(11) EP 3 567 199 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

13.11.2019 Patentblatt 2019/46

(51) Int Cl.:

E05F 15/603 (2015.01)

(21) Anmeldenummer: 19170745.4

(22) Anmeldetag: 24.04.2019

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 07.05.2018 DE 102018110862

(71) Anmelder: Lock Antriebstechnik GmbH 88521 Ertingen (DE)

(72) Erfinder:

- Fluhr, Berthold 88521 Ertingen (DE)
- Fluhr, Tobias 88521 Ertingen (DE)
- (74) Vertreter: Otten, Roth, Dobler & Partner mbB
 Patentanwälte
 Großtobeler Straße 39
 88276 Berg / Ravensburg (DE)

(54) GETRIEBEMOTOR ZUM ANTRIEB EINES STATIONÄREN UND/ODER MOBILEN ANTRIEBSSYSTEMS

(57) Getriebemotor (1) zum Antrieb eines stationären und/oder mobilen Antriebssystems (11), wobei das Antriebssystem (11) insbesondere zum Öffnen oder Schließen einer Gebäudeöffnung ausgebildet ist, wobei der Getriebemotor (1) einen elektrischen Motor (2) aufweist, wobei der Getriebemotor (1) ein selbsthemmendes Getriebe (3) umfasst, wobei der Getriebemotor (1) eine Energiespeichereinheit (4) umfasst, wobei die Energiespeichereinheit (4) dazu ausgebildet ist, Energie zu

speichern, wobei mit Energie der Energiespeichereinheit (4) der elektrische Motor (2) antreibbar ist, wobei der Getriebemotor (1) eine Aufnahmeleistung zwischen 0,075kW und 1,5kW aufweist, wobei der Getriebemotor (1) eine Anbringeinrichtung (5) aufweist, und wobei die Energiespeichereinheit (4) durch Anbringmittel der Anbringeinrichtung (5) austauschbar am Getriebemotor (1) angeordnet ist.

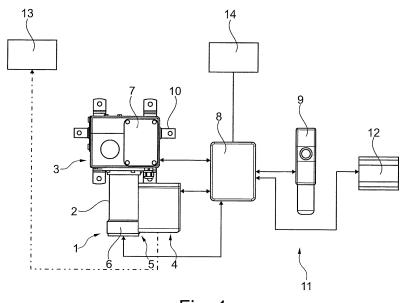


Fig. 1

P 3 567 199 A

Stand der Technik

[0001] Getriebemotoren zum Antrieb eines Antriebssystems sind bekannt.

[0002] Ein bekannter Getriebemotor umfasst einen Elektromotor und treibt eine Wickelvorrichtung z.B. zum Öffnen oder Schließen einer Gebäudeöffnung an.

[0003] Nachteilig an den bekannten Getriebemotoren mit Elektromotor ist, dass zum Betrieb des Getriebemotors eine Strom- bzw. Energiezuleitung an den Getriebemotor notwendig ist. Hierdurch ist ein vergleichsweise hoher Installationsaufwand vorhanden und eine Mobilität des Getriebemotors, z.B. für eine flexible und vielseitige Verwendung ist nicht gewährleistet.

Aufgabe und Vorteile der Erfindung

[0004] Der Erfindung liegt die Aufgabe zugrunde, einen alternativen Getriebemotor bereitzustellen.

[0005] Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.

[0006] In den abhängigen Ansprüchen sind vorteilhafte und zweckmäßige Weiterbildungen der Erfindung angegeben.

[0007] Der wesentliche Aspekt der Erfindung ist darin zu sehen, dass ein Getriebemotor zum Antrieb eines stationären und/oder mobilen Antriebssystems vorgesehen ist, wobei das Antriebssystem insbesondere zum Öffnen oder Schließen einer Gebäudeöffnung ausgebildet ist, wobei der Getriebemotor einen elektrischen Motor aufweist, wobei der Getriebemotor eine Energiespeichereinheit umfasst, wobei die Energiespeichereinheit dazu ausgebildet ist, Energie zu speichern, wobei mit Energie der Energiespeichereinheit der elektrische Motor antreibbar ist, wobei der Getriebemotor eine Aufnahmeleistung zwischen 0,075kW und 1,5kW aufweist, wobei der Getriebemotor ein selbsthemmendes Getriebe umfasst, wobei der Getriebemotor eine Anbringeinrichtung zur Anbringung der Energiespeichereinheit aufweist. Vorteilhafterweise ist die Energiespeichereinheit durch Anbringmittel der Anbringeinrichtung austauschbar am Getriebemotor angeordnet. Der Getriebemotor besitzt vorteilhafterweise eine Aufnahmeleistung zwischen 0,075kW und 1,5kW, zwischen 0,1kW und 1,5kW, zwischen 0,2kW und 1,5kW, zwischen 0,5kW und 1,5kW oder zwischen 0,6kW und 1,5kW.

