
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

54
7

11
9

A
2

TEPZZ¥547__9A T
(11) EP 3 547 119 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.10.2019 Bulletin 2019/40

(21) Application number: 19163322.1

(22) Date of filing: 15.03.2019

(51) Int Cl.:
G06F 9/30 (2018.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 30.03.2018 US 201815941945

(71) Applicant: INTEL Corporation
Santa Clara, CA 95054 (US)

(72) Inventors:
• ABOUD, Amjad

24908 Kfar Yasif, OT (IL)
• HABER, Gadi

36862 Nesher, OT (IL)
• STARK, Jared

Portland, OR 97210 (US)

(74) Representative: Samson & Partner Patentanwälte
mbB
Widenmayerstraße 6
80538 München (DE)

(54) APPARATUS AND METHOD FOR SPECULATIVE CONDITIONAL MOVE OPERATION

(57) An apparatus and method for a speculative conditional move instruction. A processor comprising: a decoder to
decode a first speculative conditional move instruction; a prediction storage to store prediction data related to previously
executed speculative conditional move instructions; and execution circuitry to read first prediction data associated with
the speculative conditional move instruction and to execute the speculative conditional move instruction either specu-
latively or non-speculatively based on the first prediction data.

EP 3 547 119 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

Field of the Invention

[0001] The embodiments of the invention relate generally to the field of computer processors. More particularly, the
embodiments relate to an apparatus and method for decoding and executing a speculative conditional move operation.

Description of the Related Art

[0002] An instruction set, or instruction set architecture (ISA), is the part of the computer architecture related to pro-
gramming, including the native data types, instructions, register architecture, addressing modes, memory architecture,
interrupt and exception handling, and external input and output (I/O). It should be noted that the term "instruction"
generally refers herein to macro-instructions - that is instructions that are provided to the processor for execution - as
opposed to micro-instructions or micro-ops - that is the result of a processor’s decoder decoding macro-instructions.
The micro-instructions or micro-ops can be configured to instruct an execution unit on the processor to perform operations
to implement the logic associated with the macro-instruction.
[0003] The ISA is distinguished from the microarchitecture, which is the set of processor design techniques used to
implement the instruction set. Processors with different microarchitectures can share a common instruction set. For
example, Intel® Pentium 4 processors, Intel® Core™ processors, and processors from Advanced Micro Devices, Inc.
of Sunnyvale CA implement nearly identical versions of the x86 instruction set (with some extensions that have been
added with newer versions), but have different internal designs. For example, the same register architecture of the ISA
may be implemented in different ways in different microarchitectures using well-known techniques, including dedicated
physical registers, one or more dynamically allocated physical registers using a register renaming mechanism (e.g., the
use of a Register Alias Table (RAT), a Reorder Buffer (ROB) and a retirement register file). Unless otherwise specified,
the phrases register architecture, register file, and register are used herein to refer to that which is visible to the soft-
ware/programmer and the manner in which instructions specify registers. Where a distinction is required, the adjective
"logical," "architectural," or "software visible" will be used to indicate registers/files in the register architecture, while
different adjectives will be used to designate registers in a given microarchitecture (e.g., physical register, reorder buffer,
retirement register, register pool).

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] A better understanding of the present invention can be obtained from the following detailed description in
conjunction with the following drawings, in which:

FIGS. 1A and 1B are block diagrams illustrating a generic vector friendly instruction format and instruction templates
thereof according to embodiments of the invention;
FIGS. 2A-C are block diagrams illustrating an exemplary VEX instruction format according to embodiments of the
invention;
FIG. 3 is a block diagram of a register architecture according to one embodiment of the invention; and
FIG. 4A is a block diagram illustrating both an exemplary in-order fetch, decode, retire pipeline and an exemplary
register renaming, out-of-order issue/execution pipeline according to embodiments of the invention;
FIG. 4B is a block diagram illustrating both an exemplary embodiment of an in-order fetch, decode, retire core and
an exemplary register renaming, out-of-order issue/execution architecture core to be included in a processor ac-
cording to embodiments of the invention;
FIG. 5A is a block diagram of a single processor core, along with its connection to an on-die interconnect network;
FIG. 5B illustrates an expanded view of part of the processor core in FIG 5A according to embodiments of the
invention;
FIG. 6 is a block diagram of a single core processor and a multicore processor with integrated memory controller
and graphics according to embodiments of the invention;
FIG. 7 illustrates a block diagram of a system in accordance with one embodiment of the present invention;
FIG. 8 illustrates a block diagram of a second system in accordance with an embodiment of the present invention;
FIG. 9 illustrates a block diagram of a third system in accordance with an embodiment of the present invention;
FIG. 10 illustrates a block diagram of a system on a chip (SoC) in accordance with an embodiment of the present
invention;
FIG. 11 illustrates a block diagram contrasting the use of a software instruction converter to convert binary instructions

EP 3 547 119 A2

3

5

10

15

20

25

30

35

40

45

50

55

in a source instruction set to binary instructions in a target instruction set according to embodiments of the invention;
FIG. 12 illustrates a processor architecture on which embodiments of the invention may be implemented;
FIG. 13 illustrates additional details of one embodiment of the processor architecture; and
FIG. 14 illustrates a method in accordance with one embodiment of the invention.

DETAILED DESCRIPTION

[0005] In the following description, for the purposes of explanation, numerous specific details are set forth in order to
provide a thorough understanding of the embodiments of the invention described below. It will be apparent, however,
to one skilled in the art that the embodiments of the invention may be practiced without some of these specific details.
In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying
principles of the embodiments of the invention.

EXEMPLARY PROCESSOR ARCHITECTURES, INSTRUCTION FORMATS, AND DATA TYPES

[0006] An instruction set includes one or more instruction formats. A given instruction format defines various fields
(number of bits, location of bits) to specify, among other things, the operation to be performed (opcode) and the operand(s)
on which that operation is to be performed. Some instruction formats are further broken down though the definition of
instruction templates (or subformats). For example, the instruction templates of a given instruction format may be defined
to have different subsets of the instruction format’s fields (the included fields are typically in the same order, but at least
some have different bit positions because there are less fields included) and/or defined to have a given field interpreted
differently. Thus, each instruction of an ISA is expressed using a given instruction format (and, if defined, in a given one
of the instruction templates of that instruction format) and includes fields for specifying the operation and the operands.
For example, an exemplary ADD instruction has a specific opcode and an instruction format that includes an opcode
field to specify that opcode and operand fields to select operands (source1/destination and source2); and an occurrence
of this ADD instruction in an instruction stream will have specific contents in the operand fields that select specific
operands.
[0007] Embodiments of the instruction(s) described herein may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed below. Embodiments of the instruction(s) may be executed on
such systems, architectures, and pipelines, but are not limited to those detailed.

Generic Vector Friendly Instruction Format

[0008] A vector friendly instruction format is an instruction format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodiments are described in which both vector and scalar operations
are supported through the vector friendly instruction format, alternative embodiments use only vector operations the
vector friendly instruction format.
[0009] Figures 1A-1 B are block diagrams illustrating a generic vector friendly instruction format and instruction
templates thereof according to embodiments of the invention. Figure 1A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates thereof according to embodiments of the invention; while
Figure 1B is a block diagram illustrating the generic vector friendly instruction format and class B instruction templates
thereof according to embodiments of the invention. Specifically, a generic vector friendly instruction format 100 for which
are defined class A and class B instruction templates, both of which include no memory access 105 instruction templates
and memory access 120 instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.
[0010] While embodiments of the invention will be described in which the vector friendly instruction format supports
the following: a 64 byte vector operand length (or size) with 32 bit (4 byte) or 64 bit (8 byte) data element widths (or
sizes) (and thus, a 64 byte vector consists of either 16 doubleword-size elements or alternatively, 8 quadword-size
elements); a 64 byte vector operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes);
a 32 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element
widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8
bit (1 byte) data element widths (or sizes); alternative embodiments may support more, less and/or different vector
operand sizes (e.g., 256 byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).
[0011] The class A instruction templates in Figure 1A include: 1) within the no memory access 105 instruction templates
there is shown a no memory access, full round control type operation 110 instruction template and a no memory access,
data transform type operation 115 instruction template; and 2) within the memory access 120 instruction templates there
is shown a memory access, temporal 125 instruction template and a memory access, non-temporal 130 instruction

