(19)
(11) EP 3 572 753 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.12.2020 Bulletin 2020/51

(21) Application number: 18461559.9

(22) Date of filing: 24.05.2018
(51) International Patent Classification (IPC): 
F28D 9/00(2006.01)

(54)

HEAT EXCHANGER

WÄRMETAUSCHER

ÉCHANGEUR DE CHALEUR


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
27.11.2019 Bulletin 2019/48

(73) Proprietor: Valeo Autosystemy SP. Z.O.O.
32-050 Skawina (PL)

(72) Inventors:
  • BELZOWSKI, Michal
    PL 32-050 Skawina (PL)
  • SZOSTEK, Dawid
    PL 32-050 Skawina (PL)

(74) Representative: Bialkowski, Adam 
Valeo Systèmes Thermiques ZA l'Agiot 8 rue Louis Lormand CS 80517 La Verrière
78322 Le Mesnil Saint Denis Cedex
78322 Le Mesnil Saint Denis Cedex (FR)


(56) References cited: : 
WO-A1-2008/061362
WO-A1-2014/184323
WO-A1-2014/044520
DE-A1-102012 223 722
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The present invention relates to a heat exchanger, especially a heat exchanger with improved flow scheme of two working fluids.

    PRIOR ART



    [0002] Prior art heat exchangers comprise a core, which defines two fluid circuits therein. A first working fluid flows through a first fluid circuit, while a second working fluid flows through a second fluid circuit. Both fluid circuits can be divided into one or more distinctive flow sections of different sizes, through which the working fluids can flow in the same or opposing directions. Examples of such heat exchangers are disclosed in DE 10 2016 001 607 A1, US 2017/0122669 A1, US 2016/0010929 A1, US 2015/0226469 A1 or US 2013/0213624 A1. DE-A-102012223722 discloses a heat exchanger according to the preamble of claim 1.

    [0003] The cores of the heat exchangers known from the prior art are divided into many flow sections to increase power output and heat exchange efficiency. Such configuration, however, results in significant pressure drops of the working fluids, which is unacceptable in some applications. Moreover, the larger the number of the flow sections, the larger the size and complexity of the heat exchanger. Very often, in known heat exchangers each successive flow section is narrower that a preceding one and this leads to the increase in flow resistance and pressure drops.

    AIM OF INVENTION



    [0004] One aim of the present invention is to provide a heat exchanger with a limited number of flow passages but at the same with unchanged heat exchange efficiency.

    [0005] Another aim of the present invention is to provide a heat exchanger with increased power output and pressure drop values kept at an acceptable level.

    BRIEF DESCRIPTION OF INVENTION



    [0006] A heat exchanger according to the present invention comprises a core. The core defines a first fluid circuit and a second fluid circuit. The first fluid circuit includes one flow section through which a first fluid flows in one direction. The second fluid circuit is divided into flow sections, which are in fluid communication to one another and through which a second fluid flows in different directions. The one flow section of the first fluid circuit and the flow sections of the second fluid circuit are defined by a plurality of flow passages. The second fluid circuit is divided into a first flow section, a second flow section and a third flow section. The first, second and third flow sections are configured so that the first flow section is in fluid communication with the second flow section and the second fluid section is in fluid communication with the third flow section and a direction of flow in the first and third flow sections is opposite to the direction of flow in the one flow section of the first fluid circuit and a direction of flow in the second flow section is the same as the direction of flow in the one flow section of the first fluid circuit. A number of the flow passages of the third flow section is greater than a number of the flow passages of the second flow section and the number of the flow passages of the third flow section is smaller than or equal to a number of the flow passages in the first flow section.

    [0007] Further advantageous embodiments of the present invention are defined in dependent claims.

    [0008] The present invention ensures that as much as possible of the flow of the second fluid is in counter-flow with the first fluid, which increases heat exchange efficiency. Simultaneously, although the number of the flow passages of the second flow section for the second fluid is as low as possible pressure drops of the second fluid are kept at an acceptable level.