[0008] Das Antriebssystem positioniert und/oder verschiebt beispielsweise ein Abdeckelement für eine Gebäudeöffnung zum Öffnen oder Schließen der Gebäudeöffnung. Das Antriebssystem positioniert und/oder verschiebt z.B. ein Fenster z.B. ein Abdeckelement einer Dachöffnung, einen Flügel und/oder eine flexible, insbesondere verschiebbare Wand. Das Antriebssystem ist z. B. zum Öffnen und Schließen von Schattierungs- oder Lüftungsanlagen und/oder zum Heben und Senken von Lasten vorgesehen. Denkbar ist auch, dass das Antriebs-

system zum Öffnen oder Schließen von Türen oder Tore vorhanden ist. Das Antriebssystem wird beispielsweise im Gartenbau, im Stallbau und/oder im Glasbau, beispielsweise in Gewächshäusern, eingesetzt. Ein Antriebssystem zum Positionieren, insbesondere zum Heben und/oder Senken von Lasten finden unter anderem z.B. im Maschinenbau Verwendung. Beispielsweise dient das Antriebssystem zum Heben, Senken und/oder Verschieben von stationären und/oder mobilen Verstelleinheiten.

[0009] Vorteilhafterweise erfolgt eine Kraftübertragung vom Elektromotor über ein Getriebe auf das Antriebssystem über insbesondere bekannte Komponenten, wie beispielsweise Wellen, Zahnstangen, Spindeln und/oder Seil. Die Komponenten können hierbei Teil des Getriebemotors oder Teil des Antriebssystems sein.

[0010] Beispielsweise ist das Getriebe des Getriebemotors selbsthaltend, z.B. mittels weiterer beispielsweise bekannter Getriebekomponenten. Selbsthemmend bedeutet hierbei, dass der Getriebemotor antriebsseitig von außen nicht bewegbar ist, z.B. nicht gedreht werden kann, z.B. dass eine Komponente des Getriebes nicht bewegbar ist. Z.B. umfasst der Getriebemotor, insbesondere das Getriebe ein Schneckenrad.

[0011] Der elektrische Motor ist z.B. als ein Elektromotor vorhanden. Der Getriebemotor und insbesondere der elektrische Motor ist vorteilhafterweise derart ausgebildet, dass er alle bekannten Gleich- und/oder Wechselstromvarianten an den Getriebemotor, insbesondere an den elektrischen Motor ankoppelbar sind, um den elektrischen Motor mit elektrischer Energie zu versorgen. Vorteilhafterweise umfasst der Getriebemotor Stromwandlungsmittel, z.B. in Form eines Stromrichters und/oder insbesondere in Form eines Frequenzumrichters, z.B. in Form eines Wechselrichters und/oder in Form eines Gleichrichters. An den Getriebemotor insbesondere zum Antrieb des elektrischen Motors ist z.B. eine Gleichstromversorgung mit 6V, 12V, 14V, 18V und/oder 24V ankoppelbar. Weiter vorstellbar ist, dass der Getriebemotor durch eine 1-phasige und/oder 3-phasige Wechselspannung mit Energie versorgbar ist, z.B. mit 230V A/C.

