FIELD OF TECHNOLOGY
[0001] The present technology relates generally to fluid circuit monitoring systems.
BACKGROUND
[0002] Heat exchangers often include a fluid circuit within which a refrigerant fluid (e.g.,
water) is made to flow in order to cool a given component or another medium such as
air. For example, servers which are housed in server racks in data centers often include
such heat exchangers such as water blocks for cooling a given component of the server
(e.g., a central processing unit).
[0003] The fluid circuit of such a heat exchanger is susceptible to accumulation of residue
(e.g., calcium deposits) therein which negatively affects the cooling performance
of the heat exchanger. Maintenance of the fluid circuit must thus be performed regularly.
However, such maintenance is typically reactive in nature and performed only once
the fluid circuit requires immediate maintenance (e.g., is substantially blocked).
In the context of a data center, this can cause a severe slow down of service since
a thorough maintenance must be performed to repair the fluid circuit. Monitoring the
fluid circuit of heat exchangers such as by monitoring the pressure along the fluid
circuit is thus advantageous. While certain tools for monitoring pressure can be used
to that end, such monitoring is usually conducted selectively by an operator and allows
only an instant reading of the pressure.
[0004] Moreover, measuring the pressure of the fluid within the fluid circuit requires routing
fluid from the fluid circuit to a pressure sensor. While this can be achieved, the
fluid connections connecting the fluid circuit to the pressure sensor are often subject
to leaks which can impart errors in the pressure readings, in particular where the
fluid circuit operates on low pressure and thus even a minor leak causes a significant
pressure reading error.
[0005] Thus there is a desire for a fluid circuit monitoring system that alleviates at least
in part some of these drawbacks.
[0006] U.S. Patent No. 7,162,927 discloses pressure sensors for use in wet environments. In particular, a pressure
sensor package has a housing having a pair of cavities separated by a wall member.
Sequentially contained within one cavity is a conductive elastomeric seal pad, a pressure
sensor and an elastomeric media seal. A pressure cap is attached to the housing such
that the pressure cap and the housing together form a hermetic seal. The pressure
cap has a port for admitting a gas under pressure into the first cavity. A signal
amplifier is positioned within the second cavity and a cover encloses the signal amplifier
within the second cavity. An electrical connector through the wall member forms an
electrical connection between the pressure sensor and the signal amplifier. A lead
frame extends through the housing and forms electrical connections with the pressure
sensor and the signal amplifier.
[0007] European Patent Application Publication No.
3,276,242 discloses an adaptor device comprising a base body with a first reception for receiving
a first hose coupling nozzle and with a second reception for receiving a second hose
coupling nozzle. The adaptor device has a first connecting nipple and a second connecting
nipple for receiving hoses and has at least one first fastening structure for connecting
the adaptor device to a further device, preferably of a differential pressure sensor
package. The adaptor device is configured to be connected to the further device to
receive in the receptions, upon connection with the further device the first and second
hose coupling nozzles of the further device. A distance between the first and second
receptions is smaller than a distance between muzzle openings of the connecting nipples.
[0008] Canadian Patent Application No.
2,261,202 discloses a pressure transducer that includes at least two sensors having substantially
similar or substantially identical error characteristics, wherein each sensor is arranged
to be subjected to an applied pressure and the outputs of the sensors are electrically
coupled so that errors associated with one sensor are compensated by errors associated
with the other sensor. The sensors may be substantially identical silicon sensors
formed in close proximity on the same wafer.
SUMMARY
[0009] It is an object of the present technology to ameliorate at least some of the inconveniences
present in the prior art.
[0010] According to one aspect of the present technology, there is provided a fluid circuit
monitoring system according to claim 1.
[0011] In some embodiments of the present technology, the pressure sensor is a pressure
differential sensor. The sensing port is a first sensing port. The pressure differential
sensor includes a second sensing port configured to receive fluid therein. The channel
is a first channel. The channel inlet and the channel outlet are a first channel inlet
and a first channel outlet. The first channel inlet is fluidly connected at a first
location of the fluid circuit. The interface member includes a second channel having:
a second channel inlet fluidly connected at a second location of the fluid circuit
and configured to be coupled thereto via tubing; and a second channel outlet connected
to the second sensing port of the pressure differential sensor. The signal received
by the control unit, from the pressure differential sensor, is representative of a
pressure differential between the first location and the second location of the fluid
circuit as measured by the pressure differential sensor.
[0012] In some embodiments of the present technology, the channel has outwardly-expanding
tapered end portions for sealingly engaging the sensing port of the pressure sensor
and the tubing.
[0013] In some embodiments of the present technology, a resin is applied at an interface
between the interface member and the pressure sensor.
[0014] In some embodiments of the present technology, the fluid circuit monitoring system
also includes a temperature sensing unit for sensing a temperature of fluid circulating
in the fluid circuit. The temperature sensing unit includes a first temperature probe
positioned at the first location of the fluid circuit and a second temperature probe
positioned at the second location of the fluid circuit. The control unit is operatively
connected to the first and second temperature probes for receiving, from the first
and second temperature probes, signals representative of fluid temperatures at the
first and second locations of the fluid circuit. The control unit is operable to determine,
based on the fluid temperatures at the first and second locations, a temperature differential
between the first and second locations of the fluid circuit.
[0015] In some embodiments of the present technology, the control unit is operable to determine,
based on the pressure differential and the temperature differential, a fluid flow
rate within the fluid circuit. The control unit is also operable to record the determined
fluid flow rate.
[0016] In some embodiments of the present technology, the control unit is operable to determine,
based on recorded values of the fluid flow rate, if the fluid circuit requires maintenance.
[0017] In some embodiments of the present technology, the first channel inlet and the second
channel inlet are aligned along a generally horizontal axis. The first channel outlet
and the second channel outlet are aligned along a generally vertical axis.
[0018] In some embodiments of the present technology, the channel inlet has a first diameter
and the channel outlet has a second diameter. The first diameter is greater than the
second diameter.
[0019] According to another aspect of the present technology, there is provided a heat exchange
system according to claim 10.
[0020] In some embodiments of the present technology, the heat exchanger is a water block.
The heat exchanging body of the water block is configured to be in contact with a
component to be cooled. The fluid circuit includes a conduit defined by the heat exchanging
body of the water block.
