

(11) **EP 3 584 345 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **25.12.2019 Bulletin 2019/52**

(21) Application number: 18754731.0

(22) Date of filing: 20.02.2018

(51) Int Cl.:

C22C 38/00 (2006.01) C22C 38/60 (2006.01) C21D 9/00 (2006.01) B21D 22/20 (2006.01) C21D 1/18 (2006.01) C21D 9/46 (2006.01)

(86) International application number:

PCT/JP2018/006086

(87) International publication number: WO 2018/151332 (23.08.2018 Gazette 2018/34)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

MA MD TN

(30) Priority: 20.02.2017 JP 2017029318

(71) Applicant: Nippon Steel Corporation Tokyo 1008071 (JP)

(72) Inventors:

 TODA, Yuri Tokyo 100-8071 (JP) ABUKAWA, Genki Tokyo 100-8071 (JP)

 MAEDA, Daisuke Tokyo 100-8071 (JP)

 HIKIDA, Kazuo Tokyo 100-8071 (JP)

 FUJINAKA, Shingo Tokyo 100-8071 (JP)

(74) Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 81675 München (DE)

(54) HOT STAMP MOULDED BODY

(57) The present invention, in consideration of the problems in the prior art, provides a hot stamped body simultaneously achieving the high bendability and high ductility for realizing impact resistance and also hydrogen embrittlement resistance and kept down in scattering in hardness. The hot stamped body according to the present invention is provided with a middle part in sheet thickness and a softened layer arranged at both sides or one side of the middle part in sheet thickness. The middle part in sheet thickness has a hardness of 500Hv to 800Hv and has metal structures from a depth of 20 μm below

the surface of the softened layer to a depth of 1/2 of the thickness of the softened layer with an area rate of a total of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° or more and 15° or less of 50% or more and less than 85%, when a region surrounded by grain boundaries having an orientation difference of 15° or more in a cross-section parallel to the sheet thickness direction is defined as a "crystal grain".

Description

FIELD

10

30

35

40

50

55

[0001] The present invention relates to a hot stamped body used for structural members or reinforcing members of automobiles or structures where strength is required, in particular a hot stamped body excellent in strength, impact resistance, ductility, and hydrogen embrittlement resistance after hot stamping and small in scattering in hardness.

BACKGROUND

[0002] In recent years, from the viewpoints of environmental protection and resource saving, lighter weight of automobile bodies is being sought. For this reason, application of high strength steel sheet to automobile members has been accelerating. However, along with the increase in strength of steel sheets, the formability deteriorates, and therefore in high strength steel sheets, formability into members with complicated shapes is a problem.

[0003] To solve this problem, hot stamping, where the steel sheet is heated to a high temperature of the austenite region, then is press-formed, is increasingly being applied. Since hot stamping performs press-forming and simultaneously quenching in the die, it is possible to obtain a strength corresponding to the C amount of the steel sheet. This is being taken note of as a technique achieving both formation of a material into an automobile member and securing strength.

[0004] However, since in conventional hot pressed parts which were produced by press hardening, the entire sheet thickness is formed by hard structures (mainly martensite), if bending deformation occurs at the time of collision of the automobile, the largest strain will be applied to the bent portion of the part, cracks will advance starting from the vicinity of the surface layer of the steel sheet, and finally fracture will easily be caused.

[0005] For example, in a conventional hat-shaped member or other hot stamped body produced by press hardening, if bending deformation occurs at the time of collision of an automobile, the hat-shaped member will buckle and thereby deformation will become localized and the load resistance of the member will fall. That is, the maximum load of a member of a hot stamped body is affected not only by the strength of the member, but also the ease of buckling. If the ductility of the steel sheet is high, in the state of a member formed into a certain shape, it becomes harder for localization of the deformation region to occur. That is, the member becomes resistant to buckling.

[0006] Further, in a hot stamped body, the way of contact with the die is not necessarily uniform. For example, at the vertical wall parts of a hat-shaped member etc., the cooling rate easily falls. For this reason, steel sheet is sometimes locally formed with regions with low hardnesses. Deformation concentrates in a local soft part at the time of collision and becomes a cause of cracking, so a small scattering in hardness of the body, that is, securing stable strength, is important in securing impact resistance.

[0007] Therefore, in a hot stamped part as well, ductility is important, but in general the ductility of martensite is low. Further, the density of lattice defects of the surface layer of the steel sheet is high, so there is the problem that penetration by hydrogen is promoted and the part becomes poor in hydrogen embrittlement resistance. Due to such reasons, hot stamped parts produced by press hardening have been limited in locations of use in auto parts.

[0008] To deal with this problem, art has been proposed for raising the deformability of hot pressed parts to suppress cracking. PTL 1 discloses making the hardness of the middle in sheet thickness of a hot pressed part 400Hv or more and forming a softened layer with a thickness of 20 μm to 200 μm and a hardness of 300Hv or less on a surface layer so as to secure a strength of a tensile strength of 1300 MPa or more while suppressing cracking at the time of automobile collision. PTL 2 discloses controlling the concentration of carbon at a surface layer in sheet thickness to 1/5 or less of the concentration of carbon of the middle part in sheet thickness so as to reduce the density of lattice defects of the surface layer and improve the hydrogen embrittlement resistance. PTL 3 discloses to make the middle part in sheet thickness a dual phase structure of ferrite and martensite and raise the structural fraction of ferrite of a surface layer portion so as to ease the stress even if the surface layer part receives severe bending deformation.

[0009] However, in the members described in PTL 1 and PTL 2, by making a surface layer portion in sheet thickness by soft structures and making a middle part in sheet thickness by hard structures, a sharp gradient in hardness ends up being formed in the sheet thickness direction. For this reason, when subjected to bending deformation, there is the issue that cracking easily occurs near the boundary between the soft structures and hard structures where this sharp gradient of hardness occurs. Further, in PTL 3, a surface layer portion in sheet thickness is made by soft structures and the middle part in sheet thickness is made by a dual phase structure of hard structures and soft structures so as to reduce the sharp gradient in hardness in the sheet thickness direction. However, since making the middle part in sheet thickness a dual phase structure, the upper limit of tensile strength ends up becoming 1300 MPa or so. It is difficult to secure the tensile strength of 1500 MPa or more sought for hot pressed parts.

[CITATION LIST]

[PATENT LITERATURE]

5 [0010]

[PTL 1] Japanese Unexamined Patent Publication No. 2015-30890 [PTL 2] Japanese Unexamined Patent Publication No. 2006-104546 [PTL 3] WO 2015/097882

10

SUMMARY

[TECHNICAL PROBLEM]

[0011] The present invention, in consideration of the technical issues in the prior art, has as its object to provide a hot stamped body achieving both a high bendability and high ductility for realizing impact resistance and hydrogen embrit-tlement resistance and keeping down the scattering in hardness.

[SOLUTION TO PROBLEM]

20

30

45

50

55

15

[0012] The inventors engaged in an in-depth study of a method for solving the above technical issues. As a result, to improve the hydrogen embrittlement resistance, it is effective to reduce the density of lattice defects at the surface layer in sheet thickness. For this reason, it is necessary to form soft structures at the surface layer. On the other hand, to secure a 1500 MPa or more tensile strength, it is necessary to form the middle part in sheet thickness by only hard structures. In this way, the inventors thought that if forming the surface layer in sheet thickness by soft structures and forming the middle part in sheet thickness by hard structures, if it were possible to reduce the sharp gradient of hardness in the sheet thickness direction occurring near the boundary of the hard structures and soft structures, a strength of a tensile strength of 1500 MPa or more and excellent hydrogen embrittlement resistance could be secured while excellent bendability could be obtained.

[0013] Therefore, the inventors investigated and engaged in intensive studies on metal structures of steel sheets where good bendability was obtained by controlling the structures of a surface layer of soft structures. As a result, it was discovered that the metal structures forming the surface layer should be comprised of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° to 15° when a region surrounded by grain boundaries having an orientation difference of 15° or more in the sheet thickness cross-section is defined as a "crystal grain". These measurements were performed in the region from a position of a depth of 20 μ m below the surface of the surface layer to a position of a depth of 1/2 of the thickness of the surface layer (center of surface layer). It was discovered that the effects of the surface properties of the hot stamped body and the effects of the transitional part from the middle part in sheet thickness to the surface layer can be eliminated by such metal structures.

[0014] Further, by controlling the amounts of addition of Mn and Si at the middle part in sheet thickness, the inventors raised the ductility and raised the hardenability to stably secure high strength. As a result, it is possible to keep down the occurrence of cracking at the time of bending deformation. The inventors succeeded in securing a 1500 MPa or more tensile strength and good hydrogen embrittlement resistance while realizing excellent bendability, ductility, and stability of strength and were able to obtain a hot stamped body excellent in impact resistance and hydrogen embrittlement resistance.

[0015] The present invention was completed based on the above discovery and has as its gist the following:

(1) A hot stamped body comprising a middle part in sheet thickness and a softened layer arranged at both sides or one side of the middle part in sheet thickness, wherein

the middle part in sheet thickness comprises, by mass%,

C: 0.20% or more and less than 0.70%,

Si: less than 3.00%,

Mn: 0.20% or more and less than 3.00%,

P: 0.10% or less.

S: 0.10% or less,

sol. Al: 0.0002% or more and 3.0000% or less,

N: 0.01% or less, and

a balance of Fe and unavoidable impurities, and has a hardness of 500Hv or more and 800Hv or less,

in the metal structures from a depth of $20~\mu m$ below the surface of the softened layer to a depth of 1/2 of the thickness of the softened layer, when defining a region surrounded by grain boundaries having a 15° or higher orientation difference in a cross-section parallel to the sheet thickness direction as a "crystal grain", the area rate of the total of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° or more and 15° or less is 50% or more and less than 85%.

- (2) The hot stamped body according to (1), wherein the Si content is 0.50% or less and the Mn content is 0.20% or more and less than 1.50%.
- (3) The hot stamped body according to (1), wherein the Si content is 0.50% or less and the Mn content is 1.50% or more and less than 3.00%.
- (4) The hot stamped body according to (1), wherein the Si content is more than 0.50% and less than 3.00%, the Mn content is 0.20% or more and less than 1.50%, and the middle part in sheet thickness comprises, by area percent, 1.0% or more and less than 5.0% of residual austenite.
 - (5) The hot stamped body according to (1), wherein the Si content is more than 0.50% and less than 3.00%, the Mn content is 1.50% or more and less than 3.00%, and the middle part in sheet thickness comprises, by area percent, 1.0% or more and less than 5.0% of residual austenite.
 - (6) The hot stamped body according to any one of (1) to (5), where the middle part in sheet thickness further comprises, by mass%, Ni: 0.01% or more and 3.00% or less.
- 25 (7) The hot stamped body according to any one of (1) to (6), where the middle part in sheet thickness further comprises, by mass%, one or more of Nb: 0.010% or more and 0.150% or less, Ti: 0.010% or more and 0.150% or less, Mo: 0.005% or more and 1.000% or less, and B: 0.0005% or more and 0.0100% or less.
 - (8) The hot stamped body according to any one of (1) to (7), where a plated layer is formed on the softened layer.

[ADVANTAGEOUS EFFECTS OF INVENTION]

[0016] According to the present invention, it is possible to provide a hot stamped body excellent in bendability, ductility, impact resistance, and hydrogen embrittlement resistance and with small scattering in hardness.

BRIEF DESCRIPTION OF DRAWINGS

[0017]

5

10

15

20

30

35

40

- FIG. 1 is a schematic view for explaining the diffusion of C atoms when producing a hot stamped body of the present invention.
 - FIG. 2 is a graph showing the change in dislocation density after a rolling pass relating to rough rolling used in the method for producing the hot stamped body of the present invention.

45 DESCRIPTION OF EMBODIMENTS

(Structure of Hot Stamped Body According to Present Invention)

[0018] The hot stamped body according to the present invention is a structure with a softened layer arranged on the surface at both sides or one side. The softened layer has a region having a hardness 10Hv or more lower than the hardness of the middle part in sheet thickness.

(Middle Part in Sheet Thickness)

[0019] The middle part in sheet thickness of the hot stamped body according to the present invention must have a hardness of 500Hv to 800Hv. The reasons for limiting the composition of constituents at the middle part in sheet thickness to make the hardness of the middle part in sheet thickness the above-mentioned range are explained below. Below, the % relating to the component of constituents means mass%.

(C: 0.20% or more and less than 0.70%))

[0020] C is an important element for obtaining a 500Hv to 800Hv hardness at the middle part in sheet thickness. With less than 0.20%, it is difficult to secure 500Hv or more at the middle part in sheet thickness, and therefore C is 0.20% or more. Preferably it is 0.30% or more. On the other hand, with more than 0.70%, the hardness of the middle part in sheet thickness exceeds 800Hv and the bendability falls, and therefore C is 0.70% or less. Preferably, it is 0.50% or less.

(Si: less than 3.00%)

[0021] Si is an element contributing to improvement of strength by solution strengthening. The amount of addition of Si for obtaining the effect of improvement of strength of the steel sheet by formation of a solid solution of Si in the metal structures is preferably 0.30% or more, but even if adding more than 0.5% of Si, the effect becomes saturated.

[0022] Si also has the effect of causing the formation of residual austenite and raising the ductility. To obtain this effect, addition of more than 0.50% is at least necessary. On the other hand, even if adding more than 3.00%, the effect becomes saturated, and therefore the amount of addition of Si is one with an upper limit of less than 3.00%. Preferably, the amount is less than 2.0%.

(Mn: 0.20% or more and less than 3.00%)

[0023] Mn is an element contributing to improvement of strength by solution strengthening. The effect of improving the strength of the steel sheet by solid solution of Mn in the metal structures cannot be obtained with an amount of addition of less than 0.20%, so 0.20% or more is added. Preferably the content is 0.70% or more. On the other hand, even if adding 1.50% or more, the effect becomes saturated.

[0024] Mn, further, has the effect of raising the hardenability. By adding 1.50% or more, it is possible to raise the hardenability and stably obtain high strength. The preferable amount of addition for obtaining the effect of raising the hardenability is 1.70% or more. Even if adding 3.00% or more, the effect becomes saturated, and therefore the upper limit of the amount of addition of Mn is 3.00%. Preferably, the content is less than 2.00%.

(P: 0.10% or less)

20

30

35

40

45

50

55

[0025] P is an element segregating at the grain boundaries and impairing the strength of the grain boundaries. If more than 0.10%, the strength of the grain boundaries remarkably falls and the hydrogen embrittlement resistance and bendability fall, and therefore P is 0.10% or less. Preferably, it is 0.05% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0001%, the dephosphorizing cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

(S: 0.10% or less)

[0026] S is an element forming inclusions. If more than 0.10%, inclusions are formed and the hydrogen embrittlement resistance and bendability fall, and therefore S is 0.10% or less. Preferably, it is 0.0025% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0015%, the desulfurizing cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

(sol. Al: 0.0002% or more and 3.0000% or less)

[0027] Al is an element acting to deoxidize the molten steel and make the steel sounder. In the present invention, to obtain the deoxidizing action, the range of content of not all of the Al contained in the steel, but the content of so-called "acid soluble aluminum" (sol. Al) is prescribed. With a sol. Al content of less than 0.0002%, the deoxidizing is insufficient, and therefore sol. Al is 0.0002% or more. Preferably the content is 0.0010% or more. On the other hand, even if adding more than 3.0%, the effect becomes saturated, and therefore the content is 3.0000% or less.

(N: 0.01% or less)

[0028] N is an impurity element and is an element which forms nitrides and impairs bendability. If more than 0.01%, coarse nitrides are formed and the bendability remarkably falls, and therefore N is 0.01% or less. Preferably the content is 0.0075% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0001%, the denitriding cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

(Ni: 0.01% or more and 3.00% or less)

[0029] Ni is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.010%, the effect is not obtained, so 0.010% or more is added. Preferably, the content is 0.5% or more. On the other hand, even if added in more than 3.00%, the effect becomes saturated, and therefore the content is 3.00% or less. Preferably, the content is 2.50% or less.

(Nb: 0.010% or more and 0.150% or less)

[0030] Nb is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.010%, the effect is not obtained, so 0.010% or more is added. Preferably, the content is 0.035% or more. On the other hand, even if added in more than 0.150%, the effect becomes saturated, and therefore the content is 0.150% or less. Preferably, the content is 0.120% or less.

(Ti: 0.010% or more and 0.150% or less)

[0031] Ti is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.010%, the effect is not obtained, and therefore the content is 0.010% or more. Preferably, the content is 0.020%. On the other hand, even if added in more than 0.150%, the effect becomes saturated, and therefore the content is 0.150% or less. Preferably, the content is 0.120% or less.

(Mo: 0.005% or more and 1.0% or less)

20

30

35

50

55

[0032] Mo is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.005%, the effect is not obtained, and therefore the content is 0.005% or more. Preferably, the content is 0.0100% or more. On the other hand, even if added in more than 1.000%, the effect becomes saturated, and therefore the content is 1.000% or less. Preferably, the content is 0.800% or less.

(B: 0.0005% or more and 0.0100% or less)

[0033] B is an element segregating at the grain boundaries and improving the strength of the grain boundaries, so may be added as needed. With less than 0.0005%, the effect of addition is not sufficiently obtained, so 0.0005% or more is added. Preferably, the content is 0.0010% or more. On the other hand, even if added in more than 0.0100%, the effect becomes saturated, and therefore the content is 0.0100% or less. Preferably, the content is 0.0075% or less.

[0034] The balance of the composition of constituents of the middle part in sheet thickness consists of Fe and unavoidable impurities. The unavoidable impurities are elements which unavoidably enter from the steel raw materials and/or in the steelmaking process and are allowed in ranges not impairing the characteristics of the hot stamped body of the present invention.

40 (Hardness of Middle Part in Sheet Thickness is 500Hv or more and 800Hv or less)

[0035] If the hardness of the middle part in sheet thickness is 500Hv or more, as the tensile strength of the hot stamped body of the present invention, 1500 MPa or more can be secured. Preferably, it is 600Hv or more. On the other hand, if the hardness of the middle part in sheet thickness is more than 800Hv, since the difference in hardness with the softened layer becomes too large and deterioration of the bendability is invited, 800Hv is the upper limit. Preferably the hardness is 720Hv or less.

[0036] The method of measurement of the hardness of the middle part in sheet thickness is as follows: A cross-section vertical to the sheet surface of the hot stamped body is taken to prepare a sample of the measurement surface. This is supplied to a hardness test. The method of preparing the measurement surface may be based on JIS Z 2244. For example, #600 to #1500 silicon carbide paper may be used to polish the measurement surface, then a solution of particle size 1 μ m to 6 μ m diamond powder dispersed in alcohol or another diluent or pure water may be used to finish the sample to a mirror surface. The hardness test may be performed by the method described in JIS Z 2244. A micro-Vickers hardness tester is used to measure 10 points at the 1/2 position of thickness of the hot stamped body by a load of 1 kgf and intervals of 3 times or more of the dents. The average value was defined as the hardness of the middle part in sheet thickness.

(Metal Structures at Middle Part in Sheet Thickness)

[0037] The middle part in sheet thickness can be improved in ductility by including residual austenite in an area percent of 1% or more. The area percent of residual austenite at the middle part in sheet thickness is preferably 2% or more. However, if making the area percent of the residual austenite 5% or more, since deterioration of the bendability is invited, the upper limit is less than 5.0%. Preferably, the fraction is less than 4.5%.

[0038] The area percent of the residual austenite can be measured by the following method. A sample is taken from a hot stamped member and ground down at its surface to a depth of 1/2 of the sheet thickness from the normal direction of the rolling surface. The ground down surface is used for X-ray diffraction measurement. From the image obtained by the X-ray diffraction method using $K\alpha$ rays of Mo, the area rate $V\gamma$ of residual austenite can be determined using the following formula:

$$V_{\gamma}=(2/3)\{100/(0.7\times\alpha(211)/\gamma(220)+1)\}+(1/3)\{100/(0.78\times\alpha(211)/\gamma(311)+1)\}$$

Here, $\alpha(211)$ is the X-ray diffraction intensity at the (211) face of ferrite, $\gamma(220)$ is the X-ray diffraction intensity at the (220) face of austenite, and $\gamma(311)$ is the X-ray diffraction intensity at the (311) face of austenite.

(Softened Layer)

10

15

20

25

30

35

50

55

[0039] As explained above, in the present invention, the "softened layer" is the region in the sheet thickness direction of the cross-section of sheet thickness of the hot stamped body from the position where the hardness falls by 10Hv or more from hardness of the middle part in sheet thickness (hardness at position of 1/2 of sheet thickness) to the surface of the stamped body.

(Metal Structures of Softened Layer)

[0040] The inventors investigated the metal structures of steel sheets where good bendability was obtained and as a result discovered that the metal structures forming the softened layer should be comprised of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° to 15° when defining a region surrounded by grain boundaries having a 15° or higher orientation difference in a cross-section of sheet thickness as a "crystal grain". These measurements were performed in the region from a position of a depth of 20 μm below the surface of the softened layer to a position of a depth of 1/2 of the thickness of the softened layer (center of softened layer). The inventors engaged in intensive studies and as a result discovered that from the viewpoint of the bendability and other effects, the fractions of structures from a position of 20 μ m from the surface of the softened layer to a position of a depth of 1/2 of the thickness of the softened layer are important. The effects of the surface properties of the hot stamped body and the effects of the transitional part from the middle part in sheet thickness to the softened layer can be eliminated by such metal structures. [0041] In the above-mentioned metal structures of the softened layer, the area rate of the total of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° to 15° should be 50% or more, more preferably 55% or more. On the other hand, with an area rate of the total of the metal structures of the softened layer of 85% or more, the difference in hardness of the softened layer and the middle part in sheet thickness becomes too great and the effect of reduction of the sharp gradient of hardness in the sheet thickness direction occurring at the time of bending deformation cannot be obtained, and therefore the area rate is less than 85%. More preferably, it is 80% or less.

[0042] Between the position of a depth of 1/2 of the thickness of the softened layer (center of softened layer) to the middle part in sheet thickness, if the hardness at the sheet thickness middle part side of the softened layer (boundary with middle part in sheet thickness) is HvA and the hardness of the center of the softened layer is HvB, they are in the relationship of HvA-HvB≥10Hv.