EP 3 547 119 A2

4

5

10

15

20

25

30

35

40

45

50

55

template. The class B instruction templates in Figure 1B include: 1) within the no memory access 105 instruction
templates there is shown a no memory access, write mask control, partial round control type operation 112 instruction
template and a no memory access, write mask control, vsize type operation 117 instruction template; and 2) within the
memory access 120 instruction templates there is shown a memory access, write mask control 127 instruction template.
[0012] The generic vector friendly instruction format 100 includes the following fields listed below in the order illustrated
in Figures 1A-1B.
[0013] Format field 140 - a specific value (an instruction format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of instructions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is not needed for an instruction set that has only the generic
vector friendly instruction format.
[0014] Base operation field 142 - its content distinguishes different base operations.
[0015] Register index field 144 - its content, directly or through address generation, specifies the locations of the
source and destination operands, be they in registers or in memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) register file. While in one embodiment N may be up
to three sources and one destination register, alternative embodiments may support more or less sources and destination
registers (e.g., may support up to two sources where one of these sources also acts as the destination, may support up
to three sources where one of these sources also acts as the destination, may support up to two sources and one
destination).
[0016] Modifier field 146 - its content distinguishes occurrences of instructions in the generic vector instruction format
that specify memory access from those that do not; that is, between no memory access 105 instruction templates and
memory access 120 instruction templates. Memory access operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination addresses using values in registers), while non-memory access
operations do not (e.g., the source and destinations are registers). While in one embodiment this field also selects
between three different ways to perform memory address calculations, alternative embodiments may support more,
less, or different ways to perform memory address calculations.
[0017] Augmentation operation field 150 - its content distinguishes which one of a variety of different operations to be
performed in addition to the base operation. This field is context specific. In one embodiment of the invention, this field
is divided into a class field 168, an alpha field 152, and a beta field 154. The augmentation operation field 150 allows
common groups of operations to be performed in a single instruction rather than 2, 3, or 4 instructions.
[0018] Scale field 160 - its content allows for the scaling of the index field’s content for memory address generation
(e.g., for address generation that uses 2scale * index + base).
[0019] Displacement Field 162A- its content is used as part of memory address generation (e.g., for address generation
that uses 2scale * index + base + displacement).
[0020] Displacement Factor Field 162B (note that the juxtaposition of displacement field 162A directly over displace-
ment factor field 162B indicates one or the other is used) - its content is used as part of address generation; it specifies
a displacement factor that is to be scaled by the size of a memory access (N) - where N is the number of bytes in the
memory access (e.g., for address generation that uses 2scale * index + base + scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor field’s content is multiplied by the memory operands total size
(N) in order to generate the final displacement to be used in calculating an effective address. The value of N is determined
by the processor hardware at runtime based on the full opcode field 174 (described later herein) and the data manipulation
field 154C. The displacement field 162A and the displacement factor field 162B are optional in the sense that they are
not used for the no memory access 105 instruction templates and/or different embodiments may implement only one or
none of the two.
[0021] Data element width field 164 - its content distinguishes which one of a number of data element widths is to be
used (in some embodiments for all instructions; in other embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data element width is supported and/or data element widths are
supported using some aspect of the opcodes.
[0022] Write mask field 170 - its content controls, on a per data element position basis, whether that data element
position in the destination vector operand reflects the result of the base operation and augmentation operation. Class
A instruction templates support merging-writemasking, while class B instruction templates support both merging- and
zeroing-writemasking. When merging, vector masks allow any set of elements in the destination to be protected from
updates during the execution of any operation (specified by the base operation and the augmentation operation); in
other one embodiment, preserving the old value of each element of the destination where the corresponding mask bit
has a 0. In contrast, when zeroing vector masks allow any set of elements in the destination to be zeroed during the
execution of any operation (specified by the base operation and the augmentation operation); in one embodiment, an
element of the destination is set to 0 when the corresponding mask bit has a 0 value. A subset of this functionality is the
ability to control the vector length of the operation being performed (that is, the span of elements being modified, from
the first to the last one); however, it is not necessary that the elements that are modified be consecutive. Thus, the write

EP 3 547 119 A2

5

5

10

15

20

25

30

35

40

45

50

55

mask field 170 allows for partial vector operations, including loads, stores, arithmetic, logical, etc. While embodiments
of the invention are described in which the write mask field’s 170 content selects one of a number of write mask registers
that contains the write mask to be used (and thus the write mask field’s 170 content indirectly identifies that masking to
be performed), alternative embodiments instead or additional allow the mask write field’s 170 content to directly specify
the masking to be performed.
[0023] Immediate field 172 - its content allows for the specification of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic vector friendly format that does not support immediate and it is
not present in instructions that do not use an immediate.
[0024] Class field 168 - its content distinguishes between different classes of instructions. With reference to Figures
1A-B, the contents of this field select between class A and class B instructions. In Figures 1A-B, rounded corner squares
are used to indicate a specific value is present in a field (e.g., class A 168A and class B 168B for the class field 168
respectively in Figures 1A-B).

Instruction Templates of Class A

[0025] In the case of the non-memory access 105 instruction templates of class A, the alpha field 152 is interpreted
as an RS field 152A, whose content distinguishes which one of the different augmentation operation types are to be
performed (e.g., round 152A.1 and data transform 152A.2 are respectively specified for the no memory access, round
type operation 110 and the no memory access, data transform type operation 115 instruction templates), while the beta
field 154 distinguishes which of the operations of the specified type is to be performed. In the no memory access 105
instruction templates, the scale field 160, the displacement field 162A, and the displacement scale filed 162B are not
present.

No-Memory Access Instruction Templates - Full Round Control Type Operation

[0026] In the no memory access full round control type operation 110 instruction template, the beta field 154 is inter-
preted as a round control field 154A, whose content(s) provide static rounding. While in the described embodiments of
the invention the round control field 154A includes a suppress all floating point exceptions (SAE) field 156 and a round
operation control field 158, alternative embodiments may support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g., may have only the round operation control field 158).
[0027] SAE field 156 - its content distinguishes whether or not to disable the exception event reporting; when the SAE
field’s 156 content indicates suppression is enabled, a given instruction does not report any kind of floating-point exception
flag and does not raise any floating point exception handler.
[0028] Round operation control field 158 - its content distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 158 allows for the changing of the rounding mode on a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying rounding modes, the round operation control field’s 150
content overrides that register value.

No Memory Access Instruction Templates - Data Transform Type Operation

[0029] In the no memory access data transform type operation 115 instruction template, the beta field 154 is interpreted
as a data transform field 154B, whose content distinguishes which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).
[0030] In the case of a memory access 120 instruction template of class A, the alpha field 152 is interpreted as an
eviction hint field 152B, whose content distinguishes which one of the eviction hints is to be used (in Figure 1A, temporal
152B.1 and non-temporal 152B.2 are respectively specified for the memory access, temporal 125 instruction template
and the memory access, non-temporal 130 instruction template), while the beta field 154 is interpreted as a data ma-
nipulation field 154C, whose content distinguishes which one of a number of data manipulation operations (also known
as primitives) is to be performed (e.g., no manipulation; broadcast; up conversion of a source; and down conversion of
a destination). The memory access 120 instruction templates include the scale field 160, and optionally the displacement
field 162A or the displacement scale field 162B.
[0031] Vector memory instructions perform vector loads from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instructions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is dictated by the contents of the vector mask that is selected as
the write mask.

EP 3 547 119 A2

6

5

10

15

20

25

30

35

40

45

50

55

Memory Access Instruction Templates - Temporal

[0032] Temporal data is data likely to be reused soon enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways, including ignoring the hint entirely.

Memory Access Instruction Templates - Non-Temporal

[0033] Non-temporal data is data unlikely to be reused soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however, a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0034] In the case of the instruction templates of class B, the alpha field 152 is interpreted as a write mask control (Z)
field 152C, whose content distinguishes whether the write masking controlled by the write mask field 170 should be a
merging or a zeroing.
[0035] In the case of the non-memory access 105 instruction templates of class B, part of the beta field 154 is interpreted
as an RL field 157A, whose content distinguishes which one of the different augmentation operation types are to be
performed (e.g., round 157A.1 and vector length (VSIZE) 157A.2 are respectively specified for the no memory access,
write mask control, partial round control type operation 112 instruction template and the no memory access, write mask
control, VSIZE type operation 117 instruction template), while the rest of the beta field 154 distinguishes which of the
operations of the specified type is to be performed. In the no memory access 105 instruction templates, the scale field
160, the displacement field 162A, and the displacement scale filed 162B are not present.
[0036] In the no memory access, write mask control, partial round control type operation 110 instruction template, the
rest of the beta field 154 is interpreted as a round operation field 159A and exception event reporting is disabled (a given
instruction does not report any kind of floating-point exception flag and does not raise any floating point exception handler).
[0037] Round operation control field 159A -just as round operation control field 158, its content distinguishes which
one of a group of rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-to-
nearest). Thus, the round operation control field 159A allows for the changing of the rounding mode on a per instruction
basis. In one embodiment of the invention where a processor includes a control register for specifying rounding modes,
the round operation control field’s 150 content overrides that register value.
[0038] In the no memory access, write mask control, VSIZE type operation 117 instruction template, the rest of the
beta field 154 is interpreted as a vector length field 159B, whose content distinguishes which one of a number of data
vector lengths is to be performed on (e.g., 128, 256, or 512 byte).
[0039] In the case of a memory access 120 instruction template of class B, part of the beta field 154 is interpreted as
a broadcast field 157B, whose content distinguishes whether or not the broadcast type data manipulation operation is
to be performed, while the rest of the beta field 154 is interpreted the vector length field 159B. The memory access 120
instruction templates include the scale field 160, and optionally the displacement field 162A or the displacement scale
field 162B.
[0040] With regard to the generic vector friendly instruction format 100, a full opcode field 174 is shown including the
format field 140, the base operation field 142, and the data element width field 164. While one embodiment is shown
where the full opcode field 174 includes all of these fields, the full opcode field 174 includes less than all of these fields
in embodiments that do not support all of them. The full opcode field 174 provides the operation code (opcode).
[0041] The augmentation operation field 150, the data element width field 164, and the write mask field 170 allow
these features to be specified on a per instruction basis in the generic vector friendly instruction format.
[0042] The combination of write mask field and data element width field create typed instructions in that they allow
the mask to be applied based on different data element widths.
[0043] The various instruction templates found within class A and class B are beneficial in different situations. In some
embodiments of the invention, different processors or different cores within a processor may support only class A, only
class B, or both classes. For instance, a high performance general purpose out-of-order core intended for general-
purpose computing may support only class B, a core intended primarily for graphics and/or scientific (throughput) com-
puting may support only class A, and a core intended for both may support both (of course, a core that has some mix
of templates and instructions from both classes but not all templates and instructions from both classes is within the
purview of the invention). Also, a single processor may include multiple cores, all of which support the same class or in
which different cores support different class. For instance, in a processor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may support only class A,
while one or more of the general purpose cores may be high performance general purpose cores with out of order
execution and register renaming intended for general-purpose computing that support only class B. Another processor

EP 3 547 119 A2

7

5

10

15

20

25

30

35

40

45

50

55

that does not have a separate graphics core, may include one more general purpose in-order or out-of-order cores that
support both class A and class B. Of course, features from one class may also be implement in the other class in different
embodiments of the invention. Programs written in a high level language would be put (e.g., just in time compiled or
statically compiled) into an variety of different executable forms, including: 1) a form having only instructions of the
class(es) supported by the target processor for execution; or 2) a form having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the routines to execute based
on the instructions supported by the processor which is currently executing the code.