[0021] In some embodiments of the present technology, the pressure sensor is a pressure
differential sensor. The sensing port is a first sensing port. The pressure differential
sensor includes a second sensing port configured to receive fluid therein. The channel
is a first channel. The channel inlet and the channel outlet are a first channel inlet
and a first channel outlet. The first channel inlet is fluidly connected at the inlet
of the fluid circuit. The interface member includes a second channel having a second
channel inlet fluidly connected at the outlet of the fluid circuit and configured
to be coupled thereto via tubing; and a second channel outlet connected to the second
sensing port of the pressure differential sensor. The signal received by the control
unit, from the pressure differential sensor, is representative of a pressure differential
between the inlet and the outlet of the fluid circuit as measured by the pressure
differential sensor.
[0022] Embodiments of the present technology each have at least one of the above-mentioned
object and/or aspects, but do not necessarily have all of them. It should be understood
that some aspects of the present technology that have resulted from attempting to
attain the above-mentioned object may not satisfy this object and/or may satisfy other
objects not specifically recited herein.
[0023] Additional and/or alternative features, aspects and advantages of embodiments of
the present technology will become apparent from the following description, the accompanying
drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024] For a better understanding of the present technology, as well as other aspects and
further features thereof, reference is made to the following description which is
to be used in conjunction with the accompanying drawings, where:
Figure 1 is a block diagram showing a fluid circuit monitoring system in connection
with a fluid circuit;
Figure 2 is a top, right side perspective view of a sensing module of the fluid circuit
monitoring system in accordance with an embodiment of the present technology;
Figure 3 is a top plan view of a printed circuit board (PCB) of the sensing module
of Figure 2 with other components of the sensing module mounted to the PCB;
Figure 4 is a right side elevation view of the PCB and associated components mounted
to part of a housing of the sensing module;
Figure 5 is a top, left side perspective view of a pressure sensor of the sensing
module of Figure 2;
Figure 6 is a top, right side perspective view of a junction to which the pressure
sensor of Figure 5 is fluidly connected;
Figure 7 is a front, right side perspective view of an interface member of the sensing
module of Figure 2 with channels thereof shown in hidden lines;
Figure 8 is a front elevation view of the interface member of Figure 7;
Figure 9 is a rear elevation view of the interface member of Figure 7;
Figure 10 is a top plan view of the interface member of Figure 7;
Figure 11 is a left side elevation view of the interface member of Figure 7;
Figure 12A is a cross-sectional view of the interface member taken along line 12A-12A
in Figure 8;
Figure 12B is across-sectional view of the interface member taken along line 12B-12B
in Figure 10;
Figure 13A is a top plan view of a water block defining part of the fluid circuit
monitored by the fluid circuit monitoring system of Figure 1;
Figure 13B is a right side elevation view of the water block of Figure 13A; and
Figure 14 is a block diagram of a control unit of the fluid circuit monitoring system
of Fig. 1.
DETAILED DESCRIPTION
[0025] With reference to Figure 1, a fluid circuit monitoring system 10 is connected to
a fluid circuit of a heat exchanger 40 for monitoring thereof. In this embodiment,
the heat exchanger 40 is housed within a server 50. More specifically, in this example,
as shown in Figures 13A and 13B, the heat exchanger 40 is a water block for cooling
a server component 55 in contact with a heat exchanging body 57 of the water block.
For instance, the component 55 may be a central processing unit (CPU), a graphics
processing unit (GPU) or any other suitable component of the server 50 (e.g., network
processing unit (NPU), field-programmable gate array (FPGA), redundant array of independent
disks (RAID), random access memory (RAM), hard disk drive (HDD), solid state drive
(SSD), etc.). Thus, in this example, the fluid circuit monitored by the fluid circuit
monitoring system includes a conduit 68 (shown in hidden lines) extending within and
defined by the heat exchanging body 57. Fluid flows within the conduit 68 to cool
the server component 55 in contact with the water block.
[0026] As will be described in detail below, the fluid circuit monitoring system 10 is designed
to continuously monitor certain parameters of the fluid circuit of the heat exchanger
40 and, on the basis of these parameters, determine a condition of the fluid circuit
or otherwise communicate the value of the parameters to an operator. The operator
can thus be made aware when the fluid circuit requires or will require maintenance
and intervene accordingly if necessary.
[0027] As shown in Figure 2, a sensing module of the fluid circuit monitoring system 10
is shown, including a housing 12 and a printed circuit board (PCB) 14 enclosed within
the housing 12. The housing 12 includes a base 15 and a cover 17 that are affixed
to one another to enclose therein the PCB 14 and other components mounted to the PCB
14. The PCB 14 is mounted to the base 15 via fasteners 19 (Figure 4) that engage mounting
apertures 59 provided on the PCB 14. The PCB 14 is enclosed between the base 15 and
the cover 17 which are fastened to one another. The PCB 14 includes a non-conductive
substrate and conductive tracks laminated onto the non-conductive substrate for electrically
interconnecting a plurality of electronic components mounted to the PCB 14. Notably,
the fluid circuit monitoring system 10 includes a pressure sensor 16 and a plurality
of connectors 26, 28, 30 which are mounted to and in communication with the PCB 14
(i.e., electrically connected thereto) to allow communication between these components
and the PCB 14. The fluid circuit monitoring system 10 also includes an interface
member 32 that is supported by the PCB 14 and fluidly communicates the fluid circuit
of the heat exchanger 40 to the pressure sensor 16, as will be described in more detail
below.
[0028] The pressure sensor 16 is configured to sense a pressure of fluid flowing in the
fluid circuit of the heat exchanger 40. As shown in Figure 5, the pressure sensor
16 has connector legs 46 that are soldered to the PCB 14 such as to mount the pressure
sensor 16 to the PCB 14 as well as allow communication therebetween. In this embodiment,
the pressure sensor 16 is a pressure differential sensor and can thus sense a pressure
differential between two pressures. To that end, the pressure differential sensor
16 has two sensing ports 36, 38 configured to receive fluid therein. The sensing ports
36, 38 protrude from a body 35 of the pressure differential sensor 16 and have tapered
ends (i.e., the ends of the sensing ports 36, 38 decrease in diameter).
