computer device 100 may include a plurality of processors, for example, a processor 101 and a proc-

essor 105 in FIG. 3. Each of these processors may be a single-core (single-CPU) processor, or may be a multi-core (multi-CPU) processor. The processor herein may be one or more devices or circuits, and/or a processing core configured to process data (for example, a computer program instruction).

[0051] Based on the ERPS network, according to the service packet transmission method provided in this embodiment of the present invention, a process of forwarding a service packet on the ERPS network is separately described from perspectives of an ordinary node device and a protection node device.

[0052] It should be noted that, the service packet transmission method provided in this embodiment of the present invention is applied to a case in which an ERPS ring is normally run, that is, there is no faulty link on the ERPS ring. A status of the RPL port is a blocked state. [0053] An embodiment of the present invention further provides a service packet transmission method that can be applied to the ERPS network in FIG. 2. The method is performed by an ordinary node device shown in FIG. 3. As shown in FIG. 4, the method includes the following steps.

[0054] Step 201: When receiving a service packet, the ordinary node device determines, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet.

[0055] The packet header information is information included in a packet header of the service packet, for example, a destination Media Access Control (Media Access Control, MAC) address and a source MAC address of the packet, and a destination IP address, a source IP address, a priority field, and a VLAN identifier of the packet.

[0056] The preset rule is a rule that is preconfigured in ordinary node devices, and is used for providing guidance for a node device to determine, after receiving a service packet, based on packet header information of the service packet and according to the preset rule, a ring protection sub-instance corresponding to the service packet.

[0057] Optionally, the preset rule includes a correspondence between a particular field in the packet header information and the ring protection sub-instance; or a correspondence between a value obtained by performing calculation or processing on a particular field in the packet header information and the ring protection sub-instance. In a specific implementation of this step, the ordinary node device may determine, based on the obtained packet header information and packet header information that is stored in the preset rule or the correspondence between the value obtained by performing calculation or processing on the particular field in the packet header information and the ring protection sub-instance, the ring protection sub-instance corresponding to the service packet.

[0058] Step 202: The ordinary node device deter-

35

40

50

20

40

mines, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet. [0059] In the prior art, a single ring protection instance is not further subdivided into ring protection sub-instances. Therefore, for an ordinary node device, all service packets transmitted by the ordinary node device belong to a same ring protection instance, and forwarding paths thereof are all the same. Therefore, after receiving a service packet, the ordinary node device does not need to perform any determining, but only needs to forward the service packet based on a pre-stored forwarding rule.

[0060] In this embodiment, because the ring protection instance is divided into a plurality of ring protection sub-instances and forwarding paths of different ring protection sub-instances are different, after receiving the service packet, the ordinary node device needs to determine the ring protection sub-instance corresponding to the service packet, and determine the forwarding path of the service packet based on the preset correspondence between the ring protection sub-instance and the forwarding path.

[0061] Step 203: The ordinary node device forwards the service packet based on the forwarding path.

[0062] According to the service packet transmission method provided in this embodiment of the present invention, a single ring protection instance is divided into a plurality of ring protection sub-instances. Therefore, in this embodiment of the present invention, after receiving the service packet, the ordinary node device needs to determine the ring protection sub-instance corresponding to the service packet, determine, based on the correspondence between the ring protection sub-instance and the forwarding path, the forwarding path corresponding to the ring protection sub-instance, and forward the service packet based on the forwarding path. In this way, for a ring protection sub-instance, an RPL link corresponding to the ring protection sub-instance is a backup path, and when the ring protection sub-instance is normal, cannot be used for service packet transmission. For another ring protection sub-instance, the RPL link is a normal link, and can be used for the service packet transmission. Therefore, according to the service packet transmission method provided in this embodiment of the present invention, network bandwidth of the ERPS network can be fully used.

[0063] For ease of description of a possible implementation of the preset rule in this embodiment, as shown in FIG. 5, a packet encapsulated by using the 802.1 Q protocol is used as an example. This embodiment of the present invention provides a packet structure of the service packet, including the packet header of the service packet and data of the service packet. The packet header information of the service packet includes a destination address (destination address), a source address (source address), an 802.1Q tag, and a length/type (Length/Type) of the service packet. The 802.1Q tag includes a TPID (Tag Protocol Identifier, tag protocol iden-

tifier), and tag control information (Tag Control Information, TCI). The TCI further specifically includes a user priority (User Priority), a canonical format indicator (Canonical Format Indicator, CFI), and a VLAN identifier (VLAN ID).

[0064] The source address and the destination address indicated in the foregoing are both MAC addresses. For a specific structure of the packet, refer to the prior art.

[0065] In an implementation of the preset rule, the preset rule includes a correspondence between a hash value and the ring protection sub-instance.