VEX Instruction Format

[0044] VEX encoding allows instructions to have more than two operands, and allows SIMD vector registers to be
longer than 28 bits. The use of a VEX prefix provides for three-operand (or more) syntax. For example, previous two-
operand instructions performed operations such as A = A + B, which overwrites a source operand. The use of a VEX
prefix enables operands to perform nondestructive operations such as A = B + C.
[0045] Figure 2A illustrates an exemplary AVX instruction format including a VEX prefix 202, real opcode field 230,
Mod R/M byte 240, SIB byte 250, displacement field 262, and IMM8 272. Figure 2B illustrates which fields from Figure
2A make up a full opcode field 274 and a base operation field 241. Figure 2C illustrates which fields from Figure 2A
make up a register index field 244.
[0046] VEX Prefix (Bytes 0-2) 202 is encoded in a three-byte form. The first byte is the Format Field 290 (VEX Byte
0, bits [7:0]), which contains an explicit C4 byte value (the unique value used for distinguishing the C4 instruction format).
The second-third bytes (VEX Bytes 1-2) include a number of bit fields providing specific capability. Specifically, REX
field 205 (VEX Byte 1, bits [7-5]) consists of a VEX.R bit field (VEX Byte 1, bit [7] - R), VEX.X bit field (VEX byte 1, bit
[6] - X), and VEX.B bit field (VEX byte 1, bit[5] - B). Other fields of the instructions encode the lower three bits of the
register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed by adding VEX.R,
VEX.X, and VEX.B. Opcode map field 215 (VEX byte 1, bits [4:0] - mmmmm) includes content to encode an implied
leading opcode byte. W Field 264 (VEX byte 2, bit [7] - W) - is represented by the notation VEX.W, and provides different
functions depending on the instruction. The role of VEX.vvvv 220 (VEX Byte 2, bits [6:3]-vvvv) may include the following:
1) VEX.vvvv encodes the first source register operand, specified in inverted (1s complement) form and is valid for
instructions with 2 or more source operands; 2) VEX.vvvv encodes the destination register operand, specified in 1s
complement form for certain vector shifts; or 3) VEX.vvvv does not encode any operand, the field is reserved and should
contain 1111b. If VEX.L 268 Size field (VEX byte 2, bit [2]-L) = 0, it indicates 28 bit vector; if VEX.L = 1, it indicates 256
bit vector. Prefix encoding field 225 (VEX byte 2, bits [1:0]-pp) provides additional bits for the base operation field 241.
[0047] Real Opcode Field 230 (Byte 3) is also known as the opcode byte. Part of the opcode is specified in this field.
[0048] MOD R/M Field 240 (Byte 4) includes MOD field 242 (bits [7-6]), Reg field 244 (bits [5-3]), and R/M field 246
(bits [2-0]). The role of Reg field 244 may include the following: encoding either the destination register operand or a
source register operand (the rrr of Rrrr), or be treated as an opcode extension and not used to encode any instruction
operand. The role of R/M field 246 may include the following: encoding the instruction operand that references a memory
address, or encoding either the destination register operand or a source register operand.
[0049] Scale, Index, Base (SIB) - The content of Scale field 250 (Byte 5) includes SS252 (bits [7-6]), which is used
for memory address generation. The contents of SIB.xxx 254 (bits [5-3]) and SIB.bbb 256 (bits [2-0]) have been previously
referred to with regard to the register indexes Xxxx and Bbbb.
[0050] The Displacement Field 262 and the immediate field (IMM8) 272 contain data.

Exemplary Register Architecture

[0051] Figure 3 is a block diagram of a register architecture 300 according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 310 that are 512 bits wide; these registers are referenced as zmm0
through zmm31. The lower order 256 bits of the lower 6 zmm registers are overlaid on registers ymm0-15. The lower
order 128 bits of the lower 6 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on registers
xmm0-15.
[0052] General-purpose registers 325 - in the embodiment illustrated, there are sixteen 64-bit general-purpose registers
that are used along with the existing x86 addressing modes to address memory operands. These registers are referenced
by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and R8 through R15.
[0053] Scalar floating point stack register file (x87 stack) 345, on which is aliased the MMX packed integer flat register
file 350 - in the embodiment illustrated, the x87 stack is an eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87 instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well as to hold operands for some operations performed between
the MMX and XMM registers.

EP 3 547 119 A2

8

5

10

15

20

25

30

35

40

45

50

55

[0054] Alternative embodiments of the invention may use wider or narrower registers. Additionally, alternative embod-
iments of the invention may use more, less, or different register files and registers.

Exemplary Core Architectures, Processors, and Computer Architectures

[0055] Processor cores may be implemented in different ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or scientific (throughput) computing. Implementations of different
processors may include: 1) a CPU including one or more general purpose in-order cores intended for general-purpose
computing and/or one or more general purpose out-of-order cores intended for general-purpose computing; and 2) a
coprocessor including one or more special purpose cores intended primarily for graphics and/or scientific (throughput).
Such different processors lead to different computer system architectures, which may include: 1) the coprocessor on a
separate chip from the CPU; 2) the coprocessor on a separate die in the same package as a CPU; 3) the coprocessor
on the same die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose logic, such
as integrated graphics and/or scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that
may include on the same die the described CPU (sometimes referred to as the application core(s) or application proc-
essor(s)), the above described coprocessor, and additional functionality. Exemplary core architectures are described
next, followed by descriptions of exemplary processors and computer architectures. Detailed herein are circuits (units)
that comprise exemplary cores, processors, etc.

Exemplary Core Architectures

[0056] Figure 4A is a block diagram illustrating both an exemplary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodiments of the invention. Figure 4B is a block diagram illustrating
both an exemplary embodiment of an in-order architecture core and an exemplary register renaming, out-of-order is-
sue/execution architecture core to be included in a processor according to embodiments of the invention. The solid lined
boxes in Figures 4A-B illustrate the in-order pipeline and in-order core, while the optional addition of the dashed lined
boxes illustrates the register renaming, out-of-order issue/execution pipeline and core. Given that the in-order aspect is
a subset of the out-of-order aspect, the out-of-order aspect will be described.
[0057] In Figure 4A, a processor pipeline 400 includes a fetch stage 402, a length decode stage 404, a decode stage
406, an allocation stage 408, a renaming stage 410, a scheduling (also known as a dispatch or issue) stage 412, a
register read/memory read stage 414, an execute stage 416, a write back/memory write stage 418, an exception handling
stage 422, and a commit stage 424.
[0058] Figure 4B shows processor core 490 including a front end unit 430 coupled to an execution engine unit 450,
and both are coupled to a memory unit 470. The core 490 may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long instruction word (VLIW) core, or a hybrid or alternative core
type. As yet another option, the core 490 may be a special-purpose core, such as, for example, a network or communication
core, compression engine, coprocessor core, general purpose computing graphics processing unit (GPGPU) core,
graphics core, or the like.
[0059] The front end unit 430 includes a branch prediction unit 432 coupled to an instruction cache unit 434, which is
coupled to an instruction translation lookaside buffer (TLB) 436, which is coupled to an instruction fetch unit 438, which
is coupled to a decode unit 440. The decode unit 440 (or decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points, microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are derived from, the original instructions. The decode unit 440
may be implemented using various different mechanisms. Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable logic arrays (PLAs), microcode read only memories
(ROMs), etc. In one embodiment, the core 490 includes a microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 440 or otherwise within the front end unit 430). The decode unit 440 is
coupled to a rename/allocator unit 452 in the execution engine unit 450.
[0060] The execution engine unit 450 includes the rename/allocator unit 452 coupled to a retirement unit 454 and a
set of one or more scheduler unit(s) 456. The scheduler unit(s) 456 represents any number of different schedulers,
including reservations stations, central instruction window, etc. The scheduler unit(s) 456 is coupled to the physical
register file(s) unit(s) 458. Each of the physical register file(s) units 458 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar floating point, packed integer,
packed floating point, vector integer, vector floating point, status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. In one embodiment, the physical register file(s) unit 458 comprises a vector registers
unit and a scalar registers unit. These register units may provide architectural vector registers, vector mask registers,