[0043] The method of determining the region from 20 μm below the surface of the softened layer to a position of 1/2 of the thickness of the softened layer will be explained below. A cross-section vertical to the surface of the hot stamped body being measured (cross-section of sheet thickness) is taken to prepare a sample of the measurement surface. This is used for a hardness test. The method of preparing the measurement surface may be based on JIS Z 2244. For example, #600 to #1500 silicon carbide paper may be used to polish the measurement surface, then a solution of particle size 1 μm to 6 μm diamond powder dispersed in alcohol or another diluent or pure water may be used to finish the sample to a mirror surface. The sample with the prepared measurement surface is measured two times based on the method described in JIS Z 2244 using a micro Vickers hardness tester. The first time measures the hardness from the region within 20 μm from the surface of the hot stamped body in the sheet thickness direction to the middle part in sheet

thickness (position of 1/2 of sheet thickness) in the direction vertical to the surface (sheet thickness direction) by a load of 0.3 kgf at intervals of 3 times or more the dents. However, if there is a plated layer, this is measured from the region within 20 μ m right under the plating or coating or the alloy layer of the plating or coating and material of the softened layer. The position where the hardness starts to drop by 10Hv or more from the hardness of the middle part in sheet thickness (hardness at position of 1/2 of sheet thickness) is determined and the layer from that sheet thickness position to the surface of the hot stamped body is defined as the "softened layer". If the softened layer is present at both surfaces, the second measurement is performed at the surface at the opposite side to the first one (back surface) by a similar method to determine the position where the hardness starts to drop by 10Hv or more from the hardness of the middle part in sheet thickness.

[0044] Next, the method of calculating the area rates of metal structures of the softened layer will be explained. A sample is cut out from a hot stamped body to enable examination of a cross-section vertical to its surface (sheet thickness direction). The length of the sample depends on the measuring device, but may be about 50 μ m. The region in the sheet thickness direction of the sample from the surface of the softened layer to the position of 1/2 of the thickness of the softened layer (center of softened layer) is analyzed at 0.2 μ m measurement intervals by EBSD to obtain information on the crystal orientation. Here, this EBSD analysis is performed using an apparatus comprised of a thermal field emission type scan electron microscope (JSM-7001F made by JEOL) and EBSD detector (DVC5 type detector made by TSL) at an analysis speed of 200 to 300 points/second.

[0045] Next, based on the obtained crystal orientation information, a region surrounded by grain boundaries having an orientation difference of 15° or more is defined as one crystal grain and a crystal orientation map in the sheet surface direction is prepared. The obtained crystal orientation map is used to find the crossing points of the long axis of one crystal grain and the crystal grain boundaries. Among the two crossing points, one is designated as the starting point and the other is designated as the end point and the difference in orientation among all measurement points contained on the long axis of the crystal grain is calculated. The maximum value of the orientation difference obtained was defined as the maximum crystal orientation difference at that crystal grain. The above analysis was performed for all crystal grains included in the measurement region, then the average of these values was defined as the maximum crystal orientation difference inside a region surrounded by grain boundaries of 15° or more.

[0046] The above-defined maximum crystal orientation difference can be simply calculated, for example, if using the "Inverse Pole Figure Map" and "Profile Vector" functions included in the software (OIM Analysis®) attached to the EBSD analysis system. With the "Inverse Pole Figure Map" function, it is possible to draw grain boundaries having slants of 15° or more as large angle grain boundaries and further possible to prepare a crystal orientation map in the sheet surface direction. With the "Profile Vector" function, it is possible to calculate the misorientation angle (difference in crystal orientations) between all measurement points included on any line. All crystal grains contained in the measurement region (crystal grains at end parts of measurement region not included) are analyzed as explained above and the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° is calculated. If the softened layer is formed on both surfaces, the above procedure is performed at the back surface side of the hot stamped body as well and the average value of the area rates obtained from the front surface side and the back surface side is employed.

40 (Composition of Softened Layer)

10

20

30

35

50

55

[0047] The composition of the softened layer is not particularly limited other than regarding the unavoidable impurity elements of P, S, and N impairing the strength and/or bendability, but the layer is preferably the following composition so as to secure the strength of the hot stamped body and steel exhibiting excellent bendability.

[0048] In the composition of the softened layer, one or more of the C content, Si content, and Mn content are preferably respectively 0.6 time the corresponding contents of elements of the middle part in sheet thickness. The preferable ranges of the constituents in this case are as follows:

(C: 0.05% or more and less than 0.42%)

[0049] C may be added in 0.05% or more so as to raise the strength. From the viewpoint of raising the load resistance as a member and improving the impact characteristics, preferably the content is 0.10% or more. To make the hardness of the softened layer lower than the hardness of the middle part in sheet thickness, it is preferable to make the content smaller than the middle part in sheet thickness. For this reason, the preferable C content of the softened layer is less than 0.42%. Preferably the content is 0.35% or less.

(Si: less than 2.00%)

[0050] Si is an element contributing to improvement of strength by solution strengthening, so is added for raising the strength. However, to make the hardness of the softened layer lower than the hardness of the middle part in sheet thickness, it is preferable to make this smaller in content than the middle part in sheet thickness.

[0051] If the Si content of the middle part in sheet thickness is 0.50% or less, the preferable Si content of the softened layer is 0.30% or less, more preferably 0.20% or less. Further, if the Si content of the middle part in sheet thickness is more than 0.50% and less than 3.00%, the preferable Si content of the softened layer is less than 2.00%, more preferably 1.50% or less.

(Mn: 0.12% or more and less than 1.80%)

[0052] Mn is an element contributing to improvement of strength by solution strengthening, so may be added in 0.12% or more for raising the strength. However, to make the hardness of the softened layer lower than the hardness of the middle part in sheet thickness, it is preferably smaller in content than the middle part in sheet thickness.

[0053] If the Mn content at the middle part in sheet thickness is 0.20% to less than 1.50%, the preferable Mn content of the softened layer is less than 0.90%, more preferably is 0.70% or less. Further, if the Mn content of the middle part in sheet thickness is 1.50% to less than 3.00%, the preferable Mn content of the softened layer is less than 1.80%, preferably 1.40% or less.

(P: 0.10% or less)

[0054] P is an element segregating at the grain boundaries and impairing the strength of the grain boundaries. If more than 0.10%, the strength of the grain boundaries remarkably falls and the hydrogen embrittlement resistance and bendability fall, and therefore P is 0.1% or less. Preferably, it is 0.05% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0001%, the dephosphorizing cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

(S: 0.10% or less)

[0055] S is an element forming inclusions. If more than 0.10%, inclusions are formed and the hydrogen embrittlement resistance and bendability fall, and therefore S is 0.10% or less. Preferably, it is 0.0025% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0015%, the desulfurizing cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

(sol. Al: 0.0002% or more and 3.0000% or less)

[0056] Al is an element acting to deoxidize the molten steel and make the steel sounder. In the present invention, to obtain this deoxidizing action, the range of content of not all of the Al contained in the steel, but the so-called "acid soluble aluminum" (sol. Al) is prescribed. With a sol. Al content of less than 0.0002%, the deoxidizing is insufficient, and therefore the sol. Al is preferably 0.0002% or more. More preferably the content is 0.0010% or more. On the other hand, even if adding more than 3.0000%, the effect becomes saturated, and therefore the content is 3.0000% or less.

(N: 0.01% or less)

[0057] N is an impurity element and is an element which forms nitrides and impairs bendability. If more than 0.01%, coarse nitrides are formed and the bendability remarkably falls, and therefore N is 0.01% or less. Preferably the content is 0.0075% or less. The lower limit is not particularly prescribed, but if reducing this to less than 0.0001%, the denitriding cost greatly rises and the result becomes economically disadvantageous, so in practical steel sheet, 0.0001% is the substantive lower limit.

[0058] Regarding the constituents of the softened layer, one or more of the C content, Si content, and Mn content are preferably respectively 0.6 time or less the C content, Si content, and Mn content of the middle part in sheet thickness. Other than the upper limits of the unavoidable impurity elements of P, S, and N impairing the strength and/or bendability being prescribed, the other constituents are not particularly limited. In general, the softened layer may optionally and selectively include one or more of the following constituents besides C, Si, and Mn.

20

10

30

35

40

45

55

(Ni: 0.01% or more and 3.00% or less)

[0059] Ni is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.01%, the effect is not obtained, and therefoere preferably 0.01% or more is added. More preferably, the content is 0.50% or more. On the other hand, even if added in more than 3.00%, the effect becomes saturated, and therefore the content is 3.00% or less. Preferably, the content is 2.50% or less.

(Nb: 0.010% or more and 0.150% or less)

[0060] Nb is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.010%, the effect is not obtained, so preferably 0.010% or more is added. More preferably, the content is 0.035% or more. On the other hand, even if added in more than 0.150%, the effect becomes saturated, and therefore the content is 0.150% or less. Preferably, the content is 0.120% or less.

(Ti: 0.010% or more and 0.150% or less)

20

25

30

35

40

50

[0061] Ti is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.010%, the effect is not obtained, and therefore preferably the content is 0.010% or more. More preferably, the content is 0.020%. On the other hand, even if added in more than 0.150%, the effect becomes saturated, and therefore the content is 0.150% or less. Preferably, the content is 0.120% or less.

(Mo: 0.005% or more and 1.000% or less)

[0062] Mo is an element contributing to improvement of strength by solution strengthening, so may be added as needed. With less than 0.005%, the effect is not obtained, and therefore preferably the content is 0.005% or more. More preferably, the content is 0.010% or more. On the other hand, even if added in more than 1.000%, the effect becomes saturated, and therefore the content is 1.000% or less. Preferably, the content is 0.800% or less.

(B: 0.0005% or more and 0.0100% or less)

[0063] B is an element segregating at the grain boundaries and improving the strength of the grain boundaries, so may be added as needed. With less than 0.0005%, the effect of addition is not sufficiently obtained, and therefore preferably 0.0005% or more is added. More preferably, the content is 0.0010% or more. On the other hand, even if added in more than 0.0100%, since the effect becomes saturated, the content is 0.0100% or less. Preferably, the content is 0.0075% or less.

(Cross-Sectional Distribution of Hardness of Hot Stamped Body)

[0064] At the cross-section vertical to the surface of the hot stamped body, the distribution of hardness at the middle part in sheet thickness is preferably uniform with no scattering. In a hat-shaped structure, at the vertical wall parts, contact with the die is difficult and the cooling rate becomes low, so sometimes the hardness falls. If there is a region where the hardness falls by 100Hv or more from the average hardness of the cross-section vertical to the longitudinal direction of the hat-shaped member, at the time of impact, the deformation will concentrate at the softened part and the part will fracture early, so a high impact resistance cannot be obtained. For this reason, there must not be a point with a hardness more than 100HV below the average value of the distribution of hardness in the cross-section vertical to the surface of the hot stamped body (below, referred to as the "average hardness of cross-section"). The distribution of hardness at the cross-section and the average hardness of the cross-section are obtained by obtaining a cross-section vertical to the longitudinal direction of a long hot stamped body at any position in the longitudinal direction and measuring the Vickers hardness between the end parts of the cross-section at equal intervals of 1 mm pitch or less at the middle position of sheet thickness of the entire cross-sectional region including the vertical walls using a Vickers hardness tester (load of 1 kgf).

(Formation of Plated Layer)

[0065] The surface of the softened layer may be formed with a plated layer for the purpose of improving the corrosion resistance. The plated layer may be either an electroplated layer or a hot dip coated layer. An electroplated layer includes, for example, an electrogalvanized layer, electro Zn-Ni alloy plated layer, etc. As a hot dip coated layer, a hot dip galvanized layer, a hot dip galvannealed layer, a hot dip aluminum coated layer, a hot dip Zn-Al alloy coated layer, a hot dip Zn-Al-

Mg alloy coated layer, a hot dip Zn-Al-Mg-Si alloy coated layer, etc., may be mentioned. The amount of deposition of the layer is not particularly limited and may be a general amount of deposition.

(Method of Production of Hot Stamped Body According to Present Invention)

5

10

15

20

30

35

45

50

55

[0066] Next, the method of production for obtaining the hot stamped body according to the present invention will be explained, but the present invention is not limited to the form of the double layer steel sheet explained below.

[0067] As one embodiment of the method of production of the present invention, first, a steel sheet satisfying the requirements of the composition of constituents of the middle part in sheet thickness explained above is ground down at its front surface and/or back surface to remove surface oxides, then a steel sheet for softened layer formation use (below, referred to as a "steel sheet for surface layer") is superposed on each ground down surface side. The method of joining the steel sheet for surface layer and the steel sheet for sheet thickness middle part is not particularly limited, but they may be joined by arc welding. A steel sheet for surface layer wherein one or more of the C content, Si content, and Mn content are 0.6 time or less the content of the corresponding element of the steel sheet for sheet thickness middle part is preferably superposed.

[0068] Further, by controlling the casting rate to ton/min or more in the continuous casting process of the steel sheet for surface layer, it is possible to keep down microsegregation of Mn in the steel sheet for surface layer and possible to make the distribution of concentration of Mn at the steel sheet for surface layer uniform. Mn raises the yield strength of austenite to thereby affect the behavior in formation of grain boundaries in the transformed structures, so when defining a region surrounded with grain boundaries having orientation differences of 15° or more as a "crystal grain", it has the effect of promoting the formation of crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° to 15°. For this reason, it is also possible to control the casting rate to 6 ton/min or more in the continuous casting process of steel sheet for surface layer for the purpose of promoting the formation of the above micro structures.

[0069] Further, a double layer steel sheet fabricated by the above method is preferably held at 1100° C or more and 1350° C or less in temperature for 20 minutes to less than 60 minutes. The held sheet is preferably used as the steel sheet for hot stamped body according to the present invention. The inventors studied this and as a result learned that by performing heat treatment holding the steel sheet at 1100° C or more and 1350° C or less for 20 minutes to less than 60 minutes, in the metal structures in the region from a position of a depth of 20 μ m below the surface of the softened layer to the center of the softened layer, the area rate of the total of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° to 15° becomes 50% to less than 85% when a region surrounded by grain boundaries having an orientation difference of 15° or more is defined as a "crystal grain" and that excellent bendability and hydrogen embrit-tlement resistance can be obtained.

[0070] The multilayer member produced by the above method of production (double layer steel sheet) can be treated by hot rolling, cold rolling, hot stamping, continuous hot dip coating, etc., to obtain the hot stamped body according to the present invention.

[0071] The hot rolling may be hot rolling performed under usual conditions. For example, the finishing temperature may also be in the temperature range of 810°C or more. The subsequent following cooling conditions also do not have to be particularly prescribed. The steel sheet is coiled in the temperature region of 750°C or less. Further, it may be reheated for the purpose of softening the double layer steel sheet after hot rolling.

[0072] Further, to promote more the formation of the middle part in sheet thickness, the hot rolling after the above heat treatment of the double layer steel sheet preferably includes rough rolling and finish rolling with the rough rolling being performed twice under conditions of a temperature of 1100°C or more, a sheet thickness reduction rate per pass of 5% or more and less than 50%, and a time between passes of 3 seconds or more.

[0073] Specifically, to promote more the formation of the middle part in sheet thickness in the present invention, the concentrations of alloy elements, in particular C atoms, have to be controlled to become more moderately distributed. The distribution of concentration of C is obtained by diffusion of C atoms. The diffusion frequency of C atoms increases the higher the temperature. Therefore, to control the C concentration, control in the rough rolling from the hot rolling heating becomes important. In hot rolling heating, to promote the diffusion of C atoms, the heating temperature has to be high. Preferably, it is 1100°C or more and 1350°C or less, more preferably more than 1150°C and 1350°C or less. With hot rolled heating, the changes of (i) and (ii) shown in FIG. 1 occur. (i) shows the diffusion of C atoms from the middle part in sheet thickness to the surface layer, while (ii) shows the decarburization reaction of C being desorbed from the surface layer to the outside. A distribution occurs in the concentration of C due to the balance between this diffusion of C atoms and the desorption reaction of (i) and (ii). With less than 1100°C, the reaction of (i) is insufficient, so the preferable distribution of the concentration of C cannot be obtained. On the other hand, with more than 1350°C, the reaction of (ii) excessively occurs, so similarly a preferable distribution of concentration cannot be obtained.

[0074] After adjusting the hot rolling heating temperature to obtain the preferable distribution of concentration of C, to obtain a further optimum distribution of concentration of C, pass control in rough rolling becomes extremely important.

Rough rolling is performed two times or more under conditions of a rough rolling temperature of 1100°C or more, a sheet thickness reduction rate per pass of 5% or more and less than 50%, and a time between passes of 3 seconds or more. This is so as to promote the diffusion of C atoms of (i) in FIG. 1 by the strain introduced in the rough rolling. Even if using an ordinary method to rough roll and finish roll a slab controlled in concentration of C to a preferable state by hot rolling heating, the sheet thickness will be reduced without the C atoms sufficiently diffusing in the surface layer. Therefore, if manufacturing hot rolled steel sheet of a thickness of several mm from a slab having a thickness more than 200 mm through a general hot rolling process, the result will be a steel sheet changing rapidly in concentration of C at the surface layer. A moderate hardness change will no longer be able to be obtained. The method discovered to solve this is the above pass control of the rough rolling. The diffusion of C atoms is greatly affected by not only the temperature, but also the strain (dislocation density). In particular, compared with lattice diffusion, with dislocation diffusion, the diffusion frequency becomes 10 times or more higher, so steps have to be taken to leave the dislocation density while rolling to reduce the sheet thickness. Curve 1 of FIG. 2 shows the change in the dislocation density after a rolling pass in the case where the sheet thickness reduction rate per pass in the rough rolling is small. It will be understood that strain remains over a long time period. By causing strain to remain at the surface layer over a long time period in this way, C atoms sufficiently diffuse in the surface layer and the optimum distribution of concentration of C can be obtained. On the other hand, curve 2 shows the change in dislocation density in the case where the sheet thickness reduction rate is large. If the amount of strain introduced by the rolling rises, recovery is easily promoted and the dislocation density rapidly falls. For this reason, to obtain the optimal distribution of concentration of C, it is necessary to prevent the occurrence of a change in dislocation density like the curve 2. From such a viewpoint, the upper limit of the sheet thickness reduction rate per pass becomes less than 50%. To promote the diffusion of C atoms at the surface layer, certain amounts of dislocation density and holding time have to be secured, so the lower limit of the sheet thickness reduction rate becomes 5%. As the time between passes, 3 seconds or more has to be secured.

[0075] The cold rolling may be cold rolling performed by a usual rolling reduction, for example, 30 to 90%. The hot rolled steel sheet and the cold rolled steel sheet include steel sheets as hot rolled and cold rolled and also steel sheets obtained by recrystallization annealing hot rolled steel sheet or cold rolled steel sheet under usual conditions and steel sheets obtained by skin pass rolling under usual conditions.

[0076] The heating, shaping, and cooling steps at the time of hot stamping may also be performed under usual conditions. For example, hot rolled steel sheet obtained by uncoiling hot rolled steel sheet coiled in the hot rolling step, cold rolled steel sheet obtained by uncoiling and cold rolling coiled hot rolled steel sheet, or steel sheet obtained by plating or coating cold rolled steel sheet, heating this by a 0.1°C/s to 200°C/s heating rate up to 810°C or more and 1000°C or less in temperature, and holding it at this temperature is formed into the required shape by the usual hot stamping.

[0077] The holding time may be set according to the mode of forming, so is not particularly limited. For example, if 30 seconds or more and 600 seconds or less, a good hot stamped body is cooled to room temperature.

[0078] The cooling rate may also be set to a usual condition. For example, the average cooling rate in the temperature region from the heating temperature to more than 400°C may be 50°C/s or more. In the case of steel sheet with an Si content at the middle part in sheet thickness of more than 0.50% and less than 3.00% and an Mn content at the middle part in sheet thickness of 0.20% or more and less than 1.50% and steel sheet with an Si content at the middle part in sheet thickness of more than 0.50% and less than 3.00% and an Mn content at the middle part in sheet thickness of 1.50% or more and less than 3.00%, for the purpose of increasing the amount of formation of residual austenite to improve the ductility, it is preferable to control the average cooling rate at the cooling after heating and holding at the 200°C to 400°C temperature region to less than 50°C/s.

[0079] Further, for the purpose of adjusting the strength etc., it is possible to temper the body cooled down to room temperature in the range of 150°C to 600°C.

[0080] In the method of production of the hot stamped body of the above-mentioned embodiment, the middle part in sheet thickness and the softened layer were configured by separate steel sheets. However, the hot stamped body of the present invention is not limited to double layer steel sheet comprised of two of the above-mentioned steel sheets superposed. The middle part in sheet thickness and the softened layer may be formed inside a single material steel sheet. For example, it is possible to treat a single layer steel sheet to decarburize it and soften the surface layer part to thereby produce high strength steel sheet comprised of a softened layer and a middle part in sheet thickness.

EXAMPLES

10

15

20

30

35

50

55

[0081] Next, examples of the present invention will be explained, but the conditions in the examples are just illustrations of conditions employed for confirming the workability and advantageous effects of the present invention. The present invention is not limited to the illustration of conditions. The present invention can employ various conditions so long as not departing from the gist of the present invention and achieving the object of the present invention.

[Manufacturing Example A]

30

35

45

50

55

[0082] The Nos.1 to 18 steel sheets for sheet thickness middle part having the chemical compositions shown in Table A-1-1 (in the table, "Steel Nos. 1 to 18") were ground down at their surfaces to remove the surface oxides. After that, the respective steel sheets for sheet thickness middle part were welded with steel sheets for surface layer having the chemical compositions shown in Table A-1-2 at both surfaces or single surfaces by arc welding to fabricate the Nos. 1 to 43 multilayer steel sheets for hot stamped body. The total of the sheet thicknesses of the steel sheet for surface layer and the steel sheet for sheet thickness middle part after arc welding is 200 mm to 300 mm and the thickness of the steel sheet for surface layer is 1/3 or so of the thickness of the steel sheet for sheet thickness middle part (1/4 or so in case of single side). The No. 37 multilayer steel sheet is steel with the steel sheet for surface layer welded to only one surface. In the Nos.1 to 43 multilayer steel sheets of Table A-1-1 to Table A-1-2, ones with a steel sheet for sheet thickness middle part not satisfying the requirement for composition of the middle part in sheet thickness of the hot stamped body according to the present invention are indicated as "comparative steel" in the remarks column.

[0083] The Nos. 1 to 43 multilayer steel sheets were respectively treated under the conditions of the Nos. 1 to 43 manufacturing conditions shown in Table A-2-1 to Table A-2-2 by heat treatment before hot rolling, rough rolling, hot rolling, and cold rolling to obtain steel sheets. Next, the steel sheets were heat treated as shown in Table A-2-1 and Table A-2-2 (in the tables, "heat treatment of hot stamped body") for hot stamping to manufacture the Nos. 1A to 43A hot stamped bodies ("stamped bodies" of Table A-3). Further, the Nos. 35A and 36A hot stamped bodies were coated on a hot dip coating line at the surfaces with 120 to 160 g/m² amounts of aluminum.

[0084] In the tables, the item "sheet thickness reduction rate" of the "rough rolling" means the sheet thickness reduction rate per pass of the rough rolling. The item "number of rolling operations" means the number of rolling operations under the conditions of a time between passes of 3 seconds or more. Further, the item in the tables of "heating rate (°C/s)" means the rate of temperature rise until reaching the heating temperature of the "heat treatment at the time of hot stamping" after the cold rolling process. Further, in the tables, the item "heating temperature (°C)" of the "heat treatment at the time of hot stamping" is the temperature at the time of hot stamping, the "average cooling rate (°C/s) (more than 400°C)" means the average cooling rate (°C/s) in the temperature region from the heating temperature to more than 400°C, and the "average cooling rate (°C/s) (400°C or less)" means the average cooling rate (°C/s) in the temperature region from 200°C to 400°C. Further, in the tables, the fields with the notations "-" indicate no corresponding treatment performed.