[0066] The hash value is calculated based on the packet header information of the service packet. For example, the hash value is a hash value determined by performing hash calculation based on all bytes or some bytes of the source MAC address or the destination MAC address of the service packet. For another example, the hash value is a hash value determined by performing hash calculation based on all or some bytes of the destination MAC address in the packet header information of the service packet and the VLAN ID; or a hash value determined based on all or some bytes of the source MAC address and the VLAN identifier. For still another example, the hash value is a hash value determined by performing hash calculation based on all or some bytes of the VLAN identifier and the priority field in the packet header information.

[0067] When the hash value in the preset rule is obtained by performing hash calculation based on the VLAN identifier and the MAC address, step 201 "When receiving a service packet, the ordinary node device determines, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet" specifically includes:

when receiving the service packet, calculating, by the ordinary node device based on preset bytes of a virtual local area network (VLAN) identifier and a Media Access Control (MAC) address that are carried in the packet header information, a hash value corresponding to the service packet; and determining, based on the hash value and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0068] The MAC address is a source MAC address or a destination MAC address.

[0069] In another implementation of the preset rule, the preset rule includes a correspondence between a value of a preset field of the service packet and the ring protection sub-instance.

[0070] In this implementation, a correspondence between the preset field and the ring protection sub-instance is manually specified and saved as the preset rule. [0071] For example, the preset field includes a VLAN identifier, and then the preset rule includes a correspondence between the VLAN identifier and the ring protection sub-instance. Specifically, the preset rule may be that, for service packets whose VLAN identifiers are VLAN100, VLAN200, and VLAN300, a corresponding

ring protection sub-instance is a ring protection sub-instance 1; or for service packets whose VLAN identifiers are VLAN400 and VLAN500, a corresponding ring protection sub-instance is a ring protection sub-instance 2. [0072] For another example, the preset field includes a VLAN identifier and a MAC address, and then the preset rule includes a correspondence between the three, namely, the VLAN identifier, the MAC address, and the ring protection sub-instance. Specifically, the preset rule may be that, for a service packet whose VLAN identifier is VLAN100 and whose MAC address has a last digit being even, a corresponding ring protection sub-instance is a ring protection sub-instance 1; for a service packet whose VLAN identifier is VLAN100 and whose MAC address has a last digit being odd, a corresponding ring protection sub-instance is a ring protection sub-instance 2; or for a service packet whose VLAN identifier is VLAN200 and whose MAC address has a last digit being odd, a corresponding ring protection sub-instance is a ring protection sub-instance 3.

[0073] For still another example, the preset field includes a priority field and a VLAN identifier field, and then the preset rule includes a correspondence between the three, namely, the priority field, the VLAN identifier field, and the ring protection sub-instance. Specifically, the preset rule may be that, when the VLAN identifier is VLAN100 and a value of the priority field is 1, a corresponding ring protection sub-instance is a ring protection sub-instance 1; when the VLAN identifier is VLAN100 and a value of the priority field is 2, a corresponding ring protection sub-instance is a ring protection sub-instance 2; when the VLAN identifier is VLAN200 and a value of the priority field is 1, a corresponding ring protection subinstance is a ring protection sub-instance 1; or when the VLAN identifier is VLAN200 and a value of the priority field is 2, a corresponding ring protection sub-instance is a ring protection sub-instance 2.

[0074] When the preset field includes the priority field and the VLAN identifier field, correspondingly, step 201 "When receiving a service packet, the ordinary node device determines, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet" specifically includes: obtaining, by the ordinary node device, values of the priority field and the VLAN identifier field in the packet header information when receiving the service packet; and determining, based on the values of the priority field and the VLAN identifier field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0075] It should be noted that, a first implementation and a second implementation of the preset rule may be applied to a process in which particular processing needs to be performed on a service packet. For example, when a service packet of a same type is transmitted in a ring protection instance, service packets of different priorities need to be forwarded by using different ring protection sub-instances. Alternatively, when a receiving end is a

same destination MAC address, and relatively many service packets are sent to the receiving end, service packets for a same destination MAC address are forwarded by using different ring protection sub-instances, to scatter the service packets to different transmission paths

[0076] In a third implementation of this embodiment, the preset rule includes a correspondence between a service type and the ring protection sub-instance. In the implementation, different ring protection sub-instances are used for transmitting services of different types.

[0077] Generally, the packet header information of the service packet includes a service type field, and the service type field may be used for indicating a service type of the service packet. For example, when a value of the service type field is a first value, a corresponding service packet type is a type 1; or when a value of the service type field is a second value, a corresponding service packet type is a type 2.

[0078] It should be noted that, different values of the TPID in the 802.1Q tag can distinguish different service types.

