(11) EP 3 566 614 A2

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 13.11.2019 Bulletin 2019/46

(21) Application number: 18736724.8

(22) Date of filing: 08.01.2018

(51) Int CI.: A45D 34/04 (2006.01) A45D 34/00 (2006.01)

B65D 81/32 (2006.01)

(86) International application number: PCT/KR2018/000327

(87) International publication number: WO 2018/128491 (12.07.2018 Gazette 2018/28)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

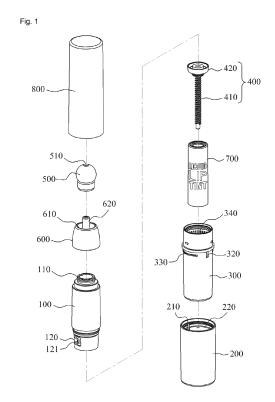
Designated Validation States:

MA MD TN

(30) Priority: 09.01.2017 KR 20170002817

(71) Applicant: YONWOO CO.,LTD
13 Gajwa-ro 84beon-gil
Seo-gu
Incheon 22824 (KR)

(72) Inventors:


 LEE, Jae-Ock Incheon 22824 (KR)

 CHOI, Seok-Gi Incheon 22824 (KR)

(74) Representative: Nordic Patent Service A/S Bredgade 30 1260 Copenhagen K (DK)

(54) CONTAINER FOR DISCHARGING LIQUID CONTENT HAVING ABSORPTION MEMBER

(57) The present invention disclosed herein relates to a container for discharging a liquid content having an absorption member, wherein the container is configured such that a piston rod, having a piston and a thread formed thereon, is integrally formed and the piston rod with the thread formed thereon can be assembled by means of a vertical pressurization method through a structure of a pair of guide protrusions formed inside a guide tube, thereby increasing productivity by reducing assembly time.

BACKGROUND

[0001] The present invention disclosed herein relates to a container for discharging a liquid content having an absorption member, in particular, wherein the container is configured such that a piston rod, having a piston and a thread formed thereon, is integrally molded and the piston rod with the thread formed thereon can be assembled by means of a vertical pressurization method through a structure of a pair of guide protrusions formed inside a guide tube, thereby increasing productivity by reducing assembly time.

[0002] Generally, cosmetic products such as lipsticks is configured to open a cap, to rotate a rotation body provided at a lower portion of a container thereof, and to raise/lower a solid lipstick to the outside of the container. For example, when a user wants to use a lipstick, firstly the user opens a cap of a container, rotates a rotation body, and raises the lipstick to the outside to be protruded. After using the lipstick, the user lowers the lipstick and makes the lipstick received in the container.

[0003] "A lipstick container" with a configuration as the above is disclosed in Fig. 1 of the Korean registered utility model no. 20-0241614 (hereafter called as the registered patent 1).

[0004] The registered patent 1 is characterized in that a lipstick (2) is fitted into a lipstick holder (3), and the lipstick holder (3) and a rotation tube (5) are coupled as a fixing protrusion (4) of the lipstick holder (3) is being fitted into a helical groove (6) formed at an inner portion of the rotation tube (5). A guide tube (7) is inserted between the lipstick holder (3) and the rotation tube (5) and coupled to the rotation tube (5) by an annulus protrusion (5). Meanwhile, the fixing protrusion (4) of the lipstick holder (3) is disposed inside a guide groove (8) of the guide tube (7) and at the same time, is disposed at the helical groove (6).

[0005] The registered patent 1 is configured in a way that the fixing protrusion (4) hung between the helical groove (6) and the guide groove (8) ascends when a user holds the guide tube (7) with a hand and rotates the rotation tube (5), and thereby the lipstick (2) fitted in the lipstick holder (3) ascends along for applying lip make up by means of the lipstick (2); however, this type of lipsticks composed of a solid lipstick as in the above has a problem in that ingredients of the lipstick are likely to be spoiled by being contacted with air.