EP 3 547 119 A2

9

5

10

15

20

25

30

35

40

45

50

55

and general purpose registers. The physical register file(s) unit(s) 458 is overlapped by the retirement unit 454 to illustrate
various ways in which register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s)
and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement register file(s); using a register
maps and a pool of registers; etc.). The retirement unit 454 and the physical register file(s) unit(s) 458 are coupled to
the execution cluster(s) 460. The execution cluster(s) 460 includes a set of one or more execution units 462 and a set
of one or more memory access units 464. The execution units 462 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodiments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 456, physical register file(s) unit(s) 458, and execution cluster(s)
460 are shown as being possibly plural because certain embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed integer/packed floating point/vector inte-
ger/vector floating point pipeline, and/or a memory access pipeline that each have their own scheduler unit, physical
register file(s) unit, and/or execution cluster - and in the case of a separate memory access pipeline, certain embodiments
are implemented in which only the execution cluster of this pipeline has the memory access unit(s) 464). It should also
be understood that where separate pipelines are used, one or more of these pipelines may be out-of-order issue/execution
and the rest in-order.
[0061] The set of memory access units 464 is coupled to the memory unit 470, which includes a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (L2) cache unit 476. In one exemplary embodiment, the memory
access units 464 may include a load unit, a store address unit, and a store data unit, each of which is coupled to the
data TLB unit 472 in the memory unit 470. The instruction cache unit 434 is further coupled to a level 2 (L2) cache unit
476 in the memory unit 470. The L2 cache unit 476 is coupled to one or more other levels of cache and eventually to a
main memory.
[0062] By way of example, the exemplary register renaming, out-of-order issue/execution core architecture may im-
plement the pipeline 400 as follows: 1) the instruction fetch 438 performs the fetch and length decoding stages 402 and
404; 2) the decode unit 440 performs the decode stage 406; 3) the rename/allocator unit 452 performs the allocation
stage 408 and renaming stage 410; 4) the scheduler unit(s) 456 performs the schedule stage 412; 5) the physical register
file(s) unit(s) 458 and the memory unit 470 perform the register read/memory read stage 414; the execution cluster 460
perform the execute stage 416; 6) the memory unit 470 and the physical register file(s) unit(s) 458 perform the write
back/memory write stage 418; 7) various units may be involved in the exception handling stage 422; and 8) the retirement
unit 454 and the physical register file(s) unit(s) 458 perform the commit stage 424.
[0063] The core 490 may support one or more instructions sets (e.g., the x86 instruction set (with some extensions
that have been added with newer versions); the MIPS instruction set of MIPS Technologies of Sunnyvale, CA; the ARM
instruction set (with optional additional extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the
instruction(s) described herein. In one embodiment, the core 490 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2), thereby allowing the operations used by many multimedia applications to be performed
using packed data.
[0064] It should be understood that the core may support multithreading (executing two or more parallel sets of oper-
ations or threads), and may do so in a variety of ways including time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading thereafter
such as in the Intel® Hyperthreading technology).
[0065] While register renaming is described in the context of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture. While the illustrated embodiment of the processor also
includes separate instruction and data cache units 434/474 and a shared L2 cache unit 476, alternative embodiments
may have a single internal cache for both instructions and data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the system may include a combination of an internal cache and
an external cache that is external to the core and/or the processor. Alternatively, all of the cache may be external to the
core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0066] Figures 5A-B illustrate a block diagram of a more specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect network (e.g., a ring network) with some fixed function logic,
memory I/O interfaces, and other necessary I/O logic, depending on the application.
[0067] Figure 5A is a block diagram of a single processor core, along with its connection to the on-die interconnect
network 502 and with its local subset of the Level 2 (L2) cache 504, according to embodiments of the invention. In one

EP 3 547 119 A2

10

5

10

15

20

25

30

35

40

45

50

55

embodiment, an instruction decoder 500 supports the x86 instruction set with a packed data instruction set extension.
An L1 cache 506 allows low-latency accesses to cache memory into the scalar and vector units. While in one embodiment
(to simplify the design), a scalar unit 508 and a vector unit 510 use separate register sets (respectively, scalar registers
512 and vector registers 514) and data transferred between them is written to memory and then read back in from a
level 1 (L1) cache 506, alternative embodiments of the invention may use a different approach (e.g., use a single register
set or include a communication path that allow data to be transferred between the two register files without being written
and read back).
[0068] The local subset of the L2 cache 504 is part of a global L2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct access path to its own local subset of the L2 cache 504. Data
read by a processor core is stored in its L2 cache subset 504 and can be accessed quickly, in parallel with other processor
cores accessing their own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache subset
504 and is flushed from other subsets, if necessary. The ring network ensures coherency for shared data. The ring
network is bi-directional to allow agents such as processor cores, L2 caches and other logic blocks to communicate with
each other within the chip. Each ring data-path is 1024-bits wide per direction in some embodiments.
[0069] Figure 5B is an expanded view of part of the processor core in Figure 5A according to embodiments of the
invention. Figure 5B includes an L1 data cache 506A part of the L1 cache 504, as well as more detail regarding the
vector unit 510 and the vector registers 514. Specifically, the vector unit 510 is a 6-wide vector processing unit (VPU)
(see the 16-wide ALU 528), which executes one or more of integer, single-precision float, and double-precision float
instructions. The VPU supports swizzling the register inputs with swizzle unit 520, numeric conversion with numeric
convert units 522A-B, and replication with replication unit 524 on the memory input.

Processor with integrated memory controller and graphics

[0070] Figure 6 is a block diagram of a processor 600 that may have more than one core, may have an integrated
memory controller, and may have integrated graphics according to embodiments of the invention. The solid lined boxes
in Figure 6 illustrate a processor 600 with a single core 602A, a system agent 610, a set of one or more bus controller
units 616, while the optional addition of the dashed lined boxes illustrates an alternative processor 600 with multiple
cores 602A-N, a set of one or more integrated memory controller unit(s) 614 in the system agent unit 610, and special
purpose logic 608.
[0071] Thus, different implementations of the processor 600 may include: 1) a CPU with the special purpose logic 608
being integrated graphics and/or scientific (throughput) logic (which may include one or more cores), and the cores
602A-N being one or more general purpose cores (e.g., general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the cores 602A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the cores 602A-N being a large
number of general purpose in-order cores. Thus, the processor 600 may be a general-purpose processor, coprocessor
or special-purpose processor, such as, for example, a network or communication processor, compression engine, graph-
ics processor, GPGPU (general purpose graphics processing unit), a high-throughput many integrated core (MIC) co-
processor (including 30 or more cores), embedded processor, or the like. The processor may be implemented on one
or more chips. The processor 600 may be a part of and/or may be implemented on one or more substrates using any
of a number of process technologies, such as, for example, BiCMOS, CMOS, or NMOS.
[0072] The memory hierarchy includes one or more levels of cache within the cores 604A-N, a set or one or more
shared cache units 606, and external memory (not shown) coupled to the set of integrated memory controller units 614.
The set of shared cache units 606 may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4
(L4), or other levels of cache, a last level cache (LLC), and/or combinations thereof. While in one embodiment a ring
based interconnect unit 612 interconnects the integrated graphics logic 608, the set of shared cache units 606, and the
system agent unit 610/integrated memory controller unit(s) 614, alternative embodiments may use any number of well-
known techniques for interconnecting such units. In one embodiment, coherency is maintained between one or more
cache units 606 and cores 602-A-N.
[0073] In some embodiments, one or more of the cores 602A-N are capable of multi-threading. The system agent 610
includes those components coordinating and operating cores 602A-N. The system agent unit 610 may include for
example a power control unit (PCU) and a display unit. The PCU may be or include logic and components needed for
regulating the power state of the cores 602A-N and the integrated graphics logic 608. The display unit is for driving one
or more externally connected displays.
[0074] The cores 602A-N may be homogenous or heterogeneous in terms of architecture instruction set; that is, two
or more of the cores 602A-N may be capable of execution the same instruction set, while others may be capable of
executing only a subset of that instruction set or a different instruction set.

EP 3 547 119 A2

11

5

10

15

20

25

30

35

40

45

50

55

Exemplary Computer Architectures

[0075] Figures 7-10 are block diagrams of exemplary computer architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, personal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded processors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or electronic devices capable
of incorporating a processor and/or other execution logic as disclosed herein are generally suitable.
[0076] Referring now to Figure 7, shown is a block diagram of a system 700 in accordance with one embodiment of
the present invention. The system 700 may include one or more processors 710, 715, which are coupled to a controller
hub 720. In one embodiment, the controller hub 720 includes a graphics memory controller hub (GMCH) 790 and an
Input/Output Hub (IOH) 750 (which may be on separate chips); the GMCH 790 includes memory and graphics controllers
to which are coupled memory 740 and a coprocessor 745; the IOH 750 is couples input/output (I/O) devices 760 to the
GMCH 790. Alternatively, one or both of the memory and graphics controllers are integrated within the processor (as
described herein), the memory 740 and the coprocessor 745 are coupled directly to the processor 710, and the controller
hub 720 in a single chip with the IOH 750.
[0077] The optional nature of additional processors 715 is denoted in Figure 7 with broken lines. Each processor 710,
715 may include one or more of the processing cores described herein and may be some version of the processor 600.
[0078] The memory 740 may be, for example, dynamic random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one embodiment, the controller hub 720 communicates with the proc-
essor(s) 710, 715 via a multi-drop bus, such as a frontside bus (FSB), point-to-point interface, or similar connection 795.
[0079] In one embodiment, the coprocessor 745 is a special-purpose processor, such as, for example, a high-through-
put MIC processor, a network or communication processor, compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub 720 may include an integrated graphics accelerator.
[0080] There can be a variety of differences between the physical resources 710, 7155 in terms of a spectrum of
metrics of merit including architectural, microarchitectural, thermal, power consumption characteristics, and the like.
[0081] In one embodiment, the processor 710 executes instructions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor instructions. The processor 710 recognizes these coproc-
essor instructions as being of a type that should be executed by the attached coprocessor 745. Accordingly, the processor
710 issues these coprocessor instructions (or control signals representing coprocessor instructions) on a coprocessor
bus or other interconnect, to coprocessor 745. Coprocessor(s) 745 accept and execute the received coprocessor in-
structions.
[0082] Referring now to Figure 8, shown is a block diagram of a first more specific exemplary system 800 in accordance
with an embodiment of the present invention. As shown in Figure 8, multiprocessor system 800 is a point-to-point
interconnect system, and includes a first processor 870 and a second processor 880 coupled via a point-to-point inter-
connect 850. Each of processors 870 and 880 may be some version of the processor 600. In one embodiment of the
invention, processors 870 and 880 are respectively processors 710 and 715, while coprocessor 838 is coprocessor 745.
In another embodiment, processors 870 and 880 are respectively processor 710 coprocessor 745.
[0083] Processors 870 and 880 are shown including integrated memory controller (IMC) units 872 and 882, respectively.
Processor 870 also includes as part of its bus controller units point-to-point (P-P) interfaces 876 and 878; similarly,
second processor 880 includes P-P interfaces 886 and 888. Processors 870, 880 may exchange information via a point-
to-point (P-P) interface 850 using P-P interface circuits 878, 888. As shown in Figure 8, IMCs 872 and 882 couple the
processors to respective memories, namely a memory 832 and a memory 834, which may be portions of main memory
locally attached to the respective processors.
[0084] Processors 870, 880 may each exchange information with a chipset 890 via individual P-P interfaces 852, 854
using point to point interface circuits 876, 894, 886, 898. Chipset 890 may optionally exchange information with the
coprocessor 838 via a high-performance interface 892. In one embodiment, the coprocessor 838 is a special-purpose
processor, such as, for example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like.
[0085] A shared cache (not shown) may be included in either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power mode.
[0086] Chipset 890 may be coupled to a first bus 816 via an interface 896. In one embodiment, first bus 816 may be
a Peripheral Component Interconnect (PCI) bus, or a bus such as a PCI Express bus or another I/O interconnect bus,
although the scope of the present invention is not so limited.
[0087] As shown in Figure 8, various I/O devices 814 may be coupled to first bus 816, along with a bus bridge 818
which couples first bus 816 to a second bus 820. In one embodiment, one or more additional processor(s) 815, such as
coprocessors, high-throughput MIC processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital

