BACKGROUND
1. Field
[0001] The present disclosure relates to additive manufacturing, more specifically to heat
exchangers made by additive manufacturing.
2. Description of Related Art
[0002] In additive manufacturing (AM), part build orientation is an important build process
consideration because of its impact on buildability and resultant part build quality.
For better buildability, due to difficulties in AM (e.g. in powder bed process) to
build overhung features, orienting part in build setup so that critical part features
are at certain angle (e.g. 45 degree) is commonly practiced. On the other hands, in
terms of AM build quality, such as but not limited to, surface roughness, resolution
for small/thin features, and defect formation, different build orientations can be
preferred. Specifically, for AM heat exchanger performance, reducing surface roughness
and thickness is beneficial, and choosing AM build orientation to create fins vertically
is favorable as it results in thinnest possible fins with preferentially oriented
surface roughness. However, design of traditional plate fin heat exchangers consist
of vertical fins and horizontal parting sheet layers, thus it is difficult to build
in the direction of vertical fins as it renders parting sheets in most challenging,
horizontal, overhung orientation.. Even successful builds can result in rough downfacing
surfaces and potentially defective parting sheets at such orientation, while any other
rotated orientation prevents most desired vertically built fins.
[0003] Such conventional approaches in selecting build orientation for a powder bed additive
manufacturing have generally been considered satisfactory for their intended purpose.
However, there is an associated performance penalty and there is a need in the art
for improved additively manufactured heat exchangers and methods for making the same.
The present disclosure provides a solution for this need.
SUMMARY
[0004] In accordance with at least one aspect of this disclosure, an additively manufactured
heat exchanger can include a plurality of vertically built fins, and a plurality of
non-horizontally built parting sheets. The plurality of vertically built fins can
extend between and connect to the plurality of parting sheets. The heat exchanger
can include a plurality of layers of fins and parting sheets.
[0005] The heat exchanger can include first and second flow circuits for allowing separate
fluid flows to flow through the heat exchanger to exchange heat therebetween. In certain
embodiments, the first and second flow circuits can be perpendicular flow circuits.
In certain embodiments, the first and second flow circuits can be counter flow circuits.
In certain embodiments, the first and second flow circuits can be combination of cross
and counter flow circuits.
[0006] In certain embodiments, one or more parting sheets can be flat shaped. In such embodiments,
the plurality of fins can be angled at a non-right angle to the one or more parting
sheets (e.g., which allows vertical building of the plurality of fins and non-horizontal
building of the parting sheets).
[0007] In certain embodiments, one or more parting sheets can be non-flat shaped. For example,
the parting sheets can be curved into the vertical build direction. A curvature of
the curved parting sheets can be large enough to prevent build structure from being
required to form the curved parting sheets during additive manufacturing. The fins
can be flat (e.g., planar), thin walled fins, for example. In certain embodiments,
fins can be straight fins, wavy fins or stripe fins with non-horizontally built plurality
of parting sheets, or any other suitable shape.
[0008] In accordance with at least one aspect of this disclosure, a method for additively
manufacturing a heat exchanger includes vertically building a plurality of fins, and
non-horizontally building a plurality of parting sheets, wherein the plurality of
vertically built fins extend between and connect to the plurality of parting sheets.
[0009] In certain embodiments, the method can include angling the parting sheets at a non-right
angle relative to build direction during building. In such embodiments, the method
can include building a support structure to support the heat exchanger while building
the heat exchanger.
[0010] In certain embodiments, non-horizontally building the plurality of parting sheets
can include building a plurality of flat (e.g., planar) parting sheets. Any other
suitable shape is contemplated herein.
[0011] Non-horizontally building the plurality of parting sheets can include building a
plurality of non-flat, e.g., curved parting sheets. Building the plurality of curved
parting sheets can include building a first curved parting sheet, then vertically
building the plurality of fins, wherein vertically building the plurality of fins
includes vertically building the plurality of fins on a first curved parting sheet.
Building the plurality of curved parting sheets can include building a second curved
parting sheet on the plurality of fins.
[0012] These and other features of the systems and methods of the subject disclosure will
become more readily apparent to those skilled in the art from the following detailed
description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] So that those skilled in the art to which the subject disclosure appertains will
readily understand how to make and use the devices and methods of the subject disclosure
without undue experimentation, embodiments thereof will be described in detail herein
below with reference to certain figures, wherein:
Fig. 1 is a perspective view of an embodiment of a heat exchanger in accordance with
this disclosure, showing fins angled relative to parting sheets;
Fig. 2 is a perspective view of the embodiment of Fig. 1 during additive manufacturing,
showing a build structure;
Fig. 3 is a perspective view of another embodiment of a heat exchanger in accordance
with this disclosure, shown having non-flat parting sheets and built with a convex
curve direction;
Fig. 4 is a perspective view of another embodiment of a heat exchanger in accordance
with this disclosure, shown having non-flat parting sheets and built with a concave
curve direction;
Fig. 5 is a perspective view of another embodiment of a heat exchanger in accordance
with this disclosure, shown having counter flow circuits; and
Fig. 6 shows various embodiments of fin designs in accordance with this disclosure.
