Field of the Invention
[0001] The present invention relates
inter alia to a polynucleotide coding for a variant of BPIFB4 protein (Bactericidal/Permeability
Increasing protein family B, member 4) for use for the treatment of pathologies associated
with endothelial dysfunction due to impaired endothelial nitric oxide synthase (eNOS)
and nitric oxide (NO) mediated vasodilatation.
Background of the Invention
[0003] A number of single nucleotide polymorphisms have been described for this protein
at the following sites, indicated with reference to the 575 amino acid sequence: rs2070325-Ile229Val,
rs571391-Asn281Thr, rs7583529Phe488Leu and rs285097-Thr494Ile, that may lead to the
generation of a number of different variants of the protein. The present inventors
have identified and characterised a number of variants of BPIFB4. After a careful
analysis of the haplotype phases (i.e. combination of the alleles) of the four polymorphisms
described above, the present inventors have found that the most common haplotype (65%
analyzed chromosomes) is the combination AACT that codes for amino acids Ile229/Asn281/Leu488/Ile494
(INLI); the second most frequent haplotype is the combination GCTC (30% chromosomes
contain this haplotype) that codes for amino acids Val229/Thr281/Phe488/Thr494 (VTFT)
and finally the combination of AATC is represented only in 2% of human Caucasian chromosomes
that code for Ile229/Asn281/Phe488/Thr494 (INFT).
[0004] The vascular endothelium is formed by a layer of cells located between the vessel
lumen and the vascular smooth muscle cells. These cells continuously produce NO, a
soluble gas that is synthesized by the enzyme eNOS. This substance has a crucial role
in the regulation of vascular homeostasis and endothelial function, including modulation
of the vascular tone, regulation of local cell growth, and protection of the vessel
from injurious consequences of platelets and cells circulating in blood.
[0005] A growing list of conditions have been associated with a decreased release of nitric
oxide by the arterial wall either because of impaired synthesis by eNOS or excessive
oxidative degradation (
American Journal of Physiology, Endocrinology and Metabolism 2012 Mar 1; 302(5) and
Current Vascular Pharmacology 2012 Jan; 10(1): pages 4-18). Most of these pathological conditions are associated with aging. For example, impairment
of Nitric Oxide signalling has been reported in coronary spastic angina (
Miyamoto Y et al. Hum Mol Genet. 2000 Nov 1; 9(18): pages 2629-37), thrombosis (
Loscalzo J, Circulation Research. 2001; 88, pages 756-762), pulmonary hypertension (
D'Uscio LD., Cardiovasc Res 2011, 92 (3), pages 359-360), pre-eclampsia (
The Lancet, Volume 361, 9368, Pages 1511-1517), vasculitis (
Kanwar JR et al., Curr Med Chem. 2009; 16(19): 2373-2394), cancer (
Kanwar JR et al. Curr Med Chem. 2009; 16(19): pages 2373-2394), inflammatory disorders (
Kanwar JR et al., Curr Med Chem. 2009; 16(19): pages 2373-2394), venous insufficiency (
Förstermann U et al. Circulation. 2006; 113: pages 1708-1714), in genetic diseases with reduced eNOS activity and NO production, for example as
for MTHFR gene variations (
Lemarie CA et al., Am J Physiol Heart Circ Physiol 2011, vol. 300: H745-53), arterial hypertension (
Sparacino-Watkins CE et al, Circulation., 2012; vol 125(23), pages 2824-6;
Böger RH et al, Circulation. 2009, vol 119(12), pages 1592-600), atherosclerosis, diabetes mellitus, dyslipidemia, renal failure (
Jiang B et al, Hum Gene Ther. 2012; 23(11), pages 1166-75 Ponnuswamy Pet al. PLoS One. 2012; 7(1):e30193;
Vita JA. et al, Circulation. 2011, Vol 124(25), pages 906-12;
Li ZL et al., PLoS One. 2012, Vol 7(6):e38787), metabolic syndrome (
Quyyumi AA et al., Circulation. 1995, Vol 92: pages 320-326), stroke (
Madden JA., Neurology. 2012 Sep 25;79(13 Suppl 1):S58-62), myocardial infarction (
Nakata S et al, Circulation. 2008 Apr 29; Vol 117(17): pages 2211-23), erectile dysfunction (
Bianca Rd et., PLoS One. 2012, Vol 7(2): e31019), neurodegenerative diseases and multiple sclerosis (
Faraci FM., Circulation Research. 2006, Volume 99, pages 1029-1030;
Wu M, et al, Glia. 2009, Vol 57(11), pages 1204-15), cognitive disorders (
Rayatnia et al, Eur J Pharmacol. 2011, Vol 666(1-3), pages 122-30;
Paydar et al, Brain Res. 2011; Vol 1386, pages 89-99), retinal degeneration, uveoretinitis, vascular retinopathy, cataracts and glaucoma
(
Chiou g et al. Journal of Ocular Pharmacology and Therapeutics. April 2001, 17(2):
pages 189-198,
Li Q et al, Invest Ophthalmol Vis Sci. 2010 Oct, 51(10): pages 5240-6,
Kwak HJ et al, Mol Cells. 2001 Oct 31;12(2):pages 178-84).
[0006] WO2001/79269 (Grell) discloses a polypeptide of length 614 amino acids said to be a New Lipid Binding
Protein 4 polypeptide.
[0007] The decreased production of NO and the consequent disequilibrium in endothelial function
has been identified as one of the key factors responsible for the above pathological
states. Thus, there have been efforts in the art to identify potential candidate therapies
to reverse endothelial dysfunction by enhancing the release of nitric oxide from the
endothelium.
[0009] The present inventors have now surprisingly identified that a specific variant of
the BPIFB4 protein is associated with exceptional longevity. The inventors have further
found that the variant identified is surprisingly able to increase the activation
of eNOS and the production of NO in endothelial cells. These biological properties
are dependent on the presence in the protein of four specific amino acids at positions
229, 281, 488 and 494 since replacement of any of these positions with different amino
acids leads to loss of activity of the protein.
Summary of the Invention
[0010] Accordingly, the present invention provides a polynucleotide coding for
- (i) a BPIFB4 protein consisting of SEQ ID NO: 1;
- (ii) a BPIFB4 protein variant of the BPIFB4 protein of (i) having at least 95% homology
to that of SEQ ID NO: 1; or
- (iii) a fragment of the protein of (i) or the variant of (ii),
wherein said BPIFB4 protein variant or fragment comprises a Valine at the position
corresponding to position 229 of SEQ ID NO: 1, a Threonine at the position corresponding
to position 281 SEQ ID NO: 1, a Phenylalanine at the position corresponding to position
488 of SEQ ID NO: 1 and a Threonine at the position corresponding to position 494
of SEQ ID NO: 1 and said BPIFB4 protein, variant or fragment has activity in increasing
the activity of eNOS and/or the production of NO for use in therapy.
[0011] Said homology in the amino acid sequence is preferably at least 99%.
[0012] According to a particularly preferred embodiment, the protein coded for by the said
polynucleotide has the amino acid sequence of SEQ ID NO: 1.
[0013] According to an alternative preferred embodiment, the protein coded for by the said
polynucleotide has an amino acid sequence corresponding to the sequence of SEQ ID
NO 1, wherein one or more amino acids at positions different from positions 229, 281,
488 and 494 of SEQ ID NO 1 have been substituted by a conserved amino acid. By "conserved
amino acid" it is meant an amino acid with functional and physicochemical properties
equivalent to those of the original amino acid.
[0014] The invention further provides a polynucleotide for use in therapy wherein the polynucleotide
has a nucleotide sequence coding for the above protein and a vector for use in therapy
containing said polynucleotide operatively linked to expression control sequences.
According to a preferred embodiment, said polynucleotide has the sequence of SEQ ID
NO: 2.
[0015] The disclosure also provides a host cell that has been transformed with the above
vector and it is able to express the protein coded for by the said polynucleotide.