[0012] Bevorzugterweise ist der Getriebemotor derart ausgebildet, dass er eine insbesondere kurzfristige Leistungsaufnahme von bis zu 500W aufweist. Vorteilhafterweise ist der Getriebemotor derart ausgebildet, dass er an einer Getriebeausgangskomponente, welche mit dem Antriebssystem koppelt, z.B. einer Getriebewelle bzw. einer Zahnstange des Getriebes, eine Kraft von bis zu 10 kN bei bis zu 600 Millimeter Vorschub pro Minute der Getriebeausgangskomponenten aufbringen kann. Z.B. ist der Getriebemotor dazu ausgebildet an der Getriebeausgangskomponente ein Drehmoment von bis zu 350 Nm bei bis zu 10 Umdrehungen pro Minute zu leisten. [0013] Bevorzugterweise ist der Getriebemotor dazu ausgebildet nur zeitweise betrieben zu werden. Beispielsweise ist eine vergleichsweise aufwendige Kühleinrichtung, wie z.B. ein vergleichsweise großer Kühlkörper vermieden, wodurch der Getriebemotor vergleichsweise kompakt aufgebaut ist.

[0014] Vorteilhafterweise ist der Getriebemotor, insbesondere der elektrische Motor, energiesparend ausgebildet, beispielsweise als ein Energiesparmotor. Z.B. ist der Getriebemotor und insbesondere der elektrische Motor derart ausgebildet, dass er keine elektrische Energie verbraucht und/oder benötigt, wenn er nicht in Betrieb ist, insbesondere, wenn der Getriebemotor das Antriebssystem nicht antreibt bzw. bewegt. Denkbar ist, dass der Getriebemotor einen Schalter umfasst, durch welchen die stromführende Verbindung zwischen der Energiespeichereinheit des Getriebemotors und dem verbleibenden Getriebemotor trennbar ist. Beispielsweise umfassen die Anbringmittel einen derartigen Schalter.

[0015] Die Energiespeichereinheit ist beispielsweise als ein Kondensator, eine Batterie und/oder als ein Akkumulator ausgebildet. Die Energiespeichereinheit ist vorteilhafterweise dazu ausgebildet wiederholbar mit Energie wiederaufladbar zu sein. Denkbar ist auch, dass die Energiespeichereinheit eine Brennstoffzelle aufweist, beispielsweise mit einem Tank, insbesondere mit einem Gastank, z.B. mit einem Wasserstofftank.

[0016] Von Vorteil erweist sich auch, dass der Getriebemotor eine Sensoreinheit, z.B. eine Endschaltereinheit, aufweist, um eine Position, z.B. eine Endlageposition, einer Antriebswelle oder einer anderen Bewegungskomponente zu regeln.

[0017] Weiter wird vorgeschlagen, dass die Sensoreinheit, z.B. die Endschaltereinheit, im Bereich der Antriebswelle und/oder der Motorwelle vorhanden ist, wobei die Sensoreinheit dazu ausgebildet ist, eine Position z. B. der Antriebswelle absolut zu bestimmen. Unter einer absoluten Positionsbestimmung wird verstanden, dass die Sensoreinheit einzig einmalig, z.B. bei Montage des Getriebemotors bzw. bei Montage der Sensoreinheit an den Getriebemotor, eine Referenz, z.B. ein Referenzpunkt oder eine Referenzposition zu bestimmen ist, auf welche sich die Sensoreinheit, z.B. auch bei oder nach einem Stromausfall, jederzeit, insbesondere immer oder ausschließlich, referenziert. Beispielsweise ist die Sensoreinheit dazu ausgebildet eine Bewegung einer Welle und damit eine Neupositionierung einer Welle des Getriebemotors auch bei abgeschalteter Energieversorgung zu detektieren und vorteilhaft zu bestimmen.

[0018] Die Sensoreinheit ist z.B. als ein berührungslos arbeitender absolut messender Sensor, z.B. zu Bestimmung einer Umdrehungsanzahl ausgebildet. Die Sensoreinheit kann auch Schaltmittel umfassen, welche insbesondere am Getriebe vorhanden sind, welche geschalten werden, sobald eine Komponente des Getriebes oder des Antriebssystems eine Endlageposition erreicht. Die Antriebswelle und/oder die andere Bewegungskomponente bzw. die Motorwelle ist vorteilhafterweise Teil des Getriebes des Getriebemotors.