[0006] Recently, accordingly, there have been developed a variety of lipstick containers which are possible to minimize decomposition of contents thereof by using liquid lipstick with the lipstick smeared on a brush like a manicure or using the liquid lipstick discharged by squeezing the liquid lipstick stored in the container with a piston. A container of this type for discharging liquid content is disclosed on Korean Registered Patent No. 10-1571466 (hereafter called as the registered patent 2).

[0007] The registered patent 2, submitted as a prior application by the applicant of the present invention on May 26, 2015 and registered on November 18, 2015, is characterized in that, when a rotation body rotates, liquid type contents are discharged in an extrusion manner while a piston is ascending, and are absorbed into an absorption member to be used, such that it is possible to provide the same usability as a solid lipstick product which is familiar with users and to improve spreadability of liquid content, and by equipping a nozzle which opens only when contents are discharged, to prevent air from flowing into the interior of the container body when not in use.

[0008] The registered patent 2 is configured in a way that a screw thread is formed longitudinally at the inner circumferential surface of an ascending and descending guide member and is assembled by screw coupling through rotation of a piston rod, and is also configured in a way that the piston rod and the piston should be separately assembled. Therefore, there arises a problem that productivity decreases as assembly time increase.

[0009] Furthermore, since there is no means by which a user cannot sense the rotation degree of the rotation body, it is hard for the user to discharge the desired amount of contents for use. Therefore, there arises a problem that the user may have contents discharged unnecessarily too much.

[0010] Furthermore, since the piston is configured to descend by counter-rotation of the rotation body, the piston should be ascended by being rotated again as much distance as the piston descended in order to discharge contents. This not only brings user inconvenience but causes users to suspect the product malfunction and to distrust the product.

SUMMARY OF THE INVENTION

[0011] The present invention is devised to solve the said problems above, and its goal is to provide a container for discharging a liquid content having an absorption member, wherein the container is configured such that a piston rod, having a piston and a thread formed thereon, is integrally formed and the piston rod with the thread formed thereon can be assembled by means of a vertical pressurization method through a structure of a pair of guide protrusions formed inside a guide tube, thereby increasing productivity by reducing assembly time.

[0012] Furthermore, the present invention is to provide a container for discharging a liquid content having an absorption member wherein, by generating a click sound upon each rotation of the rotation body and making it possible for a user to sense rotation degree of the rotation body, the user can efficiently discharge desired amount of contents through the click sound.

[0013] Furthermore, the present invention is to provide a container for discharging a liquid content having an absorption member wherein, by preventing the piston from descending through the counter-rotation preventing

35

40

structure of the rotation body, it is possible to discharge contents right away when the rotation body rotates, thereby not only bringing user convenience but promoting reliability of the product.

[0014] To solve the above problems, a container for discharging a liquid content having an absorption member according to the present invention includes: a container body where liquid content is stored, and provided with a discharge part, which discharges contents, at the upper portion thereof; a rotation body encasing the lower portion of the container body and rotatably coupled thereon; an ascending and descending guide member coupled to the inner side of the rotation body, rotating together along with rotation of the rotation body and guiding ascent of an extrusion member; an extrusion member ascending by rotation of the rotation body and extrudingly discharging content stored in the container body; and an absorption member disposed at the upper portion of the container body and absorbing liquid contents stored in the container body,

characterized in that at the center portion of the ascending and descending guide member is provided a guide tube, guiding assembly by means of a vertical compression of the extrusion member and provided with a pair of guide protrusions at both sides of the inner circumferential surface thereof so as to guide ascent of the extrusion member by rotation of the rotation body.

[0015] Furthermore, it is characterized in that the extrusion member comprises a piston rod which is inserted into a guide tube of the ascending and descending guide member; and a piston disposed at the upper portion of the piston rod, closely contacted to the inner wall of the container body, and extruding content as moving together according to the ascent of the piston rod, wherein the piston rod and the piston are integrally molded.