[0029] Since the fluid flowing in the fluid circuit of the heat exchanger 40 is water in
this embodiment, the pressure differential sensor 16 is a wet/wet sensor in that it
is suitable for operating in contact with a liquid. It is contemplated that, in embodiments
in which the fluid in the fluid circuit is not a liquid (e.g., a gas), the pressure
differential sensor 16 could be a "dry" pressure sensor (i.e., not suitable for being
exposed to water). In a manner that will be described in more detail below, the sensing
ports 36, 38 are fluidly connected to the fluid circuit of the heat exchanger 40 at
two different locations of the fluid circuit such as to sense the pressure differential
of the fluid between the two selected locations of the fluid circuit.
[0030] The fluid circuit monitoring system 10 also includes a temperature sensing unit including
two temperature probes 45, 47 for sensing the temperature of fluid flowing in the
fluid circuit of the heat exchanger 40 at two locations thereof. Notably, as shown
in Figure 1, in this embodiment, the temperature probes 45, 47 are located at junctions
22, 24 respectively and thus sense the temperature of the fluid at the junctions 22,
24. The temperature probes 45, 47 are in communication with the PCB 14 via the connectors
26, 28. More particularly, the temperature probes 45, 47 are connected to the connectors
26, 28 via connecting links 48, 49 (Figure 2) which are configured to be coupled with
the connectors 26, 28. Notably, in this example, the temperature probes 45, 47 operate
on the One-Wire protocol and the connectors 26, 28 have RJ45 Ethernet ports.
[0031] It is contemplated that, in some embodiments, rather than being located at the junctions
22, 24, the temperature probes 45, 47 could be located at the heat exchanger 40 itself
(e.g., at a water block). This could provide more accurate monitoring of the temperature
of the server 50.
[0032] The junctions 22, 24 are the locations at which the pressure and temperature of the
fluid in the fluid circuit are gauged. An example of implementation of the junction
22 is shown at Figure 6. As will be noted, the junction 22 is located at an inlet
of the fluid circuit. That is, as shown in Figure 1, the junction 22 is at a location
where fluid has not yet entered the heat exchanger 40 (i.e., in a hydraulic line that
feeds fluid into the heat exchanger 40). Conversely, the junction 24 is located at
an outlet of the fluid circuit. That is, the junction 24 is at a location where fluid
has exited the heat exchanger 40 (i.e., in a hydraulic line feeding fluid out of the
heat exchanger 40). The junction 22 includes a Y tubing connector 25 having an inlet
70 and two outlets 72, 74. Tubing 27 is fluidly connected to the inlet 70 of the Y
tubing connector 25 to feed fluid thereto from a fluid source. Tubing 42 is fluidly
connected to the outlet 74 and feeds fluid to the heat exchanger 40. The tubing 18
fluidly connects the outlet 72 and the interface member 32 as will be described in
greater detail below. It is understood that the junction 24 is configured similarly
to the junction 22, with the tubing 20 fluidly connecting the junction 24 to the interface
member 32 and tubing 44 (Figure 1) fluidly connecting the junction 24 to the heat
exchanger 40.
[0033] While Figure 6 shows the configuration of the junction 22, it is understood that
the junction 24 is configured similarly and will thus not be described in detail here.
[0034] As mentioned above, the interface member 32 fluidly communicates the fluid circuit
of the heat exchanger 40 to the pressure differential sensor 16. With reference to
Figures 7 to 11, the interface member 32 extends longitudinally from a first end 52
to a second end 54 and has two channels 56, 58 that extend from the first end 52 to
the second end 54. Each of the channels 56, 58 has a channel inlet 60 at the first
end 52 and a channel outlet 62 at the second end 54. The channel inlets 60 have a
greater diameter than the channel outlets 62. In particular, each of the channels
56, 58 defines a shoulder 75 (Fig. 12A) at which the diameter of the channel reduces
significantly and which serves to abut the tubing 18, 20. The shoulder 75 may be omitted
in other embodiments.
[0035] In this embodiment, the channel inlets 60 are horizontally adjacent to one another
while the channel outlets 62 are vertically adjacent to one another. That is, the
channel inlets 60 are aligned along a generally horizontal axis while the channel
outlets 62 are aligned a long a generally vertical axis. In particular, starting at
the first end 52, the channel 56 transitions (at a transition zone) from extending
horizontally adjacent to the channel 58 to extending vertically adjacent to the channel
58. To achieve this, in this example, at the transition zone, the channel 58 is offset
horizontally toward a lateral side of the interface member 32 (away from the channel
56), while the channel 56 is offset horizontally toward the same lateral side (until
the channels 56, 58 are laterally aligned) and vertically to be disposed directly
above the channel 58. The channels 56, 58 may be configured in any other suitable
way in other embodiments.
[0036] In use, the channel inlets 60 are in fluid communication with the fluid circuit of
the heat exchanger 40. More specifically, as shown in Figures 1 and 2, the channel
inlets 60 of the channels 56, 58 are coupled to the fluid circuit at the junctions
22, 24 via tubing 18, 20 respectively. That is, the tubing 18 is connected at one
end to the channel inlet 60 of the channel 56 and at the opposite end to the junction
22, while the tubing 20 is connected at one end to the channel inlet 60 of the channel
58 and at the opposite end to the junction 24. For their part, the channel outlets
62 are connected to respective ones of the sensing ports 36, 38 of the pressure differential
sensor 16. More specifically, the interface member 32 is mounted to the pressure differential
sensor 16 such that the channel outlets 62 partly receive therein the protruding sensing
ports 36, 38 of the pressure differential sensor 16.
[0037] As such, fluid from the junctions 22, 24 is routed to the interface member 32 via
tubing 18, 20 and enters the channel inlets 60. The sensing ports 36, 38 which are
at least partly received in the channel outlets 62 are thus subjected to the fluid
pressure at the junctions 22, 24 such that the pressure differential sensor 16 generates
a signal, that is transmitted to the PCB 14, representative of the pressure differential
between the junctions 22, 24. Since the junctions 22, 24 are located at the inlet
and outlet of the fluid circuit, the pressure differential between the junctions 22,
24 can be indicative of a condition of the fluid circuit. For instance, if a significant
loss of pressure is recorded from the inlet to the outlet of the fluid circuit, this
could be indicative that the fluid circuit requires maintenance (e.g., clearing deposits
within the fluid circuit). Furthermore, the pressure differential in combination with
the temperature differential between the junctions 22, 24, as gauged by the temperature
probes 45, 47, can be indicative of the fluid flow rate within the fluid circuit.