[0079] Corresponding to the third implementation of the preset rule, correspondingly, the determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet specifically includes: obtaining, by the ordinary node device, a service type field in the packet header information of the service packet when receiving the service packet; and determining, based on the service type field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0080] The third implementation of the preset rule is mainly applied to a process in which when service packets of a plurality of types are transmitted in a ring protection instance, the types of the service packets need to be distinguished by using ring protection sub-instances. [0081] An embodiment of the present invention further provides a service packet transmission method that may also be applied to the ERPS network shown in FIG. 2. The method is performed by a protection node device that includes at least one RPL port. A specific structure of the protection node device may be the computer device shown in FIG. 3. As shown in FIG. 6, the method includes the following steps.

[0082] Step 301: When receiving a service packet, the protection node device determines, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet.

[0083] For a specific implementation process of this step, refer to a specific implementation process of performing step 201 on an ordinary node device side.

[0084] Step 302: The protection node device determines whether an RPL port corresponding to the ring protection sub-instance to which the service packet is

40

45

40

45

corresponding is the same as a port used for receiving the service packet.

[0085] When being applied to an ERPS ring, each node device includes two ports. The two ports may be both RPL ports, or only one port may be an RPL port, or the two ports may be both non-RPL ports. If the port used for receiving the service packet is an RPL port, and the RPL port is different from the RPL port corresponding to the determined ring protection sub-instance to which the service packet is corresponding, it indicates that the RPL port does not need to block the service packet; or the port used for receiving the service packet is a non-RPL port, namely, a common port, and then the following step 303 is performed. Otherwise, step 305 is performed.

[0086] It should be noted that, the node device may further include another port, to interact with another device outside the ERPS ring.

[0087] Step 303: The protection node device determines, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet.
[0088] If the next-hop port indicated in the forwarding path is another RPL port of the protection node device, the protection node device still needs to perform step 302. If the next-hop port indicated in the forwarding path is another protection node device, the another protection node device, the another protection node device performs step 301 to step 305 again. If the next-hop port is an ordinary node device, the ordinary node device performs the foregoing step 201 to step 203.
[0089] Step 304: The protection node device forwards the service packet based on the forwarding path.

[0090] Step 305: The protection node device discards the service packet.

[0091] According to the service packet transmission method provided in this embodiment of the present invention, compared with that an RPL port of a protection node blocks all service packets in the prior art, in this embodiment of the present invention, the protection node device does not block all service packets, but can forward the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, that is, blocks only the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet. In this way, RPL link bandwidth can be fully used.

[0092] With reference to an ERPS network architecture shown in FIG. 2, when the packet transmission method provided in this embodiment of the present invention is applied, when a node A sends a service packet to a node D, when a ring protection sub-instance corresponding to the service packet is a ring protection sub-instance 1, because a node B is an RPL port corresponding to a ring protection sub-instance 2 and does not block the service packet of the ring protection sub-instance 1, the service packet can arrive at the device D along a path

from A to B to C to D. Correspondingly, when a ring protection sub-instance corresponding to the service packet is a ring protection sub-instance 2, because the node D is an RPL port corresponding to a ring protection sub-instance 1 and does not block the service packet of the ring protection sub-instance 2, the service packet can arrive at the device D along a path from A to F to E to D. Therefore, the RPL link bandwidth can be fully used, so that all links on a network may be used for service packet transmission.

[0093] To more clearly describe an effect of the service packet transmission method provided in this embodiment of the present invention when the method is performed by a protection node device, descriptions are provided with reference to an application scenario of multicast dual feed and selective receiving.

[0094] Before the application scenario of multicast dual feed and selective receiving is described, a concept of an ERPS semi-ring is first described. The ERPS semi-ring means that interconnections between node devices do not form a true ring network, but there is a "gap". For example, the ERPS protocol is not enabled on a device. However, in an application scenario of the ERPS semi-ring, a link of the ERPS network is still connected. As shown in FIG. 7, devices A, B, C, D, and E form an ERPS ring network. However, the ERPS protocol is not enabled on the device E, so that the devices A, B, C, and D form a semi-ring.

[0095] Applied to the ERPS semi-ring, as shown in FIG. 8, a video source server 401, a video source server 402, and a routing device 403 form an ERPS semi-ring. [0096] For ease of description, in this embodiment of the present invention, a port connecting the routing device 403 to the video source server 401 is described by using a port A, and a port connecting the routing device 403 to the video source server 402 is described by using a port B. In addition, the routing device 403 further includes a port C (located outside the ERPS semi-ring) used for connecting user equipment (not shown in the figure).

[0097] With reference to FIG. 8, the multicast dual feed and selective receiving means that, after the routing device 403 receives a multicast joining request of a user, for example, for playing a program 1 and a program 2 on demand, the routing device 403 separately sends the same joining request to the video source server 401 and the video source server 402, to request video data of the program 1 and the program 2. After that, the video source server 401 forwards video streams of both programs to the port A, and the video source server 402 forwards the video streams of both programs to the port B. In this way, on the routing device 403, each program has two video streams, and therefore for each program, one video stream needs to be selected, to be forwarded to the port C on a user side.