DETAILED DESCRIPTION
[0014] Reference will now be made to the drawings wherein like reference numerals identify
similar structural features or aspects of the subject disclosure. For purposes of
explanation and illustration, and not limitation, an illustrative view of an embodiment
of a heat exchanger in accordance with the disclosure is shown in Fig. 1 and is designated
generally by reference character 100. Other embodiments and/or aspects of this disclosure
are shown in Figs. 2-6. The systems and methods described herein can be used to reduce
pressure drop in additively manufactured heat exchangers, as well as improve additive
manufacturing of heat exchangers, for example.
[0015] In accordance with at least one aspect of this disclosure, referring to Figs. 1-3,
an additively manufactured heat exchanger 100, 300 can include a plurality of vertically
built fins 101, 301. Referring to Figs. 1 and 2, the heat exchanger 100 can include
a plurality of non-horizontally built parting sheets 103. For example, referring to
Fig. 3, the heat exchanger 300 can include non-flat parting sheets 303.
[0016] Referring to Figs. 1-3, the plurality of vertically built fins 101, 301 can extend
between and connect to the plurality of parting sheets 103, 303 (e.g., by being formed
integrally therewith during additive manufacturing). As shown, the heat exchanger
100, 300 can include a plurality of layers 104, 304 of fins 101, 301 and parting sheets
103, 303.
[0017] In certain embodiments, as shown in Fig. 1, one or more parting sheets 103 can be
flat shaped (e.g., planar) and can be non-horizontally built. In such embodiments,
the plurality of fins 101 can be angled at a non-right angle to the one or more parting
sheets 103 (e.g., which allows vertical building of the plurality of fins 101 and
non-horizontal building of the flat parting sheets 103). Therefore, the heat exchanger
100 can be built such that the parting sheets 103 have some vertical component when
the fins 101 are built vertically. Embodiments can include one or more side walls
105 that enclose the angled fins 101 between the parting sheets 103.
[0018] In certain embodiments, referring to Fig. 3, the one or more non-horizontally built
parting sheets 303 can be non-flat shaped. For example, the parting sheets 303 can
be curved, e.g., into the vertical build direction. Therefore, the heat exchanger
300 can be built such that the parting sheets 303 have some vertical component during
build due to the non-flat shape when the fins 301 are built vertically. In certain
embodiments, a curvature of the curved parting sheets 303 can be large enough to prevent
build structure from being required to form the curved parting sheets 303 during additive
manufacturing. In certain embodiments, the curved direction can be concave (e.g.,
as shown in Fig. 4) or convex to the build direction (e.g., as shown in Fig. 3).
[0019] As shown in Figs. 1 and 3, the heat exchanger 100, 300 can include a first flow circuit
109, 309 and a second flow circuit 111, 311 for allowing separate fluid flows to flow
through the heat exchanger 100, 300 to exchange heat therebetween. In certain embodiments,
the first and second flow circuits can be perpendicular flow circuits as shown. In
such embodiments, all fins 101, 301 can be built vertically, yet the fin 101, 301
positioning relative to the parting sheets 103, 303, or the fin geometry can be different
between the perpendicular flow circuits.
[0020] In certain embodiments, the first and second flow circuits 111, 311 can be counter
flow circuits as shown in Fig. 5. In certain embodiments, the first and second flow
circuits can be combination of cross/perpendicular and counter flow circuits.
[0021] In at least some embodiments herein, the fins 101, 301 can be flat (e.g., planar),
thin walled fins, for example. In certain embodiments, fins can be straight fins,
plain fins, wavy fins, strip fins, pin fins (circular and/or non-circular shape wavy
fins), and/or any other suitable shape fins, e.g., as shown in Fig. 6. As appreciated
by those having ordinary skill in the art in view of this disclosure, the term "vertically
built" means that a the long axis of the fins 101, 301 and/or a planar vector of the
fins 101, 301 is parallel with the vertical build direction.
[0022] For example, as shown in Fig. 1, the vertically built fins 101 of the first flow
circuit 109 are angled at a non-right angle relative to the parting sheets 103, but
the vertically built fins 101 of the second flow circuit 111 can be perpendicular
relative to the parting sheets 103. As another example, as shown in Fig. 3, the vertically
built fins 301 of the first flow circuit 309 are a straight rectangular shape between
the parting sheets 303, but the vertically built fins 301 of the second flow circuit
311 have a curved shape to follow the curvature of the curved parting sheets 303.
[0023] In accordance with at least one aspect of this disclosure, a method for additively
manufacturing a heat exchanger 100, 300 includes vertically building a plurality of
fins 101, 301, and non-horizontally building a plurality of parting sheets 103, 303,
wherein the plurality of vertically built fins 101, 301 extend between and connect
to the plurality of parting sheets 103, 303.