    [0009] The power output of a heat exchanger adopting the principles of the present invention is significantly increased, even by 350-620 W.

    [0010] Additionally, as the number of flow passages in the narrowest flow section, namely the second flow section, of the second fluid circuit is kept as low as possible a part of the core where both fluids are in common flow is minimized and a part of the core where both fluids are in counter-flow is maximized, which has an advantageous effect on heat exchange efficiency.

    [0011] The heat exchanger according to the present invention comprises a reduced number of flow passages compared to the heat exchangers known from the prior art, while maintaining or improving basis properties of the heat exchanger like power output, heat exchange efficiency, etc. It also means the heat exchanger according to the present invention is cheaper.

    [0012] The present invention can easily be applied to heat exchangers adopting different types of cores, for example cores made of shaped plates and/or flat hollow flow tubes.

    BRIEF DESCRIPTION OF DRAWINGS



    [0013] The present invention in described in more detail below, with reference to the accompanying drawings, which present its non-limiting embodiment, wherein:

    Fig. 1 shows a side view of a heat exchanger of the present invention;

    Figs. 2a and 2b show top views of two examples of shaped plates used in the heat exchanger of the present invention;

    Fig. 3 and 4 show a perspective schematic view and a vertical diagram, respectively, of a coolant flow through a core of the heat exchanger; and

    Fig. 5 and 6 show a perspective schematic view and a vertical diagram, respectively, of a refrigerant flow through the core of the heat exchanger.


    EMBODIMENTS OF INVENTION



    [0014] A heat exchanger 1 of the present invention comprises a core 2 where heat exchange between two fluids takes place. The heat exchanger 1 also comprises a plurality of inlet and outlet ports 3 to deliver a coolant/first fluid and a refrigerant/second fluid to and out of the core 2.

    [0015] The core 2 defines therein two fluid circuits, namely a first fluid circuit for the coolant and a second fluid circuit for the refrigerant. Both fluid circuits are fluidly separated from each other. It means that both fluids do not mix. For this purpose the core 2 includes a plurality of shaped plates 4 stacked on top of one another. Each pair of two adjacent shaped plates 4 define a flow passage 5 therebetween. The first and second fluids, coolant and refrigerant respectively, flow through the flow passages 5. To maximize the heat exchange efficiency the flow passages should be used alternatively, namely a first flow passage for the first fluid, a second flow passage for the second fluid, a third flow passage for the first fluid, etc.

    [0016] Generally, the shaped plate 4 comprises a bottom 41 and a peripheral wall 42 protruding from the bottom 41. The shaped plate 4 is provided at both its ends with openings 43. The openings 43 of the stacked shaped plates 4 define vertical channels throughout the core 2. The vertical channels formed by the openings 43 are in fluid communication with selected flow passages 5 formed between the shaped plates 4. For this purpose the shaped plate 4 comprises a number of additional features. For example, the shaped plate 4 can comprise a ridge 44 enclosing one or more openings 43. When the shaped plates 4 are stacked the ridge 44 of one shaped plate 4 is in sealed contact with the shaped plate 4 located above it. Thus, a fluid flowing through the opening 43 enclosed by the ridge 44 cannot flow into the flow passage 5 shown in fig. 2a and can only flow in a vertical direction of the core 2. To allow for the flow of the fluids to the flow passage 5 in a longitudinal direction of the core 2 the configuration of the ridge 44 is changed so that it no longer encloses the opening 43 concerned, see fig. 2b. Instead, the opening 43 is encircled by a series of spaced-apart protrusions 45, which allow the fluid to flow therebetween, or even the opening 43 may not be obscured by additional elements so that the opening 43 is in fluid communication with the flow passage 5. The openings 43 of the outermost shaped plates 4 can be connected to the inlet and outlet ports 3.