[0098] In the prior art, in an application scenario in which the multicast dual feed and selective receiving is applied, if only the port B is used as an RPL port, the

25

40

45

routing device needs to send an on-demand packet to the video source servers 401 and 402 by using the port A, and needs to ensure that the packet is not sent by using the port B. The implementation process is relatively complex, and has relatively large costs. In this case, the video source servers 401 and 402 send an on-demand packet to the routing device 403 by using the port B only when the port A is disconnected, to receive the video streams from the port B. This packet control implementation solution in the prior art is relatively complex, and after a link on which the port A is located is disconnected, the routing device 403 needs to send an on-demand packet to the video source server 402 by using the port B again. A delay is relatively long, and load cannot be shared, wasting bandwidth of B.

[0099] When the service packet transmission method provided in this embodiment of the present invention is applied, the foregoing two ERPS semi-rings may be configured as two ring protection sub-instances, and the ports A and B of the routing device 403 are respectively configured as RPL ports of the two ring protection subinstances. For ease of description, the two ring protection sub-instances are respectively referred to as the ring protection sub-instance 1 and the ring protection sub-instance 2. In addition, the RPL port corresponding to the ring protection sub-instance 1 is the port A, and allows a data stream of the program 1 to pass through; and the RPL port corresponding to the ring protection sub-instance 2 is the port B, and allows a data stream of the program 2 to pass through. In this way, when the service packet transmission method provided in this embodiment of the present invention is applied, an unwanted video stream is automatically blocked, and each program forwards only one data stream to the port C on the user side. [0100] Switching performance of ERPS is at a millisecond level. Therefore, if a problem occurs on the port A or B, an RPL port of a ring protection sub-instance is quickly switched from a Blocked state to a forwarding state. In an entire process, nearly no packet of a video stream is lost, there is no impact on program watching by a user, multicast implementation on a device is basically not affected, and the implementation is convenient. [0101] As shown in FIG. 9, an embodiment of the present invention further provides a schematic structural diagram of an ordinary node device 500, to perform the service packet transmission method shown in FIG. 3. The node device includes: a receiving unit 501, configured to receive a service packet; a processing unit 502, configured to: determine, according to a preset rule and based on packet header information of the service packet received by the receiving unit 501, a ring protection subinstance corresponding to the service packet; and determine, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and a sending unit 503, configured to forward the service packet based on the forwarding path determined by the processing unit 502.

[0102] Optionally, the preset rule includes a correspondence between a hash value and the ring protection sub-instance. Correspondingly, the processing unit 502 is further configured to: calculate, based on preset bytes of a virtual local area network VLAN identifier and a Media Access Control (MAC) address that are carried in the packet header information of the service packet received by the receiving unit 501, a hash value corresponding to the service packet, where the MAC address is a source MAC address or a destination MAC address; and determine, based on the hash value and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0103] Optionally, the preset rule includes a correspondence between a value of a preset field of the service packet and the ring protection sub-instance. The preset field includes a priority field and a VLAN identifier field. Correspondingly, the processing unit 502 is further configured to: obtain values of the priority field and the VLAN identifier field in the packet header information of the service packet received by the receiving unit 501; and determine, based on the values of the priority field and the VLAN identifier field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0104] Optionally, the preset rule includes a correspondence between a service type and the ring protection sub-instance. Correspondingly, the processing unit 502 is further configured to: obtain a service type field in the packet header information of the service packet received by the receiving unit 501, where the service type field is used for indicating the service type of the service packet; and determine, based on the service type field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

[0105] It should be noted that, all related content of the steps in the foregoing method embodiment described by using the ordinary node device as the execution body may be cited in function descriptions of corresponding functional modules. Details are not described herein again.

[0106] After the foregoing solution is used, a single ring protection instance is divided into a plurality of ring protection sub-instances. Therefore, in this embodiment of the present invention, after receiving the service packet, the ordinary node device needs to determine the ring protection sub-instance corresponding to the service packet, determine, based on the correspondence between the ring protection sub-instance and the forwarding path, the forwarding path corresponding to the ring protection sub-instance, and forward the service packet based on the forwarding path. In this way, for a ring protection sub-instance, an RPL link corresponding to the ring protection sub-instance is a backup path, and when the ring protection sub-instance is normal, cannot be used for service packet transmission. For another ring protection sub-instance, the RPL link is a normal link, and can be used for the service packet transmission.

25

Therefore, network bandwidth of the ERPS network can be fully used.

[0107] In this embodiment, the ordinary node device is presented in a form of a functional unit. The "unit" herein may refer to an application-specific integrated circuit (application-specific integrated circuit, ASIC), a circuit, a processor and a memory that execute one or more software or firmware programs, an integrated logical circuit, and/or another device that can provide the foregoing functions.

