

(11) **EP 3 554 199 A8**

(12) CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

Corrected version no 1 (W1 A1) Corrections, see

Bibliography INID code(s) 72

(48) Corrigendum issued on:

08.01.2020 Bulletin 2020/02

(43) Date of publication:

16.10.2019 Bulletin 2019/42

(21) Application number: 18167210.6

(22) Date of filing: 13.04.2018

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(71) Applicants:

ADAM S.A.
 1217 Meyrin (CH)

 Università degli studi di Bergamo 24129 Bergamo (IT) (51) Int CI.:

H05H 9/00 (2006.01)

H05H 7/00 (2006.01)

(72) Inventors:

 CALDARA, Michele CH-1202 Geneve (CH)

GALIZZI, Francesco
 I-24016 San Pellegrino Terme (IT)

JEFF, Adam
 F-01210 Ferney Voltaire (FR)

(74) Representative: Vanzini, Christian et al Jacobacci & Partners S.p.A.
Corso Emilia 8
10152 Torino (IT)

(54) BEAM ENERGY MEASUREMENT SYSTEM

- A time-of-flight (TOF) measurement system for measuring energy of a pulsed hadron beam, wherein each pulse of the beam is structured into a series of bunches (B) of charged particles, said bunches being repeated according to a repetition rate of the order of magnitude of radiofrequency. The system comprises a first detector (1), a second detector (2) and a third detector (3) arranged along a beam path (10), each of the detectors being configured to detect the passage of a bunch (B) of charged particles and provide an output signal (v_{PP 1}, v_{PP 2}, v_{PP 3}) dependent on phase of the detected bunch (B), wherein the second detector (2) is spaced apart from the first detector (1) by a first distance (L₁₂) and wherein the third detector (3) is spaced apart from the second detector (2) by a second distance (L_{23}) , wherein the first distance is set out in such a way as that time of flight (t₁₂) of the bunch (B) from the first detector
- (1) to the second detector (2) is approximately equal to, or lower than a repetition period (T_{RFQ}) of the bunches (B), and wherein the second distance is set out in such a way as that time of flight (T_{23}) of the bunch (B) from the second detector (2) to the third detector (3) is greater than a multiple of the repetition period (T_{RFQ}) of the bunches (B), and
- a processing unit (7) configured to
- a) calculate phase shifts $(\Delta_{\phi12}, \Delta_{\phi13}, \Delta_{\phi23})$ between the output signals $(v_{PP,1}, v_{PP,2}, v_{PP,3})$ of the detectors (1, 2, 3), and
- b) calculate energy (E) of the pulse based on the calculated phase shifts.

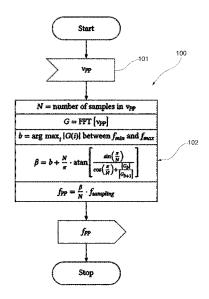


FIG. 6