EP 3 547 119 A2

12

5

10

15

20

25

30

35

40

45

50

55

signal processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to first bus 816. In
one embodiment, second bus 820 may be a low pin count (LPC) bus. Various devices may be coupled to a second bus
820 including, for example, a keyboard and/or mouse 822, communication devices 827 and a storage unit 828 such as
a disk drive or other mass storage device which may include instructions/code and data 830, in one embodiment. Further,
an audio I/O 824 may be coupled to the second bus 816. Note that other architectures are possible. For example, instead
of the point-to-point architecture of Figure 8, a system may implement a multi-drop bus or other such architecture.
[0088] Referring now to Figure 9, shown is a block diagram of a second more specific exemplary system 900 in
accordance with an embodiment of the present invention. Like elements in Figures 8 and 9 bear like reference numerals,
and certain aspects of Figure 8 have been omitted from Figure 9 in order to avoid obscuring other aspects of Figure 9.
[0089] Figure 9 illustrates that the processors 870, 880 may include integrated memory and I/O control logic ("CL")
972 and 982, respectively. Thus, the CL 972, 982 include integrated memory controller units and include I/O control
logic. Figure 9 illustrates that not only are the memories 832, 834 coupled to the CL 872, 882, but also that I/O devices
914 are also coupled to the control logic 872, 882. Legacy I/O devices 915 are coupled to the chipset 890.
[0090] Referring now to Figure 10, shown is a block diagram of a SoC 1000 in accordance with an embodiment of the
present invention. Similar elements in Figure 6 bear like reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In Figure 10, an interconnect unit(s) 1002 is coupled to: an application processor
1010 which includes a set of one or more cores 102A-N, cache units 604A-N, and shared cache unit(s) 606; a system
agent unit 610; a bus controller unit(s) 616; an integrated memory controller unit(s) 614; a set or one or more coprocessors
1020 which may include integrated graphics logic, an image processor, an audio processor, and a video processor; an
static random access memory (SRAM) unit 1030; a direct memory access (DMA) unit 1032; and a display unit 1040 for
coupling to one or more external displays. In one embodiment, the coprocessor(s) 1020 include a special-purpose
processor, such as, for example, a network or communication processor, compression engine, GPGPU, a high-throughput
MIC processor, embedded processor, or the like.
[0091] Embodiments of the mechanisms disclosed herein may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodiments of the invention may be implemented as computer
programs or program code executing on programmable systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output
device.
[0092] Program code, such as code 830 illustrated in Figure 8, may be applied to input instructions to perform the
functions described herein and generate output information. The output information may be applied to one or more
output devices, in known fashion. For purposes of this application, a processing system includes any system that has
a processor, such as, for example; a digital signal processor (DSP), a microcontroller, an application specific integrated
circuit (ASIC), or a microprocessor.
[0093] The program code may be implemented in a high level procedural or object oriented programming language
to communicate with a processing system. The program code may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not limited in scope to any particular programming language.
In any case, the language may be a compiled or interpreted language.
[0094] One or more aspects of at least one embodiment may be implemented by representative instructions stored
on a machine-readable medium which represents various logic within the processor, which when read by a machine
causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as "IP
cores" may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.
[0095] Such machine-readable storage media may include, without limitation, non-transitory, tangible arrangements
of articles manufactured or formed by a machine or device, including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access
memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs),
erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), magnetic or optical cards, or any other type of media suitable
for storing electronic instructions.
[0096] Accordingly, embodiments of the invention also include non-transitory, tangible machine-readable media con-
taining instructions or containing design data, such as Hardware Description Language (HDL), which defines structures,
circuits, apparatuses, processors and/or system features described herein. Such embodiments may also be referred to
as program products.

Emulation (including binary translation, code morphing, etc.)

[0097] In some cases, an instruction converter may be used to convert an instruction from a source instruction set to

EP 3 547 119 A2

13

5

10

15

20

25

30

35

40

45

50

55

a target instruction set. For example, the instruction converter may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph, emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruction converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction converter may be on processor, off processor, or part on and part
off processor.
[0098] Figure 11 is a block diagram contrasting the use of a software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target instruction set according to embodiments of the invention. In
the illustrated embodiment, the instruction converter is a software instruction converter, although alternatively the in-
struction converter may be implemented in software, firmware, hardware, or various combinations thereof. Figure 11
shows a program in a high level language 1102 may be compiled using an first compiler 1104 to generate a first binary
code (e.g., x86) 1106 that may be natively executed by a processor with at least one first instruction set core 1116. In
some embodiments, the processor with at least one first instruction set core 1116 represents any processor that can
perform substantially the same functions as an Intel processor with at least one x86 instruction set core by compatibly
executing or otherwise processing (1) a substantial portion of the instruction set of the Intel x86 instruction set core or
(2) object code versions of applications or other software targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same result as an Intel processor with at least one x86 instruction
set core. The first compiler 1104 represents a compiler that is operable to generate binary code of the first instruction
set 1106 (e.g., object code) that can, with or without additional linkage processing, be executed on the processor with
at least one first instruction set core 1116. Similarly, Figure 11 shows the program in the high level language 1102 may
be compiled using an alternative instruction set compiler 1108 to generate alternative instruction set binary code 1110
that may be natively executed by a processor without at least one first instruction set core 1114 (e.g., a processor with
cores that execute the MIPS instruction set of MIPS Technologies of Sunnyvale, CA and/or that execute the ARM
instruction set of ARM Holdings of Sunnyvale, CA). The instruction converter 1112 is used to convert the first binary
code 1106 into code that may be natively executed by the processor without an first instruction set core 1114. This
converted code is not likely to be the same as the alternative instruction set binary code 1110 because an instruction
converter capable of this is difficult to make; however, the converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set. Thus, the instruction converter 1112 represents software,
firmware, hardware, or a combination thereof that, through emulation, simulation or any other process, allows a processor
or other electronic device that does not have a first instruction set processor or core to execute the first binary code 1106.

APPARATUS AND METHOD FOR A SPECULATIVE CONDITIONAL MOVE INSTRUCTION

[0099] Move instructions transfer data between memory and registers or between registers. A standard Move instruction
(e.g., MOV), performs the data transfer unconditionally. Conditional move instructions, such as CMOVcc, are a group
of instructions that check the state of the status flags in a control register (e.g., EFLAGS in an x86 architecture) and
perform a move operation if the flags are in a specified state. If the conditions are met, a conditional move instruction
moves values of different sizes (depending on the implementation) from memory to a general-purpose register or from
one general-purpose register to another. The flag state being tested is specified with a condition code (cc) associated
with the instruction. If the condition is not satisfied, a move is not performed and execution continues with the instruction
following the conditional move instruction.
[0100] The CMOVcc instruction in the x86 architecture is often used by compilers to avoid using conditional jump
instructions such as JC and JNC in order to reduce the branch misprediction penalty. A conditional branch can be
replaced by a CMOVcc whenever the fallthrough and/or its target is an expression that does not involve control transfer
instructions.
[0101] For example, consider the following code that uses a conditional branch:

cmp ecx,5
jne unequal
mov eax,TRUE ;fallthru does not contain control instrs.
jmp fin
unequal:
mov eax,FALSE ;target does not contain control instrs.
fin:
nop