    [0017] To terminate the vertical channels at a given level the openings 43 can be closed by plugs or even may not be present in the shaped plates 4. The number of the openings 43 as well as their position and configuration at both longitudinal ends of the shaped plates 4 can be chosen voluntary, depending on the configuration of the core 2 and a flow scheme to be obtained. With the core 2 formed in this way the first and second fluids do not mix and they flow in respective fluid passages 5 formed between the shaped plates 4.

    [0018] As discussed earlier, the core 2 defines two fluid circuits. One fluid circuit is used for the coolant/first fluid, while the other is used for the refrigerant. The coolant flow is shown in figs. 3 and 4. This fluid circuit comprises only one flow section C, which includes a plurality of the flow passages 5 to be passed by the coolant. The coolant flows into the core 2 at one of its longitudinal ends, flows through one of the vertical channels and then is directed longitudinally to all flow passages 5 intended to be passed by the coolant. The coolant flows through all related flow passage 5 in the same one direction. Next, the coolant is directed to one vertical channel at the other longitudinal end of the core 2 and is subsequently discharged out of the core 2. The coolant may flow into and out of the core 2 at two opposite longitudinal ends of the core 2, but depending on the external configuration of the heat exchanger 1 the coolant can flow into and out of the core at the same end of the core 2. For this purpose the core 2 can be provided with an additional bypass 21, which directs the coolant from one longitudinal end of the core 2 to the other.

    [0019] Figs. 5 and 6 show schematically the flow of the refrigerant/second fluid. In this case the core 2 can virtually be divided into three flow sections R1, R2, R3. Each of the flow sections R1, R2, R3 comprises a plurality of the flow passages 5 to be passed by the refrigerant. The flow sections R1, R2, R3 jointly coincide with one flow section C shown in figs. 3 and 4. The flow sections R1, R2, R3 are defined by an appropriate configuration of a set of the openings 43. The flow section R1 is in fluid communication with the flow section R2 and the flow section R2 is in fluid communication with the flow section R3. Generally, one can say that one flow section is in fluid communication with a preceding flow section (if present) and a subsequent flow section (if present). The refrigerant enters first the flow section R1, flows longitudinally through the flow section R1 and its all flow passages 5 in one direction and then flows through one of the vertical channels into the flow section R2. Here, the refrigerant flows longitudinally through the flow section R2 and its all flow passages 5 in one direction, which is opposite to the direction of flow in the flow section R1. Subsequently, the refrigerant is directed through one vertical channel at the other longitudinal end of the core/flow section R2, opposite to the end where the refrigerant enters the flow section R2, to the flow section R3. In the flow section R3, the refrigerant flows longitudinally through the flow section R3 and its all flow passages 5 in one direction, which is opposite to the direction of flow in the flow section R2 and is the same as the direction of flow in the flow section R1. Next, the refrigerant, depending on the external configuration of the heat exchanger 1, especially its inlet and outlet ports 3, can be discharged out of the core 2 either directly at the flow section R3 or the refrigerant can be directed by one of the vertical channels, which is not in fluid communication with the flow passages 5 of the flow sections R1 and R2, through the flow sections R1 and R2 and can flow out of the core 2 at the flow section R1, as shown in figs. 5 and 6.

    [0020] Generally, the coolant flows longitudinally through the core 2 only in one direction, whereas the refrigerant flows longitudinally through the core 2 in two opposing directions. The direction of flow of the refrigerant in the flow section R1 is opposite to the direction of flow of the coolant in the flow section C. The direction of flow of the refrigerant in the flow section R2 is the same as the direction of flow of the coolant in the flow section C. The direction of flow of the refrigerant in the flow section R3 is opposite to the direction of flow of the coolant in the flow section C. In other words, the refrigerant in the flow sections R1 and R3 is in counter-flow compared to the coolant in the flow section C. Also, the refrigerant in the flow section R2 is in common flow compared to the coolant in the flow section C.