[0016] In particular, an object of the invention is the polynucleotide or vector for use
in the prevention, reduction of the risk of, amelioration and/or treatment of endothelial
dysfunctions due to a decrease in the activity of eNOS and/or in the production of
NO or of pathologies or conditions where it is beneficial to increase the activity
of eNOS and/or the production of NO. According to a preferred embodiment, the above
protein, polynucleotide or vector is for use in the prevention, reduction of the risk,
amelioration or treatment of a pathology or condition selected from arterial hypertension,
atherosclerosis, diabetes mellitus, dyslipidemia, renal failure, metabolic syndrome,
stroke, myocardial infarction, erectile dysfunction, neurodegenerative diseases, multiple
sclerosis, cognitive disorders, retinal degeneration, uveoretinitis, vascular retinopathy,
cataracts, glaucoma, coronary spastic angina, thrombosis, pulmonary hypertension,
pre-eclampsia, vasculitis, cancer, inflammatory disorders, venous insufficiency, genetic
diseases with reduced eNOS activity and NO production, for example MTHFR gene variations,
post-exercise fatigue in muscular dystrophy patients. According to a further preferred
embodiment, the above polynucleotide or vector is for use as a co-adjuvant in the
implantation of one or more stents, preferably medicated, for vascular occlusions.
[0017] Finally, the present invention provides a pharmaceutical composition comprising the
polynucleotide of the disclosure in combination with pharmaceutically acceptable carriers
and excipients.
[0018] Other features and advantages of the invention will be apparent from the following
detailed description and from the claims.
Brief Description of the Figures
[0019]
Figure 1 shows the sequence of the pRK5 vector encoding INFT hBPIFB4 (SEQ ID NO: 3)
or VTFT hBPIFB4 (SEQ ID NO:1) used in Example 3, with the sequence of the BPIFB4 protein
underlined and that of EGFP in italics.
Figure 2 shows detection of green fluorescent protein in mesenteric vessels perfused
ex vivo with a plasmid encoding INFT BPIFB4 (left panel) or a control empty pRK5 plasmid
(right panel) in Example 3.
Figure 3 represents BPIFB4 protein expression and eNOS activation in mesenteric vessels
perfused with empty vector (EV), a plasmid encoding INFT hBPIFB4 or VTFT hBPIFB4.
Panel a shows a Western blot of seven pooled experiments and detection of BPIFB4 (top)
and P-eNOS S1177 (middle). Panel b shows quantification of BPIFB4 expression and panel
c shows quantification of phosphorylation at serine 1177 of eNOS.
Figures 4, 5 and 6: panels 4a, 5a and 6a represent KCI-induced vasoconstriction observed
in Example 3 in mesenteric vessels perfused ex vivo with an empty plasmid pRK5 plasmid (EV/Fig 4a), a pRK5 plasmid encoding INFT hBPIFB4
(INFT /Fig 5a), or a pRK5 plasmid encoding VTFT hBPIFB4 (VTFT /Fig 6a). Panels 4b,
5b and 6b represent phenylephrine-induced vasoconstriction observed in Example 3 in
mesenteric vessels perfused ex vivo with an empty plasmid pRK5 plasmid (EV/ Fig 4b), a pRK5 plasmid encoding INFT hBPIFB4
(INFT / Fig 5b) or a pRK5 plasmid encoding VTFT hBPIFB4 (VTFT / Fig 6b). Panels 4c,
5c and 6c represent acetylcholine-induced vasodilatation observed in Example 3 in
mesenteric vessels perfused ex vivo with an empty plasmid pRK5 plasmid (EV/ Fig 4c), a pRK5 plasmid encoding INFT hBPIFB4
(INFT/ Fig 5c) or a pRK5 plasmid encoding VTFT BPIFB4 (VTFT hBPIFB4/ Fig 6c). The
results observed with the plasmid encoding VNFT hBPIFB4 (SEQ ID NO: 4), ITFT hBPIFB4
(SEQ ID NO: 5), VTLI hBPIFB4 (SEQ ID NO: 6) and INLI hBPIFB4 (SEQ ID NO: 7) observed
on KCI-induced vasoconstriction, phenylephrine-induced vasoconstriction or acetylcholine-induced
vasodilatation in mesenteric vessels perfused are superimposable to those obtained
with the empty vector. (data not shown).
Figures 7 and 8: panels 7a and 8a represent the effect of the eNOS inhibitor L-NAME
on acetylcholine-induced relaxation of vessels perfused ex vivo or with an empty pRK5 plasmid (EV/
Fig 7a) or a pRK5 plasmid encoding mutated VTFT hBPIFB4 (VTFT/ Fig 8a). Panel 8b represents
recovery of vasorelaxation of vessels from methylenetetrahydrofolate reductase knockout
mice (Mthfr+/-) control (Mthfr+/+) and knockout mice treated with either empty pRK5 plasmid ((Mthfr+/-EV) (Fig 7b)
or a pRK5 plasmid encoding VTFT hBPIFB4 ((Mthfr+/- - M) (Fig 8b).
Figure 9: panel a) shows a RT-PCR demonstrating induction of expression of BPIFB4
by H2O2 in HEK293T cells. Panel b), shows a Western blot of the phosphorylation on eNOS at
Ser1177 in HEK293T cells expressing VTFT hBPIFB4 (VTFT) and in cells overexpressing
INFT hBPIFB4 (INFT) or those exposed to an empty vector (EV). Panel c), top, shows
β-actin-normalized ODs.
Detailed Description of the Invention
[0020] A first object of the present invention is a polynucleotide coding for
- (i) a BPIFB4 protein consisting of SEQ ID NO: 1;
- (ii) a BPIFB4 protein variant of the BPIFB4 protein of (i) having at least 95% homology
to that of SEQ ID NO: 1; or
- (iii) a fragment of the protein of (i) or the variant of (ii),
wherein said BPIFB4 protein variant or fragment comprises a Valine at the position
corresponding to position 229 of SEQ ID NO: 1 (hereinafter referred to as Valine 229),
a Threonine at the position corresponding to position 281 SEQ ID NO: 1 (hereinafter
referred to as Threonine 281), a Phenylalanine at the position corresponding to position
488 of SEQ ID NO: 1 (hereinafter referred to as Phenylalanine 488) and a Threonine
at the position corresponding to position 494 of SEQ ID NO: 1 (hereinafter referred
to as Threonine 494) and said BPIFB4 protein, variant or fragment has activity in
increasing the activity of eNOS and/or the production of NO for use in therapy..
[0021] Said homology is preferably at least 99%.
[0022] The amino acid sequence of the BPIFB4 protein variant may differ from that of SEQ
ID NO: 1 due to the presence of additions, deletions or further substitutions of amino
acids.
[0023] However, an essential feature of the variant is that it contains the above said four
amino acids. In case of homologs that differ from SEQ ID NO: 1 due to deletions or
additions of amino acids, the above four amino acids are present at the position that
corresponds to its original position in SEQ ID NO:1. In case of homologs that differ
from SEQ ID NO: 1 due to substitution of amino acids, the above four amino acids are
present in the same position as in SEQ ID NO: 1. According to a preferred embodiment,
the protein has an amino acid sequence corresponding to SEQ ID NO 1, wherein one or
more amino acids at positions different from positions 229, 281, 488 and 494 of SEQ
ID NO 1 have been substituted by a conserved amino acid. By "conserved amino acid"
it is meant an amino acid with functional and physicochemical properties equivalent
to those of the original amino acid.
[0024] Particularly preferred proteins have the amino acid sequence of known BPIFB4 proteins
identified in
Homo Sapiens (SEQ ID NO: 1) and
Pan Troglodytes (Acc N XP525303) which has been modified so that it comprises a Valine at the position
corresponding to position 229 of SEQ ID NO:1, a Threonine at the position corresponding
to position 281 SEQ ID NO: 1, a Phenylalanine at the position corresponding to position
488 of SEQ ID NO: 1 and a Threonine at the position corresponding to position 494
of SEQ ID NO: 1.
[0025] According to a particularly preferred embodiment the BPIFB4 protein encoded by the
polynucleotide for use in therapy of the invention has the sequence of SEQ ID NO:1.
A protein having such sequence will be hereinafter called VTFT hBPIFB4.
[0026] A second object of the present invention is a polynucleotide for use in therapy of
the invention coding for a protein having a sequence which consists of the amino acid
sequence of a BPIFB4 protein, variant or fragment of the disclosure linked to an additional
amino acid sequence able to impart to the protein particularly advantageous properties.
Preferably, said additional amino acid sequence is useful for identifying the said
BPIFB4 protein, variant or fragment or to target the said BPIFB4 protein, variant
or fragment to a specific organ or tissue. Preferably said protein is a chimeric protein.