[0085] Table A-3 shows the metal structures and characteristics of the Nos. 1A to 43A hot stamped bodies. The constituents obtained by analyzing the positions of 1/2 of the sheet thicknesses of the samples taken from the hot stamped bodies and positions of $20~\mu m$ from the surfaces of the softened layers were equivalent to the constituents of the steel sheets for sheet thickness middle part and steel sheets for surface layer of the Nos. 1 to 43 multilayer steel sheets of Table A-1-1 to Table A-1-2.

[0086] The metal structures of the hot stamped steel sheets were measured by the above-mentioned method. The hardness of the steel sheet for sheet thickness middle part forming the middle part in sheet thickness and the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer forming the softened layer to 1/2 of the thickness were calculated. The calculated values of the area rate are shown in the item "area rate (%) of total of crystal grains with maximum crystal orientation difference inside large angle grain boundaries of 1° or less and crystal grains with maximum crystal orientation difference of 8° to 15°" of Table A-3.

[0087] Further, a tensile test of the hot stamped body was performed. The results are shown in Table A-3. The tensile test was performed by preparing a No. 5 test piece described in JIS Z 2201 and following the test method described in JIS Z 2241.

[0088] The hydrogen embrittlement resistance of the hot stamped body was evaluated using a test piece cut out from the stamped body. In general, a hot stamped body is joined with other parts using spot welding or another joining method. Depending upon the precision of the shape of the part, the hot stamped body will be subjected to twisting and stress will be applied. The stress differs depending on the position of the part. Accurately calculating this is difficult, but if there is no delayed fracture at the yield stress, it is believed there is no problem in practical use. Therefore, a sheet thickness 1.2 mm×width 6 mm×length 68 mm test piece was cut out from the stamped body, a strain corresponding to the yield stress was imparted in a four-point bending test, then the body was immersed in pH3 hydrochloric acid for 100 hours. The presence of any cracking was used to evaluate the hydrogen embrittlement resistance. A case of no cracking was indicated as passing ("good") and a case with cracking was indicated as failing ("poor").

[0089] For the purpose of evaluating the impact resistance of the hot stamped body, the body was evaluated based on the VDA standard (VDA238-100) prescribed by the German Association of the Automotive Industry under the following measurement conditions. In the present invention, the displacement at the time of maximum load obtained in the bending test was converted to angle by the VDA standard to find maximum bending angle and thereby evaluate the impact

resistance of the hot stamped body.

[0090] Test piece dimensions: 60 mm (rolling direction) \times 60 mm (direction vertical to rolling) or 30 mm (rolling direction)

tion)×60 mm (direction vertical to rolling)

Bending ridgeline: direction perpendicular to rolling

5 Test method: roll support, punch pressing

Roll diameter: ϕ 30 mm Punch shape: tip R=0.4 mm

Distance between rolls: 2.0×sheet thickness (mm)+0.5mm

Indentation rate: 20 mm/min

10 Tester: SHIMAZU AUTOGRAPH 20kN

[0091] If the tensile strength is 1500 MPa or more, the maximum bending angle (°) was 70(°) or more, and the hydrogen embrittlement resistance was a passing level, it was judged that the impact resistance and hydrogen embrittlement resistance were excellent and the case was indicated as an "invention example". If even one of the three aspects of performance is not satisfied, the case was indicated as a "comparative example".

[0092] In each hot stamped body of the invention examples, the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness was 50% to less than 85%. Further, each hot stamped body of the invention examples was excellent in tensile strength, bendability, and hydrogen embrittlement resistance.

[0093] As opposed to this, the No. 5A hot stamped body was low in carbon content of the steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness became insufficient and the tensile strength became insufficient. The No. 9A hot stamped body was excessive in carbon content of the steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness became excessive and the targeted bendability could not be obtained. Further, the No. 11A hot stamped body was low in Mn content at the steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness became insufficient and the tensile strength became insufficient. [0094] The Nos. 30A to 32A hot stamped bodies are comparative examples produced using the multilayer steel sheets for hot stamped body to which the desirable heat treatment had not been applied before the hot stamping process. The No. 30A hot stamped body was low in heat treatment temperature before the hot stamping process, while the No. 31A hot stamped body was short in heat treatment time before the hot stamping process, so in the metal structures from the surface of the softened layer to 1/2 of the thickness, the soft structures and metal structures with intermediate hardnesses insufficiently grew and the target bendability could not be obtained. Further, the No. 32A hot stamped body was excessively high in heat treatment temperature before the hot stamping process, so the effect of reduction of the sharp gradient in hardness in the sheet thickness direction occurring at the time of bending deformation could not be obtained.

[0095] The No. 41A hot stamped body was low in rolling temperature of the rough rolling. Further, the No. 42A hot stamped body was low in sheet thickness reduction rate of the rough rolling. Further, the No. 43A hot stamped body was low in number of rolling operations under conditions of a time between passes of 3 seconds or more. These hot stamped bodies were not manufactured under the suitable rough rolling conditions, so the soft structures and metal structures with intermediate hardnesses insufficiently grew, it was not possible to ease the strain occurring due to bending deformation, and the targeted bendability could not be obtained.

[0096] The No. 44 hot stamped body is a steel sheet controlled in casting rate to 6 ton/min or more in the continuous casting process of steel sheet for surface layer. It can raise the area rate (%) of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness and is excellent in bendability.

50

15

20

25

30

35

40

45

5		Domarke	Nelligino					Comp. steel				Comp. steel		Comp. steel													
10			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0021	0	0	0	0	0	0	0
			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.06	0	0	0	0	0	0	0	0
15		(%ss	Ш	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.018	0	0	0	0	0	0	0	0	0
		e part (ma	qN	0	0	0	0	0	0	0	0	0	0	0	0	0	0.042	0	0	0	0	0	0	0	0	0	0
20		s middle	ΙN	0	0	0	0	0	0	0	0	0	0	0	0	28.0	0	0	0	0	0	0	0	0	0	0	0
25		steel sheet for sheet thickness middle part (mass%)	Z	0.0037	0.0036	0.0033	0.0028	0.0039	0.0037	0.0032	0.0033	0.0027	0.0028	0.0041	0.0027	0.0028	0.0034	0.0031	0.0032	0.0033	0.0037	0.0037	0.0037	0.0036	0.0036	0.0036	0.0033
	.1-1]	et for she	sol.Al	0.047	0.039	0.045	0.040	0.037	0.043	0.037	0.049	0.043	0.049	0.042	0.044	0.045	0.044	0.050	0.049	0.047	0.047	0.047	0.047	0.039	0.039	0.039	0.045
30	[Table A-1-1]	f steel shee	S	0.0025	0.0007	0.0010	0.0001	0.0011	0.0012	0.0014	0.0016	0.0007	0.0020	0.0016	0.0011	0.0014	0.0003	0.0013	0.0011	0.0018	0.0025	0.0025	0.0025	0.0007	0.0007	0.0007	0.0010
35		Chemical constituents of	Ь	0.016	0.015	0.011	0.009	0.016	0.015	900.0	0.007	0.015	0.010	0.016	0.015	0.005	0.018	0.014	0.010	0.013	0.016	0.016	0.016	0.015	0.015	0.015	0.011
		ical cons	Mn	1.22	1.25	1.31	1.35	1.31	1.28	1.27	1.34	1.26	1.29	0.07	0.76	1.29	1.29	1.23	1.40	1.38	1.22	1.22	1.22	1.25	1.25	1.25	1.31
40		Chem	Si	0.24	0.23	0.13	0.17	0.17	0.17	0.12	0.11	0.14	0.43	0.22	0.22	0.24	0.18	0.14	0.12	0.20	0.24	0.24	0.24	0.23	0.23	0.23	0.13
			Э	0.25	08.0	98.0	0.45	0.12	0.23	0.33	0.32	0.82	0.35	0.30	0.29	0.27	98.0	0.29	0.32	0.34	0.25	0.25	0.25	08.0	08.0	08.0	0.38
45			Steel no.	1	2	3	4	2	9	7	8	6	10	11	12	13	41	15	16	17	1	1	_	2	2	2	3
50		on toods	3166110.																								
55		Multipore steel sheet	Multilayel steel	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

5		Domonko	אַפּווּש																				
10			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15		(%s	iΞ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		part (mas	g	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ed.
20		middle	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	nally add
25		of steel sheet for sheet thickness middle part (mass%)	z	0.0033	0.0033	0.0028	0.0028	0.0028	0.0036	0.0036	0.0036	0.0036	0.0027	0.0027	0.0036	0.0036	0.0028	0.0028	0.0036	0.0036	0.0036	0.0036	not intentior
	eq)	et for shee	sol.Al	0.045	0.045	0.040	0.040	0.040	0.039	0.039	0.039	0.039	0.051	0.051	0.039	0.039	0.040	0.040	0.039	0.039	0.039	0.039	stituents r
30	(continued)	steel shee	S	0.0010	0.0010	0.0001	0.0001	0.0001	0.0007	0.0007	0.0007	0.0007	0.0004	0.0004	0.0007	0.0007	0.0001	0.0001	0.0007	0.0007	0.0007	0.0007	nding cons
35		tituents o	Ф	0.011	0.011	600.0	600.0	600.0	0.015	0.015	0.015	0.015	0.005	0.005	0.015	0.015	600.0	600.0	0.015	0.015	0.015	0.015	correspo
		emical constituents	Mn	1.31	1.31	1.35	1.35	1.35	1.25	1.25	1.25	1.25	1.34	1.34	1.25	1.25	1.35	1.35	1.25	1.25	1.25	1.25	indicate
40		Chemi	Si	0.13	0.13	0.17	0.17	0.17	0.23	0.23	0.23	0.23	0.22	0.22	0.23	0.23	0.17	0.17	0.23	0.23	0.23	0.23	ents of (
			ပ	0.38	0.38	0.45	0.45	0.45	0:30	0:30	0:30	0.30	69.0	69.0	0:30	0:30	0.45	0.45	0:30	0:30	0:30	0:30	f constitu
45			Steel no.	3	3	4	4	4	2	2	2	2	18	18	2	2	4	4	2	2	2	2	npositions o
50		÷																					is with con
55		on toods loots roveliting	viulillayei steel s	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	in the table, fields with compositions of constituents of 0 indicate corresponding constituents not intentionally added.

5		0/10000	אפווומווא					Comp. steel				Comp. steel		Comp. steel													
10			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0018	0	0	0	0	0	0	0
			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90'0	0	0	0	0	0	0	0	0
15		(%ss	Ţ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0025	0	0	0	0	0	0	0	0	0
20		sheet for surface layer (mass%)	qN	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0038	0	0	0	0	0	0	0	0	0	0
		r surface	z	0	0	0	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0	0	0	0
25]	el sheet fo	z	0.0036	0.0034	0.0033	0.0028	0.0041	0.0035	0.0032	0.0033	0.0028	0.0027	0.0042	0.0025	0.0027	0.0033	0.0032	0.0031	0.0031	0.0036	0.0038	0.0036	0.0038	0.0038	0.0038	0.0033
30	Table A-1-2]	ents of ste	sol.Al	0.049	280.0	0.046	0.040	0.039	0.044	0.039	0.051	0.042	0.051	0.040	0.045	0.045	0.044	0.05	0.048	0.047	0.045	0.049	0.048	0.038	0.041	0.038	0.044
	ŢΪ	Composition of constituents of steel	S	0.0034	0.0012	0.0014	0.0001	0.0017	0.0018	0.0019	0.0024	0.0017	0.0029	0.0026	0.0016	0.002	9000.0	0.0022	0.0015	0.0021	0.0029	0.0031	0.0031	0.0013	0.0014	0.0014	0.0018
35		position o	Д	0.017	0.014	0.011	600.0	0.015	0.015	0.004	0.007	0.016	0.008	0.014	0.015	0.003	0.018	0.016	0.008	0.012	0.016	0.016	0.016	0.014	0.013	0.015	600.0
40		Con	Mn	0.476	0.613	0.655	0.702	0.655	0.563	0.584	0.509	0.517	0.697	0.029	0.365	0.684	0.555	0.492	0.63	0.607	1.183	0.622	1.049	0.638	1.088	0.575	0.616
			Si	0.098	0.104	0.069	0.090	0.071	0.082	0.052	0.056	0.064	0.224	0.119	0.119	0.127	0.085	0.064	0.061	0.102	0.211	0.214	0.11	0.101	0.124	0.205	0.057
45			ပ	0.095	0.141	0.175	0.230	0.043	0.104	0.162	0.176	0.328	0.158	0.147	0.145	0.124	0.172	0.136	0.166	0.153	0.110	0.105	0.143	0.273	0.270	0.264	0.296
50		on toodo looto novo	nulliayei steel sheetiio.	1	2	က	4	5	9	7	8	O	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
55		11:11:1																									

50 55	45		40	35		30	25		20	15		10	5
					0)	(continued)							
Outlilli Mora rockelitli M			Con	nosition o	of constitue	ents of ste	el sheet fo	r surface	Composition of constituents of steel sheet for surface layer (mass%)	(%ss			مايترس
Mululayel steelsheetilo.	O	Si	Mn	Ф	တ	sol.Al	z	z	QN.	ï	Мо	В	אַפווופּוואַ
25	0.190	0.124	0.655	0.009	0.0018	0.047	0.0034	0	0	0	0	0	
26	0.175	0.061	1.009	0.010	0.0017	0.044	0.0032	0	0	0	0	0	
27	0.401	0.092	0.689	0.011	0.0004	0.038	0.0027	0	0	0	0	0	
28	0.207	0.153	0.594	0.007	0.0007	0.041	0.0028	0	0	0	0	0	
29	0.203	0.075	1.175	0.009	0.0007	0.040	0.0027	0	0	0	0	0	
30	0.144	0.127	0.550	0.014	0.0014	0.039	0.0036	0	0	0	0	0	
31	0.144	0.113	0.588	0.013	0.0009	0.038	0.0037	0	0	0	0	0	
32	0.135	0.113	0.563	0.017	0.0012	0.039	0.0036	0	0	0	0	0	
33	0.156	0.110	0.513	0.015	0.0016	0.039	0.0036	0	0	0	0	0	
34	0.290	0.125	0.63	0.004	0.0009	0.052	0.0025	0	0	0	0	0	
35	0.352	0.112	0.63	900.0	0.0004	0.053	0.0028	0	0	0	0	0	
36	0.132	0.12	0.575	0.017	0.0015	0.039	0.0036	0	0	0	0	0	
37	0.150	0.124	0.563	0.013	0.0010	0.038	0.0035	0	0	0	0	0	
38	0.221	0.092	689'0	0.011	0.0004	8£0.0	0.0027	0	0	0	0	0	
39	0.410	0.148	1.094	0.007	0.0007	0.041	0.0028	0	0	0	0	0	
40	0.141	0.104	0.613	0.014	0.0012	0.037	0.0034	0	0	0	0	0	
41	0.141	0.104	0.613	0.014	0.0012	0.037	0.0034	0	0	0	0	0	
42	0.141	0.104	0.613	0.014	0.0012	0.037	0.0034	0	0	0	0	0	
43	0.141	0.104	0.613	0.014	0.0012	0.037	0.0034	0	0	0	0	0	
In the table, fields with compositions of constitu	omposition	s of const	ituents of	0 indicate	correspor	nding con	stituents no	ot intentic	uents of 0 indicate corresponding constituents not intentionally added	d.			

			Sheet thickness (mm)	1.3	1.2	1.3	1.5	1.1	1.2	1.4	1.8	1.2	1.4	1.1	1.1	1.7	1.3	1.7	1.4	1.8	1.4	1
5			Plating 1	None																		
10		ρu	Tempering temp. (°C)	ı	ı	-	ı	-	-	-	-	-	-	-	1	-	1	-	-	1	-	-
45		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	53	94	99	98	84	62	22	62	09	69	86	22	63	63	22	96	109	83	63
15		ıtment at h	Average cooling rate (°C/s) (more than 400°C)	20	26	23	100	96	02	82	81	69	22	66	92	100	73	68	104	113	96	73
20		Heat trea	Heating temp. (°C)	903	872	628	885	884	822	606	817	843	913	831	088	823	902	912	288	849	902	844
			Heating rate (°C/s)	32	34	51	61	54	74	61	51	29	40	57	29	26	42	28	34	63	49	20
25		Cold	Rolling rate (%)	53	28	53	48	09	25	49	37	28	51	62	19	38	53	40	20	34	49	63
30	[Table A-2-1]	Hot rolling	Coiling temp. (°C)	586	538	604	292	712	218	685	089	693	602	620	536	744	536	545	722	569	220	624
	[Tab	Hot	Finish rolling temp.	838	840	917	840	928	988	872	847	988	838	006	844	098	927	915	845	865	898	862
35		ing	No. of roll- ing opera- tions (times)	က	ε	ε	3	ε	ε	ε	ε	ε	ε	ε	ε	ε	3	ε	ε	3	8	3
40		Rough rolling	Rate of reduction of sheet thickness (%)	34	32	20	42	38	30	47	42	58	28	34	28	28	42	43	32	43	34	42
			Rolling temp. (°C)	1149	1171	1138	1157	1133	1165	1184	1130	1167	1132	1130	1174	1176	1143	1154	1142	1141	1146	1157
45		Heat treatment before hot rolling	Holding time (min)	35	31	41	36	36	35	32	41	20	39	45	49	52	42	58	54	43	55	47
		Heat treatment before hot rolling	Heating temp. (°C)	1320	1293	1257	1285	1318	1275	1275	1268	1338	1270	1272	1301	1297	1287	1341	1268	1321	1315	1306
50			Manufactur- ing condition no.	1	2	8	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19
55			Multilayer steel sheet no.	-	2	ε	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19

	Sheet thickness (mm)	1.7	1.2	1.6	1.5	1.6	1.5
	Plating	None	None	None	None	None	None
Вu	Tempering temp. (°C)	ı	ı	1	ı	1	ı
ot stampi	Average cooling rate (°C/s) (400°Corless)	98	63	92	80	29	83
tment at h	Average cooling rate (°C/s) (more than 400°C)	106	102	66	26	79	91
Heat trea	Heating temp.	887	845	812	834	940	899
		22	19	67	19	20	63
Cold	Rolling rate (%)	40	25	44	47	42	48
. Buillo.	Coiling temp.	652	689	299	202	574	269
Hot r	Finish rolling temp.	867	847	856	928	861	882
Bu	No. of rolling operations (times)	က	3	3	3	က	က
Rough rolli	Rate of reduction of sheet thickness (%)	42	48	34	40	34	40
	Rolling temp.	1126	1159	1171	1132	1167	1143
satment ot rolling	Holding time (min)	34	28	99	28	47	54
Heat tre before h	Heating temp.	1322	1316	1287	1333	1306	1339
	Manufactur- ing condition no.	20	21	22	23	24	25
	Multilayer steel sheet no.	20	21	22	23	24	25
	rolling Hot rolling	Heat treatment before hot rolling heating Holding Rolling duction of temp. It is temp. (°C) (min) (°C) thickness (°C) thickne	Heat treatment before hot rolling before hot rolling temp. (°C) (min) (m	Heating temp. Rolling temp. Rolling temp. Heating temp. Average cooling cooling temp. Permoning temp. Permoning temp. Heating temp. Heating temp. Average cooling temp. Permoning temp. <t< td=""><td>Heating temp. (°C) Rolling temp. (°C) Rolling</td><td>Heating temp. Holding temp. Rolling temp. Holding temp. Rolling temp. Finish temp. Coling temp. Rolling temp. Heating temp. Average Avera</td><td>Heating temp. Rolling temp. Rolling temp. Holding temp. Heating temp. Rolling temp. Rolling</td></t<>	Heating temp. (°C) Rolling	Heating temp. Holding temp. Rolling temp. Holding temp. Rolling temp. Finish temp. Coling temp. Rolling temp. Heating temp. Average Avera	Heating temp. Rolling temp. Rolling temp. Holding temp. Heating temp. Rolling

			Sheet thickness (mm)	1.7	1.5	1.1	1.1	1.6	1.6	1.4	2.8	1.2	1.4	1.3	1.3	1.5	1.1	1.6	1.4	1.2	1.3
5				e	e	e	e	e	e	e	e	ē	Ø	S	e	ē	e	e	e	Je	e e
			Plating	None	Yes	Yes	None														
10		бг	Tempering temp. (°C)	ı	ı	1	1	ı	1	1	1	267	274	ı	None	1	ı	-	1	•	-
15		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	84	63	100	69	82	62	69	29	71	28	88	29	06	72	103	92	78	93
15		atment at l	Average cooling rate (°C/s) (more than 400°C)	91	26	105	87	83	71	85	84	70	98	101	80	103	85	104	74	83	102
20		Heat trea	Heating temp. (°C)	698	893	877	877	933	893	843	839	903	927	864	879	856	871	917	934	903	892
			Heating rate (°C/s)	21	20	28	44	52	73	69	69	20	28	53	24	30	89	69	31	92	63
25		Cold	Rolling rate (%)	40	47	29	61	44	42	20	0	99	51	53	51	47	69	40	69	20	51
30	[Table A-2-2]	Hot rolling	Coiling temp. (°C)	285	629	669	634	612	713	218	604	299	641	745	551	661	200	269	634	713	299
	Пab	Hot	Finish rolling temp.	884	861	893	968	841	906	828	899	835	831	844	829	885	891	882	893	906	899
35		bu	No. of rolling operations (times)	3	3	3	3	3	3	3	3	က	3	3	3	က	3	3	2	1	3
40		Rough rolling	Rate of reduction of sheet thickness (%)	24	22	22	38	98	47	58	20	22	46	38	42	39	68	44	ε	40	38
			Rolling temp. (°C)	1131	1176	1183	1140	970	1141	1135	1127	1122	1132	1171	1138	1127	1170	1008	1152	1141	1111
45		Heat treatment before hot rolling	Holding time (min)	89	94	53	49	89	2	48	42	22	49	49	48	44	49	25	43	28	22
		Heat tre before h	Heating temp. (°C)	1267	1251	1267	1270	186	1320	1387	1298	1281	1289	1318	1239	1250	1251	1322	1333	1267	1339
50			Manufactur- ing condition no.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
55			Multilayer steel sheet no.	56	27	28	56	30	31	32	33	34	32	98	37	38	68	40	41	42	43