[0016] Furthermore, it is characterized in that a pair of the guide protrusions have a stepped pulley so as to be screw-coupled with the screw thread of the piston rod when the rotation body rotates.

[0017] Furthermore, it is comprise a post-processing part coupled as encasing the piston rod of the extrusion member and post-processed in a way among printing, hot-stamping, plating, metalizing, coating, and stamping such that letters or figures can be marked on the outer circumferential surface thereof.

[0018] Furthermore, it is characterized in that at the lower portion of the container body is provided an elastic plate having a latch projection, and at the inner side of the ascending and descending guide member is formed a plurality of rotation protrusions, which pressurize the latch projection, with a constant distance apart along the inner circumferential surface thereof. When a plurality of the rotation protrusions goes over the latch projection as pressurizing by rotation of the rotation body, a click sound is generated, which makes it possible for a user to sense the rotation degree of the rotation body.

[0019] Furthermore, it is characterized in that one side of the latch projection forms a first inclined surface with

a gentle slope and the other side of the latch projection forms a first vertical surface; one side of the rotation protrusion forms a second inclined surface with a gentle slope and the other side of the rotation protrusion forms a second vertical surface; and after the second inclined surface of the rotation protrusion goes over along the first inclined surface, the second vertical surface of the rotation protrusion meets the first vertical surface of the latch projection, thereby making it possible to prevent counterrotation of the rotation body.

[0020] Furthermore, it is characterized in that at the inner circumferential surface of the rotation body is provided a fixation groove which fixes the ascending and descending guide member, and at the outer circumferential surface of the ascending and descending guide member is provided a fixation protrusion which is coupled to the fixation groove.

[0021] Furthermore, it is characterized in that at the inner circumferential surface of the rotation body is provided a separation preventing groove such that the ascending and descending guide member can be prevented from being separated while moving upwards, and at the outer circumferential surface of the ascending and descending guide member is provided a separation preventing protrusion which is coupled to the separation preventing groove.

[0022] Furthermore, it is characterized to further include a support body which is coupled as encasing the discharge part of the container body and supports the absorption member, wherein the support body comprises a securing part where the absorption member is secured, and a nozzle part which discharge contents stored in the container body to the absorption member.

[0023] As mentioned in the above, the present invention is configured in a way that the piston and the piston rod with the screw thread are integrally molded, and the piston rod, which is formed with the screw thread through the structure of a pair of guide protrusions formed at the inner side of the guide tube, can be assembled by means of vertical pressurization, such that it is possible to promote productivity by reducing assembly time.

[0024] Furthermore, according to the present invention, a user can make a click sound on each rotation of the rotation body, sense the rotation degree of the rotation body, and efficiently discharge as much contents as desired for use, such that is possible to provide user convenience.

[0025] Furthermore, according to the present invention, the piston can be prevented from descending through the counter-rotation preventing structure of the rotation body, such that a use can extrude contents at once when the rotation body rotates, such that it is possible not only to provide user convenience but to improve reliability of the product.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026]

35

Fig.1 is an exploded perspective view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig.2 is an assembled perspective view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig.3 is an assembled cross-sectional view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

Fig.4 is an explanatory drawing illustrating an ascending process of a post-processing part by rotation of a rotation body of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

Fig. 5 is an explanatory drawing illustrating a process wherein a rotation protrusion goes over a latch projection by rotation of the rotation body of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

Fig. 6 is an explanatory drawing illustrating a structure of an ascending and descending guide member and an extrusion member of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

Fig. 7 is a view illustrating an operational state of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0027] Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals provided in the drawings indicate the same members.

[0028] Fig.1 is an exploded perspective view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig.2 is an assembled perspective view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig.3 is an assembled cross-sectional view illustrating a configuration of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

[0029] Fig.4 is an explanatory drawing illustrating an ascending process of a post-processing part by rotation

of a rotation body of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig. 5 is an explanatory drawing illustrating a process wherein a rotation protrusion goes over a latch projection by rotation of the rotation body of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention. Fig. 6 is an explanatory drawing illustrating a structure of an ascending and descending guide member and an extrusion member of a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention.