[0019] In einer vorteilhaften Ausführung des Getriebemotors weist der Getriebemotor eine Steuereinheit auf, wobei die Steuereinheit dazu ausgebildet ist, mit einer

Energieversorgungseinheit, z.B. einer Photovoltaikanlage und/oder einem Generator, zusammenzuarbeiten, sodass die Energiespeichereinheit mit Energie ladbar ist, welche von der Energieversorgungseinheit, z.B. der Photovoltaikanlage und/oder dem Generator zur Verfügung gestellt wird.

[0020] Der Generator ist beispielsweise ein Generator einer Windkraftanlage und/oder Wasserkraftanlage. Beispielsweise umfasst die Energiespeichereinheit eine insbesondere reversible Brennstoffzelle, welche derart ausgebildet ist, dass sie den von der Photovoltaikanlage und/oder dem Generator und/oder einer anderen elektrischen Energiequelle zur Verfügung gestellten Strom bzw. die zur Verfügung gestellte Energie durch einen Elektrolyse-Prozess umwandelt und zumindest einen Teil der hierdurch erzeugten Produkte, z.B. Wasserstoff H₂, z.B. im Tank des Energiespeichers speichert.

[0021] In einer vorteilhaften Modifikation weist der Getriebemotor eine Steuereinheit auf, wobei die Steuereinheit dazu ausgebildet ist, mit einer Energieversorgungseinheit, z.B. einer Photovoltaikanlage und/oder einem Generator, zusammenzuarbeiten, sodass der Getriebemotor mit Energie der Energieversorgungseinheit, z.B. Energie der Photovoltaikanlage und/oder des Generators, antreibbar ist. Die Steuereinheit umfasst bevorzugterweise Anschlussmittel um Zusatzautomatiken wie z. B. einen Regen-, Wind- und/oder Temperaturwächter an die Steuereinheit anzukoppeln. Hierdurch ist der Getriebemotor intelligent ausgebildet, sodass er z.B. abhängig von ihm zur Verfügung gestellten Messwerten und Vergleichsvorgaben selbsttätig agiert. Vorteilhafterweise ist die Steuereinheit dazu ausgebildet, mit der Energiespeichereinheit, z.B. mit dem Akkumulator, dem Kondensator, die Batterie und/oder der Brennstoffzelle zusammenzuarbeiten. Beispielsweise steuert und/oder regelt die Steuereinheit eine Aufladung des Akkumulators, des Kondensators und/oder einen Elektrolyseprozess der Brennstoffzelle.

[0022] Überdies ist es von Vorteil, dass der Getriebemotor eine Photovoltaikanlage und/oder eine insbesondere vergleichsweise kleine Windkraftanlage umfasst. Vorteilhafterweise umfasst die Anbringeinrichtung ein Anbringorgan, zur insbesondere austauschbaren Montage einer Photovoltaikanlage und/oder einer Windkraftanlage am Getriebemotor.

[0023] Außerdem wird vorgeschlagen, dass der Getriebemotor Bedienmittel aufweist, sodass die Antriebswelle des Getriebemotors durch einen externen Antrieb bewegbar vorhanden ist. Hierdurch ist eine Getriebekomponente des Getriebemotors bei fehlender Energieversorgung z.B. manuell bewegbar.

[0024] Vorteilhafterweise ist der externe Antrieb als ein Handantrieb, z.B. eine Kurbel vorhanden. Denkbar ist auch, dass der externe Antrieb in Form einer Bohrmaschine oder eines Akkuschraubers vorhanden ist. Die Bedienmittel des Getriebemotors umfassen vorteilhafterweise eine Schnittstelle zur Kopplung mit dem externen Antrieb. Die Schnittstelle ist beispielsweise am Elek-

55

tromotor und/oder an einer Getriebestufe des Getriebes des Getriebemotors ausgebildet.

[0025] Die Bedienmittel dienen beispielsweise bei einer Erstmontage oder einer Tiefenentladung des Akkumulators des Energiespeichers zur Versorgung des Getriebemotors mit Energie. Vorteilhafterweise ist der Getriebemotor, insbesondere das Getriebe des Getriebemotors dazu ausgebildet, beispielsweise bei fehlender elektrischer Energieversorgung durch einen insbesondere zusätzlichen externen Antrieb antreibbar zu sein. [0026] Weiter wird vorgeschlagen, dass der Getriebemotor ein Gehäuse aufweist, wobei ein Hüllelement des Gehäuses den Motor, das Getriebe und die Energiespeichereinheit umschließt, sodass der Motor, das Getriebe und die Energiespeichereinheit in einem Inneren des Gehäuses vorhanden ist. Das Gehäuse umfasst beispielsweise Kontaktmittel, welche derart ausgebildet sind, dass die Energiespeichereinheit und/oder der Getriebemotor von einer Außenseite des Gehäuses mit Energie versorgbar ist. Beispielsweise umfassen die Kontaktmittel eine elektrisch leitende Durchführung.