5			Remarks	lnv. ex.	Inv. ex.	Inv. ex.	lnv. ex.	Comp.	lnv. ex.	lnv. ex.	lnv. ex.	Comp. ex.	lnv. ex.	Comp. ex.	lnv. ex.	Inv. ex.						
10		perties	Hydrogen embrittlement resistance	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	рооЭ	Good							
15		Mechanical properties	Max. bending angle (°)	87.5	79.1	72.6	75.8	89.9	8.98	79.4	75.7	63.4	80.8	81.7	89.5	88.4	84.4	89.3	85.5	83.7	86.9	87.4
20		Ŋ	Tensile strength (MPa)	1674	1884	2259	5309	1119	1586	2034	1994	2915	2100	1467	1883	1927	1940	1918	1905	1963	11211	1502
25			crystal grains with crystal orientation nundaries of 1° or less aximum difference of n of 8° to 15°																			
30 35	[Table A-3]	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	80	72	99	29	82	92	73	89	52	69	83	71	02	89	69	69	89	80	80
40			Hardness of middle part in sheet thickness (Hv)	564	632	751	771	377	528	829	663	973	700	490	630	640	653	640	642	657	202	504
45			Manufacturing condition no.	1	2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19
50			Multilayer steel sheet no.	1	2	က	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19
55			Stamped body no.	14	2A	3A	4A	5A	6A	7A	8A	98	10A	11A	12A	13A	14A	15A	16A	17A	18A	19A

Remarks Inv. ex. ë. Inv. ex. Inv. ex. Inv. ex. Comp. Comp. Comp. Inv. ex. ë. ë. ë. <u>N</u> 5 embrittlement Hydrogen resistance Good Poor Poor 10 Mechanical properties bending angle (°) Max. 78.9 71.9 70.9 74.3 8.92 76.2 78.3 72.6 73.9 89.1 72.4 61.7 68.8 77.1 68.1 83.1 79 73 84 15 strength (MPa) Tensile 1532 1905 2110 1895 1885 1878 2145 1892 1909 2132 2084 2290 2308 1880 2168 2153 1900 2297 2297 20 nside large angle grain boundaries of 1° or less and crystal grains with maximum difference of Area rate (%) of total of crystal grains with maximum difference of crystal orientation crystal orientation of 8° to 15° 25 72 80 9 72 72 65 65 65 19 95 70 63 70 99 (continued) 57 57 63 57 30 Metal structures 35 sheet thickness middle part in Hardness of 40 (F 500 710 634 633 628 631 702 703 768 767 770 630 632 721 631 641 631 45 Manufacturing condition no. 20 38 25 26 28 29 30 33 35 36 7 22 23 24 27 31 32 34 37 50 Multilayer sheet no. steel 20 2 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 55 Stamped body no. 31A 27A 20A 21A 24A 25A 26A 28A 29A 30A 35A 37A 38A 22A 23A 32A 33A 34A 36A

5		Remarks	Inv. ex.	Comp.	Comp.	Comp.	Inv. ex.
10	operties	Hydrogen embrittlement resistance	Good	Poor	Poor	Poor	Good
15	Mechanical properties	Max. bending angle (°)	70.2	60.2	60.1	59.2	109.5
20	2	Tensile strength (MPa)	2381	2069	2096	2063	2092
25		f crystal grains with f crystal orientation bundaries of 1° or less aximum difference of n of 8° to 15°					
(panujuned)	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	22	10	11	<u>13</u>	46
40		Hardness of middle part in sheet thickness (Hv)	781	627	635	625	634
45		Manufacturing condition no.	39	41	42	43	44
50		Multilayer steel sheet no.	39	41	42	43	44
55		Stamped body no.	39A	41A	42A	43A	44A

[Manufacturing Example B]

20

30

35

45

50

55

[0097] The Nos. 1 to 18 steel sheets for sheet thickness middle part having the chemical compositions shown in Table B-1-1 ("Steel Nos. 1 to 18" in Table B-1-1) were ground down at their surfaces to remove the surface oxides. After that, the respective steel sheets for sheet thickness middle part were welded with steel sheets for surface layer having the chemical compositions shown in Table B-1-2 at both surfaces or single surfaces by arc welding to fabricate the Nos. 1 to 41 multilayer steel sheets for hot stamped body. The sheet thickness of the total of the steel sheet for surface layer and the steel sheet for sheet thickness middle part after arc welding was 200 mm to 300 mm and the thickness of the steel sheet for surface layer was 1/3 or so of the thickness of the steel sheet for sheet thickness middle part (in case of single side, 1/4 or so). The No. 37 multilayer steel sheet was steel with steel sheet for surface layer welded to only one side. The multilayer steel sheets other than No. 37 respectively had steel sheets for surface layer welded to both sides of the steel sheet for sheet thickness middle part. Among the Nos. 1 to 41 multilayer steel sheets of Table B-1-3, ones where the steel sheet for sheet thickness middle part did not satisfy the requirements of composition of the middle part in sheet thickness of the hot stamped body according to the present invention are indicated as "comparative steels" in the remarks columns.

[0098] The Nos. 1 to 41 multilayer steel sheets were respectively treated under the conditions of the Nos. 1 to 41 manufacturing conditions shown in Table B-2-1 to Table B-2-2 by heat treatment before hot rolling, rough rolling, hot rolling, and cold rolling to obtain steel sheets. Next, the steel sheets were heat treated as shown in Table B-2-1 and Table B-2-2 (in the tables, "heat treatment of hot stamped body") for hot stamping to manufacture the Nos. 1B to 41B hot stamped bodies ("stamped bodies" of Table B-3-1 and Table B-3-2). Further, the Nos. 35B and 36B hot stamped bodies were coated on a hot dip coating line at their surfaces with 120 to 160 g/m² amounts of aluminum. Further, the items in Table B-2-1 to Table B-2-2 correspond to the items in Table A-2-1 to Table A-2-2. Further, in the tables, the fields with the notations "-" indicate no corresponding treatment performed.

[0099] Table B-3-1 and Table B-3-2 show the metal structures and characteristics of the Nos. 1B to 41B hot stamped bodies. The constituents obtained by analyzing the positions of 1/2 of the sheet thicknesses of the samples taken from the hot stamped bodies (middle parts in sheet thickness) and positions of 20 μ m from the surfaces of the softened layers were equivalent to the constituents of the steel sheets for sheet thickness middle part and steel sheets for surface layer of the Nos. 1 to 41 multilayer steel sheets of Table B-1-1 to Table B-1-3.

[0100] The metal structures of the hot stamped steel sheets were measured by the above-mentioned method. The hardness of the steel sheet for sheet thickness middle part forming the middle part in sheet thickness and the area rate (%) of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer forming the softened layer to 1/2 of the thickness of that softened layer were calculated. The calculated values of the area rate are shown in the items "area rate (%) of total of crystal grains with maximum crystal orientation difference inside large angle grain boundaries of 1° or less and crystal grains with maximum crystal orientation difference of 8° to 15°" of Tables B-3-1 to Table B-3-2.

[0101] Further, the Nos. 1B to 41B hot stamped bodies were respectively measured for average hardness (HV) and minimum hardness (HV) at the middle part in sheet thickness (position of 1/2 of sheet thickness) by the above method. The measurement results are shown in Table B-3-1 to Table B-3-2. The Nos. 1B to 41B hot stamped bodies had differences of the average hardness (HV) and minimum hardness (HV) shown in the "scattering in cross-sectional hardness" of Table B-3-1 to Table B-3-2. Further, cases with a scattering in cross-sectional hardness of 100HV or more were indicated as failing.

[0102] The hot stamped bodies were subjected to tensile tests. The results are shown in Table B-3-1 to Table B-3-2. The tensile tests were performed by fabricating No. 5 test pieces described in JIS Z 2201 and testing them by the method described in JIS Z 2241.

[0103] The hydrogen embrittlement resistance of the hot stamped body, in the same way as Manufacturing Example A, was evaluated using a test piece cut out from the stamped body. That is, a test piece of a sheet thickness of 1.2 mm×width 6 mm×length 68 mm was cut out from the stamped body, given a strain corresponding to the yield stress in a four-point bending test, then immersed in pH3 hydrochloric acid for 100 hours and evaluated for hydrogen embrittlement resistance by the presence of any cracks. The case of no cracks was indicated as passing ("Good") and the case of cracks was evaluated as failing ("Poor").

[0104] For the purpose of evaluating the impact resistance of the hot stamped body, the body was evaluated based on the VDA standard (VDA238-100) prescribed by the German Association of the Automotive Industry under the same measurement conditions as Manufacturing Example A. In the present invention, the displacement at the time of maximum load obtained in the bending test was converted to angle by the VDA standard to find maximum bending angle and thereby evaluate the impact resistance of the hot stamped body.

[0105] If the tensile strength is 1500 MPa or more, the maximum bending angle (°) was 70(°) or more, and the hydrogen embrittlement resistance was a passing level, it was judged that the impact resistance and hydrogen embrittlement

resistance were excellent and the case was indicated as an "invention example". If even one of the three aspects of performance is not satisfied, the case was indicated as a "comparative example".

[0106] In each hot stamped body of the invention examples, the area rate (%) of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness was 50% to less than 85%. Further, each hot stamped body of the invention examples was excellent in tensile strength, bendability, and hydrogen embrittlement resistance.

[0107] As opposed to this, the No. 5B hot stamped body was low in carbon content at the steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness became insufficient and the tensile strength became insufficient. The No. 9B hot stamped body was excessive in carbon content of steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness also became excessive and the targeted bendability could not be obtained. Further, the No. 11B hot stamped body was sparse in Mn content at the steel sheet for sheet thickness middle part, so the hardness of the middle part in sheet thickness became insufficient and the tensile strength became insufficient.

[0108] The Nos. 30B to 32B hot stamped bodies are comparative examples produced using the multilayer steel sheets for hot stamped body to which the desirable heat treatment had not been applied before the hot stamping process. The No. 30B hot stamped body was low in heat treatment temperature before the hot stamping process, while the No. 31B hot stamped body was short in heat treatment time before the hot stamping process, so in the metal structures of the softened layer from the surface of the softened layer to 1/2 of the thickness, the soft structures and metal structures with intermediate hardnesses insufficiently grew and the target bendability could not be obtained. Further, the No. 32B hot stamped body was excessively high in heat treatment temperature before the hot stamping process, so the effect of reduction of the sharp gradient in hardness in the sheet thickness direction occurring at the time of bending deformation could not be obtained.

[0109] The No. 38B hot stamped body was low in rolling temperature of the rough rolling. Further, the No. 39B hot stamped body was low in sheet thickness reduction rate of the rough rolling. Further, the No. 40B hot stamped body was low in number of rolling operations under conditions of a time between passes of 3 seconds or more. These hot stamped bodies were not manufactured under the suitable rough rolling conditions, so the soft structures and metal structures with intermediate hardnesses insufficiently grew, it was not possible to ease the strain occurring due to bending deformation, and the targeted bendability could not be obtained.

[0110] The No. 41B hot stamped body is a steel sheet controlled in casting rate to 6 ton/min or more in the continuous casting process of steel sheet for surface layer. It can raise the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness and is excellent in bendability.

45	40		35		30	25	20	20	15		10	5
				Tab	Table B-1-1]							
	-	Composi	ition of c	constituen	its of steel	sheet for	Composition of constituents of steel sheet for sheet thickness middle part (mass%)	rness mic	ddle part ((mass%)	<u>-</u>	
Steel no.	С	Si	Mn	Ь	S	sol.Al	Z	ī	Nb	Ti	Мо	В
1	0.24	0.25	1.57	0.012	0.0005	0.042	0.0037					
2	0.31	0.25	1.78	0.015	6000'0	0.032	0.0031					
က	0.38	0.13	1.79	900.0	0.0018	0.045	0.004					
4	0.45	0.21	1.69	0.009	0.0015	0.025	0.0044					
5	0.17	0.17	1.51	900.0	0.0018	0.025	0.0035					
9	0.24	0.20	1.64	0.014	0.0014	0.043	0.0027					
7	0.33	0.15	1.75	0.016	0.0014	0.031	0.0027					
80	0.32	0.11	1.57	0.012	0.0020	0.045	0.0031					
6	0.81	0.14	1.96	0.013	0.0016	0.034	0.003					
10	0.35	0.27	1.75	0.008	0.0013	0.033	0.003					
11	0.3	0.22	1.05	0.014	0.0013	0.026	0.003					
12	0.29	0.22	1.74	0.016	0.0007	0.032	0.004					
13	0.27	0.24	1.63	0.01	0.0007	0.045	0.0043	0.20				
41	0.35	0.20	1.55	0.012	0.0014	0.043	0.004		0.050			
15	0.29	0.15	2.05	900.0	0.0015	0.033	0.0039			0.015		
16	0.32	0.12	1.84	0.012	0.0007	0.032	0.0044				0.050	
17	0.34	0.20	1.79	600.0	0.0007	0.033	0.0043					0.0019
1	0.24	0.25	1.57	0.012	0.0005	0.042	0.0037					
1	0.24	0.25	1.57	0.012	0.0005	0.042	0.0037					
1	0.24	0.25	1.57	0.012	0.0005	0.042	0.0037					
2	0.31	0.25	1.78	0.015	6000.0	0.032	0.0031					
2	0.31	0.25	1.78	0.015	6000.0	0.032	0.0031					
2	0.31	0.25	1.78	0.015	6000.0	0.032	0.0031					
3	0.38	0.13	1.79	900.0	0.0018	0.045	0.0040					

				ı	ı	1	ı	ı		1	1	1	ı	ı	ı		ı	ı		ı	ı
5			В																		
10			оМ																		
		(mass%)	i																		
15		ddle part	qN																		
20		ness mi	Ē																		
20		Composition of constituents of steel sheet for sheet thickness middle part (mass $\%$)	z	0.0040	0.0040	0.0044	0.0044	0.0044	0.0031	0.0031	0.0031	0.0031	0.0036	0.0036	0.0031	0.0031	0.0031	0.0031	0.0031	0.0031	
25		sheet for	sol.Al	0.045	0.045	0.025	0.025	0.025	0.032	0.032	0.032	0.032	0.041	0.041	0.032	0.032	0.032	0.032	0.032	0.032	
30	(continued)	ts of steel	S	0.0018	0.0018	0.0015	0.0015	0.0015	6000.0	6000.0	6000.0	6000.0	0.0019	0.0019	0.0009	0.0009	6000.0	6000.0	6000.0	0.0009	dded.
	uoo)	onstituent	Ь	0.006	0.006	0.009	0.009	0.009	0.015	0.015	0.015	0.015	0.008	0.008	0.015	0.015	0.015	0.015	0.015	0.015	ing constituents not intentionally added.
35		ition of c	Mn	1.79	1.79	1.69	1.69	1.69	1.78	1.78	1.78	1.78	1.81	1.81	1.78	1.78	1.78	1.78	1.78	1.78	not inte
		Compos	Si	0.13	0.13	0.21	0.21	0.21	0.25	0.25	0.25	0.25	0.23	0.23	0.25	0.25	0.25	0.25	0.25	0.25	stituents
40			Э	0.38	0.38	0.45	0.45	0.45	0.31	0.31	0.31	0.31	89.0	89.0	0.31	0.31	0.31	0.31	0.31	0.31	ding con
45			Steel no.	က	8	4	4	4	2	2	2	2	18	18	2	2	2	2	2	2	e correspon
50		Multipyersteel sheet	laitilayei steel si eet 110.	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	In the table, blanks indicate correspondi
		. ≥	≥	Ì	Ì	1	l	l	1	1	1	1	Ì	l	Ì		Ì	l		Ì	ı <u>-</u>

[Table B-1-2]

		В																	0.0018							
		Мо																0.050								
	mass%)	ΙL															0.010									
	ce layer (qN														0.010										
	for surfa	z													0.15											
	Composition of constituents of steel sheet for surface layer (mass%)	Z	0.0036	0:0030	0.0029	0.0031	0.0041	0.0028	0.0040	0.0027	0.0032	0.0042	0.0044	0.0041	0.0027	0.0040	0.0032	0.0039	0.0039	0:0030	0.0042	0.0039	0:0030	0.0036	0.0033	
ī	uents of s	sol.Al	0:030	0.033	0.041	0.029	0.028	0.033	0:030	0.033	0.036	0.033	0.027	0.038	0.032	0.038	0.034	0.028	0.035	0.029	0.037	0.033	0.029	0.033	0.027	
1 2 2 2 3 1	of constitu	S	0.0018	0.0008	0.0010	0.0020	0.0019	0.0019	0.0016	0.0012	0.0017	0.0005	0.0008	0.0017	0.0013	0.0009	0.0008	0.0008	0.0010	0.0008	0.0007	0.0011	0.0007	0.0014	0.0019	
	mposition	Ь	0.005	0.016	0.015	900.0	900.0	0.014	0.008	900.0	0.018	0.018	0.013	0.008	0.010	0.018	0.013	0.018	0.017	0.012	0.012	0.016	0.007	600.0	0.018	
	Co	Mn	0.48	09.0	0.75	0.70	99.0	0.56	0.58	0.51	0.52	0.70	0.03	0.36	0.68	0.55	0.49	0.63	0.61	1.18	0.62	1.05	1.25	1.09	0.58	
		Si	0.10	0.10	0.07	0.09	0.07	0.08	0.05	90.0	90.0	0.22	0.12	0.12	0.13	0.08	90.0	90.0	0.10	0.21	0.21	0.11	0.10	0.16	0.20	Ī
		С	0.10	0.13	0.11	0.22	0.10	0.14	0.11	0.12	0.36	0.15	0.15	0.11	0.12	0.14	0.11	0.10	0.25	0.12	0.10	0.10	0.20	0.13	0.15	Ī
	Multipaversteel sheet	Multilayel steel sileetiilo.	-	2	3	4	22	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

5
J

_
_`
o
a
⋍
_
⊂
=
=
느
\circ
×
U,
_

r tooda loota roxalitii.M	9		ပိ	mposition	οf constit	uents of s	Composition of constituents of steel sheet for surface layer (mass%)	or surfac	e layer (mass%)		
Mulliayei steel sheet ilo.	ပ <u>်</u>	S	Mn	۵	S	sol.Al	z	z	QN Q	Ι	Мо	В
25	0.10	0.12	99.0	0.011	0.0017	0:030	0.0042					
26	0.14	90.0	1.01	0.008	0.0016	0.027	0.0040					
27	0:30	0.09	69.0	0.014	0.0011	0.041	0.0029					
28	0.23	0.15	0.59	0.005	0.0013	0.040	0.0033					
29	0.23	0.07	1.17	0.007	0.0010	0:030	0.0031					
30	0.26	0.20	0.55	0.018	0.0020	0.043	0.0044					
31	0.17	0.11	0.59	0.017	0.0011	0.035	0.0029					
32	0.17	0.11	0.56	0.008	0.0014	0.032	0.0039					
33	0.17	0.11	0.51	0.008	0.0018	0.036	0.0027					
34	0.36	0.13	0.63	0.007	0.0005	0.042	0.0035					
35	0.37	0.11	0.63	0.007	0.0011	0.029	0.0031					
36	0.16	0.12	0.58	0.015	0.0005	0.033	0.0032					
37	0.17	0.12	0.56	0.008	600000	0.030	0.0044					
38	0.13	0.10	09.0	0.016	0.0008	0.033	0:0030					
39	0.13	0.10	09.0	0.016	0.0008	0.033	0.0030					
40	0.13	0.10	09.0	0.016	0.0008	0.033	0.0030					
41	0.13	0.10	0.60	0.016	0.0008	0.033	0:0030					
In the table, blanks inc	indicate corresponding constituents not intentionally added.	sponding	g constitu	ents not	intentional	y added.						

[Table B-1-3]

5	Multilayer steel sheet no.	Steel sheet for sheet thickness middle part	Sheet thickness of steel sheet for surface layer (mm)	Remarks
5		Steel no.		
	1	1	85	
	2	2	83	
10	3	3	84	
	4	4	97	
	5	5	94	Comp. steel
15	6	6	82	
70	7	7	88	
	8	8	94	
	9	9	83	Comp. steel
20	10	10	88	
	11	11	83	Comp. steel
	12	12	92	
25	13	13	82	
	14	14	86	
	15	15	95	
	16	16	96	
30	17	17	96	
	18	1	95	
	19	1	99	
35	20	1	98	
	21	2	88	
	22	2	84	
	23	2	85	
40	24	3	83	
	25	3	91	
	26	3	88	
45	27	4	96	
	28	4	82	
	29	4	91	
	30	2	93	
50	31	2	92	
	32	2	94	
	33	2	84	
55	34	18	92	
	35	18	92	
	36	2	84	

(continued)

	Multilayer steel sheet no.	Steel sheet for sheet thickness middle part	Sheet thickness of steel sheet for surface layer (mm)	Remarks
		Steel no.		
•	37	2	93	
•	38	2	95	
	39	2	98	
	40	2	85	
	41	2	88	

			Sheet thickness (mm)	4.1	1.6	1.2	1.7	1.3	1.2	1.4	1.8	1.8	1.4	1.4	4.1	1.7	1.3	1.7	1.4	1.8	1.4	1.4
5			Plating th	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
10		бг	Tempering temp. (°C)	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	49	68	9	98	81	19	82	92	09	1.4	102	22	86	29	82	26	114	83	99
15		ıtment at h	Average cooling rate (°C/s) (more than 400°C)	72	96	22	96	101	22	82	92	<u> </u>	82	100	82	101	89	28	107	111	96	22
20		Heat trea	Heating temp. (°C)	828	849	861	968	916	088	912	902	863	854	871	884	895	910	606	891	901	855	915
			Heating rate (°C/s)	35	32	94	64	29	02	99	47	25	32	25	63	30	43	27	31	<u> </u>	20	15
25		Cold rolling	Rolling rate (%)	20	44	25	40	22	25	49	35	35	51	50	20	38	53	40	50	34	20	20
30	[Table B-2-1]	Hot rolling	Coiling temp.	292	889	515	661	513	527	591	628	701	611	889	652	289	714	259	710	672	664	564
	[Tab	Hot	Finish rolling temp.	917	911	915	887	<u> </u>	588	968	<u> </u>	920	668	894	206	968	006	906	968	668	888	917
35		ing	No. of rolling operations (times)	3	ε	ε	3	ε	ε	8	ε	ε	ε	8	ε	ε	ε	8	8	ε	ε	3
40		Rough rolling	Rate of reduction of sheet thickness (%)	33	31	22	39	40	33	51	47	30	35	38	41	26	41	46	34	45	34	40
			Rolling temp. (°C)	1151	1167	1141	1153	1129	1162	1180	1135	1168	1136	1125	1171	1175	1142	1157	1146	1137	1151	1156
45		Heat treatment before hot rolling	Holding time (min)	35	09	40	40	32	32	35	40	99	32	40	40	09	22	20	09	45	22	40
		Heat tre before h	Heating temp. (°C)	1290	1280	1255	1285	1318	1275	1275	1250	1350	1290	1250	1300	1250	1300	1330	1270	1310	1300	1300
50			Manufactur- ing condition no.	-	2	ε	4	9	9	2	8	6	10	11	12	13	14	15	16	11	18	19
55			Multilayer steel sheet no.	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19