[0108] In a simple embodiment, a person skilled in the art may figure out that the form shown in FIG. 3 may be used for the ordinary node device. The receiving unit 501 and the sending unit 503 may be implemented by using the communications interface 104 in FIG. 3. The processing unit 502 may be implemented by using the processor 101 and the memory 103 in FIG. 3.

[0109] As shown in FIG. 10, an embodiment of the present invention further provides a schematic structural diagram of a protection node device 600, to perform the service packet transmission method shown in FIG. 6. The node device includes: a receiving unit 601, configured to receive a service packet; a processing unit 602, configured to: determine, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet; determine whether an RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as a port used for receiving the service packet; and when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, determine, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and a sending unit 603, configured to forward the service packet based on the forwarding path determined by the processing unit 602.

[0110] The processing unit 602 is further configured to discard the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet.

[0111] It should be noted that, all related content of the steps in the foregoing method embodiment described by using the protection node device as the execution body may be cited in function descriptions of corresponding functional modules. Details are not described herein again.

[0112] After the foregoing solution is used, according to the protection node device provided in this embodiment of the present invention, compared with that an RPL port of a protection node blocks all service packets in the prior art, in this embodiment of the present invention, the protection node device does not block all service packets, but can forward the service packet when the RPL port corresponding to the ring protection sub-instance to

which the service packet is corresponding is different from the port used for receiving the service packet, that is, blocks only the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet.

[0113] In this embodiment, the protection node device is presented in a form of a functional unit. The "unit" herein may refer to an application-specific integrated circuit (application-specific integrated circuit, ASIC), a circuit, a processor and a memory that execute one or more software or firmware programs, an integrated logical circuit, and/or another device that can provide the foregoing functions.

[0114] In a simple embodiment, a person skilled in the art may figure out that the form shown in FIG. 3 may be used for the protection node device. The receiving unit 601 and the sending unit 603 may be implemented by using the communications interface 104 in FIG. 3. The processing unit 602 may be implemented by using the processor 101 and the memory 103 in FIG. 3.

[0115] When the functions are implemented in the form of a software functional unit and sold or used as an independent product, the functions may be stored in a computer-readable storage medium. Based on such an understanding, the technical solutions of the present invention essentially, or the part contributing to the prior art, or some of the technical solutions may be implemented in a form of a software product. The computer software product is stored in a storage medium, and includes several instructions for instructing a computer device (which may be a personal computer, a server, a network device, or the like) to perform all or some of the steps of the methods described in the embodiments of the present invention. The foregoing storage medium includes: any medium that can store program code, such as a USB flash drive, a removable hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disc.

[0116] The foregoing descriptions are merely specific implementations of the present invention, but are not intended to limit the protection scope of the present invention. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present invention shall fall within the protection scope of the present invention.

50 Claims

 A service packet transmission method, wherein the method is applied to an Ethernet Ring Protection Switching ERPS network, at least one ring protection instance is configured for each ERPS ring on the ERPS network, each ring protection instance comprises at least two ring protection sub-instances, each ring protection sub-instance respectively cor-

20

25

30

35

40

45

50

responds to one ring protection link RPL port, a status of the RPL port is a blocked state, and the method comprises:

when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet, wherein the ordinary node device is a device that does not comprise the RPL port;

determining, by the ordinary node device based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and

forwarding, by the ordinary node device, the service packet based on the forwarding path.

- 2. The method according to claim 1, wherein the preset rule comprises a correspondence between a hash value and the ring protection sub-instance.
- 3. The method according to claim 2, wherein the when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet specifically comprises:

when receiving the service packet, calculating, by the ordinary node device based on preset bytes of a virtual local area network VLAN identifier and a Media Access Control MAC address that are carried in the packet header information, a hash value corresponding to the service packet, wherein the MAC address is a source MAC address or a destination MAC address; and determining, by the ordinary node device based on the hash value and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

4. The method according to claim 1, wherein the preset rule comprises a correspondence between a value of a preset field of the service packet and the ring protection sub-instance.

5. The method according to claim 4, wherein the preset

field comprises a priority field and a VLAN identifier field; and the when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet specifically compris-

es:

obtaining, by the ordinary node device, values of the priority field and the VLAN identifier field in the packet header information when receiving the service packet; and

determining, by the ordinary node device based on the values of the priority field and the VLAN identifier field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

- **6.** The method according to claim 1, wherein the preset rule comprises a correspondence between a service type and the ring protection sub-instance.
- 7. The method according to claim 6, wherein the when receiving a service packet, determining, by an ordinary node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet specifically comprises:

obtaining, by the ordinary node device, a service type field in the packet header information of the service packet when receiving the service packet, wherein the service type field is used for indicating the service type of the service packet; and

determining, by the ordinary node device based on the service type field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

8. A service packet transmission method, wherein the method is applied to an Ethernet Ring Protection Switching ERPS network, at least one ring protection instance is configured for each ERPS ring on the ERPS network, each ring protection instance comprises at least two ring protection sub-instances, each ring protection sub-instance respectively corresponds to one ring protection link RPL port, a status of the RPL port is a blocked state, and the method comprises:

when receiving a service packet, determining, by a protection node device according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet, wherein the protection node device is a device that comprises at least one RPL port;

determining, by the protection node device, whether an RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as a port used for receiving the service packet;

if the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for

10

15

20

25

30

35

40

45

receiving the service packet, determining, by the protection node device based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and forwarding, by the protection node device, the service packet based on the forwarding path.