[0030] Referring to Figs. 1 to 6, a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention includes a container body 100, a rotation body 200, an ascending and descending guide member 300, an extrusion member 400, and an absorption member 500.

[0031] The container body 100, where liquid content is stored, is provided with a discharge part at the upper portion thereof such that stored content can be discharged. The container body 100 is preferably made of transparent material such that the color of stored content can be checked from the outside.

[0032] The present invention is characterized in that at a lower portion of the container body 100 is provided an elastic plate 120 which has a latch projection 121 formed. The elastic plate 120 is composed of a pair thereof, at both sides at the lower portion of the container body 100, respectively with incision. When a rotation protrusion 340 pressurizes the latch projection 121 by rotation of the rotation body 200, the elastic plate 120 is configured to move with a limited range and then to be restored, such that it is possible to prevent mutual interference therein in a process of the rotation protrusion 340 going over the latch projection 121.

[0033] Furthermore, it is preferable that the latch projection 121 has one side with a first inclined surface 121a with a gentle slope such that the rotation protrusion 340 can easily go over the latch projection 121 when the rotation body 200 rotates, and has the other side with a first vertical surface 121b such that the rotation body 200 can be prevented from being counter-rotated.

[0034] Meanwhile, at the upper portion of the container body 100 is provided a support body 600 which is coupled as encasing a discharge part 110 of the container body 100 and supports an absorption member 500. The support body 600 comprises a securing part 610 where the absorption member 500 is secured, and a nozzle part 620 which discharges contents stored in the container body 100 to the absorption member 500.

[0035] The rotation body 200, rotatably coupled as encasing the lower portion of the container body 100, is coupled with an ascending and descending guide member 300 which raises an extrusion member 400 at the inner side thereof. at the inner circumferential surface of

the rotation body 200 is provided a fixation groove 210 which fixes in a way that the ascending and descending guide member 300 can rotates along with the rotation body 200.

[0036] Furthermore, a separation preventing groove 220 is provided at the inner circumferential surface of the rotation body 200 such that the ascending and descending guide member 300 can be prevented from moving upward and being separated in a state of the ascending and descending guide member 300 being coupled to the rotation body 200.

[0037] Meanwhile, an over cap 800 is coupled at the upper portion of the rotation body 200 such that the over cap 800 can encase the container body 100 and can be attached and detached. The over cap 800 prevents contamination of the absorption member 500 and block evaporation of content absorbed to the absorption member 500 in a storing state without using the over cap 800. [0038] Furthermore, at the inner upper side of the over cap 800 is provided a closure protrusion 810 which closes the upper end of a nozzle part 620 such that content can be prevented from being discharged through the nozzle part 620 in a storing state.

[0039] The ascending and descending guide member 300 guides ascent of the extrusion member 400 as being coupled to the inner side of the rotation body 200 and rotating by rotation of the rotation body 200. For this, at the center portion of the ascending and descending guide member 300 is provided a guide tube 310 where a piston rod 410 of the extrusion member 400 is inserted. At the inner upper portion of the guide tube 310 is a pair of guide protrusions 311 which guides ascent of the extrusion member 400.

[0040] A pair of the guide protrusions 311 forms a stepped pulley so as to be screw-coupled with a thread of the piston rod 410 when the rotation body 200 rotates. Therefore, it is possible not only to guide assembling through vertical compression of the extrusion member 400 but to guide ascent of the extrusion member 400 through a screw coupling with a thread of the piston rod 410 when the rotation body 200 rotates.

[0041] Furthermore, at the outer circumferential surface of the ascending and descending guide member 300 is provided a fixation protrusion 320 which is coupled to the fixation groove 210 of the rotation body 200 so as to be rotated according to rotation of the rotation body 200

[0042] Furthermore, at the outer circumferential surface of the ascending and descending guide member 300 is provided a separation preventing protrusion 330 which is coupled to a separation preventing groove 220 so as to moving upwards and being separated in a state of being coupled to the rotation body 200.