		Sheet thickness (mm)	4.1	1.2	1.6	1.5	1.2	1.2
5		Plating	None	None	None	None	None	None
10	ng	Tempering temp. (°C)	None	None	None	None	None	None
	ot stampi	Average cooling rate (°C/s) (400°Cor less)	88	89	93	62	71	83
15	Heat treatment at hot stamping	Average cooling rate (°C/s) (more than 400°C)	108	101	96	63	22	91
20	Heat trea	Heating Heating rate temp. (°C/s) (°C)	871	898	855	878	857	668
		Heating rate (°C/s)	23	77	34	99	02	29
25	Cold rolling	Coiling Rolling temp. (°C)	20	25	4	47	22	22
% (continued)	Hot rolling	Coiling temp. (°C)	999	614	514	562	524	520
(cor	Hotr	Finish rolling temp.	903	206	914	888	893	910
35	ing	No. of roll- ing opera- tions temp. (times) (°C)	8	ε	3	င	င	င
40	Rough rolling	Heating Holding Rolling duction of temp. temp. sheet (°C) (min) (°C) thickness (%)	44	94	30	42	32	39
		Rolling temp.	1122	1163	1171	1136	1164	1143
45	Heat treatment before hot rolling	Holding time (min)	20	22	40	40	40	22
	Heat tre	Heating temp. (°C)	1290	1280	1280	1300	1255	1255
50		Multilayer Manufactur- steel ing condition sheet no. no.	20	21	22	23	24	25
55		Multilayer steel sheet no.	20	21	22	23	24	25

						ı													
			Sheet thickness (mm)	1.2	1.7	1.7	1.7	1.6	1.6	1.6	2.8	1.2	1.4	1.6	1.6	1.2	1.2	1.6	1.6
5			Plating	None	Yes	Yes	None	None	None	None	None								
10		бг	Tempering temp. (°C)	None	267	274	None	None	-	-	-	-							
45		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	81	06	100	99	83	99	71	63	92	85	98	72	108	74	82	06
15		atment at h	Average cooling rate (°C/s) (more than 400°C)	88	92	102	92	88	92	82	80	29	91	101	80	103	69	84	100
20		Heat trea	Heating temp. (°C)	901	869	879	912	847	862	871	891	006	874	891	863	917	934	803	892
			Heating rate (°C/s)	23	71	31	40	55	74	68	99	45	63	52	29	67	26	62	65
25		Cold	Rolling rate (%)	22	40	40	40	44	44	44	0	99	51	44	44	40	29	20	51
30	[Table B-2-2]	Hot rolling	Coiling temp. (°C)	527	533	522	551	638	287	642	534	665	650	541	704	697	634	713	667
	[Tabl	Hotr	Finish rolling temp.	893	901	913	906	806	892	911	916	881	883	606	910	882	893	906	899
35		ing	No. of roll- ing opera- tions (times)	က	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	2	1	ε
40		Rough rolling	Rate of reduction of sheet thickness (%)	20	27	24	33	32	48	26	16	18	41	43	47	48	3	41	41
			Rolling temp.	1127	1174	1178	1142	1010	1137	1140	1123	1124	1127	1166	1143	1005	1157	1137	1112
45		Heat treatment before hot rolling	Holding time (min)	35	40	40	22	20	10	20	40	22	40	20	20	40	45	40	23
		Heat treatment before hot rolling	Heating temp. (°C)	1300	1285	1285	1350	1070	1300	1400	1300	1280	1300	1290	1280	1330	1310	1290	1280
50			Manufactur- ing condition no.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
55			Multilayer steel sheet no.	26	27	28	29	30	31	32	33	34	32	36	37	38	39	40	41

			Remarks	Inv. ex.	Inv. ex.	Inv. ex.	Inv. ex.	Comp.	Inv. ex.	Inv. ex.	Inv. ex.	Comp.	Inv. ex.	Comp.
5			Scattering in cross- sectional hardness (Hv)	39	32	6	18	63	30	15	34	16	13	131
10			Minimum ir hardness sı (Hv) ha	480	575	202	724	357	469	628	581	899	655	327
15		operties	Average cross- M sectional h hardness (Hv)	519	209	714	742	450	499	643	615	915	899	458
20		Mechanical properties	Hydrogen embrittlement resistance	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
25	3-1]		Maximum bending angle (°)	89	78.6	72.4	7.07	89.7	88.1	9.62	77.3	57.8	75.1	88.5
30	[Table B-3-1]		Tensile strength (MPa)	1621	1836	2187	2328	1210	1579	2027	1982	2746	2093	1362
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	75	64	99	22	80	99	53	71	56	65	57
40		Metal	Hardness of middle part in sheet thickness (Hv)	546	647	748	785	446	528	678	663	973	200	490
45			Manufacturing condition no.	1	2	3	4	5	9	7	8	6	10	11
50			Multilayer steel sheet no.	1	2	3	4	5	9	7	8	6	10	11
55			Stamped body no.	1B	2B	ae	4B	5B	6B	78	8B	9B	10B	11B

5			Remarks	Inv. ex.												
10			Scattering in cross-sectional hardness (Hv)	26	28	24	11	7	11	43	49	21	10	14	19	10
			Minimum hardness (Hv)	562	540	631	280	618	638	461	473	497	588	267	559	681
15		roperties	Average cross-sectional hardness (Hv)	588	268	655	591	625	649	504	522	518	298	581	218	691
20		Mechanical properties	Hydrogen embrittlement resistance	Good												
25	led)		Maximum bending angle (°)	81.3	82.5	73.5	80.2	81.7	74.3	86.1	89.2	89.5	77.4	79.2	80.8	73.5
30	(continued)		Tensile strength (MPa)	1847	1760	2085	1832	1975	2034	1564	1596	1621	1901	1874	1850	2105
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	54	65	2.2	09	65	71	80	78	09	82	75	89	09
40		Metal	Hardness of middle part in sheet thickness (Hv)	618	290	202	618	662	683	534	537	541	639	930	625	740
45 50			Manufacturing condition no.	12	13	14	15	16	17	18	19	20	21	22	23	24
			Multilayer steel sheet no.	12	13	14	15	16	17	18	19	20	21	22	23	24
55			Stamped body no.	12B	13B	14B	15B	16B	17B	18B	19B	20B	21B	22B	23B	24B

5		Remarks	Inv. ex.
Ü		Scattering in cross-sectional hardness (Hv)	11
10		Minimum hardness (Hv)	929
15	oroperties	Average cross- sectional hardness (Hv)	299
20	Mechanical properties	Hydrogen embrittlement resistance	Good
25 (per		Maximum bending angle (°)	71.1
% (continued)		Tensile strength (MPa)	2195
35	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	92
40	Metal	Hardness of middle part in sheet thickness (Hv)	282
45		Manufacturing condition no.	25
50		Multilayer steel sheet no.	25
55		Stamped body no.	25B

	Remarks	Inv. ex.	Inv. ex.	Inv. ex.	Inv. ex.	Comp.	Comp.	Comp.	Inv. ex.	Inv. ex.	Inv. ex.
	Scattering in cross-sectional hardness (Hv)	17	17	22	13	22	20	12	54	15	19
	Minimum hardness (Hv)	654	737	717	721	605	009	599	551	702	707
oroperties	Average cross-sectional hardness (Hv)	671	754	739	734	627	620	611	605	717	726
Mechanical	Hydrogen embrittlement resistance	Good	Good	Good	Good	Poor	Poor	Good	Good	Good	Соод
-3-2]	Maximum bending angle (°)	70.8	72.5	73	74.5	61.6	62.4	65.1	75.8	78.5	79.3
l able B	Tensile strength (MPa)	2187	2387	2317	2271	1975	1931	1957	1930	2180	2260
structures	Area rate (%) of total of crystal 1 grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	78	70	63	78	15	18	06	84	64	75
Metal	Hardness of middle part in sheet thickness (Hv)	731	791	775	780	657	647	644	645	745	740
	Manufacturing condition no.	26	27	28	29	30	31	32	33	34	35
	Multilayer steel sheet no.	26	27	28	59	30	31	32	33	34	35
	Stamped body no.	26B	27B	28B	29B	30B	31B	32B	33B	34B	35B
	[1 able b-5-4]	Multilayer Amunfacturing sheet no. condition no. sheet no. sheet no. sheet no. sheet no. crystal grains with maximum difference of crystal cry	Metal structures	Area rate (%)	Mutilayer Manufacturing Area rate (%) Area rate (%)	Average Aver	Multilayer Manufacturing sheet ro. Crystal sheet ro. Crystal sheet ro.	Metal structures	Metal structures	Multilayer Manufacturing of the second tion no. Area rate (%) Area rat	Multilayer Manufacturing Area rate (%) Area rate (%)

5			Remarks	Inv. ex.	Inv. ex.	Comp.	Comp.	Comp.	Inv. ex.
			Scattering in cross- sectional hardness (Hv)	30	27	29	29	30	30
10			Minimum hardness (Hv)	581	587	614	808	615	611
15		oroperties	Average cross- sectional hardness (Hv)	611	614	643	637	645	641
20		Mechanical properties	Hydrogen embrittlement resistance	Good	Good	Poor	Poor	Poor	Good
25	(pər		Maximum bending angle (°)	77.7	78.1	59.9	59.8	60.1	111.2
30	(continued)		Tensile strength (MPa)	1941	1920	2122	2102	2129	2115
35		Metal structures	Area rate (%) of total of crystal 1 grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	1.1	65	61	10	12	45
40		Metal	Hardness of middle part in sheet thickness (Hv)	647	647	643	637	645	641
45			Manufacturing condition no.	36	37	38	39	40	41
50			Multilayer steel sheet no.	36	37	38	39	40	41
55			Stamped body no.	36B	37B	38B	39B	40B	41B

[Manufacturing Example C]

30

35

50

[0111] Steel sheets for sheet thickness middle part having the chemical compositions shown in Table C-1-1 to Table C-1-2 were ground down at their surfaces to remove the surface oxides. After that, the respective steel sheets for sheet thickness middle part were welded with steel sheets for surface layer having the chemical compositions shown in Table C-1-3 to Table C-1-4 at both surfaces or single surfaces by arc welding to fabricate the Nos. 1 to 49 multilayer steel sheets for hot stamped body. The sheet thickness of the total of the steel sheet for surface layer and the steel sheet for sheet thickness middle part after arc welding was 200 mm to 300 mm and the thickness of the steel sheet for surface layer was 1/3 or so of the thickness of the steel sheet for sheet thickness middle part (in case of single side, 1/4 or so). The No. 31 multilayer steel sheet was steel with steel sheet for surface layer welded to only one side. Among the Nos. 1 to 53 multilayer steel sheets of Table C-1-1 to Table C-1-4, ones where the steel sheet for sheet thickness middle part did not satisfy the requirements of composition of the middle part in sheet thickness of the hot stamped body according to the present invention are indicated as "comparative steels" in the remarks columns.

[0112] The "ratio of C, Si, and Mn contents of steel sheet for surface layer to steel sheet for sheet thickness middle part" of Table C-1-3 to Table C-1-4 show the ratios of C, Si, and Mn contents of steel sheet for surface layer to the C, Si, and Mn contents of steel sheet for sheet thickness middle part in the Nos. 1 to 53 multilayer steel sheets for hot stamped body.

[0113] The Nos. 1 to 53 multilayer steel sheets were respectively treated under the conditions of the Nos. 1 to 53 manufacturing conditions shown in Table C-2-1 to Table C-2-2 by heat treatment before hot rolling, rough rolling, hot rolling, and cold rolling to obtain steel sheets. Next, the steel sheets were heat treated as shown in Table C-2-1 to Table C-2-2 (in the tables, "heat treatment of hot stamped body") for hot stamping to manufacture the Nos. 1C to 53C hot stamped bodies ("stamped bodies" of Table C-3-1 to Table C-3-2). Further, the No. 30C hot stamped body was coated on a hot dip coating line at the surface with a 120 to 160 g/m² amount of aluminum. Further, the items in Table C-2-1 to Table C-2-2 correspond to the items in Table A-2-1 to Table A-2-2. Further, in the tables, the fields with the notations "-" indicate no corresponding treatment performed.

[0114] Table C-3-1 to Table C-3-2 show the metal structures and characteristics of the Nos. 1C to 53C hot stamped bodies. The constituents obtained by analyzing the positions of 1/2 of the sheet thicknesses of the samples taken from the hot stamped bodies (middle parts in sheet thickness) and positions of 20 μ m from the surfaces of the softened layers were equivalent to the constituents of the steel sheets for sheet thickness middle part and the steel sheets for surface layer of the Nos.1 to 53 multilayer steel sheets of Table C-1-1 to Table C-1-4.

[0115] The metal structures of the hot stamped steel sheets were measured by the above-mentioned method. The hardness of the steel sheet for sheet thickness middle part forming the middle part in sheet thickness and the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer forming the softened layer to 1/2 of the thickness of that softened layer were calculated. The calculated values of the area rate are shown in the items "area rate (%) of total of crystal grains with maximum crystal orientation difference inside large angle grain boundaries of 1° or less and crystal grains with maximum crystal orientation difference of 8° to 15°" of Tables C-3-1 to C-3-2.

[0116] The hot stamped bodies were subjected to tensile tests. The results are shown in Table C-3-1 to Table C-3-2. The tensile tests were performed by fabricating No. 5 test pieces described in JIS Z 2201 and testing them by the method described in JIS Z 2241.

[0117] The hydrogen embrittlement resistance of the hot stamped body, in the same way as Manufacturing Example A, was evaluated using a test piece cut out from the stamped body. That is, a test piece of a sheet thickness of 1.2 mm×width 6 mm×length 68 mm was cut out from the stamped body, given a strain corresponding to the yield stress in a four-point bending test, then immersed in pH3 hydrochloric acid for 100 hours and evaluated for hydrogen embrittlement resistance by the presence of any cracks. The case of no cracks was indicated as passing ("Good") and the case of cracks was evaluated as failing ("Poor").

[0118] For the purpose of evaluating the impact resistance of the hot stamped body, the body was evaluated based on the VDA standard (VDA238-100) prescribed by the German Association of the Automotive Industry under the same measurement conditions as Manufacturing Example A. In the present invention, the displacement at the time of maximum load obtained in the bending test was converted to angle by the VDA standard to find maximum bending angle and thereby evaluate the impact resistance of the hot stamped body.

[0119] If the tensile strength is 1500 MPa or more, the maximum bending angle (°) was 70(°) or more, the uniform elongation was 5% or more, and the hydrogen embrittlement resistance was a passing level, it was judged that the impact resistance, hydrogen embrittlement resistance, and ductility were excellent and the case was indicated as an "invention example". If even one of the three aspects of performance is not satisfied, the case was indicated as a "comparative example".

[0120] In each hot stamped body of the invention examples, the area rate of the total of the crystal grains with a

maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness of the steel sheet for surface layer was 50% to less than 85%. Further, each hot stamped body of the invention examples was excellent in tensile strength, bendability, and hydrogen embrit-tlement resistance.

[0121] As opposed to this, the No. 5C hot stamped body was low in carbon content of the steel sheet for sheet thickness middle part, so became insufficient in hardness of the middle part in sheet thickness and became insufficient in tensile strength. The No. 9C hot stamped body was excessive in carbon content of the steel sheet for sheet thickness middle part, so also became excessive in hardness of the middle part in sheet thickness and could not be given the targeted bendability. Further, the No. 11C hot stamped body was low in Si content of the steel sheet for sheet thickness middle part, so the area percent of the residual austenite of the metal structures at the middle part in sheet thickness was less than 1.0% and the uniform elongation was low.

10

30

35

40

45

50

55

[0122] The Nos. 25C to 27C and 49C hot stamped bodies are comparative examples manufactured using the multilayer steel sheets for hot stamped body to which the preferable heat treatment is not applied before the hot stamping process. The No. 25C hot stamped body is too low in heat treatment temperature before the hot stamping process, so the soft structures and metal structures with intermediate hardnesses insufficiently grew, the effect of surface properties of the hot stamped body and effect of the transitional part from the middle part in sheet thickness to the softened layer could not be eliminated, and excellent bendability could not be obtained.

[0123] Further, the No. 26C hot stamped body was excessively high in heat treatment time before the hot stamping process, so the soft structures and metal structures with intermediate hardnesses excessively grew, the difference in hardness between the softened layer and the middle part in sheet thickness became too large, and the effect of reducing the sharp gradient of hardness in the sheet thickness direction occurring at the time of bending deformation could not be obtained. For this reason, the No. 26C hot stamped body could not be given the targeted bendability.

[0124] Further, the Nos. 27C and 49C hot stamped bodies were too long in heat treatment time before the hot stamping process, the difference in hardness between the softened layer and the middle part in sheet thickness become too great. Further, the heat treatment temperature was excessively high, so the effect of reducing the sharp gradient of hardness in the sheet thickness direction occurring at the time of bending deformation could not be obtained. For this reason, the Nos. 27C and 49C hot stamped bodies could not be given excellent bendability.

[0125] The No. 50C hot stamped body was low in rolling temperature of the rough rolling. Further, the No. 51C hot stamped body was low in sheet thickness reduction rate of the rough rolling. Further, the No. 52C hot stamped body was low in number of rolling operations under conditions of a time between passes of 3 seconds or more. These hot stamped bodies were not manufactured under the suitable rough rolling conditions, so the soft structures and metal structures with intermediate hardnesses insufficiently grew, it was not possible to ease the strain occurring due to bending deformation, and the targeted bendability could not be obtained.

[0126] The No. 53C hot stamped body is a steel sheet controlled in casting rate to 6 ton/min or more in the continuous casting process of steel sheet for surface layer. It can raise the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness and is excellent in bendability.

0 0 0

0

0 0 0 0 0 0

0.0021

0

0 0

0

0.0053

0.030 0.059 0.054

0.0036

0.007 0.011 0.004 0.009

1.21

2.35

0.37 0.30 0.55 0.56 0.51

19 20 21

1.00

0.0031

0 0

0

0

0.0055

0.028

0.0060

0.0004

1.03

22 23 24

0

0

0.0028

0.036

0.65

0 0 0

0.025

5			Remarks					Comp. steel				Comp. steel		Comp. steel							
10		(%ss	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0015	0.0020	0	0	0
15		art (ma	Mo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		middle p	ï	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.025	0	0	0
20		thickness	g	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.045	0	0	0
		or sheet	Ē	0	0	0	0	0	0	0	0	0	0	0	0	0.10	0	0	0	0	0
25	_	Composition of constituents of steel sheet for sheet thickness middle part (mass%)	z	0.0041	0.0053	0.0030	0.0068	0.0044	0.0053	0.0055	0.0032	0.0060	0.0036	0.0038	0.0019	0.0023	0.0011	0.0047	0.0066	0.0062	0.0044
30	Table C-1-1	ents of ste	sol.Al	0.036	0.027	0.056	0.032	0.059	0.025	0.046	0.036	0.038	0.052	0:030	0.041	0.034	0.031	0.034	0.047	0.041	0.035
	Ë	of constitu	S	0.0025	0.0028	0.0015	0.0043	0.0033	0.0029	0.0045	0.0049	0.0007	0.0059	0.0020	0.0016	0.0004	0.0007	0.0051	0.0041	0.0001	900.0
35		nposition	Ф	0.007	0.011	0.012	900.0	900.0	0.005	0.010	0.009	0.007	900.0	0.010	0.010	900.0	0.005	0.010	0.010	0.012	0.004
40		Cor	Mn	1.23	0.68	1.33	1.15	1.48	1.21	1.21	0.65	0.68	0.58	1.18	1.25	08.0	1.49	1.34	1.42	1.13	0.58
			Si	1.67	1.84	2.29	1.33	2.23	0.71	2.70	1.14	1.45	1.50	0.42	1.29	0.85	1.12	1.71	0.72	0.58	2.64
45			ပ	0.22	0.36	0.28	0.50	0.19	0.20	0.22	0.24	0.72	0.22	0.34	0.36	0.25	0.27	0.26	0.22	0.23	0.37
50		Multilayer steel sheet no.		_	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
55				<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>

		(В	0	0	0	0	0	
		nass%	-						
15		part (r	Mo	0	0	0	0	0	
		middle	Ι	0	0	0	0	0	added
20		hickness	qN	0	0	0	0	0	vlleuoitue
		r sheet 1	Ņ	0	0	0	0	0	s not inte
25		Composition of constituents of steel sheet for sheet thickness middle part (mass%)	z	0.0013	0.0041	0.0030	0.0047	0.0064	Sonstituents
30	(continued)	ents of ste	sol.Al	0.041	0.049	0.038	0.058	0.038	sponding
	0)	of constitu	S	0.0020	0.0027	0.0006	0.0047	0.0006	safe corres
35		nposition (Ь	0.005	0.011	0.005	0.011	0.004	s of 0 indic
40		Cor	Mn	1.42	1.27	96.0	09.0	1.34	stituents
			Si	2.06	1.01	2.27 0.96	2.88	2.41 1.34	is of con
45			C	0.36	0.33	0.33	0.61	0.64	nposition
50		Aultilayer steel sheet no.		25	26	28	29	30	In the table, fields with compositions of constituents of 0 indicate corresponding constituents not intentionally added

0 0

0 0 0 0 0

0 0 0

0 0

0 0 0 0 0

0.0380 0.0053 0.0053 0.0053 0.0053

0.037

0.0050

1.32 0.68 0.68 0.68

2.55

0.35

49 20

0.027 0.027

> 0.0028 0.0028

0.0028

0.011 0.011

1.84

1.84 1.84 8

51 52

0 0

0

0

added.

constituents not intentionally

fields with compositions of constituents of 0 indicate corresponding

0

0.0271

0.0028

0.011

0.36

53

table,

In the t

0.027

0.011

Remarks 5 0.0070 10 Ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Chemical constituents of steel sheet for sheet thickness middle part (mass%) 0.600 0.100 $\frac{9}{8}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 ï 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 욷 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 2.50 0.05 Ξ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0.0014 0.0520 0.0300 0.0530 0.0330 0.0340 0.0340 0.0310 0.0570 0.0340 0.0550 0.0340 0.0440 0.0370 0.0540 0.0360 0.0320 0.0380 z Table C-1-2] 0.042 0.055 sol.Al 0.043 2.600 0.053 0.059 0.046 0.059 0.054 0.039 0.035 0.053 0.049 0.055 0.053 0.034 0.055 0.057 30 0.0032 0.0060 0.0040 0.0030 0.0020 0.0030 0.0020 0.0050 0.0060 0.0020 0.0040 0.0060 0.0040 0.0050 0.0030 0.0040 0.0060 0.0040 35 0.006 0.100 0.083 0.108 0.072 0.112 0.088 0.066 0.100 0.066 0.119 0.082 0.103 0.074 0.080 0.095 0.084 0.071 ℩ 0.84 0.67 0.82 1.08 1.33 0.80 96.0 1.05 1.1 1.36 1.08 0.63 1.09 0.64 0.60 1.38 1.26 0.81 퇸 40 2.44 2.78 2.80 2.08 1.89 2.48 2.43 1.93 1.93 2.13 1.96 2.00 1.81 2.04 2.37 2.41 S 0.28 0.25 0.34 0.40 0.36 0.38 0.36 0.32 0.25 0.33 0.32 0.31 0.31 0.31 0.37 0.34 0.27 \circ 45 Multilayer steel sheet no. 50 45 33 35 36 39 4 4 42 43 4 46 47 48 3 32 34 37 38