- 9. The method according to claim 8, wherein the method further comprises: discarding, by the protection node device, the service packet if the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet.
- 10. Anode device, wherein the node device is applied to an Ethernet Ring Protection Switching ERPS network, at least one ring protection instance is configured for each ERPS ring on the ERPS network, each ring protection instance comprises at least two ring protection sub-instances, each ring protection subinstance respectively corresponds to one ring protection link RPL port, a status of the RPL port is a blocked state, and as an ordinary node device not comprising the RPL port, the node device comprises:

a receiving unit, configured to receive a service packet;

a processing unit, configured to: determine, according to a preset rule and based on packet header information of the service packet received by the receiving unit, a ring protection sub-instance corresponding to the service packet; and determine, based on a preset correspondence between the ring protection sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and a sending unit, configured to forward the service packet based on the forwarding path determined by the processing unit.

- **11.** The node device according to claim 10, wherein the preset rule comprises a correspondence between a hash value and the ring protection sub-instance.
- 12. The node device according to claim 11, wherein the processing unit is further configured to: calculate, based on preset bytes of a virtual local area network VLAN identifier and a Media Access Control MAC address that are carried in the packet header information of the service packet received by the receiving unit, a hash value corresponding to the service packet, wherein the MAC address is a source MAC address or a destination MAC address; and determine, based on the hash value and according to the preset rule, the ring protection sub-instance corresponding to the service packet.

- **13.** The node device according to claim 10, wherein the preset rule comprises a correspondence between a value of a preset field of the service packet and the ring protection sub-instance.
- 14. The node device according to claim 13, wherein the preset field comprises a priority field and a VLAN identifier field; and the processing unit is further configured to: obtain values of the priority field and the VLAN identifier field in the packet header information of the service packet received by the receiving unit; and determine, based on the values of the priority field and the VLAN identifier field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.
- **15.** The node device according to claim 10, wherein the preset rule comprises a correspondence between a service type and the ring protection sub-instance.
- 16. The node device according to claim 15, wherein the processing unit is further configured to: obtain a service type field in the packet header information of the service packet received by the receiving unit, wherein the service type field is used for indicating the service type of the service packet; and determine, based on the service type field and according to the preset rule, the ring protection sub-instance corresponding to the service packet.
- 17. Anode device, wherein the node device is applied to an Ethernet Ring Protection Switching ERPS network, at least one ring protection instance is configured for each ERPS ring on the ERPS network, each ring protection instance comprises at least two ring protection sub-instances, each ring protection subinstance respectively corresponds to one ring protection link RPL port, a status of the RPL port is a blocked state, and as a device comprising at least one RPL port, the node device comprises:

a receiving unit, configured to receive a service packet;

a processing unit, configured to: determine, according to a preset rule and based on packet header information of the service packet, a ring protection sub-instance corresponding to the service packet; determine whether an RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as a port used for receiving the service packet; and when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is different from the port used for receiving the service packet, determine, based on a preset correspondence between the ring protection

sub-instance and a forwarding path, the forwarding path used for forwarding the service packet; and

- a sending unit, configured to forward the service packet based on the forwarding path determined by the processing unit.
- 18. The node device according to claim 17, wherein the processing unit is further configured to discard the service packet when the RPL port corresponding to the ring protection sub-instance to which the service packet is corresponding is the same as the port used for receiving the service packet.
- **19.** A node device, comprising a memory, a processor, a transceiver, and a bus, wherein the memory, the processor, and the transceiver are connected to each other by using the bus, the memory stores program code, and the processor is configured to perform the method according to any one of claims 1 to 7 based on the program code.
- **20.** A node device, comprising a memory, a processor, a transceiver, and a bus, wherein the memory, the processor, and the transceiver are connected to each other by using the bus, the memory stores program code, and the processor is configured to perform the method according to claim 8 or 9 based on the program code.