[0038] Each of the channels 56, 58 has outwardly-expanding tapered end portions TL1, TL2
for sealingly engaging the tubing 18, 20 and the sensing ports 36, 38. Notably, as
shown in Figures 7, 12A and 12B, the tapered end portions TL1 extend along a given
distance from the channel inlets 60 while the tapered end portions TL2 extend along
a given distance from the channel outlets 62. The tapered end portions TL1, TL2 are
"outwardly-expanding" in that a size (i.e., a diameter) of each of the tapered end
portions TL1, TL2 is greatest nearest to the adjacent-most one of the ends 52, 54
of the interface member 32 such that the size of the tapered end portions TL1, TL2
gradually increases in an outward direction of each of the channel inlets 60 and the
channel outlets 62.
[0039] The tapered end portions TL1, TL2 facilitate sealing between the tubing 18, 20 and
the channel inlets 60 as well as between the sensing ports 36, 38 and the channel
outlets 62. Notably, the inwardly-decreasing size of the tapered end portions TL1,
TL2 creates a seal between the channels 56, 58 and the tubing 18, 20 and between the
channels 56, 58 and the sensing ports 36, 38. In this manner, the risk of a leak occurring
at the interface between the interface member 32 and the tubing 18, 20 as well as
between the interface member 32 and the pressure differential sensor 16 is reduced.
[0040] In this embodiment, the interface member 32 is supported by the PCB 14 but is not
secured thereto. Rather, the interface member 32 is fixed to the pressure differential
sensor 16 only by its connection thereto (to the sensing ports 36, 38) and by the
tubing 18, 20 connecting the interface member 32 to the fluid circuit of the heat
exchanger 40. It is contemplated that, in alternative embodiments, the interface member
32 may be fixed to the PCB 14 in any suitable way (e.g., via an adhesive).
[0041] In order to further decrease the risk of a leak, as shown in Figures 2 to 4, resin
64 is applied at the interface between the interface member 32 and the tubing 18,
20 and at the interface between the interface member 32 and the pressure differential
sensor 16. The resin 64 thus surrounds a perimeter of the tubing 18 and the tubing
20 at the interface with the interface member 32. Similarly, the resin 64 surrounds
the perimeter of the interface member 32 at the end 54 thereof. To promote the effectiveness
of the resin 64, the channel inlets 60 and the channel outlets 62 are chamfered and
thus have chamfered edges 66 (Figures 7 to 9). The resin 64 is thus able to partially
penetrate the channels 56, 58 at the chamfered edges 66. In other embodiments, the
resin 64 may be omitted.
[0042] The reduced risk of leaks enabled by the configuration of the channels 56, 58 of
the interface member 32 may be useful to ensure that accurate pressure readings are
observed by the pressure differential sensor 16. This may be particularly important
in applications where small pressures are observed and thus even a minor leak can
impart a large error into the pressure readings.
[0043] Furthermore, as shown in Figures 2 and 3, the first end 52 of the interface member
32 is abutted by the cover 17 of the housing 12 while the second end 54 is abutted
by the pressure differential sensor 16. As such, the interface member 32 is collaboratively
retained in place by the pressure differential sensor 16 and the housing 12. This
may be helpful to reduce or otherwise prevent mechanical strain being exerted at the
interface between the interface member 32 and the pressure differential sensor 16
and at the interface between the interface member 32 and the tubing 18, 20. In turn,
this can reduce the risk of leaks at the interfaces of the interface member 32.
[0044] The interface member 32 comprises a polymeric material. In this embodiment, the interface
member 32 is formed by additive manufacturing. More particularly, the interface member
32 is formed via stereolithography. It is contemplated that, in other embodiments,
the interface member 32 may be formed by molding.
[0045] According to the invention, the interface member 32 is a separate component from
the housing 12.
[0046] In this embodiment, as shown in Figure 14, the control unit 25 is a computer having
a processor unit 115 for carrying out executable code, and a non-transitory memory
module 117 that stores the executable code in a non-transitory medium (not shown)
included in the memory module 117. The processor unit 115 includes one or more processors
for performing processing operations that implement functionality of the control unit
25. The processor unit 115 may be a general-purpose processor or may be a specific-purpose
processor comprising one or more preprogrammed hardware or firmware elements (e.g.,
application-specific integrated circuits (ASICs), electrically erasable programmable
read-only memories (EEPROMs), etc.) or other related elements. The non-transitory
medium of the memory module 117 may be a semiconductor memory (e.g., read-only memory
(ROM) and/or random-access memory (RAM)), a magnetic storage medium, an optical storage
medium, and/or any other suitable type of memory. While the control unit 25 represented
as being one entity in this implementation, it is understood that the control unit
25 could comprise separate entities.
[0047] The control unit 25 is operatively connected to the pressure differential sensor
16 for receiving from the pressure differential sensor 16 a signal representative
of the pressure differential measured by the pressure differential sensor 16. Notably,
a connecting link 51 interconnects the connector 30 to the control unit 25 such that
the PCB 14 is in communication with the control unit 25. In other words, in this embodiment,
the control unit 25 of the fluid circuit monitoring system 10 is located remotely
of the housing 12.
[0048] In a similar manner, the control unit 25 is operatively connected to the temperature
probes 45, 47 such as to receive from the temperature probes 45, 47 respective signals
representative of the fluid temperatures at the junctions 22, 24. Based on these temperatures,
the control unit 25 is operable to determine a temperature differential between the
junctions 22, 24.
[0049] The control unit 25 thus actively tracks the evolution of the pressure differential
and the temperature differential between the junctions 22, 24 (i.e., the inlet and
the outlet of the fluid circuit). Based on the pressure and temperature differentials,
the control unit 25 can then determine the fluid flow rate within the fluid circuit.