55

5			Kellialks					Comp. steel				Comp. steel		Comp. steel											
10		Thickness of steel	sileet loi suilace layei (mm)	96	91	98	96	78	82	84	106	85	85	103	75	94	89	83	87	98	06	102	101	105	84
15			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0017	0.0015	0	0	0	0	0	0	0
20			Mo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20		(%ss	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.025	0	0	0	0	0	0	0
25		layer (ma	S S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.045	0	0	0	0	0	0	0
	-1-3]	surface	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	[Table C-1-3]	sheet for surface layer (mass%)	z	0.0046	0.0016	0.0035	0.0070	0.0020	0.0031	0.0068	0.0027	0.0059	0.0058	0.0048	0.0031	0.0010	0.0024	0.0035	0.0034	0.0017	0.0070	0.0020	0.0054	0.0036	0.0054
35		onstituents of steel	sol.Al	0.048	0.036	0.036	0.039	0.034	0.034	0.034	0.027	0.035	0.029	0.049	0.032	0.043	0.031	0.040	0.050	0.032	0.032	0.035	0.026	0.040	0.034
		constituen	S	0.0024	0.0065	0.0032	0.0056	0.0070	0.0018	0.0025	0.0038	0.0078	0.0080	0.0062	0.0039	0.0019	0.0023	0.0071	0.0025	0.0071	0.0027	0.0062	0.0056	0.0045	6900.0
40		Composition of	۵	900'0	900'0	900'0	900.0	0.003	900'0	600'0	600'0	600.0	900'0	0.004	0.011	0.005	900'0	0.012	600'0	0.005	0.003	0.006	800'0	0.004	0.004
45		Comp	Mn	0.517	0.360	0.399	0.414	0.592	0.520	0.387	0.390	0.252	0.313	0.578	0.713	0.408	0.760	0.965	0.809	0.848	0.209	1.041	0.235	0.472	0.570
			S	0.735	1.030	0.847	0.479	1.115	0.355	1.485	0.684	0.827	0.795	0.151	909'0	0.357	0.437	1.163	0.518	0.197	1.320	0.453	2.021	0.352	0.474
50			O	0.106	0.173	0.099	0.294	0.082	0.075	0.100	0.143	0.310	0.106	0.174	0.182	0.095	0.155	0.153	960.0	0.086	0.260	0.287	0.296	0.189	0.456
55		Multilayer steel	sheet no.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22

5			Kemarks						
10		Thickness of steel	sheet for surface layer (mm)	102	88	84	68	101	
15			В	0	0	0	0	0	
20			Mo	0	0	0	0	0	lded.
		(%ss	F	0	0	0	0	0	onally ad
25		layer (ma	qN	0	0	0	0	0	ot intentic
	(pər	surface	Ξ	0	0.10	0	0	0	tuents n
30	(continued)	sheet for	Z	0.0051	0.0038	0.0061	0.0044	0.0069	ding consti
35		its of steel	sol.Al	0.043	0.029	0.021	0.031	0.047	orrespond
		Composition of constituents of steel sheet for surface layer (mass%)	S	0.0051	0.0028	0.0049	9200'0	0.0013) indicate o
40		osition of	Ь	0.004	0.010	0.011	0.011	0.010	uents of (
45		Comp	Mn	0.530	0.631	299'0	0.762	0.490	of constit
			Si	1.278	0.371	1.030	0.313	1.339	positions
50			O	0.373	0.224	0.155	0.184	0.109	with con
55		Multilaver steel	sheet no.	23	24	25	26	28	n the table, fields with compositions of constituents of 0 indicate corresponding constituents not intentionally added

5			Kemarks																								
		of steel	urace m)																								
10		Thickness of steel	sneet for surface layer (mm)	86	81	162	103	88	107	81	102	96	100	95	91	86	103	88	95	109	82	88	26	91	91	91	91
15			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.010	0.001	0	0	0	0	0
			Mo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	009'0	0.100	0	0	0	0	0	0	0
20		(%ssı	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.110	0	0	0	0	0	0	0	0	0
25		layer (ma	g	0	0	0	0	0	0	0	0	0	0	0	0	0	0.110	0	0	0	0	0	0	0	0	0	0
	1-4]	surface	Z	0	0	0	0	0	0	0	0	0	0	0	2.20	0.05	0	0	0	0	0	0	0	0	0	0	0
30	[Table C-1-4]	constituents of steel sheet for surface layer (mass%)	z	0.0027	0.0046	0.0064	0.0045	0.0088	0.0077	0.0073	0.0051	0.0056	0.0099	0.0053	0.0097	0.0041	0.0067	0.0064	0.0065	0.0052	0.0059	0.0049	0.0070	0.0094	0.0016	0.0016	0.0016
35		nts of stee	sol.Al	0.038	0.034	0.049	0.040	6:00:0	0.033	0.021	0.043	0.023	0.050	980.0	0.047	0.042	0.023	0.046	0.048	0.045	0.036	0.028	0.020	0.029	980.0	9:00:0	0.036
		constitue	S	0.0045	0.0076	0.0048	0.0040	0.0050	0.0030	0.0020	0900'0	0.0050	0.0020	0.0030	0.0030	0.0060	0.0040	0.0040	0.0020	0.0050	0.0050	0.0050	0.0030	0.0030	0.0065	0.0065	0.0065
40		Composition of	۵	0.009	0.007	0.007	900.0	0.007	0.010	0.012	0.012	0.012	0.007	0.007	600.0	600.0	0.011	0.012	0.010	0.013	0.009	0.007	0.011	0.010	900.0	0.006	900.0
45		Comp	Mn	0.180	0.590	0.454	1.127	1.120	1.128	688.0	089'0	996'0	1.680	1.250	0.800	1.081	1.368	1.566	1.260	1.120	1.653	1.276	1.612	0.846	0.360	0.360	0.360
			Si	1.699	0.940	0.350	0.625	0.545	0.484	0.588	0.673	0.530	0.650	0.383	0.519	0.573	0.522	0.447	0.423	0.567	0.672	0.452	0.595	0.656	1.030	1.030	1.030
50			O	0.262	0.230	0.188	0.146	0.118	0.130	0.136	0.200	0.120	0.180	0.163	0.177	0.209	0.157	0.183	0.130	0.215	0.130	0.160	0.211	0.172	0.173	0.173	0.173
55		Multilayer steel	sheet no.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52

					l
5			Kemarks		
10		Thickness of steel	sheet tor surtace layer (mm)	91	
15			В	0	
			Мо	0	d.
20		(%ss	Ti	0	ally adde
25		layer (ma	qN	0	t intention
	ed)	surface	Z	0	nents no
30	(continued)	Composition of constituents of steel sheet for surface layer (mass%)	z	0.173 1.030 0.360 0.006 0.0065 0.036 0.0016 0 0	ng constit
35		nts of stee	sol.Al	0.036	orrespondi
		constitue	S	0.0065	indicate co
40		osition of	Ъ	0.006	ents of 0 i
45		Comp	Mn	0.360	of constitu
			C Si	1.030	ositions
50			Э	0.173	with comp
55		Multilaver steel	sheet no.	53	In the table, fields with compositions of constituents of 0 indicate corresponding constituents not intentionally added.

			Sheet thickness (mm)	1.6	4.1	4.1	1.2	1.0	1.2	1.2	4.1	1.1	1.0	1.4	1.1	1.0	1.0	1.0	1.6	1.4	1.4	1.2
5			Plating	None																		
10		g	Tempering temp. (°C)	1	ı	1	1	ı	1	-	1	1	-	-	-	-	•	-	-	-	-	-
15		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°C or less)	44	42	29	30	29	25	28	37	30	27	30	38	33	25	27	25	44	32	28
		atment at h	Average cooling rate (°C/s) (more than 400°C)	20	86	62	94	100	92	28	08	63	92	96	74	101	69	88	104	113	100	7.1
20		Heat tre	Heating temp.	847	848	882	916	849	891	822	838	872	836	606	873	868	869	925	904	850	826	006
25			Heating rate (°C/s)	39	39	41	89	61	89	22	48	23	32	09	62	32	41	24	98	64	49	15
	:-2-1]	Cold rolling	Rolling rate (%)	69	99	63	20	41	09	12	19	52	45	99	64	45	46	09	69	09	09	22
30	[Table C-2-1]	Hot rolling	Coiling temp.	609	510	999	741	635	189	829	909	250	989	747	949	619	633	009	009	069	541	909
35		Hot r	Finish rolling temp.	948	872	924	869	925	915	920	919	902	606	921	942	883	886	856	863	881	948	626
		ing	No. of roll- ing opera- tions (times)	က	က	က	က	က	3	3	3	က	3	3	3	3	3	3	3	3	3	3
40		Rough rolling	Rate of reduction of sheet thickness (%)	36	31	26	39	45	32	25	29	28	68	43	98	23	37	46	31	49	38	43
45			Rolling temp. (°C)	1144	1166	1145	1162	1129	1161	1180	1137	1169	1145	1135	1150	1102	1149	1150	1112	1128	1103	1159
		ment be- rolling	Holding time (min)	45	21	23	31	26	22	40	27	53	52	99	20	33	44	35	43	38	20	39
50		Heat treatment be- fore hot rolling	Heating temp.	1275	1274	1300	1278	1333	1315	1193	1239	1329	1191	1143	1171	1108	1323	1169	1127	1135	1111	1194
55			Manufacturing condition	_	2	ဧ	4	5	9	7	8	0	10	11	12	13	14	15	16	17	18	19

			Sheet thickness (mm)	1.0	1.0	1.2	1.4	1.2	1.2	1.1	_	
5			Plating	None								
10		g	Tempering temp. (°C)	-	-	-	-	-	-	-	-	
15		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°C or less)	32	41	44	32	26	27	43	59	
		atment at h	Average cooling rate (°C/s) (more than 400°C)	104	26	86	06	74	96	98	105	
20		Heat trea	Heating temp. (°C)	917	889	988	968	855	892	206	914	
25			Heating rate (°C/s)	25	25	35	71	75	99	20	35	
	(pən	Cold	Rolling rate (%)	49	42	25	09	53	53	49	42	
30	(continued)	Hot rolling	Coiling temp.	563	693	514	899	657	523	999	749	ormed.
35		Hot	Finish rolling temp.	920	867	938	876	936	943	912	883	not perf
		ing	No. of roll- ing opera- tions (times)	က	က	က	3	က	3	3	3	ng treatment not performed
40		Rough rolling	Rate of reduction of sheet thickness (%)	40	48	33	4	32	40	16	26	correspondi
45			Rolling temp. (°C)	1131	1121	1167	1129	1142	1020	1123	1173	indicate o
		ment be- rolling	Holding time (min)	23	31	32	22	23	20	43	22	ations "-"
50		Heat treatment before fore hot rolling	Heating temp.	1277	1131	1204	1231	1160	1070	1370	1196	ds with not
55			Manufacturing condition	20	21	22	23	24	25	26	28	In the table, fields with notations "-" indicate corresponding

			Sheet thickness (mm)	1.2	4.1	1	1.7	1.2	1.1	1.5	1.1	1.3	1.1	1.6	1.6	1.7	1.7	1.2	1.7	1	1.1	1.4
5			Plating	None	Yes	None																
10		g	Tempering temp. (°C)	322	395	-	1	1	-	-	-	1	1	-	-	-	-	-	-	-	-	1
15		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°C or less)	33	27	38	34	44	27	41	58	43	38	28	30	30	32	42	32	98	39	37
		atment at h	Average cooling rate (°C/s) (more than 400°C)	68	92	22	80	85	29	88	100	81	104	72	83	86	02	86	26	82	102	72
20		Heat trea	Heating temp.	919	926	852	947	841	891	937	906	895	856	848	873	913	861	842	925	835	846	838
25			Heating rate (°C/s)	35	22	74	65	62	41	62	53	33	33	69	29	20	28	29	28	39	26	29
	:-2-2]	Cold	Rolling rate (%)	25	09	44	45	45	99	47	25	99	53	25	45	45	46	25	22	48	52	20
30	[Table C-2-2]	Hot rolling	Coiling temp.	629	649	802	630	929	929	288	616	621	563	618	622	628	554	620	621	621	290	262
35		Hotı	Finish rolling temp.	941	864	861	006	898	898	895	879	881	894	893	937	945	864	918	924	606	910	917
		ing	No. of roll- ing opera- tions (times)	က	က	3	8	8	3	3	3	က	က	3	3	3	3	3	3	3	3	3
40		Rough rollin	Rate of reduction of sheet thickness (%)	35	37	09	23	13	77	38	94	52	44	22	22	58	32	38	13	17	14	22
45			Rolling temp. (°C)	1145	1136	1135	1137	1128	1121	1123	1160	1152	1152	1121	1166	1170	1143	1150	1132	1131	1126	1125
		ment be- rolling	Holding time (min)	21	54	25	37	47	32	23	46	50	58	34	51	32	23	24	33	23	24	42
50		Heat treatment before fore hot rolling	Heating temp.	1192	1336	1178	1258	1246	1226	1208	1256	1196	1191	1245	1236	1217	1248	1237	1188	1183	1236	1239
55			Manufacturing condition no.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47

			Sheet thickness (mm)	1.8	1.1	1.7	1	1	4.1	
5			Plating	None	None	None	None	None	None	
10		g	Tempering temp. (°C)	-	-	-	-	-	-	
15		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°C or less)	39	33	26	98	32	34	
		atment at h	Average cooling rate (°C/s) (more than 400°C)	88	66	107	1.4	84	96	
20		Heat trea	Heating temp. (°C)	893	910	917	934	£06	892	
25			Heating Heating rate temp.	29	99	7.1	87	89	09	
	(pər	Cold	Rolling rate (%)	25	51	40	69	09	51	
30	(continued)	Hot rolling	Coiling temp.	642	583	269	634	713	299	ormed.
35		Hot	Finish rolling temp.	968	853	882	893	906	899	not perf
		ing	No. of roll- ing opera- tions (times)	က	က	က	2	1	က	ng treatment
40		Rough rollin	Rate of reduction of sheet thickness (%)	39	22	48	4	46	46	correspondi
45			Rolling temp. (°C)	1124	1182	1013	1161	1137	1103	indicate (
		ment be- rolling	Holding time (min)	99	15	32	20	34	22	ations "-"
50		Heat treatment before fore hot rolling	Heating temp. (°C)	1195	1214	1208	1191	1236	1248	ds with not
55			Manufacturing condition no.	48	49	50	51	52	53	In the table, fields with notations "-" indicate corresponding treatment not performed

5			Remarks	Inv. ex.	Inv. ex.	Inv. ex.	Inv. ex.	Comp. ex.	Inv. ex.	Inv. ex.	Inv. ex.	Comp. ex.	Inv. ex.	Comp. ex.	Inv. ex.					
			Residual ץ area rate(%)	4.5	2.6	3	1.7	4	3.8	2.9	4.4	-	2.5	0.8	3.1	2	4.8	2	2.6	2.6
10		perties	Hydrogen embrittlement resistance	Good	Good	рооб	Good	рооЭ	рооб	рооб	Good	рооб	рооб	рооЭ	рооб	Good	рооб	рооб	роо9	Good
		Mechanical properties	Maximum bending angle (°)	87.5	92.6	92.6	71.1	91.9	88.5	85.5	82.2	39.4	80.4	97.7	88.2	8.68	84.7	81	83.9	92.8
20		Me	Uniform elongation (%)	5.2	7.5	5.6	9	6.5	6.2	7.2	9.9	5.6	7.5	4.2	6.3	5.7	7.4	5.2	7.5	6.8
25	3-1]		Tensile strength (MPa)	1547	2083	2156	2212	1116	1770	1644	1963	2442	1805	2145	2062	1901	1969	1545	1536	1549
30 35	[Table C-3-1]	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to	70	50	58	89	55	54	65	79	64	71	55	82	84	85	54	80	80
40			Hardness of middle part in sheet thickness (Hv)	929	738	639	785	402	554	292	592	823	694	664	727	622	299	542	290	513
45			Manufacturing condition no.	-	2	3	4	5	9	7	80	6	10	11	12	13	14	15	16	17
50			Multilayer steel sheet no.	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17
55			Stamped body no.	10	2C	3C	4C	2C	29)/C	8C	26	201	11C	12C	13C	14C	15C	16C	17C

5			Remarks	Inv. ex.	Comp.	Comp.	Inv. ex.						
			Residual γ area rate(%)	2.3	2.9	4.6	4.9	3.6	4.3	1.9	1	3	3.4
10		erties	Hydrogen embrittlement resistance	Good	Poor	Рооб	Good						
		Mechanical properties	Maximum bending angle (°)	88	87	92.3	9.78	75.6	78.1	73.2	54.3	54.2	9.89
20		Me	Uniform elongation (%)	6.1	6.4	6.3	5.8	7.2	6.4	5.5	7.5	7.1	6.9
25	(þa		Tensile strength (MPa)	2024	2006	1895	2035	2690	2475	2450	1964	1832	2044
30 35	(continued)	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	59	77	81	79	74	69	55	15	92	78
40			Hardness of middle part in sheet thickness (Hv)	759	603	878	713	683	726	771	200	728	639
45			Manufacturing condition no.	18	19	20	21	22	23	24	25	26	28
50			Multilayer steel sheet no.	18	19	20	21	22	23	24	25	56	28
55			Stamped body no.	18C	19C	20C	21C	22C	23C	24C	25C	26C	28C

	Ī			l	l							ı						ı		ı		
5			Remarks	Inv. ex.	lnv. ex.	Inv. ex.	lnv. ex.	Inv. ex.	Inv. ex.	lnv. ex.	lnv. ex.	Inv. ex.										
			Residual ץ area rate(%)	4.7	3.5	3	3.7	2.6	3.3	4.3	2.5	2.4	2.9	3.4	2.6	2.9	4.5	4.1	2.9	4.4	2.1	2.7
10		erties	Hydrogen embrittlement resistance	Good																		
		Mechanical properties	Maximum bending angle (°)	89.1	81.8	82	74	06	73	82	98	75	87	22	83	06	83	75	88	78	06	06
20		Me	Uniform elongation (%)	5.8	5.1	9.9	5.5	6.9	6.2	7.5	5.8	5.7	6.5	7.4	5.8	9.9	6.4	80	7	6.5	6.5	6.5
25	3-2]		Tensile strength (MPa)	2102	2317	2139	2018	2261	2240	2055	2118	2003	2253	2072	2115	2167	2032	2140	2055	2246	2222	2156
30 35	[Table C-3-2]	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	51	70	99	72	62	64	71	61	50	72	73	99	62	61	53	29	53	62	56
40			Hardness of middle part in sheet thickness (Hv)	792	869	969	633	671	612	682	622	629	647	614	649	909	639	029	699	692	673	629
45			Manufacturing condition no.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
50			Multilayer steel sheet no.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
55			Stamped body no.	29C	30C	31C	32C	33C	34C	35C	36C	37C	38C	39C	40C	41C	42C	43C	44C	45C	46C	47C

5			Remarks	Inv. ex.	Comp.	Comp.	Comp.	Comp.	Inv. ex.
			Residual γ area rate(%)	2.3	2.8	3.1	3.1	3.2	3.1
10	:	erties	Hydrogen embrittlement resistance	Good	Poor	Poor	Poor	Poor	Good
		Mechanical properties	Maximum bending angle (°)	85	62	59.1	59.8	60.4	112.5
20	:	Me	Uniform elongation (%)	7.8	6.5	6.7	6.2	6.3	6.3
25	(n)	•	Tensile strength (MPa)	2177	2222	2079	2125	2096	2105
30	(panunuoo)	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	52	13	6	10	13	47
40			Hardness of middle part in sheet thickness (Hv)	625	929	630	644	635	638
45			Manufacturing condition no.	48	49	50	51	52	53
50			Multilayer steel sheet no.	48	49	50	51	52	53
55			Stamped body no.	48C	49C	50C	51C	52C	53C

[Manufacturing Example D]

10

30

35

50

[0127] Steel sheets for sheet thickness middle part having the Nos. 1 to 37 chemical compositions shown in Table D-1-1 to Table D-1-2 (in the tables, "Steel Nos. 1 to 37") were ground down at their surfaces to remove the surface oxides. After that, the respective steel sheets for sheet thickness middle part were welded with steel sheets for surface layer having the chemical compositions shown in Table D-1-3 to Table D-1-4 at both surfaces or single surfaces by arc welding to fabricate the Nos. 1 to 60 multilayer steel sheets for hot stamped body. The sheet thickness of the total of the steel sheet for surface layer and the steel sheet for sheet thickness middle part after arc welding was 200 mm to 300 mm and the thickness of the steel sheet for surface layer was 1/3 or so of the thickness of the steel sheet for sheet thickness middle part (in case of single side, 1/4 or so). The No. 37 multilayer steel sheet is steel with the steel sheet for surface layer welded to only one surface. The multilayer steel sheets other than No. 37 have steel sheets for surface layer welded to both surfaces of the steel sheet for sheet thickness middle part. In the Nos. 1 to 60 multilayer steel sheets of Table D-1-1 to Table D-1-4, cases where the steel sheet for sheet thickness middle part does not satisfy the requirement of the composition of the middle part in sheet thickness of the hot stamped body according to the present invention are indicated as "comparative steels" in the remarks column.

[0128] The Nos. 1 to 60 multilayer steel sheets were treated under the conditions of the Nos. 1 to 60 manufacturing conditions shown in Table D-2-1 to Table D-2-3 by heat treatment before hot rolling, rough rolling, hot rolling, and cold rolling to obtain steel sheets. Next, the steel sheets were heat treated as shown in Table D-2-1 to Table D-2-3 (in the tables, "heat treatment of hot stamped bodies") for hot stamping to produce the Nos. 1D to 60D hot stamped bodies ("stamped bodies" of Tables D-3-1 to D-3-3). Further, the Nos. 38D and 39D hot stamped bodies were coated on a hot dip coating line at the surfaces with 120 to 160 g/m² amounts of aluminum. Further, the items of Table D-2-1 to Table D-2-3 correspond to the items of Table A-2-1 to Table A-2-2. Further, in the tables, the fields with the notations "-" indicate no corresponding treatment performed.

[0129] Tables D-3-1 to D-3-3 show the metal structures and characteristics of the Nos. 1D to 60D hot stamped bodies. The constituents obtained by analyzing the positions of 1/2 of the sheet thicknesses of the samples taken from hot stamped bodies (middle parts in sheet thickness) and positions of 20 μ m from the surfaces of the softened layers were equivalent to the constituents of the steel sheets for sheet thickness middle part and the steel sheets for surface layer of the Nos.1 to 60 multilayer steel sheets of Table D-1-1 to Table D-1-3.