[0043] Meanwhile, the present invention is characterized in that a plurality of rotation protrusions 340, which pressurize the latch projection 121 by rotation of the rotation body 200, are formed with a constant distance apart along the inner circumferential surface at the inner

side of the ascending and descending guide member 300. When the rotation body 200 rotates, a click sound is generated upon each rotation of the rotation body 200 and a user can sense the rotation degree of the rotation body 200, such that it is possible that the user can efficiently discharge desired amount of contents through the click sound.

[0044] For example, amount of content used can vary person to person or every time. The present invention is configured in that a user can sense the amount of content absorbed into the absorption member 500 every time one click sound is generate through the click sound generated by the latch projection 121 and the rotation protrusion 340, such that it is possible for the user to discharge appropriate amount of content as needed by counting the number of click sound.

[0045] Meanwhile, as illustrated in Fig. 5, one side of the rotation protrusion 340 forms a second inclined surface 341 such that a rotation body 200 can easily go over a first inclined surface 121a of the latch projection 121 when the rotation body 200 rotates, and the other side of the rotation protrusion 340 forms a second vertical surface 342 which corresponds to a first vertical surface 121b of the rotation body 200. Therefore, it is possible to prevent counter-rotation of the rotation body 200 because the second inclined surface 341 of the rotation protrusion 340 after the second inclined surface 341 of the rotation protrusion 340 and the first vertical surface 121b of the latch projection 121 meet after the second inclined surface 341 of the rotation protrusion 340 goes over the first inclined surface 121a of the latch projection 121

[0046] The extrusion member 400 ascends by rotation of the rotation body 200 and extrudingly discharges content stored in the container body 100. The extrusion member 400 comprises a piston rod 410 which is inserted to the guide tube 310 of the ascending and descending guide member 300, having a thread formed on the outer circumferential surface thereof and ascends, and ascends by rotation of the rotation body 200; and a piston 420, which is disposed at the upper portion of the piston rod 410 and closely contacted to the inner wall of the container body 100, moves as the piston rod 410 ascends and extrudes content. It is preferable that the piston rod 410 and the piston 420 should be integrally molded to promote assembling.

[0047] The extrusion member 400 is configured to be closely contacted to the inner wall of the container body 100 and to vertically ascend in a state of being fixed to the inner wall of the container body 100 when the rotation body 200 rotates by the piston 420.

[0048] Meanwhile, the present invention is characterized in that a post-processing part 700 encasing the piston rod 410 is coupled at the extrusion member 400. As illustrated in Fig. 4, the post-processing part 700 is configured in that one among printing, hot-stamping, plating, metalizing, coating, or stamping can be post-processed such that letters or figures can be marked on the outer

40

15

20

35

40

45

50

55

circumferential surface thereof. Due to this, it is possible to provide various advertisement effects and aesthetic sense.

[0049] The absorption member 500, which absorbs liquid content stored in the container body 100 and applies the content onto user's lips, is configured to encase a nozzle part 620 in a state of being secured at a securing part 610 of a support body 600 which is coupled to the upper portion of the container body 100. It is preferable to be made of porous material so as to improve spreadability of the content when a user applies the content on her lips.

[0050] Furthermore, the absorption 500 is formed with a penetration hole 510 such that a closure protrusion 810 of the over cap 800 can penetrate the penetration hole 510 and close the upper end of the nozzle part 620.

[0051] Hereafter, referring Fig. 7, a using method of to a container for discharging a liquid content having an absorption member according to an exemplary embodiment of the present invention will be explained. Referring Fig.7, firstly, when a user pressurizes the container body 100 with one hand and rotates the rotation body 200 to one side direction, the ascending and descending guide member 300 coupled to the inner side of the rotation body 200 rotates together. Thus, the guide protrusion 311 of the guide tube 310 and the piston rod 410 gets screwcoupled and thereby, the extrusion member 400 will ascend.