[0027] Ebenfalls erweist es sich von Vorteil, dass das Gehäuse insbesondere an einer Außenseite des Gehäuses Aufnahmeöffnungen zur Anbringung des Gehäuses und damit des Getriebemotors am Antriebssystem aufweist. Beispielsweise umfasst das Gehäuse Aufnahmeöffnungen zur Anbringung des Gehäuses an eine Gebäudewand. Eine Aufnahmeöffnung ist beispielsweise als eine Bohrung, z.B. als eine Gewindebohrung mit einem Innengewinde, oder als eine insbesondere durchgehende Öffnung vorhanden.

[0028] Vorteilhafterweise ist ein Modul der Photovoltaikanlage als eine Abdeckung des Getriebemotors vorhanden, sodass der Getriebemotor vor einer direkten Einwirkung von z.B. Regen und/oder Sonnenstrahlen abgeschirmt ist. Denkbar ist auch, dass der Getriebemotor ein Abdeckungselement aufweist, welches derart am Getriebemotor angeordnet ist, dass das Abdeckungselement den Getriebemotor vor einer direkten Einwirkung von z.B. Regen, Hagel, Schnee und/oder Sonnenstrahlen abgeschirmt.

[0029] Von Vorteil erweist sich ebenfalls, dass das Gehäuse des Getriebemotors oder einer anderen Komponente des Getriebemotors, z.B. die Energiespeichereinheit, wasserdicht ist. Beispielsweise ist der Getriebemotor oder eine andere Komponente des Getriebemotors, z.B. die Energiespeichereinheit, insbesondere das Gehäuse derart ausgebildet, dass er die Ingress Protection Schutzklasse IP23, IP44, IP65, IP66 und/oder IP67 erfüllt.

[0030] Ein vorteilhafter Aspekt der Erfindung ist ein Antriebssystem mit einem Getriebemotor nach einem der vorangegangenen Ausführungen. Das Antriebssystem ist vorteilhafterweise als ein Fenster-, Flügel-, Beschattungsanlagen-, Wickeljalousie-und/oder Hebeanlagen-Antriebssystem vorhanden.

[0031] Ein weiterer vorteilhafter Aspekt der Erfindung ist ein Gebäude, eine Umhausung, eine Beschattungs-

anlage und/oder eine Überdachung mit einem Antriebssystems oder einem Getriebemotor nach einer der vorangegangenen Varianten. Das Gebäude oder die Umhausung ist beispielsweise als ein mobiler Stall, ein Silo, ein Campingwagen und/oder als ein Gewächshaus ausgebildet. Eine Beschattungsanlage und/oder eine Überdachung ist beispielsweise als eine Siloabdeckung, ein Hagelschutznetz und/oder eine LKW-Plane vorhanden.

O Beschreibung eines Ausführungsbeispiels

[0032] Ein Ausführungsbeispiel ist anhand der nachstehenden schematischen Zeichnung unter Angabe weitere Einzelheiten und Vorteile näher erläutert.

[0033] Es zeigt:

Figur 1 eine schematische Darstellung eines erfindungsgemäßen Getriebemotors.

[0034] Figur 1 zeigt ein Antriebssystem 11 mit einem Getriebemotor 1. Der Getriebemotor 1 umfasst einen Elektromotor 2, eine Getriebeeinheit 3 und einen Energiespeichereinheit 4. Die Getriebeeinheit 3 besitzt vorteilhafterweise ein selbsthemmendes Getriebe. Vorteilhafterweise umfasst der Getriebemotor 1 weiter eine Anbringeinrichtung 5, welche Anbringmittel umfasst, sodass die Energiespeichereinheit 4 am Getriebemotor 1, insbesondere an einer Gehäuseaußenseite 6 des Getriebemotors 1 austauschbar angeordnet ist.