[0102] The above code can be transformed to use CMOVcc instead of the conditional branch as follows:

cmp ecx,5

EP 3 547 119 A2

14

5

10

15

20

25

30

35

40

45

50

55

mov eax, FALSE
mov ebx, TRUE
cmove eax, ebx
nop

[0103] However, CMOVcc is profitable over a conditional branch only when the branch is not well predicted, since the
actual MOV operation is performed only after the condition is fully calculated, whereas a branch uses a prediction
mechanism and a speculative execution based on the predicted branch direction.
[0104] Embodiments of the invention improve the performance of CMOVcc instructions by adding speculation on the
condition. In particular, the condition value is first predicted and the MOV operation is performed speculatively according
to the predicted condition value. In one implementation, a prediction table containing condition values from previous
executions of the CMOV instruction is maintained at runtime. Using this history, the decode and/or execution circuitry
predicts the current conditional execution and speculatively performs the speculative conditional CMOVcc instruction
without stalling on the condition evaluation. The prediction table may be maintained in a similar way to the branch
prediction table.
[0105] Figure 12 illustrates a processor architecture on which embodiments of the invention may be implemented
including a core region 1201 and a shared, or "uncore" region 1210. The shared region 1210 includes data structures
and circuitry shared by all or a subset of the cores 1201a-b. In the illustrated embodiment, the plurality of cores 1201a-
b may be simultaneous multithreaded cores capable of concurrently executing multiple instruction streams or threads.
Although only two cores 1201a-b are illustrated in Figure 12, it will be appreciated that the core region 1201 may include
any number of cores, each of which includes the same architecture as shown for Core 1201a.
[0106] The various components illustrated in Figure 12 may be implemented in the same manner as corresponding
components in Figures 1-11. For example, the core 1201a may execute the speculative conditional move instruction
using one of the instruction formats in Figures 1a-b and 2a-c, and/or using the register architecture illustrated in Figure
3. In addition, the cores 1201a may include the components of core 490 shown in Figure 4b, and may include any
processor/ core components described herein (e.g., Figures 5a-b, Figure 6, etc).
[0107] Each of the cores 1201a-b include instruction pipeline components for performing simultaneous, out-of-order
(or in-order) execution of instruction streams including instruction fetch circuitry 1218 which fetches instructions from
system memory 1260 or the L1 instruction cache 1210 and decode circuitry 1209 to decode the instructions. Execution
circuitry 1208 executes the decoded instructions to perform the underlying operations, as specified by the instruction
operands, opcodes, and any immediate values. In the illustrated embodiment, the decoder 1209 includes speculative
CMOVcc decode circuitry 1209a to decode the speculative CMOVcc instructions and the execution circuitry 1208 includes
speculative CMOV execution circuitry 1208a to execute the speculative CMOVcc instructions. In addition, a prediction
table 1204 is included in one embodiment to maintain statistics for prior executed instances of the speculative CMOVcc
instruction (as discussed in greater detail below).
[0108] Also illustrated is a set of general purpose registers (GPRs) 1218d, a set of vector registers 1218b, a set of
mask registers 1218a, and a set of control registers 1218c. In one embodiment, multiple vector data elements are packed
into each vector register 1206 which may have a 512 bit width for storing two 256 bit values, four 128 bit values, eight
64 bit values, sixteen 32 bit values, etc. However, the underlying principles of the invention are not limited to any particular
size/type of vector data. In one embodiment, the mask registers 1207 include eight 64-bit operand mask registers used
for performing bit masking operations on the values stored in the vector registers 1206 (e.g., implemented as mask
registers k0-k7 described above). However, the underlying principles of the invention are not limited to any particular
mask register size/type.
[0109] The control registers 1218c store various types of control bits or "flags" which are used by the speculative
CMOVcc instructions described herein to determine whether the condition for the Move operation has been met. By way
of example, and not limitation, in an x86 architecture, the values within the EFLAGS register are used by one embodiment
of the speculative CMOVcc instruction. In one implementation, the speculative CMOVcc instructions, when speculated
correctly, move data from one register to another or from memory to a register. The registers may be general purpose
registers, vector registers, floating point registers, or any other type of registers.
[0110] In the illustrated embodiment, an interconnect 1206 such as an on-die interconnect (IDI) implementing an
IDI/coherence protocol communicatively couples the cores 1201a-b to one another and to various components within
the shared region 1210. For example, the interconnect 1206 couples core 1201a via interface 1207 to a level 3 (L3)
cache and an integrated memory controller 1230 which couples the processor to a system memory 1260.
[0111] The integrated memory controller 1230 provides access to a system memory 1260 when performing memory
operations (e.g., such as a MOV from system memory 1260 to a register). One or more input/output (I/O) circuits (not
shown) such as PCI express circuitry may also be included in the shared region 1210.
[0112] An instruction pointer register 1212 stores an instruction pointer address identifying the next instruction to be
fetched, decoded, and executed. Instructions may be fetched or prefetched from system memory 1260 and/or one or

EP 3 547 119 A2

15

5

10

15

20

25

30

35

40

45

50

55

more shared cache levels such as an L2 cache 1213, the shared L3 cache 1220, or the L1 instruction cache 1210. In
addition, an L1 data cache 1202 stores data loaded from system memory 1260 and/or retrieved from one of the other
cache levels 1213, 1220 which cache both instructions and data. An instruction TLB (ITLB) 1211 stores virtual address
to physical address translations for the instructions fetched by the fetch circuitry 1218 and a data TLB (DTLB) 1203
stores virtual-to-physical address translations for the data processed by the decode circuitry 1209 and execution circuitry
1208.
[0113] Figure 12 also illustrates a branch prediction unit 1221 for speculatively predicting instruction branch addresses
and branch target buffers (BTBs) 1222 for storing branch addresses and target addresses. In one embodiment, a branch
history table (not shown) or other data structure is maintained and updated for each branch prediction/misprediction and
is used by the branch prediction unit 1202 to make subsequent branch predictions.
[0114] Note that Figure 12 is not intended to provide a comprehensive view of all components and interconnects
employed within a processor. Rather, certain component which are not pertinent to the embodiments of the invention
are not shown.
[0115] In one embodiment, the non-speculative CMOVcc instruction checks the state of one or more of the status
flags in the EFLAGS register and performs a move operation if the flags are in a specified state (or condition). By way
of example, ad not limitation, the flags may include a Carry Flag (CF), an Overflow Flag (OF), a Parity Flag (PF), a Sign
Flat (SF), and a Zero Flag (ZF). A condition code (cc) is associated with each instruction to indicate the condition being
tested for. If the condition is not satisfied, a move is not performed and execution continues with the instruction following
the CMOVcc instruction.
[0116] The following are Format Examples of non-speculative CMOVcc instructions:

 CMOVcc r16,r/m16
 CMOVcc r32,r/m32
 CMOVcc flow may be represented as follows in pseudo code:
 TEMP = Source; /* This may cause a #GP or other fault */
 IF condition {
 DEST = TEMP;
 }

[0117] In one embodiment of the speculative CMOVcc instruction, instead of checking the status of the EFLAGS
register before applying the MOV operation, the instruction uses the prediction table 1204 to predict the EFLAGS status
and apply the MOV speculatively.

Speculative CMOVcc:
Prediction_status = prediction_table[...];
 If (prediction_status == PREDICTION_NONE) {
 TEMP = Source; /* This may cause a #GP or other fault */
 IF condition {
 DEST = TEMP;
 }
 }
 Else if (prediction_status == PREDICTION_TAKEN) {
 DEST = Source;
 }

[0118] As mentioned, the prediction table 1205 may be continually updated in response to speculative CMOVcc
instructions. For example, a separate entry may be entered and tagged with an address associated with the instance
of the speculative CMOVcc instruction. On execution of each speculative CMOVcc instruction, based on the data in the
prediction table 1205, the decoder and/or execution circuitry operates as follows.
[0119] If the prediction is of low confidence or the prediction table 1205 does not have a relevant entry (or the entry
is empty), then the speculative CMOVcc instruction is executed without speculation. Similarly, the speculative CMOVcc
instruction may be executed non-speculatively if the EFLAGS register is ready (i.e., the relevant flags are updated)
before the predicted value is needed.
[0120] Figure 13 illustrates additional details for one embodiment, showing the uops generated by the decoder 1209
and processed by an allocation stage 1301 which allocates execution resources for the uops including registers for the
uops in a register allocation table (RAT) (e.g., mapping physical registers to virtual/architectural registers specified by
the uops). A dispatch unit 1303 then dispatches the uops for execution within the individual functional units of the
execution stage 1208.
[0121] In one embodiment, if the prediction is of high confidence, then the speculative conditional move decoder