[0027] As will be described in detail in the experimental section, the present inventors
have surprisingly found that the above VTFT hBPIFB4 is associated with exceptional
longevity in three independent populations. The present inventors have further demonstrated
that the beneficial effect of the mutant protein on life expectancy is a consequence
of its ability to modulate vascular dysfunctions associated with aging. As demonstrated
in the experimental section, this modulation is dependent on the presence of the specific
four amino acids at positions corresponding to positions 229, 281, 488 and 494 of
SEQ ID NO:1 in the VTFT hBPIFB4 of the disclosure.
[0028] As shown in Example 3, mouse mesenteric vessels were perfused ex
vivo with an empty plasmid or plasmids encoding VTFT hBPIFB4 or proteins that differ from
VTFT hBPIFB4 in that they show various substitutions at the 4 relevant amino acids:
INFT hBPIFB4, having the amino acid sequence of SEQ ID NO: 3, which differs from that
of VTFT hBPIFB4 in that it contains Isoleucine and an Asparagine at positions 229
and 281, respectively, VNFT hBPIFB4, having the amino acid sequence of SEQ ID NO:
4, which differs from that of VTFT hBPIFB4 in that it contains an Asparagine at position
281, ITFT hBPIFB4, having the amino acid sequence of SEQ ID NO: 5, which differs from
that of VTFT hBPIFB4 in that it contains Isoleucine at position 229, VTLI hBPIFB4
, having the amino acid sequence of SEQ ID NO: 6, which differs from that of VTFT
hBPIFB4 in that it contains a Leucine at position 488 and an Isoleucine at position
494, INLI hBPIFB4 , having the amino acid sequence of SEQ ID NO: 7, which differs
from that of VTFT hBPIFB4 in that it contains Isoleucine at position 229, Asparagine
at position 281, Leucine at position 488 and an Isoleucine at position 494. While
VNFT hBPIFB4, ITFT hBPIFB4, VTLI hBPIFB4 and INLI hBPIFB4 did not show any effect
on vascular function and INFT hBPIFB4 strongly inhibited any vascular function, blocking
both vasoconstriction and vasodilatation, the VTFT BPIFB4 protein showed a weak effect
on inhibition of vasoconstriction and a significant enhancement of vasodilatation.
This effect has been demonstrated to be mediated by activation of eNOS through phosphorylation
on serine 1177 and it is therefore associated with an increase in the release of NO
by endothelial cells. The ability of VTFT hBPIFB4 to induce activation of eNOS has
been corroborated in the cell line HEK293T (Example 5).
[0029] The above data have also been further confirmed in an animal model of vascular disease
linked to impaired NO production, the heterozygotic Mthfr knockout mice, wherein the
transfection of VTFT hBPIFB4 protein has been shown to restore NO release and endothelium-dependent
vasodilatation response (Example 4).
[0030] A further object of the present disclosure is a fragment of the BPIFB4 protein or
variant of the disclosure having a sequence comprising the above said Valine 229,
Threonine 281, Phenylalanine 488 and Threonine 494.
[0031] Thanks to their biological activity, the above said BPIFB4 protein variant, protein
or fragment of the disclosure may advantageously be used in the prevention, reduction
of the risk of, amelioration and/or treatment of pathological conditions of the endothelium
due to decreased production of NO or activity of eNOS or of pathologies or conditions
where it is beneficial to increase the activity of eNOS and/or the production of NO.
[0032] Thus, a further object of the disclosure is the above said BPIFB4 protein variant,
protein or fragment for use in therapy.
[0033] Preferably, the BPIFB4 protein variant, the protein or the fragment disclosed herein
are for use in the prevention, reduction of the risk of, amelioration and/or treatment
of an endothelial dysfunction due to release of NO from endothelial cells below the
physiological levels or a decrease in the activity of eNOS or in clinical situations
wherein it is beneficial to obtain an increase in the activation of eNOS and/or in
the production of NO. According to a preferred embodiment of the disclosure, said
BPIFB4 protein variant, said protein or said fragment of the disclosure are for use
in the prevention, reduction of the risk, amelioration or treatment of a pathology
selected from arterial hypertension, atherosclerosis, diabetes mellitus, dyslipidemia,
renal failure, metabolic syndrome, stroke, myocardial infarction, erectile dysfunction,
neurodegenerative diseases, multiple sclerosis, cognitive disorders, retinal degeneration,
uveoretinitis, vascular retinopathy, cataracts, glaucoma, coronary spastic angina,
thrombosis, pulmonary hypertension, pre-eclampsia, vasculitis, cancer, inflammatory
disorders, venous insufficiency, genetic diseases with reduced eNOS activity and NO
production, for example MTHFR gene variations.
[0034] According to an alternative preferred embodiment of the disclosure, said BPIFB4 protein,
variant or fragment is for use in the improvement of post-exercise fatigue in muscular
dystrophy patients and as a co-adjuvant in the implantation of one or more stents,
preferably medicated, for vascular occlusions.
[0035] The BPIFB4 protein variant, the protein or the fragment according to the disclosure
may be administered to a subject in need thereof, affected by one of the above pathologies
or in the above clinical conditions, by oral, nasal, endovenous, topical, intra- or
retro- ocular administration.
[0036] Accordingly, a further object of the disclosure is a pharmaceutical composition,
preferably suitable for oral, nasal, endovenous topical, intra- or retro- ocular administration,
comprising the BPIFB4 protein variant, the protein or the fragment of the disclosure
in admixture with pharmaceutically acceptable carriers and/or excipients. Suitable
formulations for the pharmaceutical composition of the disclosure are well known in
the art and are, for example, described in "
Remington's Pharmaceutical Sciences Handbook", Mack Publishing Company, Easton, Pennsylvania, last or
Babizhayev MA. Drug Testing and Analysis, Volume 4, Issue 6, pages 468-485, June 2012).
[0037] A particularly suitable pharmaceutical formulation for the administration of the
BPIFB4 protein variant, the protein or the fragment according to the disclosure is
based on synthetic copolymers, using polyaminoacidic and polysaccharidic structures,
able to form reversible physical complexes with the BPIFB4 protein variant, the protein
or the fragment thereof by electrostatic, hydrophobic or other physical interactions,
and generate nano-aggregates from which the protein or fragment is released in intact
form after administration. (
Diaz-Fernandez YA et al, Biosens Bioelectron. 2010 Sep 15;26(1):29-35).
[0038] A further object of the present disclosure is a polynucleotide, preferably a DNA
polynucleotide, coding for the amino acid sequence of the BPIFB4 protein variant,
the protein or the polypeptide according to the present disclosure. According to a
preferred embodiment, said polynucleotide has a sequence which comprises or consists
of SEQ ID NO: 2 or the sequence of a fragment thereof comprising the nucleotides coding
for the above said Valine 229, Threonine 281, Phenylalanine 488 and Threonine 494.
[0039] The above polynucleotide may be used in order to obtain expression of the mutated
protein or polypeptide in host cells either
in vitro, ex vivo or
in vivo by means of a suitable expression vector comprising it.
[0040] Thus, a further object of the disclosure is a vector containing the above said polynucleotide
of the disclosure operatively linked to expression control sequences.
[0041] According to a preferred embodiment, the BPIFB4 protein variant, the protein or the
fragment of the disclosure is recombinantly produced in host cells transfected with
the above said vector. According to this embodiment the vector of the disclosure is
preferably one that it is suitable for high yield production of the protein or polynucleotide.
For example, the pcDNA
™3.3-TOPO
® vector can be used for high level expression of the protein of the disclosure in
adherent mammalian tissue culture cells following transient transfection, or high
level expression of secreted protein using the Freestyle
™ MAX CHO and Freestyle
™ MAX 293 systems (Invitrogen INC.)
[0042] Thus, a further object of the present disclosure is host cells transfected with the
above said vector of the disclosure.
[0043] A further object of the disclosure is a method of recombinantly producing the BPIFB4
protein variant, the protein or the fragment according to the disclosure comprising
culturing the above said host cells under conditions allowing expression of the BPIFB4
protein variant, the protein or the fragment and recovering said BPIFB4 protein variant,
protein or fragment.
[0044] Alternatively to direct administration as such, the BPIFB4 protein variant, the protein
or the fragment of the disclosure may be expressed in the target tissue following
administration, preferably via the endovenous, subcutaneous, intraocular or retroocular
route, into a subject in need thereof of a vector according to the present disclosure,
which is suitable to induce expression in said target tissue of the mutated protein
or polypeptide. The target tissue may differ depending on the pathology to be treated
and may be, for example, the endothelial tissue, the tissue of the liver, heart, kidney,
eye or muscle.