[0035] Außerdem kann der Getriebemotor 1 eine Sensoreinheit 7 umfassen, welche beispielsweise eine Position eines Getriebeelements, z.B. einer Antriebswelle 10, der Getriebeeinheit 3 erfasst. Auch kann der Getriebemotor 1 oder das Antriebssystem 11 eine Steuereinheit 8 aufweisen, welche z.B. am Getriebemotor 1 angeordnet ist oder räumlich getrennt vom Getriebemotor 1 vorhanden ist. Die Steuereinheit 8 ist vorteilhafterweise derart mit dem Getriebemotor 1 verbunden, dass die Steuereinheit 8 die Energiespeichereinheit 4 und/oder den Elektromotor 2 des Getriebemotors 1 steuert. Beispielsweise ist die Sensoreinheit 7 mit der Steuereinheit 8 verbunden und die Steuereinheit 8 ist derart ausgebildet, aufgrund einer Information der Sensoreinheit 7, bspw. einer Positionsinformation oder eines Positionssignals, die Energiespeichereinheit 4 und/oder den Elektromotor 2 des Getriebemotors 1 zu steuern.

[0036] Vorteilhafterweise kann der Getriebemotor 1 oder das Antriebssystem 11 ein Bedienelement 9 zur manuellen Bedienung des Getriebemotors 1 z.B. zum Anschalten oder Abschalten des Getriebemotors 1 umfassen. Das Bedienelement 9 ist beispielsweise als ein Schalter, z.B. als ein Druckschalter ausgebildet. Das Bedienelement 9 kann am Getriebemotor 1 angeordnet sein oder räumlich getrennt vom Getriebemotor 1 vorhanden sein. Vorteilhafterweis ist das Bedienelement 9 mit dem Getriebemotor 1, insbesondere mit der Steuereinheit 8, derart verbunden, dass eine Aktion des Bedienelements 9, z.B. ein Schalten des Schalters des Bedienelements

15

25

35

40

45

50

55

9, eine Reaktion des Getriebemotors 1 bewirkt. Beispielsweise bewirkt ein Schalten des Bedienelements 9 ein Abschalten des Elektromotors 2.

[0037] Weiter ist es vorstellbar, dass das der Getriebemotor 1 oder das Antriebssystem 11 eine Signalsteuerung 12 aufweist. Die Signalsteuerung 12 ist beispielsweise als eine intelligente Steuerautomatik vorhanden, welche z.B. aufgrund von externen Sensordaten und/oder vorgegebenen, z.B. zeitabhängigen Daten, eine Aktion des Getriebemotors 1 aktiviert. Die Signalsteuerung 12 ist beispielsweise am Getriebemotor 1 angeordnet oder räumlich getrennt vom Getriebemotor 1 vorhanden. Vorteilhafterweise ist die Signalsteuerung 12 mit dem Getriebemotor 1, insbesondere mit der Steuereinheit 8, derart verbunden, dass ein Signal der Signalsteuerung 12 eine Reaktion des Getriebemotors 1 bewirkt, z.B. ein Anschalten oder Abschalten des Elektromotors 2 und/oder eine Aktivierung oder Deaktivierung eines Ladevorgangs der Energiespeichereinheit 4. Die Signalsteuerung 12 ist vorteilhafterweise dazu ausgebildet, externe Sensordaten, insbesondere Wetterdaten. wie Wind-, Regen-, Hageldaten zu empfangen und auszuwerten.

[0038] Der Getriebemotor 1 oder das Antriebssystem 11 umfasst vorteilhafterweise eine Ladeeinheit 13. Die Ladeeinheit 13 ist vorteilhafterweise räumlich getrennt vom Getriebemotor 1 vorhanden. Die Ladeeinheit 13 ist beispielsweise dazu ausgebildet, die Energiespeichereinheit 4 des Getriebemotors 1 im vom Getriebemotor 1 entkoppelten Zustand, zu laden. Die Ladeeinheit 13 ist beispielsweise als eine Akkuladestation ausgebildet.