The control unit 25 thus records the determined fluid flow rate and the associated
pressure and temperature differentials in order to keep a log thereof. Based on the
recorded values of one or more of the fluid flow rate, the pressure differential and
the temperature differential, the control unit 25 can determine if the fluid circuit
requires maintenance. For example, if the fluid flow rate decreases below a certain
threshold value, the control unit 25 may determine that maintenance of the fluid circuit
is required. Similarly, if the pressure differential decreases below a certain threshold
pressure differential value or if the temperature differential increases above a certain
threshold temperature differential value, the control unit 25 may determine that maintenance
of the fluid circuit is required.
[0050] The control unit 25 is connected to a display unit (not shown) in order to alert
an operator when the control unit 25 determines that maintenance of the fluid circuit
is required. The recorded values of the fluid flow rate, the pressure differential
and the temperature differential may also be displayed such that the operator can
be made aware of these values.
[0051] The operator may thus intervene and conduct maintenance of the fluid circuit (e.g.,
by clearing deposits in the fluid circuit) before the fluid circuit is subject to
failure (e.g., inoperable blockage in the fluid circuit). The fluid circuit monitoring
system 10 thus allows the operator to conduct preventive maintenance of the fluid
circuit rather than reactive maintenance thereof.
[0052] While the heat exchanger 40 in this example of implementation is a water block, the
fluid circuit monitoring system 10 may be used with any other suitable type of heat
exchanger. Furthermore, while a single heat exchanger 40 has been represented here
for simplicity, in practice a plurality of heat exchanging components such as a number
of water blocks are associated with a different server 50 of a server rack (not shown)
and share the same fluid circuit and thus the fluid circuit monitoring system 10 monitors
the fluid circuit shared by the water blocks. More particularly, the junction 22 is
located at the inlet of a selected one of the water blocks (a "witness" water block)
of the fluid circuit and the junction 24 is located at the outlet of that witness
water block of the fluid circuit.
[0053] In some embodiments, a server rack can be associated with multiple fluid circuit
monitoring systems 10. For instance, each server 50 of the server rack can be monitored
by its own fluid monitoring system 10. In some cases, each server 50 can have multiple
heat exchangers 40 (e.g., multiple water blocks), with each heat exchanger 40 positioned
to cool a particular server component 55 of the server 50 and monitored by its own
fluid circuit monitoring system 10 (i.e., a fluid circuit monitoring system 10 for
each heat exchanger 40 of the server 50). This may be useful for example where accrued
monitoring is desired such as when a given server component 55 is particularly expensive.
[0054] Thus, in the context of a server rack which houses a number of the servers 50, the
fluid circuit monitoring system 10 offers a convenient and size-efficient solution
for actively monitoring the condition of the fluid circuit integrating the various
heat exchanging components housed within the servers 50. This may be particularly
beneficial for data centers which implement a significant quantity of server racks
and have limited space for including a fluid circuit monitoring system therein.
[0055] Modifications and improvements to the above-described implementations of the present
technology may become apparent to those skilled in the art. The foregoing description
is intended to be exemplary rather than limiting. The scope of the present technology
is therefore intended to be limited solely by the scope of the appended claims.
1. A fluid circuit monitoring system (10) for monitoring a fluid circuit, comprising:
a housing (12);
the housing (12) being supported by a printed circuit board (PCB) (14);
a pressure sensor (16) for sensing a pressure of fluid flowing in the fluid circuit,
the pressure sensor (16) being mounted to and in communication with the PCB (14),
the pressure sensor (16) comprising a sensing port (36) being configured to receive
fluid therein;
an interface member (32) supported by the PCB (14) and fluidly communicating the fluid
circuit to the pressure sensor (16), the interface member (32) extending from a first
end (52) to a second end (54), the first end (52) being abutted by the housing (12),
the second end (54) being abutted by the pressure sensor (16) such that the interface
member (32) is collaboratively retained in place by the pressure sensor (16) and the
housing (12), the interface member (32) comprising a channel (56) having:
a channel inlet (60) in fluid communication with the fluid circuit and configured
to be coupled thereto via tubing (18); and
a channel outlet (62) connected to the sensing port (36) of the pressure sensor(16),
the housing (12) at least partly enclosing the PCB (14), the pressure sensor (16)
and the interface member (32) therein,
and
a control unit (25) being operatively connected to the pressure sensor (16) for receiving,
from the pressure sensor (16), a signal representative of the pressure measured by
the pressure sensor (16).
2. The fluid circuit monitoring system of claim 1, wherein:
the pressure sensor (16) is a pressure differential sensor (16);
the sensing port (36) is a first sensing port (36);
the pressure differential sensor (16) comprises a second sensing port (38) configured
to receive fluid therein;
the channel (56) is a first channel (56);
the channel inlet (60) and the channel outlet (62) are a first channel inlet (60)
and a first channel outlet (62);
the first channel inlet (60) is fluidly connected at a first location of the fluid
circuit;
the interface member (32) comprises a second channel (58) having:
(i) a second channel inlet (60) fluidly connected at a second location of the fluid
circuit and configured to be coupled thereto via tubing (20); and
(ii) a second channel outlet (62) connected to the second sensing port (38) of the
pressure differential sensor (16),
the signal received by the control unit (25), from the pressure differential sensor
(16), is representative of a pressure differential between the first location and
the second location of the fluid circuit as measured by the pressure differential
sensor (16).
3. The fluid circuit monitoring system of claim 1, wherein the channel (56) has outwardly-expanding
tapered end portions (TL1, TL2) for sealingly engaging the sensing port (36) of the
pressure sensor (16) and the tubing (18).
4. The fluid circuit monitoring system of any one of claims 1 to 3, wherein a resin (64)
is applied at an interface between the interface member (32) and the pressure sensor
(16).
5. The fluid circuit monitoring system of claim 2, further comprising a temperature sensing
unit for sensing a temperature of fluid circulating in the fluid circuit, the temperature
sensing unit comprising:
a first temperature probe (45) positioned at the first location of the fluid circuit;
and
a second temperature probe (47) positioned at the second location of the fluid circuit,
wherein:
the control unit (25) is operatively connected to the first and second temperature
probes (45, 47) for receiving, from the first and second temperature probes (45, 47),
signals representative of fluid temperatures at the first and second locations of
the fluid circuit; and
the control unit (25) is operable to determine, based on the fluid temperatures at
the first and second locations, a temperature differential between the first and second
locations of the fluid circuit.