[0045] According to this embodiment, the vector of the disclosure is one that is preferably
suitable for transfection of the cells of the target tissue of interest following
endovenous administration.
[0046] According to a particularly preferred embodiment, said vector is a viral vector,
preferably an Adenovirus vector, more preferably a vector selected from AAV serotypes
1-9 vectors, on the basis of specificity for the target tissue of interest (
Varadi K, et al, Gene Ther. (2012); 19 (8):800-9;
Zincarelli C et al, Mol Ther. (2008), 16(6): 1073-80,
Diaz-Fernandez YA et al, Oligonucleotides. 2010; 20(4): 191-8.).
[0047] Thus, a third object of the invention is the above said polynucleotide or vector
of the disclosure for use in therapy. Preferably, said polynucleotide or vector is
for use in the prevention, reduction of the risk of, amelioration or treatment of
an endothelial dysfunction due to release of NO from endothelial cells below the physiological
levels or a decrease in the activity of eNOS or in conditions wherein it is beneficial
to obtain an increase in the activation of eNOS and/or in the production of NO. According
to a preferred embodiment of the invention, said polynucleotide or vector is for use
in the prevention, reduction of the risk of, amelioration or treatment of a pathology
or condition selected from arterial hypertension, atherosclerosis, hypertension, diabetes
mellitus, dyslipidemia, renal failure, metabolic syndrome, stroke, myocardial infarction,
erectile dysfunction, neurodegenerative diseases, multiple sclerosis, cognitive disorders,
retinal degeneration, uveoretinitis, vascular retinopathy, cataracts, glaucoma, coronary
spastic angina, thrombosis, pulmonary hypertension, pre-eclampsia, vasculitis, cancer,
inflammatory disorders, venous insufficiency, genetic diseases with reduced eNOS activity
and NO production, for example MTHFR gene variations.
[0048] According to an alternative preferred embodiment of the invention, said polynucleotide
or vector is for use in the improvement of post-exercise fatigue in muscular dystrophy
patients and as a co-adjuvant in the implantation of one or more stents, preferably
medicated, for vascular occlusions. A fourth object of the invention is a pharmaceutical
composition, preferably suitable for endovenous, subcutaneous, intraocular or retroocular
administration, comprising a vector according to the invention in admixture with pharmaceutically
acceptable carriers and/or excipients. Suitable formulations for the pharmaceutical
composition of the invention are well known in the art. As an example, polymeric-based
nano-systems or polycomplex nanosystems may be used to deliver the vector of the disclosure
(
Murano E et al, Nat Prod Commun. (2011), 6(4): 555-72,
Moustafine RI et al, Int J Pharm. 2012 Oct 3)..
[0049] The mean daily dosage of the BPIFB4 protein variant, the protein or the fragment
or vector of the disclosure will depend upon various factors, such as the seriousness
of the disease and the conditions of the patient (age, sex and weight). The skilled
man may use technical means well known in the art in order to find the correct dosage
amount and regime to ensure optimal treatment in each particular pathological condition.
[0050] The present invention will be better illustrated by the Examples that follow.
Examples
Example 1: Identification of the VTFT hBPIFB4 protein in three independent populations
[0052] In order to validate the top four variations reported in that study (p<1×10
-4) a replication attempt was carried out in a first replication cohort recruited for
the German Centenary Study (
Keidorp et al; Aging Cell 2011; Vol 10, pages 622-8), comprising 1447 long-living individuals (LLIs) (age range of 95-110 years, mean
age 98.8 years) and 1029 younger controls (age range 60-75 years and mean age 66,8
years). Thus, two non-synonymous single-nucleotide polymorphisms (SNPs), rs2070325
and rs571391, and two intronic markers, rs7583529 and rs285097, which tag the functional
variants rs7917 and rs1695501, have been tested by Taqman Analysis.
[0053] In detail, DNA was extracted from peripheral blood (QIAamp DNA blood midi kit, Qiagen)
of the individuals and genotyped with TaqMan probe on ABI 7900HT Real Time PCR (Applied
Biosystems). For the screening, the following probes were used:
hCV25757827 for rs2070325;
hCV958887 for rs571391;
hCV28993331 for rs7583529; and
hCV3073023 for rs285097.
[0054] Data analysis was performed with Sequence Detection Systems (Applied Biosystems).
[0056] Of the four variants tested, only rs2070325, which results in the amino acid change
Ile229Val in BPIFB4, replicated the association observed in the SICs cohort under
the recessive genetic model (OR=2.42, 95% Cl=1.56-3.77, p=5.98 × 10
-5) in this set of LLIs (OR=1.42, 95% Cl=1.12-1.80, p=5.3 × 10
-3, Bonferroni adjusted p=0.021).
[0057] This variant was then tested by Taqman analysis, as described above, for association
in a second set, represented by a US based collection of 1461 LLIs (age range of 91-119
years, mean age 100.8) and 526 controls (age range of 0-35 years, mean age 28,2).
Logistic regression confirmed the association of the above SNP also in this second
replication set (OR:1.62, 95% Cl=1.15-2.27, p=3.7 × 10
-3).
[0058] Meta-analysis of association results was performed by the "meta" package implemented
in R (http://cran.r-project.org/web/packages/meta/index.html). Positional and functional
annotation of the identified SNPs were performed by the SNPNexus on-line resource.
[0059] Results from meta-analysis, combining the association statistics deriving from the
evaluation of this marker in the German and US replication sets, revealed no statistically
significant heterogeneity between the ORs estimated in the two populations (Q-statistic,
p>0.05; heterogeneity index, I2 = 0%). According to these observations, association
statistics were combined assuming a fixed effects model (OR = 1.49; 95% Cl = 1.22-1.81;
p < 1 × 10
-4).
Example 2: Haplotype analysis of the BPIFB4 locus
[0060] Haplotype analyses revealed patterns of strong linkage disequilibrium (LD) within
the BPIFB4 genomic locus, delimiting a region that is highly enriched in non-synonymous
SNPs (Fig. S1 in the Supplementary Appendix). The rs2070325 variation (Ile229Val)
of BPIFB4 tags rs2889732 (Asn288Thr), rs11699009 (Leu488Phe), and rs11696307 (Ile494Thr).
[0061] The three-dimensional structure of human BPIFB4 was predicted by homology modelling
with the program I-TASSER, (REF:
Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated
protein structure and function prediction. Nature Protocols, vol 5, 725-738 (2010).) using as template Protein BPI from PDB (code 1EWF). All models were considered
in the visual structural analysis, performed with the program PyMOL Version 1.2r3pre,
Schrödinger, LLC (Molecular Graphics System). The above analysis revealed that Ile268Val
and Asn320Thr are both located in putative protein-protein interaction site. To evaluate
the effects of the variations, we predicted the structure of wild-type (WT) and mutated
(Ile229Val, Asn281Thr, Leu488Phe, IIe494Thr) BPIFB4 proteins by homology modelling.
BPIFB4 is structurally very similar to BPI and CETP, for which experimental structures
are available and because of their structural similarities, we thought it reasonable
to expect that BPIFB4 binds lipopolysaccharides in regions that are similar to those
of the other two proteins. Our structural analysis revealed that Leu488Phe is located
in a lipid-binding pocket whose size is predicted to decrease as a consequence of
the mutation. The Ile494Thr mutation is located in a second lipid-binding pocket,
whose hydrophobicity is decreased by the substitution. In both cases, the mutation
may result in a decreased ability to bind lipids.
[0062] In contrast, Ile229Val and Asn281Thr are located far from the lipid-binding sites
of the structurally homologous proteins, so they probably affect functions such as
interaction with other proteins, rather than lipid binding.