[0039] Das Antriebssystem 11, insbesondere der Getriebemotor 1, kann weiter eine Energieversorgungseinheit 14 umfassen. Die Energieversorgung 14 ist beispielsweise als ein Netzanschluss an ein Stromnetz vorhanden. Die Energieversorgungseinheit 14 kann auch als eine z.B. autarke Energieversorgungseinheit, wie beispielweise eine PV-Anlage oder eine Windkraftanlage vorhanden sein. Die Energieversorgungseinheit 14 ist vorteilhafterweise mit der Energiespeichereinheit 4, insbesondere mit der Steuereinheit 8 verbunden.

Bezugszeichenliste

[0040]

- 1 Getriebemotor
- 2 Elektromotor
- 3 Getriebeeinheit
- 4 Energiespeichereinheit
- 5 Anbringeinrichtung
- 6 Gehäuseaußenseite
- 7 Sensoreinheit
- 8 Steuereinheit
- 9 Bedienelement
- 10 Antriebswelle
- 11 Antriebssystem
- 12 Signalsteuerung

- 13 Ladeeinheit
- 14 Energieversorgungseinheit

Patentansprüche

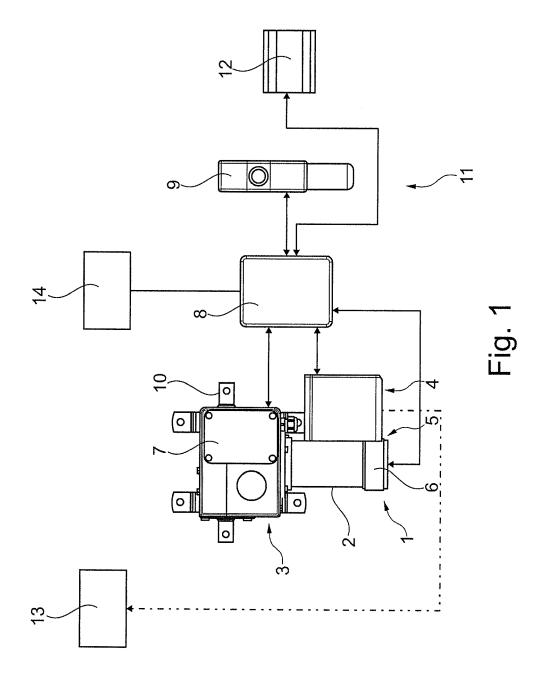
- Getriebemotor (1) zum Antrieb eines stationären und/oder mobilen Antriebssystems (11), wobei das Antriebssystem (11) insbesondere zum Öffnen oder Schließen einer Gebäudeöffnung ausgebildet ist, wobei der Getriebemotor (1) einen elektrischen Motor (2) aufweist, wobei der Getriebemotor (1) ein selbsthemmendes Getriebe (3) umfasst, wobei der Getriebemotor (1) eine Energiespeichereinheit (4) umfasst, wobei die Energiespeichereinheit (4) dazu ausgebildet ist, Energie zu speichern, wobei mit Energie der Energiespeichereinheit (4) der elektrische Motor (2) antreibbar ist, wobei der Getriebemotor (1) eine Aufnahmeleistung zwischen 0,075kW und 1,5kW aufweist, wobei der Getriebemotor (1) eine Anbringeinrichtung (5) zur Anbringung der Energiespeichereinheit (4) aufweist.
- 2. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach dem vorangegangenen Anspruch 1, dadurch gekennzeichnet, dass der Getriebemotor (1) eine Sensoreinheit (7) aufweist, um eine Position einer Antriebswelle (10) oder einer anderen Bewegungskomponente zu regeln.
- Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Energiespeichereinheit (4) durch die Anbringmittel der Anbringeinrichtung (5) austauschbar am Getriebemotor (1) angeordnet ist.
- 4. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Sensoreinheit (7) im Bereich der Antriebswelle (10) und/oder der Motorwelle vorhanden ist, wobei die Sensoreinheit (7) dazu ausgebildet ist, eine Position absolut zu bestimmen.
- 5. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebemotor (1) eine Steuereinheit (8) aufweist, wobei die Steuereinheit (8) dazu ausgebildet ist, mit einer Energieversorgungseinheit (14) zusammenzuarbeiten, sodass die Energiespeichereinheit (4) mit Energie ladbar ist, welche von der Energieversorgungseinheit (14) zur Verfügung gestellt wird.
- Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Ge-

triebemotor (1) eine Steuereinheit (8) aufweist, wobei die Steuereinheit (8) dazu ausgebildet ist, mit einer Energieversorgungseinheit (14) zusammenzuarbeiten, sodass der Getriebemotor (1) mit Energie der Energieversorgungseinheit (14) antreibbar ist.

 Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebemotor (1) eine Photovoltaikanlage umfasst.

8. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebemotor (1) Bedienmittel aufweist, sodass die Antriebswelle (10) des Getriebemotors (1) durch einen externen Antrieb bewegbar vorhanden ist.

9. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebemotor (1) ein Gehäuse aufweist, wobei ein Hüllelement des Gehäuses den elektrischen Motor (2), das Getriebe (3) und die Energiespeichereinheit (4) umschließt, sodass der Motor, das Getriebe (3) und die Energiespeichereinheit (4) in einem Inneren des Gehäuses vorhanden ist.


10. Getriebemotor (1) zum Antrieb eines Antriebssystems (11) nach einem der vorangegangenen Ansprüche, **dadurch gekennzeichnet**, **dass** das Gehäuse wasserdicht ist.

11. Antriebssystem (11) mit einem Getriebemotor (1) ³⁵ nach einem der vorangegangenen Ansprüche.

12. Gebäude, Umhausung und/oder Überdachung mit einem Antriebssystems (11) oder einem Getriebemotor (1) nach einem der vorangegangenen Ansprüche.

45

50

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 19 17 0745

5

J		
		EIN
	Kategorie	Kennzeic
10	Х	EP 2 508 10. Oktol * Absätzo [0026], - [0040]
20	X	EP 3 249 [DE]) 29 * Absätze [0022], Abbildung
95	A	DE 44 38 15. Febro * Spalte
25	A	DE 11 99 2. Septer * Spalte *
30		
35		
40		
45		
1	Der vo	orliegende Rech
		Recherchenort Den Haag
3.82 (P04C03)	к.	ATEGORIE DER
03.82		hesonderer Rede

Kategorie	Kennzeichnung des Dokume der maßgeblicher	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)	
Х	EP 2 508 704 A2 (ARI 10. Oktober 2012 (20 * Absätze [0007], [0026], [0027], [0 - [0040]; Abbildung	012-10-10) [0008], [0024], 0032], [0034], [0037]	1-3,5-12	INV. E05F15/603	
X	EP 3 249 767 A2 (L00 [DE]) 29. November 2 * Absätze [0010], [0022], [0043], [0 Abbildungen 1-3 *	[0011], [0013],	1,2,4		
A	DE 44 38 769 A1 (KLI 15. Februar 1996 (19 * Spalte 4, Zeilen 19 *		1,11,12		
A	*		1,8	RECHERCHIERTE SACHGEBIETE (IPC)	
	Recherchenort	Abschlußdatum der Recherche	1	Prüfer	
	Den Haag	25. September 20)19 Kle	mke, Beate	
X : von Y : von ande A : tech O : nich	TEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrachte besonderer Bedeutung in Verbindung i ren Veröffentlichung derselben Katego nologischer Hintergrund tschriftliche Offenbarung ohenliteratur	E : älteres Patentdo et nach dem Anme mit einer D : in der Anmeldu nrie L : aus anderen	okument, das jedoo Idedatum veröffen ng angeführtes Dol unden angeführtes	tlicht worden ist kument	

EP 3 567 199 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 19 17 0745

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

25-09-2019

	Im Recherchenbericht angeführtes Patentdokum		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	EP 2508704	A2	10-10-2012	DE 102011001156 A1 EP 2508704 A2	13-09-2012 10-10-2012
	EP 3249767	A2	29-11-2017	CA 2965305 A1 CN 107342660 A DE 102016108007 A1 EP 3249767 A2 US 2017317560 A1	29-10-2017 10-11-2017 02-11-2017 29-11-2017 02-11-2017
	DE 4438769	A1	15-02-1996	KEINE	
	DE 1199952	В	02-09-1965	AT 249927 B CH 423151 A DE 1199952 B DK 103636 C	10-10-1966 31-10-1966 02-09-1965 31-01-1966
EPO FORM P0461					

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82