[0024] In certain embodiments, the method can include angling the parting sheets 103 at
a non-right angle relative to build direction during building. In such embodiments,
as shown in Fig. 2, the method can include building a support structure 107 to support
the heat exchanger while building the heat exchanger.
[0025] In certain embodiments, non-horizontally building the plurality of parting sheets
can include building a plurality of flat (e.g., planar) parting sheets. Any other
suitable shape is contemplated herein.
[0026] Non-horizontally building parting sheets can include building non-flat parting sheets
303, e.g., curved parting sheets 303. Building the plurality of curved parting sheets
303 can include building a first curved parting sheet 303a, then vertically building
the plurality of fins 301 on the first curved parting sheet 303a. Building the plurality
of curved parting sheets 303 can include building a second curved parting sheet 303b
on the plurality of fins.
[0027] Embodiments utilize angled building at a predetermined angle to vertically build
the fins, which at least some can be angled relative to the parting sheets (e.g.,
as shown in Fig. 1), but which also allows building horizontal plates without build
structure within the flow circuits.
[0028] Embodiments with non-flat parting sheets may experience a small total change of mass-flow/face
area, e.g., if the surface is curved, but performance is improved by improved surface
finish/size of the vertically built fins. Embodiments allow fins to be thinner and
have better surface finish
[0029] Embodiments include all channel walls including fins built vertically, but parting
sheet layers are built either at an angle or with a non-flat shape (e.g., curved)
to minimize or eliminate overhung features during additive manufacturing. Embodiments
have non-perpendicular fins to the parting sheets. The vertically built walls enable
the lowest surface finish and the thinnest wall thickness compared fins built with
other build orientations. Angled or non-flat parting sheet layers allow better buildability
as well as reduced surface roughness and reduced defects formation. Minimum surface
finish on channels achieved by vertical build orientation results in enhanced heat
exchanger performance by avoiding an increase in pressure drop in flow through channels.
[0030] Any suitable combination(s) of any disclosed embodiments and/or any suitable portion(s)
thereof is contemplated therein as appreciated by those having ordinary skill in the
art.
[0031] Those having ordinary skill in the art understand that any numerical values disclosed
herein can be exact values or can be values within a range. Further, any terms of
approximation (e.g., "about", "approximately", "around") used in this disclosure can
mean the stated value within a range. For example, in certain embodiments, the range
can be within (plus or minus) 20%, or within 10%, or within 5%, or within 2%, or within
any other suitable percentage or number as appreciated by those having ordinary skill
in the art (e.g., for known tolerance limits or error ranges).
[0032] The embodiments of the present disclosure, as described above and shown in the drawings,
provide for improvement in the art to which they pertain. While the subject disclosure
includes reference to certain embodiments, those skilled in the art will readily appreciate
that changes and/or modifications may be made thereto without departing from the scope
of the invention as defined by the claims.
1. An additively manufactured heat exchanger, comprising:
a plurality of vertically built fins (101,301); and
a plurality of non-horizontally built parting sheets (103,303), wherein the plurality
of vertically built fins extend between and connect to the plurality of parting sheets.
2. The heat exchanger of claim 1, further comprising a plurality of layers of fins and
parting sheets.
3. The heat exchanger of claim 2, further comprising first (109,309) and second flow
circuits for allowing separate fluid flows to flow through the heat exchanger to exchange
heat therebetween.
4. The heat exchanger of claim 3, wherein the first and second flow circuits are perpendicular
flow circuits.
5. The heat exchanger of claim 1, wherein the parting sheets are flat shaped, wherein
the plurality of fins are angled at a non-right angle to the parting sheets, or wherein
the parting sheets are non-flat shaped.
6. The heat exchanger of claim 5, wherein the parting sheets are curved into the vertical
build direction.
7. The heat exchanger of claim 3, wherein the first and second flow circuits include
counter flow circuits and or combination of cross and counter flow circuits.
8. A method for additively manufacturing a heat exchanger, comprising:
vertically building a plurality of fins; and
non-horizontally building a plurality of parting sheets, wherein the plurality of
vertically built fins extend between and connect to the plurality of parting sheets.
9. The method of claim 8, further comprising angling the parting sheets at a non-right
angle relative to build direction during building.
10. The method of claim 9, further comprising building a support structure to support
the heat exchanger while building the heat exchanger.
11. The method of claim 8, 9 or 10, wherein non-horizontally building the plurality of
parting sheets includes building a plurality of flat parting sheets, or wherein non-horizontally
building the plurality of parting sheets includes building a plurality of curved parting
sheets.
12. The method of claim 11, wherein the fins are flat, thin walled fins
13. The method of claim 11 or 12, wherein the fins include at least one of straight fins,
wavy fins, or stripe fins.
14. The method of any of claims 11 to 13, wherein building the plurality of curved parting
sheets includes building a first curved parting sheet, then vertically building the
plurality of fins, wherein vertically building the plurality of fins includes vertically
building the plurality of fins on a first curved parting sheet.
15. The method of claim 14, wherein building the plurality of curved parting sheets includes
building a second curved parting sheet on the plurality of fins.