EP 3 547 119 A2

16

5

10

15

20

25

30

35

40

45

50

55

circuitry 1209a translates the speculative CMOVcc instruction into 2 uops: (1) a NOP or MOV (depending on the pre-
diction), and (2) an EFLAGS Check uop. The MOV may be "Move Eliminated" at the RAT 1302. The NOP also gets
dropped at the allocation stage 1301 as there is no allocation required for it. The EFLAGS Check uop is dispatched for
execution on Jump Execution Unit (JEU) 1310 to determine whether the prediction is correct by checking the values in
the EFLAGS register 1218c. The prediction table 1205 may then be updated in accordance with the EFLAGS Check uop.
[0122] If the prediction turns out to be correct, then the retirement circuitry 1350 retires the speculative CMOVcc
instruction. If the prediction was incorrect, the JEU 1310 will signal a misprediction, and the fetch circuitry will re-fetch
the mispredicted speculation CMOVcc instruction. In one embodiment, when the execution circuitry 1208 executes the
speculative CMOVcc instruction for a second time, it will either do so with no speculation and/or turn it into a NOP or a
MOV according to the actual condition.
[0123] Different embodiments may process the misprediction in different ways. For example, if the speculative CMOVcc
instruction is stored in the instruction decode queue (IDQ), this instruction and subsequent instructions may be sent
directly from the IDQ to the out-of-order engine (e.g., the allocation stage 1301, RAT 1302, dispatcher 1303, and execution
circuitry 1208).
[0124] A method in accordance with one embodiment of the invention is illustrated in Figure 14. The method may be
implemented on the processor and system architectures described herein, but is not limited to any particular architecture.
[0125] At 1401 a speculative conditional move instruction is received and the prediction table is queried using a value
associated with the speculative conditional move (e.g., the instruction pointer address of the instruction or portion thereof).
At 1402, a determination is made to determine whether the confidence level indicated in the prediction table is below a
specified threshold and/or if no entry exists for the speculative conditional move instruction. If so, then the speculative
conditional move instruction is executed as a non-speculative conditional instruction at 1403. If not, then the speculative
conditional move instruction is executed speculatively at 1404.
[0126] If speculated correctly, determined at 1405, then the prediction table is updated at 1407. If not, then the instruction
is re-executed non-speculatively at 1406 and the prediction table is updated at 1407. In one embodiment, the prediction
table is updated with a value indicating the confidence of a successful speculation. For example, a counter value may
be updated with each correct speculation and decremented with each incorrect speculation. Thus, the current value of
the counter provides an indication of the likelihood of a successful speculation. The counter value may be stored in the
table entry associated with the speculative CMOVcc instruction and used to determine whether to execute the instruction
speculatively or non-speculatively. Alternatively, the number of mispredicted CMOV instructions per some number of
instructions (e.g., 1000) may be measured, and the results separated into confidence level classes (e.g., low, medium,
and high). An indication of the confidence level class may then be stored in the prediction table. The underlying principles
of the invention are not limited to any particular technique for calculating the confidence level.
[0127] In one embodiment, a branch prediction table such as the branch information queue (BIQ) used by the branch
processing unit 1221 to predict jump instructions is also used to store predictions for the speculative CMOVcc instruction.
Alternatively, the prediction table 1205 may be a new table used to predict speculative CMOVcc instructions and other
speculated non-branch instructions.
[0128] In one embodiment, the instruction pointer (IP) address of the speculative CMOVcc instruction is determined
and tracked in the prediction table 1205 along with other data associated with the instruction. For example, the prediction
table 1205 may be updated with the speculative CMOVcc instruction’s address, prediction, taken target address, and/or
fall-through address. These values may be tracked in program order. In one embodiment, when the allocation circuitry
1301 allocates uops of the conditional CMOVcc instruction for out-of-order execution, it passes a pointer into the prediction
table 1205 with it for the previous speculated CMOVcc instruction along with the lower 12 bits of the speculative CMOVcc
instruction’s address. The instruction’s address may be recreated by concatenating the lower 12 bits of its address with
the predicted target address of the preceding speculative CMOVcc instruction. The instruction’s address may then be
reconstructed by only recording the lower bits of its address, and combining the upper bits from the previous speculative
CMOVcc instruction’s target address.
[0129] In one embodiment, the speculative CMOVcc instruction may be dynamically updated to behave as a non-
speculative CMOVcc instruction under certain conditions. For example, under these conditions, one of the pipeline units
(e.g., fetch, decode, execution circuitry) uses a prefix (or special NOP) to force the CMOV to behave non-speculatively.
This may also be done via a configurable execution mode of the processor.
[0130] The thresholds for determining speculation confidence may be implemented in different ways. For example, in
one embodiment, the front end of the processing pipeline makes a prediction for every word (e.g., 2-byte aligned chunk)
and passes it to the back-end of the machine (e.g., the execution circuitry 1208). This feature of the micro-architecture
may be adapted to support speculative CMOVcc instructions as described herein.
[0131] In the foregoing specification, the embodiments of invention have been described with reference to specific
exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made
thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The
specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

EP 3 547 119 A2

17

5

10

15

20

25

30

35

40

45

50

55

[0132] Components, features, and details described for any of the apparatus may also optionally apply to any of the
methods, which in embodiments may be performed by and/or with such apparatus. Any of the processors described
herein may be included in any of the systems disclosed herein. In some embodiments, the computer system may include
an interconnect, a processor coupled with the interconnect, and a dynamic random access memory (DRAM) coupled
with the interconnect. Alternatively, instead of DRAM, other types of volatile memory that don’t need to be refreshed
may be used, or flash memory may be used.
[0133] In the description and claims, the terms "coupled" and/or "connected," along with their derivatives, may have
be used. These terms are not intended as synonyms for each other. Rather, in embodiments, "connected" may be used
to indicate that two or more elements are in direct physical and/or electrical contact with each other. "Coupled" may
mean that two or more elements are in direct physical and/or electrical contact with each other. However, "coupled" may
also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with
each other. For example, an execution unit may be coupled with a register and/or a decode unit through one or more
intervening components. In the figures, arrows are used to show connections and couplings.
[0134] The term "and/or" may have been used. As used herein, the term "and/or" means one or the other or both (e.g.,
A and/or B means A or B or both A and B).
[0135] In the description above, specific details have been set forth in order to provide a thorough understanding of
the embodiments. However, other embodiments may be practiced without some of these specific details. The scope of
the invention is not to be determined by the specific examples provided above, but only by the claims below. In other
instances, well-known circuits, structures, devices, and operations have been shown in block diagram form and/or without
detail in order to avoid obscuring the understanding of the description. Where considered appropriate, reference numerals,
or terminal portions of reference numerals, have been repeated among the figures to indicate corresponding or analogous
elements, which may optionally have similar or the same characteristics, unless specified or clearly apparent otherwise.
[0136] Certain operations may be performed by hardware components, or may be embodied in machine-executable
or circuit-executable instructions, that may be used to cause and/or result in a machine, circuit, or hardware component
(e.g., a processor, portion of a processor, circuit, etc.) programmed with the instructions performing the operations. The
operations may also optionally be performed by a combination of hardware and software. A processor, machine, circuit,
or hardware may include specific or particular circuitry or other logic (e.g., hardware potentially combined with firmware
and/or software) is operative to execute and/or process the instruction and store a result in response to the instruction.
[0137] Some embodiments include an article of manufacture (e.g., a computer program product) that includes a
machine-readable medium. The medium may include a mechanism that provides, for example stores, information in a
form that is readable by the machine. The machine-readable medium may provide, or have stored thereon, an instruction
or sequence of instructions, that if and/or when executed by a machine are operative to cause the machine to perform
and/or result in the machine performing one or operations, methods, or techniques disclosed herein.
[0138] In some embodiments, the machine-readable medium may include a non-transitory machine-readable storage
medium. For example, the non-transitory machine-readable storage medium may include a floppy diskette, an optical
storage medium, an optical disk, an optical data storage device, a CD-ROM, a magnetic disk, a magneto-optical disk,
a read only memory (ROM), a programmable ROM (PROM), an erasable-and-programmable ROM (EPROM), an elec-
trically-erasable-and-programmable ROM (EEPROM), a random access memory (RAM), a static-RAM (SRAM), a dy-
namic-RAM (DRAM), a Flash memory, a phase-change memory, a phase-change data storage material, a non-volatile
memory, a non-volatile data storage device, a non-transitory memory, a non-transitory data storage device, or the like.
The non-transitory machine-readable storage medium does not consist of a transitory propagated signal. In some em-
bodiments, the storage medium may include a tangible medium that includes solid matter.
[0139] Examples of suitable machines include, but are not limited to, a general-purpose processor, a special-purpose
processor, a digital logic circuit, an integrated circuit, or the like. Still other examples of suitable machines include a
computer system or other electronic device that includes a processor, a digital logic circuit, or an integrated circuit.
Examples of such computer systems or electronic devices include, but are not limited to, desktop computers, laptop
computers, notebook computers, tablet computers, netbooks, smartphones, cellular phones, servers, network devices
(e.g., routers and switches.), Mobile Internet devices (MIDs), media players, smart televisions, nettops, set-top boxes,
and video game controllers.
[0140] Reference throughout this specification to "one embodiment," "an embodiment," "one or more embodiments,"
"some embodiments," for example, indicates that a particular feature may be included in the practice of the invention
but is not necessarily required to be. Similarly, in the description various features are sometimes grouped together in a
single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure and aiding in the under-
standing of various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an
intention that the invention requires more features than are expressly recited in each claim. Rather, as the following
claims reflect, inventive aspects lie in less than all features of a single disclosed embodiment. Thus, the claims following
the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on
its own as a separate embodiment of the invention.

EP 3 547 119 A2

18

5

10

15

20

25

30

35

40

45

50

55

EXAMPLE EMBODIMENTS

[0141] The following examples pertain to particular embodiments. Specifics in these examples may be used anywhere
and in any combination.

Example 1. A processor comprising: a decoder to decode a first speculative conditional move instruction; a prediction
storage to store prediction data related to previously executed speculative conditional move instructions; and exe-
cution circuitry to read first prediction data associated with the first speculative conditional move instruction and to
execute the first speculative conditional move instruction either speculatively or non-speculatively based on the first
prediction data.

Example 2. The processor of Example 1 wherein the prediction storage structure comprises a table having a plurality
of entries, each entry associated with one or more previously executed speculative conditional move instructions.

Example 3. The processor of Example 2 wherein an entry is to be associated with a particular address or portion
thereof associated with the one or more previously executed speculative conditional move instructions.

Example 4. The processor of Example 1 the execution circuitry is to read a first entry in the prediction storage
associated with the first speculative conditional move instruction containing at least one value indicating a confidence
level.

Example 5. The processor of Example 4 wherein the execution circuitry is to speculatively execute the speculative
conditional move instruction if the confidence level is above a threshold.

Example 6. The processor of Example 5 wherein the execution circuitry is to determine whether the speculative
conditional move instruction was speculated correctly and to responsively update the prediction storage.