[0052] As in the above, when the extrusion member 400 ascends, the piston 420 coupled to the upper portion of the piston rod 410 ascends, which pressurizes the liquid content stored in the container body 100. Thus, the content stored in the container body 100 is discharged through the nozzle part 620 and is absorbed to the absorption member 500. Now, it is possible for a user to apply liquid content absorbed on the absorption member 500 onto her lips.

[0053] As described in the above, the present invention is configured in a way that the piston rod 410 having the piston 420 and a thread is integrally molded, and the piston rod 410 having a thread is assembled by means of vertical pressurization through the structure of a pair of guide protrusions 311 formed at the inner side of the guide tube 310. Therefore, it is possible to promote productivity by reducing assembly time. Furthermore, through the structure of a pair of guide protrusions 311 having a stepped pulley, it is also possible to guide ascent of the extrusion member 400 through the screw-coupling with the thread of the piston rod 410 when the rotation body 200 rotates.

[0054] As described above, optimal embodiments have been disclosed in the drawings and the specification. Although specific terms have been used herein, these are only intended to describe the present invention and are not intended to limit the meanings of the terms or to restrict the scope of the present invention as disclosed in the accompanying claims. Accordingly, those skilled in the art will appreciate that various modifications

and other equivalent embodiments are possible from the above embodiments. Therefore, the scope of the present invention should be defined by the technical spirit of the accompanying claims.

Claims

1. A container for discharging a liquid content having an absorption member, comprising:

a container body (100) where liquid content is stored, and provided with a discharge part (110), which discharges contents, at the upper portion thereof;

a rotation body (200) encasing the lower portion of the container body (100) and rotatably coupled thereto;

an ascending and descending guide member (300) coupled to the inner side of the rotation body (200), rotating together along with rotation of the rotation body (200) and guiding ascent of an extrusion member (400);

an extrusion member (400) ascending by rotation of the rotation body (200) and discharging content stored in the container body (100) by extruding content stored in the container body; and

an absorption member (500) disposed at the upper portion of the container body (100) and absorbing liquid contents stored in the container body (100).

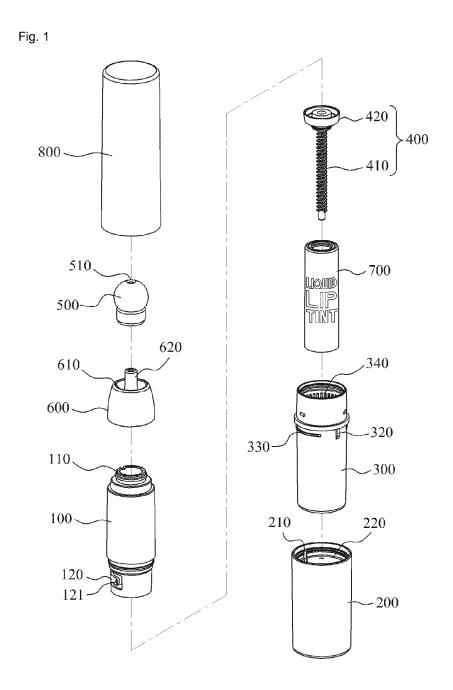
characterized in that at the center portion of the ascending and descending guide member (300) is provided a guide tube (310) which guides assemblying by means of a vertical compression of the extrusion member (400), and further provided with a pair of guide protrusions (311) at both sides of the inner circumferential surface thereof so as to guide ascent of the extrusion member (400) by rotation of the rotation body (200).

- 2. The container for discharging a liquid content having an absorption member according to claim 1,
 - characterized in that the extrusion member (400) comprises a piston rod (410) which is inserted into a guide tube (310) of the ascending and descending guide member (300); and a piston (420) disposed at the upper portion of the piston rod (410), closely contacted to the inner wall of the container body (100), and extruding content as moving together according to the ascent of the piston rod (410), wherein the piston rod (410) and the piston (420) are integrally molded.
- The container for discharging a liquid content having an absorption member according to claim 2,

15

20

40


45

50

characterized in that a pair of the guide protrusions (311) have a stepped pulley so as to be screw-coupled with the screw thread of the piston rod (410) when the rotation body (200) rotates.