    [0021] The number NR2 of the flow passages 5 in the flow section R2 should be as low as possible to get acceptable pressure drop of the refrigerant and should be preferably 15-25 % of the total number TNR1R2R3 of the flow passages 5 passed by the refrigerant (namely total number TNR1R2R3 of the flow passages 5 in the flow sections R1, R2 and R3). The number NR3 of the flow passages 5 in the flow section R3 should be greater than the number NR2 of the flow passages 5 in the flow section R2. The total number TNR1R3 of the flow passages 5 in the flow sections R1 and R3 should be preferably 75-85 % of the total number TNR1R2R3 of the flow passages 5 passed by the refrigerant (total number TNR1R2R3 of the flow passages in the flow sections R1, R2 and R3). The number NR3 of the flow passages 5 in the flow section R3 should be the same or smaller that the number NR1 of the flow passages 5 in the flow section R1 and should be preferably 20-42,5 % of the total number TNR1R2R3 of the flow passages 5 passed by the refrigerant (namely total number TNR1R2R3 of the flow passages in the flow sections R1, R2 and R3).

    [0022] In other words:

    NR3 > NR2 and

    NR3 ≤ NR1



    [0023] Preferably, the ratio of the numbers of the flow passages 5 of the flow section R1/flow section R2/flow section R3, respectively, is 9/6/9. In another embodiments of the present invention the ratio of the numbers of the flow passages 5 of the flow section R1/flow section R2/flow section R3, respectively, is 10/6/8 or 11/5/8.

    [0024] The present invention discussed above is not limited only to heat exchangers consisting of a plurality of shaped plates. The innovative principle of the present invention can be applied to heat exchangers, where flow passages are defined by, for example, a series of flat hollow flow tubes stacked in a pile and defining flow passages therein, a first set of the flat hollow flow tubes being passed by the coolant while the other being passed by the refrigerant. Another example is a heat exchanger, which incorporates a combination of flat hollow flow tubes and shaped plates. A first set of flow passages is defined inside the flat hollow flow tubes and a second set of flow passages is defined between successive shaped plates. The flat hollow flow tubes and the shaped plates are stacked in a pile so that one flat hollow flow tube is arranged between two successive shaped plates. The coolant flows, for example, through the flat hollow flow tubes and the refrigerant flows through passages defined by two successive shaped plates, or vice versa. In each of these two solutions the fluid circuit for the refrigerant can easily be divided into three sections with different directions of flow.

    [0025] Preferably, all components of the heat exchanger 1 are made of materials suitable for brazing, for example aluminum and its alloys, and are connected to one another by brazing.


    Claims

    1. A heat exchanger (1) comprising a core (2), said core (2) defining a first fluid circuit and a second fluid circuit, said first fluid circuit including one flow section (C) through which a first fluid flows in one direction, said second fluid circuit being divided into flow sections, which are in fluid communication to one another and through which a second fluid flows in different directions, said one flow section (C) of said first fluid circuit and said flow sections of said second fluid circuit being defined by a plurality of flow passages (5), said second fluid circuit is divided into a first flow section (R1), a second flow section (R2) and a third flow section (R3), said first, second and third flow sections (R1, R2, R3) being configured so that said first flow section (R1) is in fluid communication with said second flow section (R2) and said second flow section (R2) is in fluid communication with said third flow section (R3) and a direction of flow in said first and third flow sections (R1, R3) is opposite to said direction of flow in said one flow section (C) of said first fluid circuit and a direction of flow in said second flow section (R2) is the same as said direction of flow in said one flow section (C) of said first fluid circuit; characterized in that a number NR3 of said flow passages (5) of said third flow section (R3) is greater than a number NR2 of said flow passages (5) of said second flow section (R2) and said number NR3 of said flow passages (5) of said third flow section (R3) is smaller than or equal to a number NR1 of said flow passages (5) in said first flow section (R1).
     
    2. The heat exchanger (1) according to claim 1, characterized in that said core (2) comprises a plurality of stacked shaped plates (4), said shaped plates (4) defining therebetween said flow passages (5) .
     