10

. •

20

30

35

40

45

50

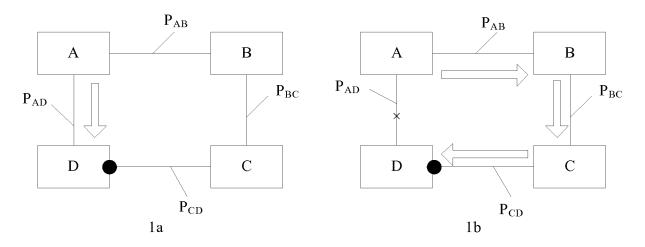


FIG. 1

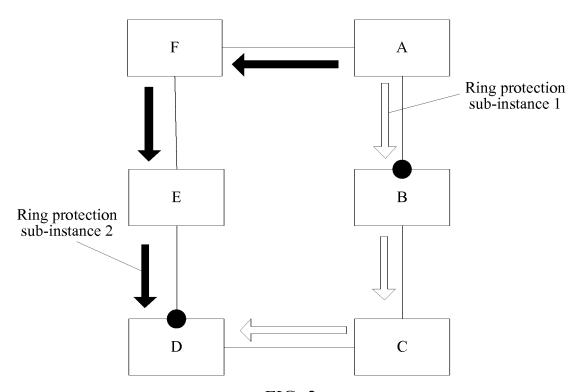


FIG. 2

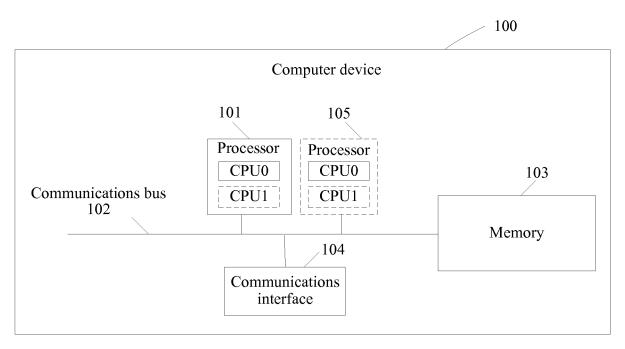


FIG. 3

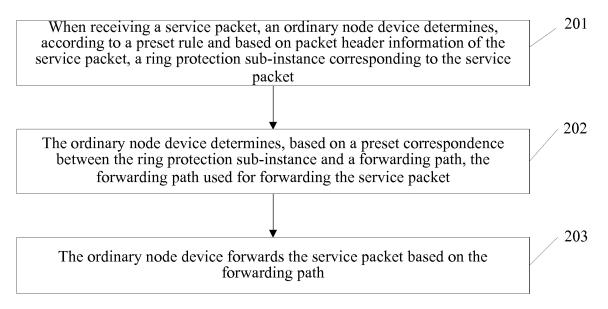


FIG. 4

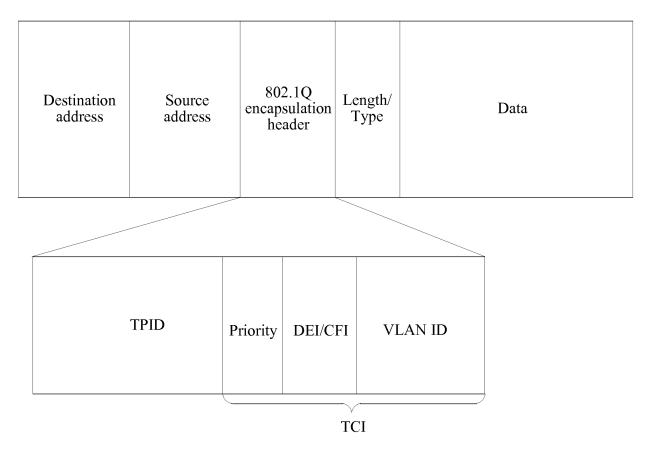


FIG. 5

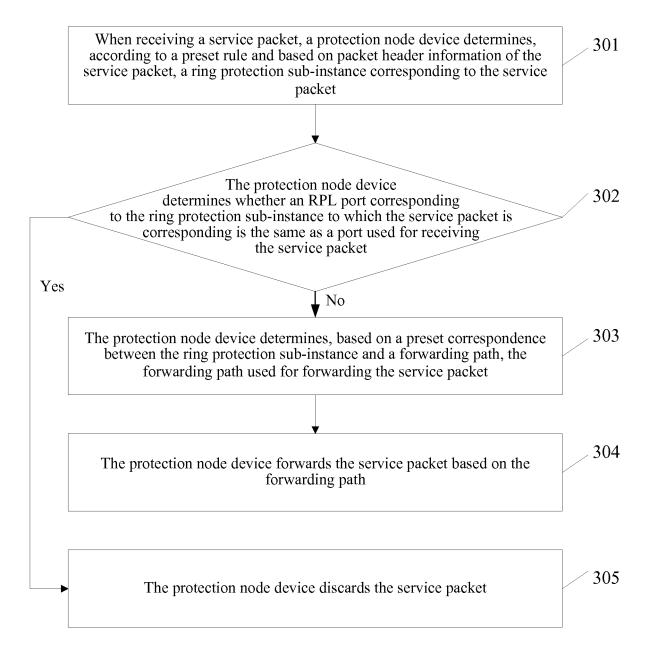
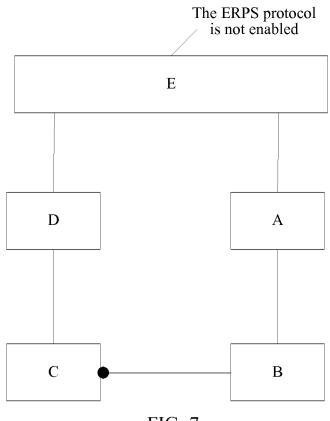