6. The fluid circuit monitoring system of claim 5, wherein the control unit (25) is operable
to:
determine, based on the pressure differential and the temperature differential, a
fluid flow rate within the fluid circuit; and
record the determined fluid flow rate.
7. The fluid circuit monitoring system of claim 6, wherein the control unit (25) is operable
to determine, based on recorded values of the fluid flow rate, if the fluid circuit
requires maintenance.
8. The fluid circuit monitoring system of claim 2, wherein:
the first channel inlet (60) and the second channel inlet (60) are aligned along a
generally horizontal axis; and
the first channel outlet (62) and the second channel outlet (62) are aligned along
a generally vertical axis.
9. The fluid circuit monitoring system of claim 1, wherein:
the channel inlet (60) has a first diameter;
the channel outlet (62) has a second diameter; and
the first diameter is greater than the second diameter.
10. A heat exchange system, comprising:
a heat exchanger (40), comprising:
a heat exchanging body (57); and
a fluid circuit at least partly extending within the heat exchanging body (57), the
fluid circuit having an inlet for receiving fluid within the fluid circuit and an
outlet for expelling fluid from the fluid circuit;
and
a fluid circuit monitoring system (10) according to claim 1.
11. The heat exchange system of claim 10, wherein:
the heat exchanger (40) is a water block (40);
the heat exchanging body (57) of the water block (40) is configured to be in contact
with a component to be cooled; and
the fluid circuit comprises a conduit defined by the heat exchanging body (57) of
the water block (40).
12. The heat exchange system of claim 10, wherein:
the pressure sensor (16) is a pressure differential sensor (16);
the sensing port (36) is a first sensing port (36);
the pressure differential sensor (16) comprises a second sensing port (38) configured
to receive fluid therein;
the channel (56) is a first channel (56);
the channel inlet (56) and the channel outlet (62) are a first channel inlet (56)
and a first channel outlet (62);
the first channel inlet (56) is fluidly connected at the inlet of the fluid circuit;
the interface member (32) comprises a second channel (58) having:
(i) a second channel inlet (60) fluidly connected at the outlet of the fluid circuit
and configured to be coupled thereto via tubing (20); and
(ii) a second channel outlet (62) connected to the second sensing port (38) of the
pressure differential sensor (16),
the signal received by the control unit (25), from the pressure differential sensor
(16), is representative of a pressure differential between the inlet and the outlet
of the fluid circuit as measured by the pressure differential sensor (16).
1. Fluidkreisüberwachungssystem (10) zum Überwachen eines Fluidkreises, Folgendes umfassend:
ein Gehäuse (12);
wobei das Gehäuse (12) von einer Leiterplatte (printed circuit board - PCB) (14) getragen
wird;
einen Drucksensor (16) zum Erfassen eines im Fluidkreis strömenden Drucks von Fluid,
wobei der Drucksensor (16) an und in Verbindung mit der PCB (14) montiert ist, wobei
der Drucksensor (16) einen Erfassungsanschluss (36) umfasst, der konfiguriert ist,
um darin Fluid aufzunehmen;
ein Schnittstellenelement (32), das von der PCB (14) getragen wird und den Fluidkreis
mit dem Drucksensor (16) fluidisch verbindet, wobei das Schnittstellenelement (32)
sich von einem ersten Ende (52) bis zu einem zweiten Ende (54) erstreckt, wobei das
erste Ende (52) am Gehäuse (12) anliegt und das zweite Ende (54) am Drucksensor (16)
anliegt, so dass das Schnittstellenelement (32) durch den Drucksensor (16) und das
Gehäuse (12) gemeinsam am Platz gehalten wird, wobei das Schnittstellenelement (32)
einen Kanal (56) umfasst, der Folgendes aufweist:
einen Kanaleinlass (60) in Fluidverbindung mit dem Fluidkreis und konfiguriert, um
über eine Rohrleitung (18) damit gekoppelt zu sein; und
einen Kanalauslass (62), der mit dem Erfassungsanschluss (36) des Drucksensors (16)
verbunden ist, wobei das Gehäuse (12) zumindest teilweise die PCB (14), den Drucksensor
(16) und das Schnittstellenelement (32) darin umschließt,
und
eine Steuereinheit (25), die mit dem Drucksensor (16) wirkverbunden ist, um von dem
Drucksensor (16) ein Signal zu empfangen, das den vom Drucksensor (16) gemessenen
Druck darstellt.
2. Fluidkreisüberwachungssystem nach Anspruch 1, wobei:
der Drucksensor (16) ein Druckdifferenzsensor (16) ist;
der Erfassungsanschluss (36) ein erster Erfassungsanschluss (36) ist;
der Druckdifferenzsensor (16) einen zweiten Erfassungsanschluss (38) umfasst, der
konfiguriert ist, um darin Fluid aufzunehmen;
der Kanal (56) ein erster Kanal (56) ist;
der Kanaleinlass (60) und der Kanalauslass (62) ein erster Kanaleinlass (60) und ein
erster Kanalauslass (62) sind;
der erste Kanaleinlass (60) an einer ersten Stelle des Fluidkreises fluidisch verbunden
ist;
das Schnittstellenelement (32) einen zweiten Kanal (58) umfasst, der Folgendes aufweist:
(i) einen zweiten Kanaleinlass (60), der an einer zweiten Stelle des Fluidkreises
fluidisch verbunden ist und konfiguriert ist, um über eine Rohrleitung (20) damit
gekoppelt zu sein; und
(ii) einen zweiten Kanalauslass (62), der mit dem zweiten Erfassungsanschluss (38)
des Druckdifferenzsensors (16) verbunden ist,
das durch die Steuereinheit (25) vom Druckdifferenzsensor (16) empfangene Signal eine
Druckdifferenz zwischen der ersten Stelle und der zweiten Stelle des Fluidkreises,
gemessen durch den Druckdifferenzsensor (16), darstellt.
3. Fluidkreisüberwachungssystem nach Anspruch 1, wobei der Kanal (56) sich nach außen
erweiternde konische Endabschnitte (TL1, TL2) aufweist, um den Erfassungsanschluss
(36) des Drucksensors (16) und die Rohrleitung (18) abdichtend in Eingriff zu nehmen.
4. Fluidkreisüberwachungssystem nach einem der Ansprüche 1 bis 3, wobei ein Harz (64)
an einer Schnittstelle zwischen dem Schnittstellenelement (32) und dem Drucksensor
(16) aufgebracht ist.