Example 3: Ex Vivo Vessel reactivity to INFT hBPIFB4 and VTFT hBPIFB4
[0063] To determine the role of the specific BPIFB4 variant identified on vessel function,
we studied the effects of ex
vivo transfection of mouse mesenteric vessels with a pRK5 vector encoding VTFT hBPIFB4
or proteins that differ from VTFT hBPIFB4 in that they show various substitutions
at the 4 relevant amino acids: INFT hBPIFB4, having the amino acid sequence of SEQ
ID NO: 3, which differs from that of VTFT hBPIFB4 in that it contains Isoleucine and
an Asparagine at positions 229 and 281, respectively, VNFT hBPIFB4, having the amino
acid sequence of SEQ ID NO: 4, which differs from that of VTFT hBPIFB4 in that it
contains an Asparagine at position 281, ITFT hBPIFB4, having the amino acid sequence
of SEQ ID NO: 5, which differs from that of VTFT hBPIFB4 in that it contains Isoleucine
at position 229, VTLI hBPIFB4 , having the amino acid sequence of SEQ ID NO: 6, which
differs from that of VTFT hBPIFB4 in that it contains a Leucine at position 488 and
an Isoleucine at position 494 and INLI hBPIFB4 , having the amino acid sequence of
SEQ ID NO: 7, which differs from that of VTFT hBPIFB4 in that it contains Isoleucine
at position 229, Asparagine at position 281, Leucine at position 488 and an Isoleucine
at position 494. The sequence of the pRK5 vectors used are reported in Figure 1 (a,
sequence of the vector encoding wtBPIFB4 and GFP and b, sequence of the vector encoding
VTFT hBPIFB4 and GFP) Second-order branches of the mesenteric arterial tree of C57BL6
mice were transfected as described previously (
Vecchione C et al., J Exp Med 2005; Vol. 201, pages 1217-28).
[0064] Briefly, vessels (n=7) were placed in a Mulvany pressure system filled with Krebs
solution to which was added 20µg of a pRK5 vector encoding either INFT or VTFT hBPIFB4.
An empty plasmid was used as a negative control. Vessels were perfused at 100 mmHg
for 1 hour then at 60 mmHg for 5 hours.
[0065] The efficiency of transfection was evaluated by the presence of green fluorescent
protein (GFP) co-expression (Fig.2) and by Western blotting.
[0066] In details, Western blot analysis was performed on protein extracts from transfected
perfused vessels (n=7 for each vector). Protein extracts were separated on 10% SDS-PAGE
at 100V for 1h or on 4-12% SDS-PAGE at 100V for 2h and then transferred to a nitrocellulose
or PVDF membrane. The membranes were incubated overnight with the following primary
antibodies: anti-phospho-Ser1177 eNOS (Cell Signaling, rabbit mAb, 1:1000), anti-BPIFB4
(Abcam, rabbit polyclonal Ab, 1:200), and anti-β-actin (Cell Signaling, mouse mAb,
1:3000). The membranes were washed three times and then incubated for 1 or 2 h with
the secondary antibody (horseradish peroxidase-linked anti-rabbit IgG or anti-mouse
IgG, Amersham Life Science) at 1:3000 dilution. The membrane was then washed four
times and specific protein bands were detected with ECL Prime chemiluminescent agents
(Amersham Life Science). Western blot data were analyzed using imaged software (developed
by Wayne Rasband, National Institutes of Health, USA) to determine optical density
(OD) of the bands. The OD reading was normalized to β-actin to account for variations
in loading.
[0067] As shown in Figure 3, BPIFB4 protein was abundantly detected in vessels after perfusion
with either INFT hBPIFB4- or VTFT hBPIFB4-encoding plasmids both wild type and VTFT
hBPIFB4 being expressed in comparable amounts. On the contrary, vessels exposed to
empty plasmids expressed a low level of native BPIFB4 protein.
[0068] In addition, vessels expressing VTFT hBPIFB4 but not INFT hBPIFB4 showed a strong
induction of phosphorylation of eNOS on serine 1177, an activation site of the enzyme.
[0069] Vasoconstriction was assessed with KCl (80 mM) and increasing doses of phenylephrine
(from 10
-9M to 10
-6M), as the percentage of lumen diameter change after drug administration. Vascular
responses were tested before and after transfection. Endothelium-dependent and independent
relaxations were assessed by measuring the dilatatory responses of mesenteric arteries
to cumulative concentrations of acetylcholine (from 10
-9M to 10
-5M) and nitroglycerine (from 10
-9M to 10
-5M), respectively, in vessels precontracted with phenylephrine at a dose necessary
to obtain a similar level of precontraction in each ring (80% of initial KCl-induced
contraction). The maximal contraction evoked by phenylephrine was considered as the
baseline for subsequent evoked vasorelaxations. Caution was taken to avoid endothelium
damage: functional integrity was reflected by the response to acetylcholine (10
-6M).
[0070] Overexpression of INFT hBPIFB4 almost abolished the KCl- and phenylephrine-induced
vasoconstrictions that could be elicited before exposure to the plasmids (fig. 5a).
The absence of significant vasoconstriction impeded subsequent evaluation of vasorelaxation.
In contrast, expression of VTFT hBPIFB4 partially rescued the inhibitory effects exerted
by INFT hBPIFB4 on KCI and phenylephrine-induced vasoconstrictions: in fact, the vascular
responses evoked by the agonists were reduced when compared with those observed before
perfusion but they were not abolished (fig. 6a-6b). In addition, upon expression of
VTFT hBPIFB4 there was a significant enhancement in acetylcholine-induced vessel vasodilatation
compared with that observed before transfection (fig 6c), but no differences in nitroglycerin-evoked
smooth muscle relaxation (data not shown), indicating that this effect is due to an
enhancement in endothelial function. No effect on vascular function was observed with
VNFT hBPIFB4, ITFT hBPIFB4, VTLI hBPIFB4 and INLI hBPIFB4.
[0071] We examined the effect of L-NAME, an eNOS inhibitor, on vessels transfected with
either an empty vector (Fig.7, panel a, EV) or VTFT hBPIFB4-encoding plasmids (Fig.8,
panel a, VTFT). As expected, L-NAME blunted the vasodilatatory effect of acetylcholine
in vessels perfused with empty plasmids, and this effect was more pronounced in vessels
expressing VTFT hBPIFB4, indicating the presence of more NO in this latter condition.
Example 4: Effect of VTFT hBPIFB4 on in vivo model of vascular disease due to impairment
of NO release
[0072] The above described experiments were also performed on mesenteric vessels from heterozygotic
Mthfr mice and their control, as described in
Lemarie CA et al., Am J Physiol Heart Circ Physiol 2011;Vol 300:H745-53. Mthfr+/- mice show dysfunction of eNOS which is associated with the downregulation
of the longevity factor surtuin 1. Thus, we explored the effect of VTFT hBPIFB4 on
the mesenteric vessels of these mice. As expected, acetylcholine-induced vasorelaxation
was significantly reduced in Mthfr
+/- mice compared with Mthfr
+/+ littermates after exposure to EV (Fig. 7, panel b), but no differences were observed
in nitroglycerine-evoked vascular responses (data not shown). After exposure to VTFT
hBPIFB4 -encoding plasmids Mthfr
+/- - VTFT, endothelial relaxation of Mthfr
+/- vessels was significantly improved, becoming comparable to that observed in Mthfr
+/+ vessels (fig.8b). This indicates that VTFT hBPIFB4 may have strong therapeutic effects
in fighting vascular dysfunction (Fig. 8, panel b).
Example 5: Evaluation of eNOS modulation by BPIFB4 in Hek293T Cells
[0073] Human embryonic kidney cells (HEK293T) were maintained in Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% (v/v) fetal bovine serum and 1% non-essential
amino acids at 37% in a 5% CO2 atmosphere. Cells were plated at 0.25×10
6 per well in six-well plates, and 24h after plating were transfected using 10µl of
Lipofectamine 2000 (LifeTechnologies) and 4µg of plasmids. After 24h, cells were serum-starved
for 24h. During serum starvation, transfected cells were treated with 400µM H
2O
2 for 24h. Transcription of BPIFB4 was detected by extraction from the cells of total
RNA with TRIzol (Ambion), retrotranscription (iScript BioRad). cDNA was amplified
with specific primers for
BPIFB4 (Fw: CTCTCCCCAAAATCCTCAACA, Rev: AGCCTCTCTGGGACTGGTTC) and
GAPDH (Fw: GTGAAGGTCGGAGTCAACG, Rev: GGTGGAATCATATTGGAACATG).
[0074] Transcription of
BPIFB4 could be induced in HEK293T cells upon exposure to H
2O
2: this demonstrates a role of BPIFB4 in the stress response (Fig 9, panel a). Thus,
we explored how BPIFB4 affected stress-mediated phosphorylation of eNOS on serine
1177.