- 4. The container for discharging a liquid content having an absorption member according to claim 3, characterized to comprise a post-processing part (700) coupled as encasing the piston rod (410) of the extrusion member (400) and post-processed in a way among printing, hot-stamping, plating, metalizing, coating, and stamping such that letters or figures can be marked on the outer circumferential surface thereof.
- 5. The container for discharging a liquid content having an absorption member according to claim 1, characterized in that at the lower portion of the container body (100) is provided an elastic plate (120) having a latch projection (121), and at the inner side of the ascending and descending guide member (300) is formed a plurality of rotation protrusions (340), which pressurize the latch projection (121), with a constant distance apart along the inner circumferential surface thereof. When a plurality of the rotation protrusions (340) goes over the latch projection (121) as pressurizing by rotation of the rotation body (200), a click sound is generated, which makes it possible for a user to sense the rotation degree of the rotation body (200).
- 6. The container for discharging a liquid content having an absorption member according to claim 5, characterized in that one side of the latch projection(121) forms a first inclined surface with a gentle slope and the other side of the latch projection (121) forms a first vertical surface (121b); one side of the rotation protrusion (340) forms a second inclined surface (341) with a gentle slope and the other side of the rotation protrusion (340) forms a second vertical surface (342); and after the second inclined surface (341) of the rotation protrusion (340) goes over along the first inclined surface (121a), the second vertical surface (342) of the rotation protrusion(340) meets the first vertical surface (121b) of the latch projection (121), thereby making it possible to prevent counterrotation of the rotation body (200).
- 7. The container for discharging a liquid content having an absorption member according to claim 1, characterized in that at the inner circumferential surface of the rotation body (200) is provided a fixation groove (210) which fixes the ascending and descending guide member (300), and at the outer circumferential surface of the ascending and descending guide member (300) is provided a fixation protrusion (320) which is coupled to the fixation groove (210).

- 8. The container for discharging a liquid content having an absorption member according to claim 1, characterized in that at the inner circumferential surface of the rotation body (200) is provided a separation preventing groove (220) such that the ascending and descending guide member (300) can be prevented from being separated while moving upwards, and at the outer circumferential surface of the ascending and descending guide member (300) is provided a separation preventing protrusion (330) which is coupled to the separation preventing groove (220).
- 9. The container for discharging a liquid content having an absorption member according to claim 1, characterized to further include a support body (600) which is coupled as encasing the discharge part of the container body (100) and supports the absorption member (500), wherein the support body (600) comprises a securing part (610) where the absorption member (500) is secured, and a nozzle part (620) which discharge contents stored in the container body (100) to the absorption member (500).