FIG. 6

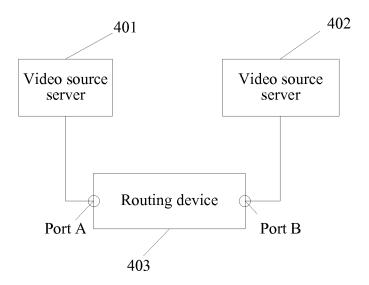


FIG. 8

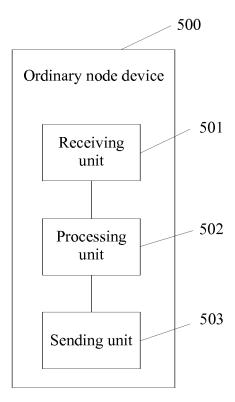


FIG. 9

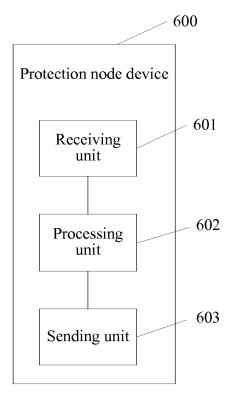


FIG. 10

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2016/105966

5					
-	A. CLASSIFICATION OF SUBJECT MATTER				
	H04L 12/42 (2006.01) i According to International Patent Classification (IPC) or to both national classification and IPC				
10	B. FIELDS SEARCHED				
	Minimum documentation searched (classification system followed by classification symbols)				
		H04L; H04W; H04Q			
15	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
	CNKI, CNPAT, WPI, EPODOC: 以太网环网保护倒换, 环网, 保护, 环保护链路, 备份, 空闲, 闲置, 实例, 子实例, 端口, 阻塞,				
20		转发, 路径, 报文, 报头, ERPS, ERP, RPL, backup, idle, port, ring, instance, path, block			
	C. DOCUMENTS CONSIDERED TO BE RELEVANT				
	Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
25	A	CN 105763483 A (HANGZHOU H3C TECHNOLOC (13.07.2016), description, paragraphs [0022]-[0046]	GIES CO., LTD.) 13 July 2016	1-20	
	A	CN 104883337 A (ZTE CORPORATION) 02 Septem		1-20	
	A CN 104283758 A (HANGZHOU H3C TECHNOLOG (14.01.2015), entire document		GIES CO., LTD.) 14 January 2015	1-20	
	A CN 103190121 A (HUAWEI TECHNOLOGIES CO. document		LTD.) 03 July 2013 (03.07.2013), entire	1-20	
30	A US 2015036544 A1 (BROCADE COMMUNICATIO (05.02.2015), entire document		NS SYSTEMS, INC.) 05 February 2015	1-20	
	☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.				
35	Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance		 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art 		
40	"E" earlier application or patent but published on or after the international filing date				
,,,	"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)				
45	"O" document referring to an oral disclosure, use, exhibition or other means				
45	"P" document published prior to the international filing date but later than the priority date claimed		"&"document member of the same patent family		
	Date of the actual completion of the international search		Date of mailing of the international search report		
	10 July 2017		02 August 2017		
50	Name and mailing address of the ISA State Intellectual Property Office of the P. R. China		Authorized officer		
	No. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing 100088, China		LI, Xiaoli		
	Facsimile No. (86-10) 62019451		Telephone No. (86-10) 61648535		

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/CN2016/105966

5 Patent Documents referred Publication Date Patent Family Publication Date in the Report CN 105763483 A 13 July 2016 None 10 CN 104883337 A 02 September 2015 WO 2015127735 A1 03 September 2015 CN 104283758 A 14 January 2015 None CN 103190121 A 03 July 2013 CN 102726006 A 10 October 2012 15 WO 2012163173 A1 06 December 2012 WO 2012167569 A1 13 December 2012 EP 2775669 A1 10 September 2014 20 US 2014254347 A1 11 September 2014 US 2016119220 A1 28 April 2016 US 2015036544 A1 05 February 2015 US 2015036546 A1 05 February 2015 25 30 35 40 45

Form PCT/ISA/210 (patent family annex) (July 2009)

55