[0075] Protein extracts were separated on 10% SDS-PAGE at 100V for 1h or on 4-12% SDS-PAGE
at 100V for 2h and then transferred to a nitrocellulose or PVDF membrane. The membranes
were incubated overnight with the following primary antibodies: anti-phospho-eNOS
Ser1177 (Cell Signaling, rabbit mAb, 1:1000), and anti-β-actin (Cell Signaling, mouse
mAb, 1:3000). The membranes were washed three times and then incubated for 1 or 2
h with the secondary antibody (Amersham Life Science horseradish peroxidase-linked
anti-rabbit IgG or anti-mouse IgG, 1:3000). The membranes were then washed four times
and specific protein bands were detected with ECL Prime chemiluminescent agents (Amersham
Life Science). Western blot data were analyzed using Imaged software (developed by
Wayne Rasband, National Institutes of Health, USA) to determine optical density (OD)
of the bands. The OD readings were normalized to β-actin to account for variations
in loading.
[0076] As shown in Figure 9, panel b and c, eNOS became more activated upon exposure to
H
2O
2 in HEK293T cells expressing VTFT hBPIFB4 compared with cells overexpressing INFT
hBPIFB4 . This result corroborated that obtained on eNOS activation with the perfusion
of vessels ex
vivo.
1. A polynucleotide coding for
(i) a BPIFB4 protein consisting of SEQ ID NO: 1;
(ii) a BPIFB4 protein variant of the BPIFB4 protein of (i) having at least 95% homology
to that of SEQ ID NO: 1; or
(iii) a fragment of the protein of (i) or the variant of (ii),
wherein said BPIFB4 protein variant or fragment comprises a Valine at the position
corresponding to position 229 of SEQ ID NO: 1, a Threonine at the position corresponding
to position 281 SEQ ID NO: 1, a Phenylalanine at a position corresponding to position
488 of SEQ ID NO: 1 and a Threonine at a position corresponding to position 494 of
SEQ ID NO: 1 and said BPIFB4 protein, variant or fragment has activity in increasing
the activity of eNOS and/or the production of NO for use in therapy.
2. A polynucleotide according to claim 1 wherein the polynucleotide is for use in (i)
the prevention, reduction of the risk, amelioration or treatment of a pathology selected
from arterial hypertension, atherosclerosis, diabetes mellitus, dyslipidemia, renal
failure, metabolic syndrome, stroke, myocardial infarction, erectile dysfunction,
neurodegenerative diseases, multiple sclerosis, cognitive disorders, retinal degeneration,
uveoretinitis, vascular retinopathy, cataract, glaucoma, coronary spastic angina,
thrombosis, pulmonary hypertension, pre-eclampsia, vasculitis, cancer, inflammatory
disorders, venous insufficiency; or (ii) for the improvement of post-exercise fatigue
in muscular dystrophy or as a co-adjuvant in the implantation of one or more stents
for vascular occlusions.
3. A polynucleotide for use according to claim 2 wherein the polynucleotide is for use
in (i) the prevention, reduction of the risk, amelioration or treatment of a pathology
selected from arterial hypertension, diabetes mellitus, dyslipidemia, renal failure,
metabolic syndrome, stroke, myocardial infarction, erectile dysfunction, neurodegenerative
diseases, multiple sclerosis, cognitive disorders, retinal degeneration, uveoretinitis,
vascular retinopathy, glaucoma, coronary spastic angina, thrombosis, pulmonary hypertension,
pre-eclampsia, vasculitis, inflammatory disorders and venous insufficiency; or (ii)
for the improvement of post-exercise fatigue in muscular dystrophy or as a co-adjuvant
in the implantation of one or more stents for vascular occlusions.
4. A polynucleotide for use according to any preceding claim, wherein the BPIFB4 protein,
variant or fragment thereof is linked to an additional amino acid sequence to target
the BPIFB4 protein, variant or fragment thereof to a specific organ or tissue.
5. A polynucleotide for use according to any preceding claim, wherein the polynucleotide
codes for a BPIFB4 protein which consists of SEQ ID NO: 1.
6. A polynucleotide for use according to any preceding claim, wherein the polynucleotide
comprises the nucleotide sequence of SEQ ID NO: 2 or a fragment thereof which comprises
the nucleotides coding for Valine 229, Threonine 281, Phenylalanine 488 and Threonine
494 of SEQ ID NO: 1.
7. A polynucleotide for use according to claim 6, wherein the polynucleotide sequence
consists of the amino acid sequence of SEQ ID NO: 2.
8. A vector containing a polynucleotide coding for
(i) a BPIFB4 protein consisting of SEQ ID NO: 1;
(ii) a BPIFB4 protein variant of the BPIFB4 protein of (i) having at least 95% homology
to that of SEQ ID NO: 1; or
(iii) a fragment of the BPIFB4 protein of (i) or the variant of (ii),
which BPIFB4 protein variant or fragment is operatively linked to expression control
sequences, wherein said BPIFB4 protein variant or fragment comprises a Valine at the
position corresponding to position 229 of SEQ ID NO: 1, a Threonine at the position
corresponding to position 281 SEQ ID NO: 1, a Phenylalanine at a position corresponding
to position 488 of SEQ ID NO: 1 and a Threonine at a position corresponding to position
494 of SEQ ID NO: 1 and said BPIFB4 protein, variant or fragment has activity in increasing
the activity of eNOS and/or the production of NO for use in therapy.
9. A vector according to claim 8, wherein the vector is for use (i) in the prevention,
reduction of the risk, amelioration or treatment of a pathology selected from arterial
hypertension, atherosclerosis, diabetes mellitus, dyslipidemia, renal failure, metabolic
syndrome, stroke, myocardial infarction, erectile dysfunction, neurodegenerative diseases,
multiple sclerosis, cognitive disorders, retinal degeneration, uveoretinitis, vascular
retinopathy, cataract, glaucoma, coronary spastic angina, thrombosis, pulmonary hypertension,
pre-eclampsia, vasculitis, cancer, inflammatory disorders, venous insufficiency; or
(ii) for the improvement of post-exercise fatigue in muscular dystrophy or as a co-adjuvant
in the implantation of one or more stents for vascular occlusions.
10. A vector for use according to any one of claims 8 to 9, wherein the BPIFB4 protein,
variant or fragment thereof is linked to an additional amino acid sequence to target
the BPIFB4 protein variant or fragment thereof to a specific organ or tissue.
11. A vector for use according to any one of claims 8 to 10, wherein the polynucleotide
codes for a BPIFB4 protein which consists of SEQ ID NO: 1.
12. A vector for use according to any one of claims 8 to 11, wherein the polynucleotide
comprises the nucleotide sequence of SEQ ID NO: 2 or a fragment thereof which comprises
the nucleotides coding for Valine 229, Threonine 281, Phenylalanine 488 and Threonine
494 of SEQ ID NO: 1, optionally wherein the polynucleotide sequence consists of the
amino acid sequence of SEQ ID NO: 2.
13. A vector for use according to any one of claims 8 to 12, wherein the vector is a viral
vector, for example the vector is an adenovirus vector or is selected from AAV serotypes
1-9 vectors.
14. A pharmaceutical composition comprising a polynucleotide coding for
(i) a BPIFB4 protein consisting of SEQ ID NO: 1;
(ii) a BPIFB4 protein variant of the BPIFB4 protein of (i) having at least 95% homology
to that of SEQ ID NO: 1; or
(iii) a fragment of the protein of (i) or the variant of (ii),
wherein said BPIFB4 protein variant or fragment comprises a Valine at the position
corresponding to position 229 of SEQ ID NO: 1, a Threonine at the position corresponding
to position 281 SEQ ID NO: 1, a Phenylalanine at a position corresponding to position
488 of SEQ ID NO: 1 and a Threonine at a position corresponding to position 494 of
SEQ ID NO: 1 and said BPIFB4 protein, variant or fragment has activity in increasing
the activity of eNOS and/or the production of NO or a vector comprising said polynucleotide,
admixed with a pharmaceutically acceptable excipient.
1. Polynukleotid, codierend für
(i) ein BPIFB4-Protein, das aus SEQ ID NO: 1 besteht;
(ii) eine BPIFB4-Proteinvariante des BPIFB4-Proteins von (i), die mindestens 95 %
Homologie zu der aus SEQ ID NO: 1 aufweist; oder
(iii) ein Fragment des Proteins von (i) oder der Variante von (ii),
wobei die BPIFB4-Proteinvariante oder das Fragment ein Valin an der Position, die
der Position 229 aus SEQ ID NO: 1 entspricht, ein Threonin an der Position, die der
Position 281 aus SEQ ID NO: 1 entspricht, ein Phenylalanin an einer Position, die
der Position 488 aus SEQ ID NO: 1 entspricht, und ein Threonin an einer Position,
die der Position 494 aus SEQ ID NO: 1 entspricht, umfasst und das BPIFB4-Protein,
die Variante oder das Fragment eine Wirkung zur Erhöhung der Wirkung von eNOS und/oder
der Produktion von NO zur Verwendung in der Therapie aufweist.