Example 7. The processor of Example 6 wherein if the speculative conditional move instruction was not speculated
correctly, then the speculative conditional move instruction is to be re-executed non-speculatively.

Example 8. The processor of Example 7 wherein if speculated correctly, or if re-executed non-speculatively, the
execution circuit is to query a control register to determine whether a condition has been met for performing a move
operation.

Example 9. The processor of Example 8 wherein the execution circuit is to perform the move operation in response
to detecting the condition.

Example 10. The processor of Example 9 wherein the control register comprises an EFLAGS register and the
condition comprises one or more bits being set in the EFLAGS register.

Example 11. A method comprising: decoding a first speculative conditional move instruction; storing prediction data
related to previously executed speculative conditional move instructions in a prediction storage; and reading the
first prediction data associated with the speculative conditional move instruction; and executing the first speculative
conditional move instruction either speculatively or non-speculatively based on the first prediction data.

Example 12. The method of Example 11 wherein the prediction storage structure comprises a table comprising a
plurality of entries, each entry associated with executed instances of the speculative conditional move instruction.

Example 13. The method of Example 12 wherein an entry is to be associated with a particular address or portion
thereof associated with the one or more previously executed speculative conditional move instructions.

Example 14. The method of Example 11 wherein reading further comprises reading a first entry in the prediction
storage associated with the first speculative conditional move instruction containing at least one value indicating a
confidence level.

Example 15. The method of Example 14 wherein the speculative conditional move instruction is to be speculatively
executed if the confidence level is above a threshold.

EP 3 547 119 A2

19

5

10

15

20

25

30

35

40

45

50

55

Example 16. The method of Example 15 further comprising:
determining whether the speculative conditional move instruction was speculated correctly and responsively updating
the prediction storage.

Example 17. The method of Example 16 wherein if the speculative conditional move instruction was not speculated
correctly, then the method further comprising:
re-executing the speculative conditional move instruction non-speculatively.

Example 18.The method of Example 17 wherein if re-executed non-speculatively, then the method further comprising
querying a control register to determine whether a condition has been met for performing a move operation.

Example 19. The method of Example 18 further comprising:
performing the move operation in response to detecting the condition.

Example 20. The method of Example 19 wherein the control register comprises an EFLAGS register and the condition
comprises one or more bits being set in the EFLAGS register.

Example 21. A machine-readable medium having program code stored thereon which, when executed by a machine,
causes the machine to perform the operations of: decoding a first speculative conditional move instruction; storing
prediction data related to previously executed speculative conditional move instructions in a prediction storage; and
reading the first prediction data associated with the speculative conditional move instruction; and executing the first
speculative conditional move instruction either speculatively or non-speculatively based on the first prediction data.

Example 22. The machine-readable medium of Example 21 wherein the prediction storage structure comprises a
table comprising a plurality of entries, each entry associated with executed instances of the speculative conditional
move instruction.

Example 23. The machine-readable medium of Example 22 wherein an entry is to be associated with a particular
address or portion thereof associated with the one or more previously executed speculative conditional move in-
structions.

Example 24. The machine-readable medium of Example 21 wherein reading further comprises reading a first entry
in the prediction storage associated with the speculative conditional move instruction containing at least one value
indicating a confidence level.

Example 25. The machine-readable medium of Example 24 wherein the speculative conditional move instruction
is to be speculatively executed if the confidence level is above a threshold.

Example 26. The machine-readable medium of Example 25 further comprising program code to cause the machine
to perform the operations of: determining whether the speculative conditional move instruction was speculated
correctly and responsively updating the prediction storage.

Example 27. The machine-readable medium of Example 26 wherein if the speculative conditional move instruction
was not speculated correctly, then the machine-readable medium further comprising:
re-executing the speculative conditional move instruction non-speculatively.

Example 28. The machine-readable medium of Example 27 wherein if re-executed non-speculatively, then the
machine-readable medium further comprising querying a control register to determine whether a condition has been
met for performing a move operation.

Example 29. The machine-readable medium of Example 28 further comprising program code to cause the machine
to perform the operations of: performing the move operation in response to detecting the condition.

Example 30. The machine-readable medium of Example 29 wherein the control register comprises an EFLAGS
register and the condition comprises one or more bits being set in the EFLAGS register.

[0142] Embodiments of the invention may include various steps, which have been described above. The steps may
be embodied in machine-executable instructions which may be used to cause a general-purpose or special-purpose

EP 3 547 119 A2

20

5

10

15

20

25

30

35

40

45

50

55

processor to perform the steps. Alternatively, these steps may be performed by specific hardware components that
contain hardwired logic for performing the steps, or by any combination of programmed computer components and
custom hardware components.
[0143] As described herein, instructions may refer to specific configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain operations or having a predetermined functionality or software
instructions stored in memory embodied in a non-transitory computer readable medium. Thus, the techniques shown in
the Figures can be implemented using code and data stored and executed on one or more electronic devices (e.g., an
end station, a network element, etc.). Such electronic devices store and communicate (internally and/or with other
electronic devices over a network) code and data using computer machine-readable media, such as non-transitory
computer machine-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only
memory; flash memory devices; phase-change memory) and transitory computer machine-readable communication
media (e.g., electrical, optical, acoustical or other form of propagated signals - such as carrier waves, infrared signals,
digital signals, etc.). In addition, such electronic devices typically include a set of one or more processors coupled to
one or more other components, such as one or more storage devices (non-transitory machine-readable storage media),
user input/output devices (e.g., a keyboard, a touchscreen, and/or a display), and network connections. The coupling
of the set of processors and other components is typically through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the network traffic respectively represent one or more machine-
readable storage media and machine-readable communication media. Thus, the storage device of a given electronic
device typically stores code and/or data for execution on the set of one or more processors of that electronic device. Of
course, one or more parts of an embodiment of the invention may be implemented using different combinations of
software, firmware, and/or hardware.
[0144] Throughout this detailed description, for the purposes of explanation, numerous specific details were set forth
in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the
art that the invention may be practiced without some of these specific details. In certain instances, well known structures
and functions were not described in elaborate detail in order to avoid obscuring the subject matter of the present invention.
Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow.

Claims

1. A processor comprising:

a decoder to decode a first speculative conditional move instruction;
a prediction storage structure to store prediction data related to previously executed speculative conditional
move instructions; and
execution circuitry to read first prediction data associated with the first speculative conditional move instruction
and to execute the first speculative conditional move instruction either speculatively or non-speculatively based
on the first prediction data.

2. The processor of claim 1 wherein the prediction storage structure comprises a table having a plurality of entries,
each entry associated with one or more previously executed speculative conditional move instructions.

3. The processor of claim 2 wherein an entry is to be associated with a particular address or portion thereof associated
with the one or more previously executed speculative conditional move instructions.

4. The processor of claim 1 or 3 wherein the execution circuitry is to read a first entry in the prediction storage associated
with the first speculative conditional move instruction containing at least one value indicating a confidence level.

5. The processor of claim 1 or 4 wherein the execution circuitry is to speculatively execute the first speculative conditional
move instruction if the confidence level is above a threshold.

6. The processor of claim 1 or 5 wherein the execution circuitry is to determine whether the first speculative conditional
move instruction was speculated correctly and to responsively update the prediction storage.

7. The processor of claim 6 wherein if the first speculative conditional move instruction was not speculated correctly,
then the first speculative conditional move instruction is to be re-executed non-speculatively.

8. The processor of claim 7 wherein if re-executed non-speculatively, the execution circuit is to query a control register

EP 3 547 119 A2

21

5

10

15

20

25

30

35

40

45

50

55

to determine whether a condition has been met for performing a move operation.

9. The processor of claim 8 wherein the execution circuit is to perform the move operation in response to detecting
the condition.

10. The processor of claim 8 or 9 wherein the control register comprises an EFLAGS register and the condition comprises
one or more bits being set in the EFLAGS register.

11. A machine-readable medium having program code stored thereon which, when executed by a machine, causes the
machine to perform the operations of:

decoding a first speculative conditional move instruction;
storing prediction data related to previously executed speculative conditional move instructions in a prediction
storage; and
reading the first prediction data associated with the speculative conditional move instruction; and
executing the first speculative conditional move instruction either speculatively or non-speculatively based on
the first prediction data.

12. The machine-readable medium of claim 11 wherein the prediction storage structure comprises a table comprising
a plurality of entries, each entry associated with one or more previously executed speculative conditional move
instructions.

13. An apparatus comprising:

means for decoding a first speculative conditional move instruction;
means for storing prediction data related to previously executed speculative conditional move instructions in a
prediction storage structure; and
means for reading the first prediction data associated with the speculative conditional move instruction; and
means for executing the first speculative conditional move instruction either speculatively or non-speculatively
based on the first prediction data.

14. The apparatus of claim 13 wherein the prediction storage structure comprises a table having a plurality of entries,
each entry associated with one or more previously executed speculative conditional move instructions.

15. The apparatus of claim 14 wherein an entry is to be associated with a particular address or portion thereof associated
with the one or more previously executed speculative conditional move instructions.

EP 3 547 119 A2

22

EP 3 547 119 A2

23

EP 3 547 119 A2

24

EP 3 547 119 A2

25

EP 3 547 119 A2

26

EP 3 547 119 A2

27

EP 3 547 119 A2

28

EP 3 547 119 A2

29

EP 3 547 119 A2

30

EP 3 547 119 A2

31

EP 3 547 119 A2

32

EP 3 547 119 A2

33

EP 3 547 119 A2

34

EP 3 547 119 A2

35

EP 3 547 119 A2

36

	bibliography
	abstract
	description
	claims
	drawings