[0130] The metal structures of the hot stamped steel sheets were measured by the above-mentioned method. The hardness of the steel sheet for sheet thickness middle part forming the middle part in sheet thickness and the area rate of the total of the crystal grains with a maximum crystal orientation difference inside the regions surrounded by grain boundaries of 15° or more of 1° or less and the crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer forming the softened layer to 1/2 of the thickness of that softened layer were calculated. The calculated values of the area rate are shown in the items "area rate (%) of total of crystal grains with maximum crystal orientation difference inside large angle grain boundaries of 1° or less and crystal grains with maximum crystal orientation difference of 8° to 15°" of Tables D-3-1 to D-3-3.

[0131] The Nos. 1D to 60D hot stamped bodies were subjected to tensile tests. The results are shown in Tables D-3-1 to D-3-3. The tensile tests were performed by fabricating No. 5 test pieces described in JIS Z 2201 and testing them by the method described in JIS Z 2241.

[0132] The hot stamped bodies were evaluated for hydrogen embrittlement resistance in the same way as Manufacturing Example A using test pieces cut out from the stamped bodies. That is, test pieces of a sheet thickness of 1.2 mm×width 6 mm×length 68 mm were cut out from the stamped bodies, given strain corresponding to the yield stress in four-point bending tests, then immersed in pH3 hydrochloric acid for 100 hours and evaluated for hydrogen embrit-tlement resistance by the presence of any cracks. Cases of no fracture were evaluated as passing ("good") and cases of fracture were evaluated as failing ("Poor").

[0133] For the purpose of evaluating the impact resistance of the hot stamped body, the body was evaluated based on the VDA standard (VDA238-100) prescribed by the German Association of the Automotive Industry under the same measurement conditions as Manufacturing Example A. In the present invention, the displacement at the time of maximum load obtained in the bending test was converted to angle by the VDA standard to find maximum bending angle and thereby evaluate the impact resistance of the hot stamped body.

[0134] The hot stamped bodies were also evaluated for impact resistance from the viewpoint of ductility. Specifically, the hot stamped steel sheets were subjected to tensile tests to find the uniform elongations of the steel sheet to evaluate the impact resistance. The tensile tests were performed by fabricating No. 5 test pieces described in JIS Z 2201 and testing them by the method described in J1S Z 2241. The elongations where the maximum tensile loads were obtained were defined as the uniform elongations.

[0135] Deformation concentrates at a local softened part at the time of collision and becomes a cause of cracking, so a small scattering in hardness at the stamped body, that is, securing stable strength, is important in securing impact resistance. Therefore, the impact resistance of a hot stamped body was also evaluated from the viewpoint of the scattering

in hardness. A cross-section vertical to the longitudinal direction of a long hot stamped body was taken at any position in that longitudinal direction and measured for hardness at the middle position in sheet thickness at the entire cross-sectional region including the vertical walls. For the measurement, use was made of a Vickers hardness tester. The measurement load was 1 kgf, 10 points were measured, and the measurement interval was 1 mm. The difference between the average cross-sectional hardness and the minimum hardness is shown in Table D-3-1 to Table D-3-3. Cases with no measurement points of below 100Hv from the average value of all measurement points were evaluated as being small in scattering in hardness, that is, excellent in stability of strength and, as a result, were evaluated as excellent in impact resistance and therefore passing, while cases with measurement points below 100Hv were evaluated as failing.

[0136] Cases where the tensile strength was 1500 MPa or more, the uniform elongation was 5% or more, the scattering in hardness was a passing level, the maximum bending angle (°) was 70.0 (°) or more, and the hydrogen embrittlement resistance was passing were evaluated as hot stamped bodies excellent in impact resistance and hydrogen embrittlement resistance ("invention examples" in Table D-3-1 to Table D-3-3). On the other hand, cases where even one of the above five aspects of performance was not satisfied are indicated as "comparative examples".

10

20

30

35

50

[0137] In each of the hot stamped bodies of the invention examples, the area rate of the total of crystal grains with a maximum crystal orientation difference inside regions surrounded by grain boundaries of 15° or higher of 1° or less and crystal grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for surface layer to 1/2 of the thickness was 50% to less than 85%. Further, in each of the hot stamped bodies of the invention examples, the tensile strength, bendability, and hydrogen embrittlement resistance were excellent.

[0138] As opposed to this, the No. 5D hot stamped body was low in carbon content of the steel sheet for sheet thickness middle part, so became insufficient in hardness of the middle part in sheet thickness and became insufficient in tensile strength. The No. 9D hot stamped body was excessive in carbon content of the steel sheet for sheet thickness middle part, so became excessive in hardness of the middle part in sheet thickness as well and could not be given the targeted bendability. Further, the Nos. 10D and 11D hot stamped bodies were sparse in Si content of the steel sheet for sheet thickness middle part, so were insufficient in uniform elongation. Further, the No. 12D hot stamped body was insufficient in Mn content, so became insufficient in hardness of the middle part in sheet thickness and were insufficient in tensile strength. The No. 14D and the No. 15D hot stamped bodies were sparse in Si content and Mn content, so had an area percent of residual austenite of less than 1.0% and an insufficient uniform elongation. Further, the No. 12D to No. 15D hot stamped bodies were large in scattering in hardness and deemed failing.

[0139] The Nos. 33D to 35D hot stamped bodies are comparative examples produced using multilayer steel sheets for hot stamped body which were not subjected to the desirable heat treatment before the hot stamping process. The No. 33D hot stamped body was low in heat treatment temperature before the hot stamping process, so became insufficient in growth of soft structures and metal structures of intermediate hardnesses in the metal structures of the softened layer from the surface of the softened layer to 1/2 of the thickness and was not able to be given the targeted bendability. The No. 34D hot stamped body was excessively high in heat treatment temperature before the hot stamping process, so the fraction of structures from a position of 20 μm from the surface of the softened layer to a position of a depth of 1/2 of the thickness of the softened layer exceeded 85%. For this reason, in the No. 34D hot stamped body, the difference in hardness between the softened layer and the middle part in sheet thickness became too large, and the effect of reduction of the sharp gradient in hardness in the sheet thickness direction occurring at the time of bending deformation could not be obtained. Further, the No. 35D hot stamped body was short in heat treatment time before the hot stamping process, so in the metal structures from the surface of the softened layer to 1/2 of the thickness, the soft structures and metal structures with intermediate hardnesses insufficiently grew and the target bendability could not be obtained.

[0140] The No. 40D hot stamped body was excessive in Si content, so residual austenite was excessively produced exceeding an area percent of 5%. For this reason, the No. 40D hot stamped body was inferior in bendability. The No. 41D hot stamped body was excessive in Mn content, so became the greatest in tensile strength among the Nos. 1D to 56D hot stamped bodies and was inferior in bendability. The No. 42D hot stamped body was poor in content of acid soluble aluminum, so inclusions containing oxygen were excessively produced and bendability was inferior. Further, the No. 45D hot stamped body included excessive aluminum, so oxides mainly comprised of aluminum were excessively produced and bendability was inferior.

[0141] The No. 57D hot stamped body was low in rolling temperature of the rough rolling. Further, the No. 58D hot stamped body was low in sheet thickness reduction rate of the rough rolling. Further, the No. 59D hot stamped body was low in number of rolling operations under conditions of a time between passes of 3 seconds or more. These hot stamped bodies were not produced under optimal rough rolling conditions, so were insufficient in growth of soft structures and metal structures of intermediate hardnesses, were not able to be eased in strain caused by bending deformation, and were not able to be given the targeted bendability.

[0142] The No. 60D hot stamped body is steel sheet with a casting rate controlled to 6 ton/min or more in a continuous casting process of steel sheet for surface layer. It can raise the area rate of the total of crystal grains with a maximum crystal orientation difference inside regions surrounded by grain boundaries of 15° or higher of 1° or less and crystal

grains with a crystal orientation difference of 8° to 15° in the metal structures from the surface of the steel sheet for

	surface layer to 1/2 of the thickness and is excellent in bendability.
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

5		Remarks						Comp. steel				Comp. steel															
10			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0020	0	0	0	0
			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.040	0	0	0	0	0
15		(Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.032	0	0	0	0	0	0
00		t (mass%	QN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.078	0	0	0	0	0	0	0
20		iddle par	Ni	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.33	0	0	0	0	0	0	0	0
25		or sheet m	z	0.0036	0.0035	0.0036	0.0026	9800.0	0.0037	0.0032	0.0029	0.0027	0.003	0.0038	0.0023	0.0028	0.0041	0.0031	0.0030	0.0032	0.0029	0.0030	0.0032	0.0036	0.0036	9:00:0	0.0035
)-1-1]	el sheet fo	sol.Al	0.049	0.045	0.043	0.035	0.029	0.035	0.044	0.054	0.034	0.058	0.048	0.046	0.052	0.051	0.053	0.052	0.045	0.051	0.057	0.043	0.049	0.049	0.049	0.045
30	[Table D-1-1]	Chemical constituents of steel sheet for sheet middle part (mass%)	S	0.0028	0.0011	0.0011	0.0002	0.0010	0.0014	0.0018	0.0017	0.0008	0.0022	0.0016	6000.0	0.0021	0.0016	0.0008	0.0012	0.0007	0.0012	0.0013	0.0016	0.0028	0.0028	0.0028	0.0011
35		ıl constitue	Ь	0.013	0.012	0.013	0.005	0.016	0.016	0.010	0.011	0.017	600.0	0.020	0.012	0.006	0.018	0.016	0.004	0.022	0.016	0.013	0.014	0.013	0.013	0.013	0.012
		Chemica	Mn	1.82	1.84	1.68	2.08	1.77	1.98	1.89	1.90	1.84	1.87	1.90	0.19	06.0	1.34	1.18	1.75	1.78	1.97	2.01	1.72	1.82	1.82	1.82	1.84
40			Si	1.32	1.29	1.54	1.5	1.25	1.45	1.81	1.75	1.65	0.13	0.41	1.21	1.27	0.48	0.27	1.59	1.00	1.63	1.27	1.45	1.32	1.32	1.32	1.29
			ပ	0.26	0.27	0.35	0.48	0.08	0.23	0.36	0.28	0.83	0.38	0.32	0.25	0.31	0.34	0.27	0.30	0.36	0.27	0.29	0:30	0.26	0.26	0.26	0.27
45			Steel no.	1	2	က	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	~	_	1	2
50		on to ad																									
55		Multilaver steel sheet on		1	2	8	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

						ı	1	1	
5		Kemarks							
10		В	0	0	0	0	0	0	
		Мо	0	0	0	0	0	0	
15		j	0	0	0	0	0	0	
20	t (mass%	g	0	0	0	0	0	0	ded.
20	ddle par	Ē	0	0	0	0	0	0	nally ad
25	Chemical constituents of steel sheet for sheet middle part (mass%)	z	0.0035	0.0035	0.0036	0.0036	0.0036	0.0026) indicate corresponding constituents not intentionally added
(70	aca) el sheet fo	sol.Al	0.045	0.045	0.043	0.043	0.043	0.035	stituents
30 cit	ents of stee	S	0.0011	0.0011	0.0011	0.0011	0.0011	0.0002	onding con
35	l constitue	۵	0.012	0.012	0.013	0.013	0.013	0.005	e correspo
	Chemica	Mn	1.84	1.84	1.68	1.68	1.68	2.08) indicat
40		Si	1.29	1.29	1.54	1.54	1.54	1.5	ents of (
		ပ	0.27	0.27	0.35	0.35	0.35	0.48	f constitu
45		Steel no.	7	7	က	က	က	4	npositions o
50		sheet no.							lds with con
55		Multilayer steel sneet no.	25	26	27	28	29	30	In the table, fields with compositions of constituents of

5		Domorko	Ivelliains										Comp. steel	Comp. steel	Comp. steel			Comp. steel									
10			В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0009
70			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.009	0.900	0
15		ss%)	Ti	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.040	0.120	0	0	0
		e part (ma	qN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.020	0.130	0	0	0	0	0
20		ss middle	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03	2.70	0	0	0	0	0	0	0
25		Chemical constituents of steel sheet for sheet thickness middle part (mass%)	Z	0.0026	0.0026	9800.0	9800.0	0.0035	0.0035	£00 [.] 0	0.003	9800.0	0.003	0.0023	9800'0	9800'0	9800'0	9800'0	0.0030	0:00:0	0.0032	0.0032	0.0029	0.0029	0.003	0.003	0.0032
	0-1-2]	et for she	sol.Al	0.035	0.035	0.045	0.045	0.045	0.045	0.058	0.058	0.045	0.058	0.046	0.0001	0.001	2.600	4.200	0.052	0.052	0.045	0.045	0.051	0.051	0.057	0.057	0.043
30	[Table D-1-2]	of steel she	S	0.0002	0.0002	0.0011	0.0011	0.0011	0.0011	0.0005	0.0005	0.0011	0.0022	6000.0	0.0028	0.0028	0.0028	0.0028	0.0012	0.0012	0.0007	0.0007	0.0012	0.0012	0.0013	0.0013	0.0016
35		stituents	Ь	0.005	0.005	0.012	0.012	0.012	0.012	0.008	0.008	0.012	600.0	0.012	0.013	0.013	0.013	0.013	0.004	0.004	0.022	0.022	0.016	0.016	0.013	0.013	0.014
		nical cor	Mn	2.08	2.08	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.87	4.90	1.82	1.82	1.82	1.82	1.75	1.75	1.78	1.78	1.97	1.97	2.01	2.01	1.72
40		Cher	Si	1.50	1.50	1.29	1.29	1.29	1.29	1.29	1.29	1.29	5.30	1.21	1.32	1.32	1.32	1.32	1.59	1.59	1.00	1.00	1.63	1.63	1.27	1.27	1.45
			С	0.48	0.48	0.27	0.27	0.27	0.27	0.65	0.65	0.27	0.38	0.25	0.26	0.26	0.26	0.26	0.30	0.30	0.36	98.0	0.27	0.27	0.29	0.29	0:30
45			Steel no.	4	4	2	2	2	2	21	21	2	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
50		4000																									
55		Multilaver steel sheet on	Maithayer steels	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54

	_			,	,	,	,		,
5		מושוא							
10		В	0.0070	0	0	0	0	0	
70		Мо	0	0	0	0	0	0	
15	(%ss	Ι	0	0	0	0	0	0	
	part (ma	qN	0	0	0	0	0	0	ed.
20	ss middle	Z	0	0	0	0	0	0	nally add
25	Chemical constituents of steel sheet for sheet thickness middle part (mass%)	z	0.0032	0.0026	0.0035	0.0035	0.0035	0.0035	indicate corresponding constituents not intentionally added
(pən	eet for she	sol.Al	0.043	0.035	0.045	0.045	0.045	0.045	stituents r
% (continued)	of steel sh	S	0.0016	0.0002	0.0011	0.0011	0.0011	0.0011	onding con
35	nstituents	۵	0.014	0.005	0.012	0.012	0.012	0.012	e correspo
	mical cor	Mn	1.72	2.08	1.84	1.84	1.84	1.84	0 indicat
40	Cher	Si	1.45	1.50	1.29	1.29	1.29	1.29	nents of
45		ပ	0:30	0.48	0.27	0.27	0.27	0.27	of constit
45		Steel no.	37	4	2	2	2	2	npositions o
50	; ;	אופפרווס.							ds with cor
55		ividitiiayei steel	55	99	25	58	29	09	In the table, fields with compositions of constituents of 0

0.0020

0 0 0 0 0

0 0 0 0

> 0 0

> > 0.0033

0

0.043

0.0027

0.009

0.82 1.55 1.03

0.91

0.044 0.041

0.0025 0.0009

0.010 0.009

0.59

0.21

0.0031 0.0032 0.0032

0.044

0.0027

0.009

0.59

0.21

0.039

0.013

0.81 0.87

0

0.030

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0.0027 0.0027

0.054

0.0012 0.0012

0.008

0.15

9 20 7 22 23 24

steel steel Comp. steel Comp. steel Comp. steel Comp. steel Comp. steel Comp. steel 5 Remarks Comp. Comp. 10 0 ш 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ₽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0.028 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Chemical constituents of steel sheet for surface layer (mass%) 0.036 20 윤 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 Ħ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0.0035 0.0036 0.0028 0.0034 0.0035 0.0029 0.0024 0.0027 0.0029 0.0027 0.0026 0.0031 0.0027 0.0031 0.003 0.0021 0.0024 0.002 z Table D-1-3] 0.045 0.046 sol.Al 0.038 0.029 0.029 0.053 0.042 0.046 0.046 0.040 0.046 0.024 0.050 0.029 0.041 0.047 0.041 0.041 30 0.0015 0.0015 9000.0 0.0011 0.0014 0.0005 0.0005 9000.0 0.0008 0.0008 0.0008 0.0003 0.0009 0.0026 0.0015 0.0017 0.0001 0.0021 35 0.014 0.013 0.015 0.009 0.009 0.019 0.009 0.014 0.013 0.013 0.004 0.004 0.002 0.003 0.020 0.011 0.007 0.01 96.0 1.14 0.90 1.09 0.86 0.92 0.94 0.93 0.72 0.58 0.95 1.04 0.91 0.94 0.91 0.11 0.41 0.91 ₽ 40 0.15 0.72 0.88 0.78 0.55 0.60 0.80 90.0 0.85 99.0 0.81 0.86 0.24 0.64 0.64 0.24 S 0.15 0.15 0.12 0.19 0.28 0.15 0.39 0.16 0.16 0.14 0.15 0.17 0.21 45 \circ Multilayer steel sheet no. 50 9 7 7 13 4 2 9 7 8 2 က 4 2 9 _ ω O

55

									_	. —
5		Domorko	אַפוווש							
10			В	0	0	0	0	0	0	
15			Mo	0	0	0	0	0	0	
		(%ss	F	0	0	0	0	0	0	, added.
20		layer (ma	qN	0	0	0	0	0	0	entionally
25		surface	Z	0	0	0	0	0	0	ts not int
25	-	I sheet for	z	0.0031	0.0032	0.0032	0.0032	0.0031	0.0021	constituen
30	(continued)	its of stee	sol.Al	0.039	0.041	0.039	0.037	0.037	0.032	sponding
25		Chemical constituents of steel sheet for surface layer (mass%)	S	0.0007	0.0008	0.001	0.0009	0.0009	0.0009	cate corre
35		Chemical	۵	600.0	0.011	0.010	800.0	600'0	0.002	s of 0 indi
40			Mn	0.83	1.69	0.81	96.0	1.46	1.1	nstituent
			Si	0.95	99.0	0.75	1.40	0.89	0.75	ons of co
45			ပ	0.14	0.15	0.28	0.20	0.17	0.41	mpositic
50		oa tooda loota royclitli	nulayel steel si leeti io.	25	26	27	28	29	30	the table, fields with compositions of constituents of 0 indicate corresponding constituents not intentionally added

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

5		Domorke	Nelliains										Comp. steel	Comp. steel	Comp. steel			Comp. steel									
10			В	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001
15			Мо	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.010	0.800	0
		(%s	Ti	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	090.0	0.110	0	0	0
20		ayer (mas	Nb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.030	0.120	0	0	0	0	0
		surface la	ïZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.04	2.60	0	0	0	0	0	0	0
25	1]	sheet for	Z	0.0021	0.0024	0.0032	0.0031	0.0033	0.0031	0.0027	0.0028	0.0033	0.0026	0.0018	0.0032	0.0032	0.0032	0.0031	0.0027	0.0025	0.0028	0.0030	0.0027	0.0025	0.0025	0.0027	0.0027
30	[Table D-1-4]	s of steel	sol.Al	0.029	0:030	0.039	0.041	0.040	0.040	0.053	0.054	0.042	0.054	0.043	0.042	0.043	2.595	2.819	0.047	0.049	0.041	0.042	0.046	0.046	0.052	0.054	0.037
	[T	Chemical constituents of steel sheet for surface layer (mass%)	S	6000.0	6000.0	6000.0	0.0010	0.0010	6000.0	0.0003	0.0003	0.0008	0.002	0.0006	0.0026	0.0026	0.0026	0.0026	0.001	0.0008	0.0004	9000.0	0.0010	6000.0	0.0011	0.0011	0.0015
35		hemical o	Д	0.003	0.003	0.010	0.007	0.007	0.011	900.0	0.007	0.008	0.007	0.011	0.01	0.01	0.011	600.0	0.002	0.002	0.021	0.019	0.011	0.012	0.009	0.008	0.009
40		O	Mn	1.02	1.68	1.01	0.83	96.0	0.85	1.03	86.0	98.0	0.94	0.11	0.91	0.91	0.91	0.91	96.0	96.0	0.91	0.91	1.04	1.04	1.13	1.13	0.81
			Si	1.26	0.84	0.62	0.62	0.63	99.0	0.59	0.74	0.58	90.0	0.64	99.0	99.0	99.0	99.0	0.78	0.78	0.55	0.55	0.85	0.85	0.74	0.74	0.78
45			ပ	0.24	0.27	0.13	0.16	0.12	0.15	0.3	0.32	0.14	0.21	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.17	0.17	0.15	0.15	0.15	0.15	0.17
50		oa tooda loota roveliti	Mululayel steel si leet 110.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	90	51	52	53	54
55		Ž	M																								

5		Domorke	ביים ביים							
10			В	900.0	0	0	0	0	0	
15			Mo	0	0	0	0	0	0	
		(%s	j	0	0	0	0	0	0	added.
20		ayer (mas	e S	0	0	0	0	0	0	entionally
		urface la	Z	0	0	0	0	0	0	s not into
25		Chemical constituents of steel sheet for surface layer (mass%)	z	0.0029	0.0024	0.003	0.003	0.003	0.003	constituents of 0 indicate corresponding constituents not intentionally added
30	(continued)	s of steel	sol.Al	0.037	0:030	0.041	0.041	0.041	0.041	sponding
	•	constituen	S	0.0014	6000.0	0.0008	0.0008	0.0008	0.0008	cate corre
35		Chemical	Д	600.0	0.003	0.01	0.01	0.01	0.01	s of 0 indic
40			Mn	0.81	1.44	0.94	0.94	0.94	0.94	nstituent
			Si	0.78	0.98	0.72	0.72	0.72	0.72	
45			ပ	0.17	0.2	0.12	0.12	0.12	0.12	mpositic
50 55		Multiportor provident	Malulayer steer street fro.	55	56	22	58	29	09	In the table, fields with compositions of
										