    3. The heat exchanger (1) according to any of the preceding claims, characterized in that said number NR2 of said flow passages (5) of said second flow section (R2) is 15-25 % of a total number TNR1R2R3 of said flow passages (5) of said first, second and third flow sections (R1, R2, R3) of said second fluid circuit, a number NR1R3 of said flow passages (5) of said first and third flow sections (R1, R3) jointly is 75-85 % of said total number TNR1R2R3 of said flow passages (5) of said first, second and third flow sections (R1, R2, R3) of said second fluid circuit, and said number NR3 of said flow passages (5) of said third flow section (R3) is 20-42,5 % of said total number TNR1R2R3 of said flow passages (5) of said first, second and third flow sections (R1, R2, R3) of said second fluid circuit.
     
    4. The heat exchanger (1) according to any of the preceding claims, characterized in that a ratio of said numbers of said flow passages (5) of said first flow section (R1)/said second flow section (R2)/said third flow section (R3), respectively, is 9/6/9.
     


    Ansprüche

    1. Wärmetauscher (1), einen Kern (2) umfassend, wobei der Kern (2) einen ersten Fluidkreislauf und einen zweiten Fluidkreislauf definiert, wobei der erste Fluidkreislauf einen Strömungsabschnitt (C) umfasst, durch den ein erstes Fluid in eine Richtung strömt, wobei der zweite Fluidkreislauf in Strömungsabschnitte unterteilt ist, die miteinander in Fluidverbindung stehen und durch die ein zweites Fluid in verschiedene Richtungen strömt, wobei der eine Strömungsabschnitt (C) des ersten Fluidkreislaufs und die Strömungsabschnitte des zweiten Fluidkreislaufs durch mehrere Strömungsdurchgänge (5) definiert sind,
    wobei der zweite Fluidkreislauf in einen ersten Strömungsabschnitt (R1), einen zweiten Strömungsabschnitt (R2) und einen dritten Strömungsabschnitt (R3) unterteilt ist, wobei der erste, zweite und dritte Strömungsabschnitt (R1, R2, R3) derart definiert sind, dass der erste Strömungsabschnitt (R1) mit dem zweiten Strömungsabschnitt (R2) in Fluidverbindung steht und der zweite Strömungsabschnitt (R2) mit dem dritten Strömungsabschnitt (R3) in Fluidverbindung steht und eine Strömungsrichtung im ersten und dritten Strömungsabschnitt (R1, R3) der Strömungsrichtung in dem einen Strömungsabschnitt (C) des ersten Fluidkreislaufs entgegengesetzt ist und eine Strömungsrichtung im zweiten Strömungsabschnitt (R2) gleich der Strömungsrichtung in dem einen Strömungsabschnitt (C) des ersten Fluidkreislaufs ist; dadurch gekennzeichnet, dass
    eine Anzahl NR3 der Strömungsdurchgänge (5) des dritten Strömungsabschnitts (R3) größer als eine Anzahl NR2 der Strömungsdurchgänge (5) des zweiten Strömungsabschnitts (R2) ist und die Anzahl NR3 der Strömungsdurchgänge (5) des dritten Strömungsabschnitts (R3) kleiner als oder gleich einer Anzahl NR1 der Strömungsdurchgänge (5) im ersten Strömungsabschnitt (R1) ist.
     
    2. Wärmetauscher (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Kern (2) mehrere gestapelte Formplatten (4) umfasst, wobei die Formplatten (4) Strömungsdurchgänge (5) dazwischen definieren.
     
    3. Wärmetauscher (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl NR2 der Strömungsdurchgänge (5) des zweiten Strömungsabschnitts (R2) 15-25 % der Gesamtanzahl TNR1R2R3 der Strömungsdurchgänge (5) des ersten, zweiten und dritten Strömungsabschnitts (R1, R2, R3) des zweiten Fluidkreislaufs ist, wobei eine Anzahl NR1R3 der Strömungsdurchgänge (5) des ersten und dritten Strömungsabschnitts (R1, R3) zusammen 75-85 % der Gesamtanzahl TNR1R2R3 der Strömungsdurchgänge (5) des ersten, zweiten und dritten Strömungsabschnitts (R1, R2, R3) des zweiten Fluidkreislaufs ist und die Anzahl NR3 der Strömungsdurchgänge (5) des dritten Strömungsabschnitts (R3) 20-42,5 % der Gesamtanzahl TNR1R2R3 der Strömungsdurchgänge (5) des ersten, zweiten und dritten Strömungsabschnitts (R1, R2, R3) des zweiten Fluidkreislaufs ist.
     