2. Polynukleotid nach Anspruch 1, wobei das Polynukleotid zur Verwendung (i) bei der
Vorbeugung, Verringerung des Risikos, Verbesserung oder Behandlung einer Pathologie,
ausgewählt aus arterieller Hypertonie, Atherosklerose, Diabetes mellitus, Dyslipidämie,
Nierenversagen, metabolischem Syndrom, Schlaganfall, Myokardinfarkt, erektiler Dysfunktion,
neurodegenerativen Erkrankungen, Multipler Sklerose, kognitiven Störungen, Netzhautdegeneration,
Uveoretinitis, vaskulärer Retinopathie, Katarakt, Glaukom, koronar-spastischer Angina,
Thrombose, pulmonaler Hypertonie, Präeklampsie, Vaskulitis, Krebs, entzündlichen Erkrankungen,
venöser Insuffizienz; oder (ii) zur Verbesserung von Ermüdung nach Anstrengung bei
Muskeldystrophie oder als Co-Adjuvans bei der Implantation eines oder mehrerer Stents
für Gefäßverschlüsse dient.
3. Polynukleotid zur Verwendung nach Anspruch 2, wobei das Polynukleotid zur Verwendung
(i) bei der Vorbeugung, Verringerung des Risikos, Verbesserung oder Behandlung einer
Pathologie, ausgewählt aus arterieller Hypertonie, Diabetes mellitus, Dyslipidämie,
Nierenversagen, metabolischem Syndrom, Schlaganfall, Myokardinfarkt, erektiler Dysfunktion,
neurodegenerativen Erkrankungen, Multipler Sklerose, kognitiven Störungen, Netzhautdegeneration,
Uveoretinitis, vaskulärer Retinopathie, Glaukom, koronar-spastischer Angina, Thrombose,
pulmonaler Hypertonie, Präeklampsie, Vaskulitis, entzündlichen Erkrankungen und venöser
Insuffizienz; oder (ii) zur Verbesserung von Ermüdung nach Anstrengung bei Muskeldystrophie
oder als Co-Adjuvans bei der Implantation eines oder mehrerer Stents für Gefäßverschlüsse
dient.
4. Polynukleotid zur Verwendung nach einem der vorhergehenden Ansprüche, wobei das BPIFB4-Protein,
die Variante oder das Fragment davon mit einer zusätzlichen Aminosäuresequenz verknüpft
ist, um das BPIFB4-Protein, die Variante oder das Fragment davon auf ein spezifisches
Organ oder Gewebe zu richten.
5. Polynukleotid zur Verwendung nach einem der vorhergehenden Ansprüche, wobei das Polynukleotid
für ein BPIFB4-Protein codiert, das aus SEQ ID NO: 1 besteht.
6. Polynukleotid zur Verwendung nach einem der vorhergehenden Ansprüche, wobei das Polynukleotid
die Nukleotidsequenz aus SEQ ID NO: 2 oder ein Fragment davon umfasst, das die Nukleotide
umfasst, die für Valin 229, Threonin 281, Phenylalanin 488 und Threonin 494 aus SEQ
ID NO: 1 codieren.
7. Polynukleotid zur Verwendung nach Anspruch 6, wobei die Polynukleotidsequenz aus der
Aminosäuresequenz aus SEQ ID NO: 2 besteht.
8. Vektor, enthaltend ein Polynukleotid, codierend für
(i) ein BPIFB4-Protein, das aus SEQ ID NO: 1 besteht;
(ii) eine BPIFB4-Proteinvariante des BPIFB4-Proteins von (i), die mindestens 95 %
Homologie zu der aus SEQ ID NO: 1 aufweist; oder
(iii) ein Fragment des BPIFB4-Proteins von (i) oder der Variante von (ii),
wobei die BPIFB4-Proteinvariante oder das Fragment operativ mit Expressionssteuersequenzen
verknüpft ist, wobei die BPIFB4-Proteinvariante oder das Fragment ein Valin an der
Position, die der Position 229 aus SEQ ID NO: 1 entspricht, ein Threonin an der Position,
die der Position 281 aus SEQ ID NO: 1 entspricht, ein Phenylalanin an einer Position,
die der Position 488 aus SEQ ID NO: 1 entspricht, und ein Threonin an einer Position,
die der Position 494 aus SEQ ID NO: 1 entspricht, umfasst und das BPIFB4-Protein,
die Variante oder das Fragment eine Wirkung zur Erhöhung der Wirkung von eNOS und/oder
der Produktion von NO zur Verwendung in der Therapie aufweist.
9. Vektor nach Anspruch 8, wobei der Vektor zur Verwendung (i) bei der Vorbeugung, Verringerung
des Risikos, Verbesserung oder Behandlung einer Pathologie, ausgewählt aus arterieller
Hypertonie, Atherosklerose, Diabetes mellitus, Dyslipidämie, Nierenversagen, metabolischem
Syndrom, Schlaganfall, Myokardinfarkt, erektiler Dysfunktion, neurodegenerativen Erkrankungen,
Multipler Sklerose, kognitiven Störungen, Netzhautdegeneration, Uveoretinitis, vaskulärer
Retinopathie, Katarakt, Glaukom, koronar-spastischer Angina, Thrombose, pulmonaler
Hypertonie, Präeklampsie, Vaskulitis, Krebs, entzündlichen Erkrankungen, venöser Insuffizienz;
oder (ii) zur Verbesserung von Ermüdung nach Anstrengung bei Muskeldystrophie oder
als Co-Adjuvans bei der Implantation eines oder mehrerer Stents für Gefäßverschlüsse
dient.
10. Vektor zur Verwendung nach einem der Ansprüche 8 bis 9, wobei das BPIFB4-Protein,
die Variante oder das Fragment davon mit einer zusätzlichen Aminosäuresequenz verknüpft
ist, um die BPIFB4-Proteinvariante oder das Fragment davon auf ein spezifisches Organ
oder Gewebe zu richten.
11. Vektor zur Verwendung nach einem der Ansprüche 8 bis 10, wobei das Polynukleotid für
ein BPIFB4-Protein codiert, das aus SEQ ID NO: 1 besteht.
12. Vektor zur Verwendung nach einem der Ansprüche 8 bis 11, wobei das Polynukleotid die
Nukleotidsequenz aus SEQ ID NO: 2 oder ein Fragment davon umfasst, das die Nukleotide
umfasst, die für Valin 229, Threonin 281, Phenylalanin 488 und Threonin 494 aus SEQ
ID NO: 1 codieren, wobei optional die Polynukleotidsequenz aus der Aminosäuresequenz
aus SEQ ID NO: 2 besteht.
13. Vektor zur Verwendung nach einem der Ansprüche 8 bis 12, wobei der Vektor ein viraler
Vektor ist, zum Beispiel der Vektor ein Adenovirus-Vektor ist oder aus Vektoren der
AAV-Serotypen 1-9 ausgewählt ist.
14. Pharmazeutische Zusammensetzung, umfassend ein Polynukleotid, codierend für
(i) ein BPIFB4-Protein, das aus SEQ ID NO: 1 besteht;
(ii) eine BPIFB4-Proteinvariante des BPIFB4-Proteins von (i), die mindestens 95 %
Homologie zu der aus SEQ ID NO: 1 aufweist; oder
(iii) ein Fragment des Proteins von (i) oder der Variante von (ii),
wobei die BPIFB4-Proteinvariante oder das Fragment ein Valin an der Position, die
der Position 229 aus SEQ ID NO: 1 entspricht, ein Threonin an der Position, die der
Position 281 aus SEQ ID NO: 1 entspricht, ein Phenylalanin an einer Position, die
der Position 488 aus SEQ ID NO: 1 entspricht, und ein Threonin an einer Position,
die der Position 494 aus SEQ ID NO: 1 entspricht, umfasst und das BPIFB4-Protein,
die Variante oder das Fragment eine Wirkung zur Erhöhung der Wirkung von eNOS und/oder
der Produktion von NO oder eines Vektors aufweist, der das Nukleotid, zugemischt zu
einem pharmazeutisch annehmbaren Trägerstoff, umfasst.