		Sheet thickness (mm)			1.3	1.5	4.1	1.3	1.6	1.3	4.1	1.5	4.1	1.3	1.5	1.3	1.6	4.1	1.3	1.3	4.1	1.5	1.5
5			Plating t	None	None	None	None	None	None	None	None	None	None										
10		0 5		None	None	None	None	None	None	None	None	None	None										
45		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	41	42	28	33	27	21	32	37	31	22	30	41	38	22	31	22	41	32	26	37
15		tment at h	Average cooling rate (°C/s (more than 400°C)	69	94	82	66	26	92	88	83	89	72	101	69	100	5 9	06	101	111	<u> </u>	99	107
20		Heat trea	Heating temp. (°C)	895	668	910	868	988	904	891	806	893	891	910	883	910	868	884	268	883	884	892	904
			Heating rate (°C/s)	39	35	37	69	19	02	25	52	28	37	<u> </u>	89	30	68	20	98	64	25	14	29
25		Cold rolling	Rolling rate (%)	45	25	48	20	53	42	25	49	46	20	54	48	54	43	49	52	54	49	47	45
30	Table D-2-1]	Hot rolling	Coiling temp.	556	674	602	601	675	614	553	089	009	564	627	285	684	218	714	289	285	643	229	628
	Паb	Hot	Finish rolling temp.	854	855	840	834	831	856	862	870	843	845	865	831	840	856	853	849	898	857	832	859
35		rolling	No. of roll- ing opera- tions (times)	ო	က	က	8	3	8	က	က	3	က	3	3	3	3	3	3	3	3	3	ဧ
40		Rough roll	Rate of reduction of sheet thickness (%)	33	26	24	32	44	31	47	52	23	36	42	31	18	36	45	27	46	36	43	39
			Rolling temp. (°C)	1147	1156	1141	1164	1123	1153	1170	1141	1123	1140	1132	1180	1155	1150	1149	1154	1127	1162	1159	1140
45		Heat treatment before hot rolling	Holding time (min)	47	43	43	88	23	23	46	32	38	23	38	45	29	98	34	25	68	28	32	44
		Heat tre before h	Heating temp. (°C)	1220	1205	1218	1254	1268	1260	1264	1224	1153	1263	1239	1249	1177	1223	1240	1229	1151	1192	1316	1264
50			Manufactur- ing condition no.	_	2	8	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
55			Multilayer steel sheet no.	-	2	က	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20

	ı			1		ı	ı					ı										
		Sheet thickness (mm)			1.5	4.1	1.6	1.4	1.5	1.6	1.6	1.6	4.1	1.6	1.4	1.6	1.3	4.1	2.8	1.3	1.5	1.5
5			Plating	None	ХeУ	Yes																
10		g Tempering temp. (°C)		None	258	172	None															
		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	38	40	33	25	08	47	14	56	58	28	40	28	43	31	43	26	43	88	37
15		tment at h	Average cooling rate (°C/s) (more than 400°C)	66	96	85	22	82	83	96	108	68	16	69	83	28	63	84	105	82	66	71
20		Heat trea	Heating temp. (°C)	890	895	881	606	883	868	606	910	894	897	893	885	892	899	910	892	897	890	901
			Heating rate (°C/s)	21	36	99	78	62	20	72	40	33	20	77	64	29	40	22	53	35	34	72
25		Cold	Rolling rate (%)	47	48	51	42	12	45	42	43	43	49	44	12	43	25	49	0	54	48	46
30	[Table D-2-2]	Hot rolling	Coiling temp.	601	621	552	643	262	809	651	707	633	266	597	289	647	623	555	713	671	562	629
	[Tab	Hot	Finish rolling temp.	828	840	854	849	834	856	861	842	864	861	853	859	836	861	850	865	898	855	840
35		bu	No. of roll- ing opera- tions (times)	8	3	8	8	3	3	3	3	8	3	3	3	3	3	3	3	3	3	3
40		Rough rolling	Rate of reduction of sheet thickness (%)	46	31	44	28	40	11	23	23	31	33	47	20	12	17	34	44	52	43	17
			Rolling temp. (°C)	1170	1158	1127	1171	1137	1128	1181	1169	1153	1141	1144	1128	1052	1118	1127	1153	1145	1160	1111
45		Heat treatment before hot rolling	Holding time (min)	23	40	39	32	29	39	54	32	27	38	36	36	37	20	14	29	51	43	51
		Heat treatment before hot rolling	Heating temp. (°C)	1217	1165	1259	1176	1153	1193	1250	1304	1226	1188	1267	1262	1084	1372	1204	1274	1294	1211	1305
50			Manufactur- ing condition no.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
55			Multilayer steel sheet no.	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39

		Sheet Plating thickness (mm)	1.4
5			None
10	вu	Average cooling rate Tempering (°C/s) temp. (°C) temp. (°C) less)	None
	ot stampi	, v,	26
15	Heat treatment at hot stamping	Average cooling rate (°C/s) (more than 400°C)	85
20	Heat trea	Heating temp.	892
		Heating rate (°C/s)	62
25	Cold	Rolling rate (%)	20
% (continued)	Hot rolling	Coiling temp. (°C)	999
(cor	Hot r	Finish rolling temp.	847
35	ing	No. of roll- ing opera- tions (times)	ε
40	Rough rolling	Rate of reduction of sheet thickness (%)	21
		Rolling temp.	1159
45	Heat treatment before hot rolling	Holding time (min)	47
	Heat tre	Heating temp.	1229
50		Manufactur- sheet no. (°C) (min) (min	40
55		Multilayer steel sheet no.	40

	ı			ı		ı		ı				l										
		Sheet thickness (mm)			1.5	1.5	1.5	1.5	1.3	1.3	1.3	1.3	1.4	1.4	1.5	1.5	1.5	1.5	1.4	1.5	1.5	1.3
5			Plating	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
10		G Tempering temp. (°C)		None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
45		Heat treatment at hot stamping	Average cooling rate (°C/s) (400°Cor less)	29	34	40	40	38	98	35	42	34	27	37	98	31	31	29	32	28	39	36
15		tment at h	Average cooling rate (°C/s) (more than 400°C)	100	99	88	86	80	105	02	83	86	107	69	68	94	81	86	16	106	52	88
20		Heat trea	Heating temp. (°C)	268	628	888	<u> </u>	894	288	928	928	228	883	889	068	893	228	068	928	588	875	877
			Heating rate (°C/s)	02	32	69	31	36	69	72	<u> </u>	99	22	25	99	64	58	89	69	69	32	61
25		Cold rolling	Rolling rate (%)	48	45	45	45	45	25	25	54	54	67	49	47	47	45	45	13	48	45	54
30	[Table D-2-3]	Hot rolling	Coiling temp.	969	809	929	583	591	989	265	265	638	624	265	564	628	222	644	681	296	591	292
	[Tab	Hotı	Finish rolling temp.	848	839	850	841	851	838	847	852	849	842	846	848	845	842	843	856	841	852	842
35		ng	No. of rolling operations (times)	8	3	8	3	8	3	3	3	3	3	3	3	3	3	3	3	3	2	1
40		Rough rolling	Rate of reduction of sheet thickness (%)	29	88	35	47	17	6	21	28	19	31	20	18	12	11	68	18	47	1	41
			Rolling temp. (°C)	1161	1145	1158	1141	1134	1136	1126	1130	1183	1155	1138	1128	1132	1130	1132	1192	1019	1163	1143
45		Heat treatment before hot rolling	Holding time (min)	30	26	40	36	54	51	33	22	26	45	38	26	31	38	33	37	40	54	99
		Heat treatment before hot rolling	Heating temp. (°C)	1270	1233	1247	1237	1246	1257	1239	1265	1235	1276	1232	1257	1220	1215	1264	1261	1246	1265	1232
50			Manufactur- ing condition no.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	22	26	22	58	59
55			Multilayer steel sheet no.	14	42	43	44	45	46	47	48	49	20	51	52	53	54	22	99	25	28	29

SS	
Sheet thickness (mm)	1.5
	None
Tempering temp. (°C)	None
Average cooling rate (°C/s) (400°Cor less)	32
Average cooling rate (°C/s) (more than 400°C)	96
Heating temp.	893
Heating rate (°C/s)	22
rolling Rolling rate (%)	49
Coiling temp.	638
Finish rolling temp.	848
No. of rolling operations (times)	8
Rate of reduction of sheet thickness (%)	43
Rolling temp.	1102
Holding time (min)	21
Heating temp.	1215
Manufactur- ing condition no.	09
Multilayer steel sheet no.	09
	Average cooling temp. (°C/s) (°C/s) (†C/s) (°C/s) (†C/s) (

5			Remarks	Inv. ex.	lnv. ex.	Inv. ex.	Inv. ex.	Comp.	lnv. ex.	Inv. ex.	Inv. ex.	Comp.	Comp.
10			Hydrogen embrittlement resistance	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
15		perties	Maximum bending angle (°)	84.8	9:52	73.4	74.9	88.9	9.98	76.2	76.2	61.2	80
20		Mechanical properties	Average cross-sectional hardness-minimum hardness	43	26	44	89	53	44	09	61	58	35
25		Ν	Uniform elongation (%)	2.2	5.1	6.3	8.9	6.1	8.9	6.4	2.8	5.8	2.6
20	-3-1]		Tensile strength (MPa)	1740	1945	2227	2300	<u>1218</u>	1653	2088	2026	2941	2148
30	[Table D-3-1]		Residual γ area rate(%)	2.5	2.2	3.3	4.7	3.2	4.4	4	2.3	2.8	0.2
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	82	78	71	63	84	99	83	78	52	71
40			Hardness of middle part in sheet thickness (Hv)	009	671	768	793	420	570	720	669	1014	741
45			Manufacturing condition no.	1	2	3	4	5	9	7	8	6	10
50			Multilayer steel sheet no.	1	2	3	4	5	9	7	8	6	10
55			Stamped body no.	1D	2D	3D	4D	5D	О9	7D	8D	О6	10D

5			Remarks	Comp. ex.	Comp.	Comp.	Comp.	Comp.	Inv. ex.	Inv. ex.	Inv. ex.
10			Hydrogen em brittlement resistance	рооб	Good	Good	Good	Good	Good	Good	Good
15		perties	Maximum bending angle (°)	83.6	89.2	86.8	76.8	74.1	89.6	88.3	86.2
20		Mechanical properties	Average cross- sectional hardness- minimum hardness	43	167	155	115	127	41	49	72
25		A	Uniform elongation (%)	4.3	6.4	6.8	4.8	3.7	6.9	2	6.1
	(pər		Tensile strength (MPa)	2478	1285	1427	1832	1824	1975	1995	1987
30	(continued)		Residual γ area rate(%)	0.5	3.5	4.6	0.7	0.3	4.3	2.6	3.2
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	81	84	53	63	83	78	65	63
40			Hardness of middle part in sheet thickness (Hv)	751	443	492	632	629	681	688	685
<i>45 50</i>			Manufacturing condition no.	11	12	13	14	15	16	17	18
			Multilayer steel sheet no.	11	12	13	14	15	16	17	18
55			Stamped body no.	11D	12D	13D	14D	15D	16D	17D	18D

5			Remarks	Inv. ex.	lnv. ex.
10			Hydrogen embrittlement resistance	Good	Good
15		perties	Maximum bending angle (°)	82.9	84.5
20		Mechanical properties	Average cross- sectional hardness- minimum hardness	38	64
05		Μ	Uniform elongation (%)	6.9	5.4
25	(pa)		Tensile strength (MPa)	1966	2021
30	(continued)		Residual γ area rate(%)	3.8	2.7
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	79	29
40			Hardness of middle part in sheet thickness (Hv)	829	269
45			Manufacturing condition no.	19	20
50			Multilayer steel sheet no.	19	20
55			Stamped body no.	19D	20D

	Г		0																						
5			Remarks	Inv. ex.	lnv.ex.	Inv. ex.	Inv. ex.	Inv. ex.	Inv. ex.																
10			Hydrogen embrittlement resistance	Good	Good	Good																			
15		perties	Maximum bending angle (°)	79.5	78.6	9.78	75.3	80.5	74.6	82.3	81.2	76.7	83.7	75.7	84.9										
20		Mechanical properties	Average cross-sectional hardness-minimum hardness	29	99	27	32	69	68	32	98	99	27	69	49										
		2	Uniform elongation (%)	5.6	8.9	6.9	6.1	5.9	5.3	9.9	2.7	2.7	5.4	5.5	6.7										
25	-3-2]		Tensile strength (MPa)	1573	1584	1567	1940	1945	1960	2171	2166	2151	2265	2297	2285										
30	[Table D-3-2]	Metal structures	Residual γ (%) area rate	2.5	4.5	4.5	3.1	3	3	4.3	3.6	2.4	3.9	2.8	4.1										
35			Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Metal structures	Area rate (%) of total of crystal grains wit h maximum difference of crystal orientation inside large angle grain boundaries of 1° or and crystal grains with maximum difference of crystal orientation of 8° to 15°	7.5	08	64	89	73	82	99	08	72	29	62	2.2
40													Me	Mei	Met	Met	Meta	Meta	Hardness of middle part in sheet thickness (Hv)	542	546	540	699	671	676
45			Manufacturing condition no.	21	22	23	24	25	26	27	28	29	30	31	32										
50			Multilayer steel sheet no.	21	22	23	24	25	26	27	28	29	30	31	32										
55			Stamped body no.	21D	22D	23D	24D	25D	26D	27D	28D	29D	30D	31D	32D										

5			Remarks	Comp.	Comp.	Comp.	Inv. ex.	Inv. ex.	Inv. ex.	Inv. ex.	Comp. steel
10			Hydrogen embrittlement resistance	Poor	Good	Poor	Good	Good	Good	Good	Good
15		perties	Maximum bending angle (°)	8.99	67.4	61.9	82.4	71.2	78.5	82.5	61.8
20		Mechanical properties	Average cross- sectional hardness- minimum hardness	44	52	26	28	4	26	5 2	29
25		N	Uniform elongation (%)	6.9	6.9	8.9	6.1	9.9	5.9	5.8	8
20	(pai		Tensile strength (MPa)	1937	1934	1951	1945	2213	2184	1940	2148
30	(continued)		Residual γ (%) area rate	4.6	4.6	4.2	3.1	4.4	4.2	2.9	12.5
35		Metal structures	Area rate (%) of total of crystal grains wit h maximum difference of crystal orientation inside large angle grain boundaries of 1° or and crystal grains with maximum difference of crystal orientation of 8° to 15°	14	92	17	19	69	1.4	22	7.1
40			Hardness of middle part in sheet thickness (Hv)	668	667	673	671	763	753	699	743
45			Manufacturing condition no.	33	34	35	36	37	38	39	40
50			Multilayer steel sheet no.	33	34	35	36	37	38	68	40
55			Stamped body no.	33D	34D	35D	36D	37D	38D	39□	40D

	ĺ			اد	.1 .	÷	÷	اد	÷	٠,	·	٠,	ن			
5	_		Remarks	Comp. steel	comp. Steel	Inv. ex.	Inv. ex.	Comp. steel	Inv. ex.							
10			Hydrogen embrittlement resistance	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good			
15		perties	Maximum bending angle (°)	51.2	61.4	84.5	84.4	56.1	2.88	868	88.1	88.7	2.98			
20		Mechanical properties	Average cross-secti onal hardness- minimum hardness	26	42	71	65	40	39	09	25	41	34			
		Ň	Uniform elongation (%)	6.3	52	5.4	5.5	5.3	8.9	6.9	5.1	5.3	5.9			
25	-3-3]		Tensile strength (MPa)	2610	1997	2020	2006	1997	2148	2313	2181	2320	2171			
30	[Table D-3-3]	Metal structures	Residual ץ area rate(%)	3.5	2.1	2.5	2.2	2.3	4.3	4.4	2.5	2.6	3			
35			Metal structures	Metal structures	Metal structures	Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	84	83	75	92	84	92	62	69	<u> </u>
40			Hardness of middle part in sheet thickness (Hv)	792	605	612	809	605	651	701	661	703	658			
45			Manufacturing condition no.	41	42	43	44	45	46	47	48	49	50			
50			Multilayer steel sheet no.	41	42	43	44	45	46	47	48	49	20			
55			Stamped body no.	41D	42D	43D	44D	45D	46D	47D	48D	49D	50D			

5			Remarks	lnv. ex.	Inv. ex.	Inv. ex.	Inv. ex.	lnv. ex.	lnv. ex.	Comp. ex.	Comp. ex.	Comp.
10			Hydrogen embrittlement resistance	Good	Good	Good	Good	Good	Good	Poor	Poor	Poor
15		perties	Maximum bending angle (°)	85.1	81.6	82.5	81.8	84.4	85.3	59.2	61.4	61.9
20		Mechanical properties	Average cross-secti onal hardness- minimum hardness	09	99	61	25	89	61	30	26	22
25		Ν	Uniform elongation (%)	6.2	2.9	7	5.3	2.5	9.9	6.3	2.9	9.9
	(pai		Tensile strength (MPa)	2340	2181	2251	2254	2327	2577	2119	2092	2102
30	(continued)		Residual y area rate(%)	3.3	3.7	3.8	2.4	2.8	4	2.9	3.0	3.0
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	64	77	80	65	29	92	10	11	12
40		Me	Hardness of middle part in sheet thickness (Hv)	602	661	682	683	202	781	642	634	637
45 50			Manufacturing condition no.	51	52	53	54	22	99	22	58	59
			Multilayer steel sheet no.	51	52	53	54	22	99	22	58	59
55			Stamped body no.	51D	52D	53D	54D	25D	26D	57D	58D	59D

5			Remarks	lnv. ex.
10			Hydrogen embrittlement resistance	Good
15		perties	Maximum bending angle (°)	111.8
20		Mechanical properties	Average cross-secti onal hardness- minimum hardness	27
		N	Uniform elongation (%)	6.7
25	(pər		Tensile strength (MPa)	2099
30	(continued)		Residual	3.0
35		Metal structures	Area rate (%) of total of crystal grains with maximum difference of crystal orientation inside large angle grain boundaries of 1° or less and crystal grains with maximum difference of crystal orientation of 8° to 15°	46
40			Hardness of middle part in sheet thickness (Hv)	636
45			Manufacturing condition no.	09
50			Multilayer steel sheet no.	09
55			Stamped body no.	Q09

INDUSTRIAL APPLICABILITY

[0143] The hot stamped body of the present invention is excellent in strength, ductility, bendability, impact resistance, and hydrogen embrittlement resistance and is small in scattering in hardness, so can be suitably used for structural members or reinforcing members for automobiles or structures requiring strength.

Claims

5

15

30

40

10 1. A hot stamped body comprising a middle part in sheet thickness and a softened layer arranged at both sides or one side of the middle part in sheet thickness, wherein

the middle part in sheet thickness comprises, by mass%,

C: 0.20% or more and less than 0.70%,

Si: less than 3.00%,

Mn: 0.20% or more and less than 3.00%,

P: 0.10% or less,

S: 0.10% or less,

sol. Al: 0.0002% or more and 3.0000% or less,

N: 0.01% or less, and

a balance of Fe and unavoidable impurities, and has a hardness of 500Hv or more and 800Hv or less, in the metal structures from a depth of 20 μm below the surface of the softened layer to a depth of 1/2 of the thickness of the softened layer, when defining a region surrounded by grain boundaries having a 15° or higher orientation difference in a cross-section parallel to the sheet thickness direction as a "crystal grain", the area rate of the total of crystal grains with a maximum crystal orientation difference inside the crystal grains of 1° or less and crystal grains with a maximum crystal orientation difference inside the crystal grains of 8° or more and 15° or less is 50% or more and less than 85%.

- 2. The hot stamped body according to claim 1, wherein the Si content is 0.50% or less and the Mn content is 0.20% or more and less than 1.50%.
- 3. The hot stamped body according to claim 1, wherein the Si content is 0.50% or less and the Mn content is 1.50% or more and less than 3.00%.
- 4. The hot stamped body according to claim 1, wherein the Si content is more than 0.50% and less than 3.00%, the Mn content is 0.20% or more and less than 1.50%, and the middle part in sheet thickness comprises, by area percent, 1.0% or more and less than 5.0% of residual austenite.
 - **5.** The hot stamped body according to claim 1, wherein the Si content is more than 0.50% and less than 3.00%, the Mn content is 1.50% or more and less than 3.00%, and the middle part in sheet thickness comprises, by area percent, 1.0% or more and less than 5.0% of residual austenite.
 - **6.** The hot stamped body according to any one of claims 1 to 5, where the middle part in sheet thickness further comprises, by mass%, Ni: 0.01% or more and 3.00% or less.
- **7.** The hot stamped body according to any one of claims I to 6, where the middle part in sheet thickness further comprises, by mass%, one or more of Nb: 0.010% or more and 0.150% or less, Ti: 0.010% or more and 0.150% or less, Mo: 0.005% or more and 1.000% or less, and B: 0.0005% or more and 0.0100% or less.
 - **8.** The hot stamped body according to any one of claims 1 to 7, where a plated layer is formed on the softened layer.

55

50

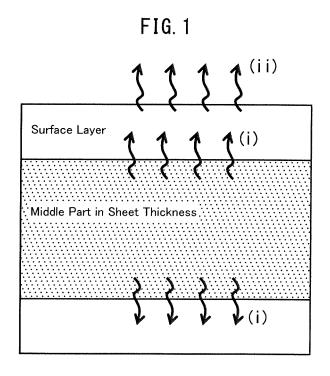
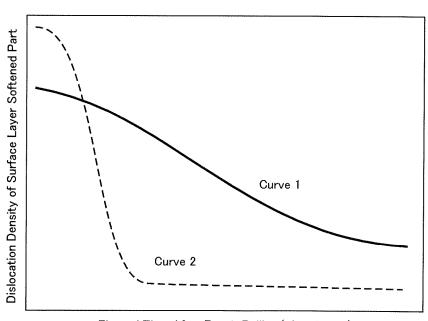



FIG. 2

Elapsed Time After Rough Rolling (after 1 pass)

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2018/006086 A. CLASSIFICATION OF SUBJECT MATTER 5 C22C38/00(2006.01)i, B21D22/20(2006.01)i, C22C38/60(200 C21D1/18(2006.01)n, C21D9/00(2006.01)n, C21D9/46(2006.01)n Int.Cl. C22C38/60(2006.01)i, According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Int.Cl. C22C38/00-38/60, B21D22/20, C21D1/18, C21D9/00, C21D9/46 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2018 Registered utility model specifications of Japan 1996-2018 15 Published registered utility model applications of Japan 1994-2018 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α JP 2015-30890 A (JFE STEEL CORPORATION) 16 February 2015 (Family: none) 25 Α WO 2015/194571 A1 (KOBE STEEL, LTD.) 23 December 1 - 82015 & JP 2016-3389 A 30 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive "E" earlier application or patent but published on or after the international document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone "L" document of particular relevance; the claimed invention cannot be 45 considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 10 May 2018 (10.05.2018) 22 May 2018 (22.05.2018) 50 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan Telephone No.

55

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2018/006086 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT 5 Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 2014/024831 A1 (NIPPON STEEL & SUMITOMO METAL Α CORPORATION) 13 February 2014 & US 2015/0225830 A1 & EP 2881484 A1 & CA 2879540 A1 & CN 104520460 A & 10 KR 10-2015-0029731 A & MX 2015001583 A & RU 2015103482 A & TW 201410883 A Α WO 2015/099382 A1 (POSCO) 02 July 2015 & JP 2017-1-8 508069 A & US 2016/0312331 A1 & EP 3088552 A1 & KR 10-2015-0075329 A & CN 105849298 A & MX 2016008267 15 Α 20 25 30 35 40 45 50 55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2015030890 A **[0010]**
- JP 2006104546 A **[0010]**

• WO 2015097882 A [0010]