    4. Wärmetauscher (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Anzahl der Strömungsdurchgänge (5) des ersten Strömungsabschnitts (R1)/des zweiten Strömungsabschnitts (R2)/des dritten Strömungsabschnitts (R3) 9/6/9 beträgt.
     


    Revendications

    1. Échangeur de chaleur (1) comprenant un noyau (2), ledit noyau (2) définissant un premier circuit de fluide et un second circuit de fluide, ledit premier circuit de fluide incluant une section de flux (C) à travers laquelle un premier fluide s'écoule dans une direction, ledit second circuit de fluide étant divisé en deux sections de flux, qui sont en communication fluidique l'une avec l'autre et à travers lesquelles un second fluide s'écoule dans des directions différentes, ladite section de flux (C) dudit premier circuit de fluide et lesdites sections de flux dudit second circuit de fluide étant définies par une pluralité de passages de flux (5),
    ledit second circuit de fluide est divisé en une première section de flux (R1), une deuxième section de flux (R2) et une troisième section de flux (R3), lesdites première, deuxième et troisième sections de flux (R1, R2, R3) étant conçues de sorte que ladite première section de flux (R1) soit en communication fluidique avec ladite deuxième section de flux (R2) et que ladite deuxième section de flux (R2) soit en communication fluidique avec ladite troisième section de flux (R3), et une direction de flux dans lesdites première et troisième sections de flux (R1, R3) est opposée à ladite direction de flux dans ladite section de flux (C) dudit premier circuit de fluide et une direction de flux dans ladite deuxième section de flux (R2) est identique à ladite direction de flux dans ladite section de flux (C) dudit premier circuit de fluide ;
    caractérisé en ce que
    un nombre NR3 desdits passages de flux (5) de ladite troisième section de flux (R3) est supérieur à un nombre NR2 desdits passages de flux (5) de ladite deuxième section de flux (R2) et ledit nombre NR3 desdits passages de flux (5) de ladite troisième section de flux (R3) est inférieur ou égal à un nombre NR1 desdits passages de flux (5) dans ladite première section de flux (R1).
     
    2. Échangeur de chaleur (1) selon la revendication 1, caractérisé en ce que ledit noyau (2) comprend une pluralité de plaques profilées empilées (4), lesdites plaques profilées (4) définissant entre elles lesdits passages de flux (5).
     
    3. Échangeur de chaleur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit nombre NR2 desdits passages de flux (5) de ladite deuxième section de flux (R2) est égal à 15 % à 25 % d'un nombre total TNR1R2R3 desdits passages de flux (5) desdites première, deuxième et troisième sections de flux (R1, R2, R3) dudit second circuit de fluide, un nombre NR1R3 desdits passages de flux (5) desdites première et troisième sections de flux (R1, R3) ensemble est égal à 75 % à 85 % dudit nombre total TNR1R2R3 desdits passages de flux (5) desdites première, deuxième et troisième sections de flux (R1, R2, R3) dudit second circuit de fluide, et ledit nombre NR3 desdits passages de flux (5) de ladite troisième section de flux (R3) est égal à 20 % à 42,5 % dudit nombre total TNR1R2R3 desdits passages de flux (5) desdites première, deuxième et troisième sections de flux (R1, R2, R3) dudit second circuit de fluide.
     
    4. Échangeur de chaleur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un rapport desdits nombres desdits passages de flux (5) de ladite première section de flux (R1)/ de ladite deuxième section de flux (R2)/de ladite troisième section de flux (R3) est respectivement de 9/6/9.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description