1. Polynucléotide codant pour
(i) une protéine BPIFB4 consistant en SEQ ID NO: 1 ;
(ii) une variante de protéine BPIFB4 de la protéine BPIFB4 de (i) ayant au moins 95
% d'homologie avec celle de SEQ ID NO: 1 ; ou
(iii) un fragment de la protéine de (i) ou de la variante de (ii),
dans lequel ladite variante ou ledit fragment de protéine BPIFB4 comprend une valine
à la position correspondant à la position 229 de SEQ ID NO: 1, une thréonine à la
position correspondant à la position 281 SEQ ID NO: 1, une phénylalanine à une position
correspondant à la position 488 de SEQ ID NO: 1 et une thréonine à une position correspondant
à la position 494 de SEQ ID NO: 1 et ladite protéine BPIFB4, une variante ou un fragment
de celle-ci a une activité pour augmenter l'activité de eNOS et/ou la production de
NO pour une utilisation en thérapie.
2. Polynucléotide selon la revendication 1, dans lequel le polynucléotide est destiné
à être utilisé dans (i) la prévention, la réduction du risque, l'amélioration ou le
traitement d'une pathologie choisie parmi l'hypertension artérielle, l'athérosclérose,
le diabète sucré, la dyslipidémie, l'insuffisance rénale, le syndrome métabolique,
l'accident vasculaire cérébral, l'infarctus du myocarde, la dysfonction érectile,
les maladies neurodégénératives, la sclérose en plaques, les troubles cognitifs, la
dégénérescence rétinienne, l'uvéorétinite, la rétinopathie vasculaire, la cataracte,
le glaucome, l'angor spastique coronaire, la thrombose, l'hypertension pulmonaire,
la pré-éclampsie, la vascularite, le cancer, les troubles inflammatoires, l'insuffisance
veineuse ; ou (ii) pour l'amélioration de la fatigue post-exercice dans la dystrophie
musculaire ou comme co-adjuvant dans l'implantation d'un ou de plusieurs stents pour
les occlusions vasculaires.
3. Polynucléotide destiné à être utilisé selon la revendication 2, dans lequel le polynucléotide
est destiné à être utilisé dans (i) la prévention, la réduction du risque, l'amélioration
ou le traitement d'une pathologie choisie parmi l'hypertension artérielle, le diabète
sucré, la dyslipidémie, l'insuffisance rénale, le syndrome métabolique, l'accident
vasculaire cérébral, l'infarctus du myocarde, la dysfonction érectile, les maladies
neurodégénératives, la sclérose en plaques, les troubles cognitifs, la dégénérescence
rétinienne, l'uvéorétinite, la rétinopathie vasculaire, le glaucome, l'angor spastique
coronaire, la thrombose, l'hypertension pulmonaire, la pré-éclampsie, la vascularite,
les troubles inflammatoires et l'insuffisance veineuse ; ou (ii) pour l'amélioration
de la fatigue post-exercice dans la dystrophie musculaire ou comme co-adjuvant dans
l'implantation d'un ou de plusieurs stents pour les occlusions vasculaires.
4. Polynucléotide destiné à être utilisé selon une quelconque revendication précédente,
dans lequel la protéine BPIFB4, une variante ou un fragment de celle-ci est lié à
une séquence d'acides aminés supplémentaire pour cibler la protéine BPIFB4, une variante
ou un fragment de celle-ci vers un organe ou tissu spécifique.
5. Polynucléotide destiné à être utilisé selon une quelconque revendication précédente,
dans lequel le polynucléotide code pour une protéine BPIFB4 qui consiste en SEQ ID
NO: 1.
6. Polynucléotide destiné à être utilisé selon une quelconque revendication précédente,
dans lequel le polynucléotide comprend la séquence nucléotidique de SEQ ID NO: 2 ou
un fragment de celle-ci qui comprend les nucléotides codant pour la valine 229, la
thréonine 281, la phénylalanine 488 et la thréonine 494 de SEQ ID NO: 1.
7. Polynucléotide destiné à être utilisé selon la revendication 6, dans lequel la séquence
polynucléotidique consiste en la séquence d'acides aminés de SEQ ID NO: 2.
8. Vecteur contenant un polynucléotide codant pour
(i) une protéine BPIFB4 consistant en SEQ ID NO: 1 ;
(ii) une variante de protéine BPIFB4 de la protéine BPIFB4 de (i) ayant au moins 95
% d'homologie avec celle de SEQ ID NO: 1 ; ou
(iii) un fragment de la protéine BPIFB4 (i) ou de la variante de (ii),
dans lequel ladite variante ou ledit fragment de protéine BPIFB4 est lié de manière
opérationnelle à des séquences de commande d'expression, dans lequel ladite variante
ou ledit fragment de protéine BPIFB4 comprend une valine à la position correspondant
à la position 229 de SEQ ID NO: 1, une thréonine à la position correspondant à la
position 281 SEQ ID NO: 1, une phénylalanine à une position correspondant à la position
488 de SEQ ID NO: 1 et une thréonine à une position correspondant à la position 494
de SEQ ID NO: 1 et ladite variante ou ledit fragment de protéine BPIFB4 a une activité
pour augmenter l'activité de eNOS et/ou la production de NO pour une utilisation en
thérapie.
9. Vecteur selon la revendication 8, dans lequel le vecteur est destiné à être utilisé
(i) dans la prévention, la réduction du risque, l'amélioration ou le traitement d'une
pathologie choisie parmi l'hypertension artérielle, l'athérosclérose, le diabète sucré,
la dyslipidémie, l'insuffisance rénale, le syndrome métabolique, l'accident vasculaire
cérébral, l'infarctus du myocarde, la dysfonction érectile, les maladies neurodégénératives,
la sclérose en plaques, les troubles cognitifs, la dégénérescence rétinienne, l'uvéorétinite,
la rétinopathie vasculaire, la cataracte, le glaucome, l'angor spastique coronaire,
la thrombose, l'hypertension pulmonaire, la pré-éclampsie, la vascularite, le cancer,
les troubles inflammatoires, l'insuffisance veineuse ; ou (ii) pour l'amélioration
de la fatigue post-exercice dans la dystrophie musculaire ou comme co-adjuvant dans
l'implantation d'un ou de plusieurs stents pour les occlusions vasculaires.
10. Vecteur destiné à être utilisé selon l'une quelconque des revendications 8 à 9, dans
lequel la protéine BPIFB4, une variante ou un fragment de celle-ci est lié à une séquence
d'acides aminés supplémentaire pour cibler la protéine BPIFB4, une variante ou un
fragment de celle-ci vers un organe ou tissu spécifique.
11. Vecteur destiné à être utilisé selon l'une quelconque des revendications 8 à 10, dans
lequel le polynucléotide code pour une protéine BPIFB4 qui consiste en SEQ ID NO:
1.
12. Vecteur destiné à être utilisé selon l'une quelconque des revendications 8 à 11, dans
lequel le polynucléotide comprend la séquence nucléotidique de SEQ ID NO: 2 ou un
fragment de celle-ci qui comprend les nucléotides codant pour la valine 229, la thréonine
281, la phénylalanine 488 et la thréonine 494 de SEQ ID NO: 1, éventuellement dans
lequel la séquence polynucléotidique consiste en la séquence d'acides aminés de SEQ
ID NO: 2.
13. Vecteur destiné à être utilisé selon l'une quelconque des revendications 8 à 12, dans
lequel le vecteur est un vecteur viral, par exemple le vecteur est un vecteur adénovirus
ou est choisi parmi les vecteurs AAV des sérotypes 1 à 9.
14. Composition pharmaceutique comprenant un polynucléotide codant pour
(i) une protéine BPIFB4 consistant en SEQ ID NO: 1 ;
(ii) une variante de protéine BPIFB4 de la protéine BPIFB4 de (i) ayant au moins 95
% d'homologie avec celle de SEQ ID NO: 1 ; ou
(iii) un fragment de la protéine de (i) ou de la variante de (ii),
dans lequel ladite variante ou ledit fragment de protéine BPIFB4 comprend une valine
à la position correspondant à la position 229 de SEQ ID NO: 1, une thréonine à la
position correspondant à la position 281 SEQ ID NO: 1, une phénylalanine à une position
correspondant à la position 488 de SEQ ID NO: 1 et une thréonine à une position correspondant
à la position 494 de SEQ ID NO: 1 et ladite variante ou ledit fragment de protéine
BPIFB4 a une activité pour augmenter l'activité de eNOS et/ou la production de NO
ou un vecteur comprenant ledit polynucléotide, mélangé avec un excipient pharmaceutiquement
acceptable.