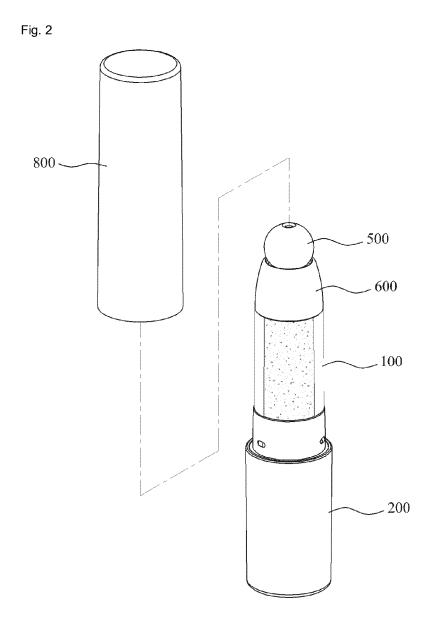
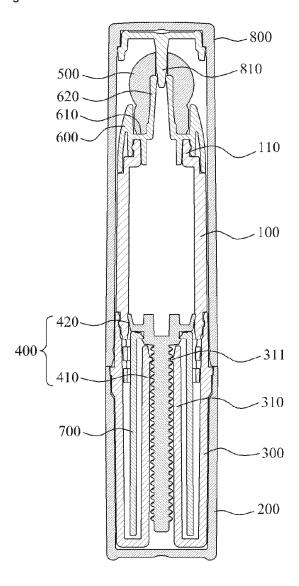
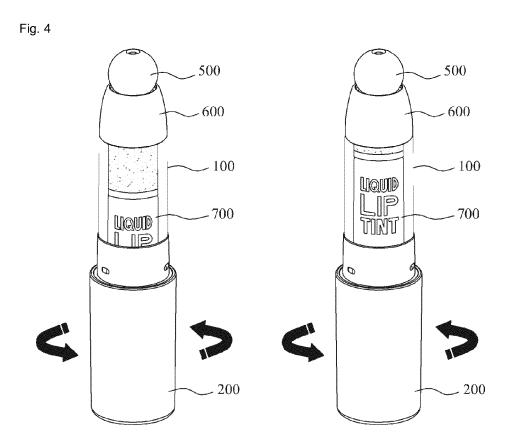




Fig. 3

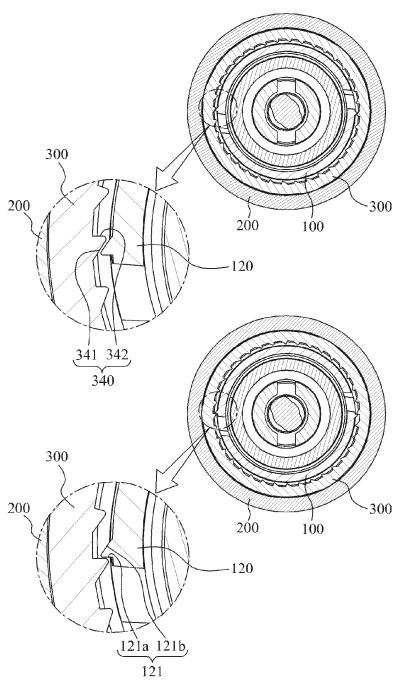
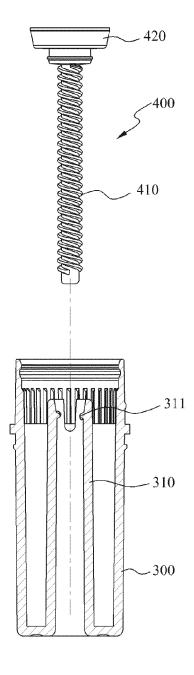
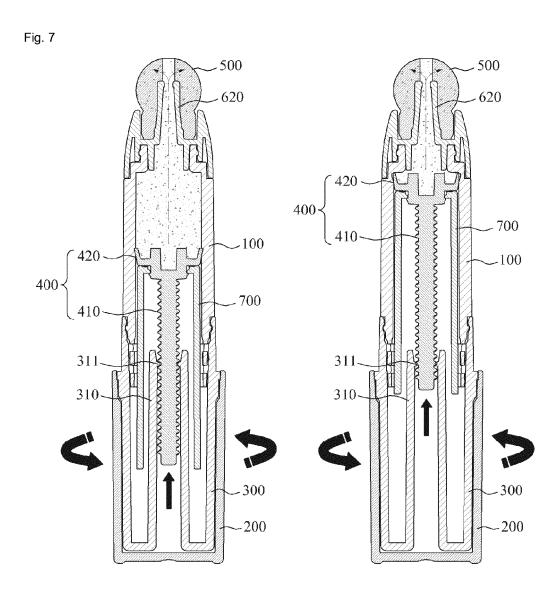




Fig. 6

EP 3 566 614 A2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

KR 200241614 [0003]

• KR 101571466 [0006]