5. Fluidkreisüberwachungssystem nach Anspruch 2, ferner umfassend eine Temperaturerfassungseinheit
zum Erfassen einer Temperatur von Fluid, das im Fluidkreis zirkuliert, wobei die Temperaturerfassungseinheit
Folgendes umfasst:
eine erste Temperatursonde (45), die an der ersten Stelle des Fluidkreises positioniert
ist; und
eine zweite Temperatursonde (47), die an der zweiten Stelle des Fluidkreises positioniert
ist,wobei:
die Steuereinheit (25) mit der ersten und der zweiten Temperatursonde (45, 47) zum
Empfangen, von der ersten und der zweiten Temperatursonde (45, 47), von Signalen,
die die Fluidtemperaturen an der ersten und der zweiten Stelle des Fluidkreises darstellen,
wirkverbunden ist; und
die Steuereinheit (25) betreibbar ist, um basierend auf den Fluidtemperaturen an der
ersten und der zweiten Stelle eine Temperaturdifferenz zwischen der ersten und der
zweiten Stelle des Fluidkreises zu bestimmen.
6. Fluidkreisüberwachungssystem nach Anspruch 5, wobei die Steuereinheit (25) betreibbar
ist, um:
basierend auf der Druckdifferenz und der Temperaturdifferenz eine Fluidströmungsrate
innerhalb des Fluidkreises zu bestimmen; und
die bestimmte Fluidströmungsrate aufzuzeichnen.
7. Fluidkreisüberwachungssystem nach Anspruch 6, wobei die Steuereinheit (25) betreibbar
ist, um basierend auf aufgezeichneten Werten der Fluidströmungsrate zu bestimmen,
ob der Fluidkreis gewartet werden muss.
8. Fluidkreisüberwachungssystem nach Anspruch 2, wobei:
der erste Kanaleinlass (60) und der zweite Kanaleinlass (60) entlang einer im Wesentlichen
horizontalen Achse ausgerichtet sind; und
der erste Kanalauslass (62) und der zweite Kanalauslass (62) entlang einer im Wesentlichen
vertikalen Achse ausgerichtet sind.
9. Fluidkreisüberwachungssystem nach Anspruch 1, wobei:
der Kanaleinlass (60) einen ersten Durchmesser aufweist;
der Kanalauslass (62) einen zweiten Durchmesser aufweist; und
der erste Durchmesser größer als der zweite Durchmesser ist.
10. Wärmetauschsystem, Folgendes umfassend:
einen Wärmetauscher (40), Folgendes umfassend:
einen Wärmetauschkörper (57); und
einen Fluidkreis, der sich zumindest teilweise innerhalb des Wärmetauschkörpers (57)
erstreckt, wobei der Fluidkreis einen Einlass zum Aufnehmen von Fluid innerhalb des
Fluidkreises und einen Auslass zum Ausstoßen von Fluid aus dem Fluidkreis aufweist;
und
ein Fluidkreisüberwachungssystem (10) nach Anspruch 1.
11. Wärmetauschsystem nach Anspruch 10, wobei:
der Wärmetauscher (40) ein Wasserblock (40) ist;
der Wärmetauschkörper (57) des Wasserblocks (40) konfiguriert ist, um mit einer zu
kühlenden Komponente in Kontakt zu stehen; und
der Fluidkreis eine durch den Wärmetauschkörper (57) des Wasserblocks (40) definierte
Leitung umfasst.
12. Wärmetauschsystem nach Anspruch 10, wobei:
der Drucksensor (16) ein Druckdifferenzsensor (16) ist;
der Erfassungsanschluss (36) ein erster Erfassungsanschluss (36) ist;
der Druckdifferenzsensor (16) einen zweiten Erfassungsanschluss (38) umfasst, der
konfiguriert ist, um darin Fluid aufzunehmen;
der Kanal (56) ein erster Kanal (56) ist;
der Kanaleinlass (56) und der Kanalauslass (62) ein erster Kanaleinlass (56) und ein
erster Kanalauslass (62) sind;
der erste Kanaleinlass (56) am Einlass des Fluidkreises fluidisch verbunden ist;
das Schnittstellenelement (32) einen zweiten Kanal (58) umfasst, der Folgendes aufweist:
(i) einen zweiten Kanaleinlass (60), der am Auslass des Fluidkreises fluidisch verbunden
ist und konfiguriert ist, um über eine Rohrleitung (20) damit gekoppelt zu sein; und
(ii) einen zweiten Kanalauslass (62), der mit dem zweiten Erfassungsanschluss (38)
des Druckdifferenzsensors (16) verbunden ist,
das durch die Steuereinheit (25) vom Druckdifferenzsensor (16) empfangene Signal eine
Druckdifferenz zwischen dem Einlass und dem Auslass des Fluidkreises, gemessen durch
den Druckdifferenzsensor (16), darstellt.
1. Système de surveillance de circuit de fluide (10) pour surveiller un circuit de fluide,
comprenant :
un boîtier (12) ;
le boîtier (12) étant supporté par une carte de circuit imprimé (PCB) (14) ;
un capteur de pression (16) pour détecter une pression de fluide s'écoulant dans le
circuit de fluide, le capteur de pression (16) étant monté sur et en communication
avec la PCB (14), le capteur de pression (16) comprenant un orifice de détection (36)
étant conçu pour recevoir du fluide à l'intérieur de celui-ci ;
un élément d'interface (32) supporté par la PCB (14) et communiquant fluidiquement
le circuit de fluide au capteur de pression (16), l'élément d'interface (32) s'étendant
d'une première extrémité (52) à une seconde extrémité (54), la première extrémité
(52) étant en butée contre le boîtier (12), la seconde extrémité (54) étant en butée
contre le capteur de pression (16) de sorte que l'élément d'interface (32) est maintenu
en place de manière collaborative par le capteur de pression (16) et le boîtier (12),
l'élément d'interface (32) comprenant un canal (56) ayant :
une entrée de canal (60) en communication fluidique avec le circuit de fluide et conçue
pour être couplée à celui-ci via un tube (18) ; et
une sortie de canal (62) reliée à l'orifice de détection (36) du capteur de pression(16),
le boîtier (12) renfermant au moins partiellement la PCB (14), le capteur de pression
(16) et l'élément d'interface (32) dans celui-ci,
et
une unité de commande (25) reliée de manière fonctionnelle au capteur de pression
(16) pour recevoir, depuis le capteur de pression (16), un signal représentatif de
la pression mesurée par le capteur de pression (16).
2. Système de surveillance de circuit de fluide selon la revendication 1, dans lequel
:
le capteur de pression (16) est un capteur de différentiel de pression (16) ;
l'orifice de détection (36) est un premier orifice de détection (36) ;
le capteur de différentiel de pression (16) comprend un second orifice de détection
(38) conçu pour recevoir du fluide à l'intérieur de celui-ci ;
le canal (56) est un premier canal (56) ;
l'entrée de canal (60) et la sortie de canal (62) sont une première entrée de canal
(60) et une première sortie de canal (62) ;
la première entrée de canal (60) est reliée fluidiquement à un premier emplacement
du circuit de fluide ;
l'élément d'interface (32) comprend un second canal (58) ayant :
(i) une seconde entrée de canal (60) reliée fluidiquement à un second emplacement
du circuit de fluide et conçue pour être couplée à celui-ci via un tube (20) ; et
(ii) une seconde sortie de canal (62) reliée au second orifice de détection (38) du
capteur de différentiel de pression (16),
le signal reçu par l'unité de commande (25), depuis le capteur de différentiel de
pression (16), est représentatif d'un différentiel de pression entre le premier emplacement
et le second emplacement du circuit de fluide tel que mesuré par le capteur de différentiel
de pression (16).
3. Système de surveillance de circuit de fluide selon la revendication 1, dans lequel
le canal (56) a des parties d'extrémité effilées s'étendant vers l'extérieur (TL1,
TL2) pour mettre en prise de manière étanche l'orifice de détection (36) du capteur
de pression (16) et le tube (18).
4. Système de surveillance de circuit de fluide selon l'une quelconque des revendications
1 à 3, dans lequel une résine (64) est appliquée au niveau d'une interface entre l'élément
d'interface (32) et le capteur de pression (16).
5. Système de surveillance de circuit de fluide selon la revendication 2, comprenant
en outre une unité de détection de température pour détecter une température de fluide
circulant dans le circuit de fluide, l'unité de détection de température comprenant
:
une première sonde de température (45) positionnée au niveau du premier emplacement
du circuit de fluide ; et
une seconde sonde de température (47) positionnée au niveau du second emplacement
du circuit de fluide,
dans lequel :
l'unité de commande (25) est reliée de manière fonctionnelle aux première et seconde
sondes de température (45, 47) pour recevoir, depuis les première et seconde sondes
de température (45, 47), des signaux représentatifs des températures de fluide au
niveau des premier et second emplacements du circuit de fluide ; et
l'unité de commande (25) peut être utilisée pour déterminer, sur la base des températures
de fluide au niveau des premier et second emplacements, un différentiel de pression
entre les premier et second emplacements du circuit de fluide.
6. Système de surveillance de circuit de fluide selon la revendication 5, dans lequel
l'unité de commande (25) peut être utilisée pour :
déterminer, sur la base du différentiel de pression et du différentiel de température,
un débit de fluide à l'intérieur du circuit de fluide ; et
enregistrer le débit de fluide déterminé.
7. Système de surveillance de circuit de fluide selon la revendication 6, dans lequel
l'unité de commande (25) peut être utilisée pour déterminer, sur la base des valeurs
enregistrées du débit de fluide, si le circuit de fluide nécessite une intervention
de maintenance.
8. Système de surveillance de circuit de fluide selon la revendication 2, dans lequel
:
la première entrée de canal (60) et la seconde entrée de canal (60) sont alignées
le long d'un axe généralement horizontal ; et
la première sortie de canal (62) et la seconde sortie de canal (62) sont alignées
le long d'un axe généralement vertical.
9. Système de surveillance de circuit de fluide selon la revendication 1, dans lequel
:
l'entrée de canal (60) a un premier diamètre ;
la sortie de canal (62) a un second diamètre ; et
le premier diamètre est supérieur au second diamètre.
10. Système d'échange de chaleur, comprenant :
un échangeur de chaleur (40), comprenant :
un corps d'échange de chaleur (57) ; et
un circuit de fluide s'étendant au moins partiellement à l'intérieur du corps d'échange
de chaleur (57), le circuit de fluide ayant une entrée pour recevoir du fluide à l'intérieur
du circuit de fluide et une sortie pour expulser le fluide du circuit de fluide ;
et
un système de surveillance de circuit de fluide (10) selon la revendication 1.
11. Système d'échange de chaleur selon la revendication 10, dans lequel :
l'échangeur de chaleur (40) est un bloc à eau (40) ;
le corps d'échange de chaleur (57) du bloc à eau (40) est conçu pour être en contact
avec un composant à refroidir ; et
le circuit de fluide comprend un conduit défini par le corps d'échange de chaleur
(57) du bloc à eau (40) .
12. Système d'échange de chaleur selon la revendication 10, dans lequel :
le capteur de pression (16) est un capteur de différentiel de pression (16) ;
l'orifice de détection (36) est un premier orifice de détection (36) ;
le capteur de différentiel de pression (16) comprend un second orifice de détection
(38) conçu pour recevoir du fluide à l'intérieur de celui-ci ;
le canal (56) est un premier canal (56) ;
l'entrée de canal (56) et la sortie de canal (62) sont une première entrée de canal
(56) et une première sortie de canal (62) ;
la première entrée de canal (56) est reliée fluidiquement à l'entrée du circuit de
fluide ;
l'élément d'interface (32) comprend un second canal (58) ayant :
(i)une seconde entrée de canal (60) reliée fluidiquement à la sortie du circuit de
fluide et conçue pour être couplée à celle-ci via un tube (20) ; et
(ii) une seconde sortie de canal (62) reliée au second orifice de détection (38) du
capteur de différentiel de pression (16),
le signal reçu par l'unité de commande (25), depuis le capteur de différentiel de
pression (16), est représentatif d'un différentiel de pression entre l'entrée et la
sortie du circuit de fluide tel que mesuré par le capteur de différentiel de pression
(16) .