| (19) |
 |
|
(11) |
EP 3 591 143 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
22.11.2023 Bulletin 2023/47 |
| (22) |
Date of filing: 07.03.2017 |
|
| (51) |
International Patent Classification (IPC):
|
| (52) |
Cooperative Patent Classification (CPC): |
|
E04H 12/085 |
|
| (54) |
POWER PYLON WITH FLANGE CONNECTED TUBULAR SEGMENTS
LEISTUNGSMAST MIT FLANSCH, DER MIT ROHRSEGMENTEN VERBUNDEN IST
PYLÔNE DE PUISSANCE AYANT DES SEGMENTS TUBULAIRES FIXÉS PAR UNE BRIDE
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
15.03.2016 NL 2016438
|
| (43) |
Date of publication of application: |
|
08.01.2020 Bulletin 2020/02 |
| (62) |
Application number of the earlier application in accordance with Art. 76 EPC: |
|
17159607.5 / 3219876 |
| (73) |
Proprietor: VDL Groep B.V. |
|
5652 AW Eindhoven (NL) |
|
| (72) |
Inventor: |
|
- PLATENBURG, Josephus Gerardus Maria
5683 LP BEST (NL)
|
| (74) |
Representative: EP&C |
|
P.O. Box 3241 2280 GE Rijswijk 2280 GE Rijswijk (NL) |
| (56) |
References cited: :
DE-A1- 10 152 018 US-A1- 2010 117 353
|
US-A1- 2004 112 002 US-A1- 2010 307 097
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The field of the invention relates to an annular flange according to the preamble
of claim 1.
[0002] An example of a power pylon is known as "Wintrack pylon", which comprises two steel
tubular segments with each a length of about 30m. The outer diameter of this known
pylon tapers from about 2,4m at the bottom to 0,5m at the top. The wall thickness
of the two tubular segments is about 16 mm. The upper segment has a weight of about
13 tons and the lower segment has a weight of about 40 tons. At the location of the
flange connection the pylon has an outer diameter of about 1,2m.
[0003] The upper tubulars segment of the "Wintrack pylon" has a flange attached (welded)
at its lower end, which flange extends radially inwards. The lower tubular segment
has a flange attached (welded) at its upper end which also extends radially inwards.
The flanges are each provided with for example twenty-four through bores aranged in
a circle. The bores of the opposing flanges are aligned and bolted together by bolts
and nuts.
[0004] Although the known pylons have been successfully built, there have occurred some
problems with the sealing between the flanges. A defect in the sealing between the
flanges may increase the risk of corrosion of the bolts due to exposure to moist/water.
[0005] From
EP 1 514 029 it is known to provide a layer of a thermoplastic material between the flanges to
compensate for surface unevenness and, additionally with silicone filling mass to
prevent moisture from entering between the flanges. This solution however requires
additional parts and complication during installation (heat the thermoplastic layer).
[0006] US 2010/0117353 describes a flange connection for pylons of wind turbines. The flanges have stiffening
plates which extend in the axial and radial inward direction of the pylon. Opposing
stiffening plates abut each other with a head surface when assembled. One of the opposing
stiffening plates is indented in the head surface.
[0007] US 2010/0307097 describes a flange connection for wind turbines. A mechanical bond is formed between
the flanges of the flange connection which are bolted together. The mechanical bond
may be formed by providing a ring groove in the face of the flanges and placing a
ring gasket in the opposing grooves. Alternatively, a groove may be provided in the
face of one flange and a mating protrusion on the face of the other flange. The mechanical
bond then comprisies nesting the mating protrusion within the groove. Alternately
a series of apertures is formed in the flanges and the mechanical bond between the
flanges is formed by placing pins in the apertures of the opposing flanges.
[0008] US 2004/0112002 describes a flange connection with a tubular portion for attachment to one end of
a tubular component, in particular a tower segment of a wind turbine. In the flange
connection one of the flanges has a central recess in its flange surface.
[0009] The present invention has for an object to mitigate the problem of exposure of the
bolts to moist in a simple but effective manner.
[0010] This object is achieved by an annular flange according to claim 1.
[0011] This connection structure according to the invention achieves that two radially spaced
relatively narrow coaxial annular interfaces are created between the two opposing
flanges. Thereby any unevenness in the flange surfaces is compensated.
[0012] In a practical embodiment the central annular recessed zone has a width that is between
70% - 75%, preferably around 73% of the width of the end face of the annular flange.
[0013] Preferably the radially outward engagement surface and the radially inward engagement
surface have substantially the same width.
[0014] Thereby, in the mentioned practical embodiment, the two radially spaced relatively
narrow coaxial annular interfaces between the opposing flanges each have width that
is about 12,5% -15% of the total flange width. By such a width of the interfaces a
good compromise is achieved between the load distribution at the interfaces, and on
the other hand the approximation of a two-point load which mitigates the unevenness
problem of the interfaces.
[0015] In a preferred embodiment the end face of both of the opposing annular flanges have
an annular recessed zone that is machined in the end face. The flanges are manufactured
separately from the tubular walls of the tubular pylon segments and are then attached
to the respective tubular walls by welding. It is advantageous to manufacture only
one single type of flange both for the upper and the lower pylon segment. This prevents
that the wrong flange can be welded to the tubular wall and two opposing flanges can
be of the type having no recess.
[0016] In a possible practical embodiment the annular flange has a thickness and the central
annular recessed zone has a depth with respect to the radially outward and radially
inward engagement surfaces, wherein the ratio between said depth and said thickness
is within the range 0,02 - 0,03, preferably around 0,027.
[0017] In a possible practical embodiment the flange has an outer diameter and the central
annular recessed zone has a depth with respect to the radially outward and radially
inward engagement surfaces, wherein the ratio between said depth and an outer diameter
of the flange is between 0,001 - 0,002, preferably between 0,0015 and 0,0020, more
preferably around 0,0017.
[0018] In an embodiment the bolts have a head which is arranged against the lower annular
flange of the flange connection.
[0019] In an embodiment the connection furthermore comprises washers arranged between the
flange surface and the bolt heads and nuts, wherein the washer at the lower flange
has a radial groove extending from the inner side of the washer to the outer side
of the groove.
[0020] The radial groove may have a depth that corresponds to about half of the thickness
of the washer. In a practical embodiment the washer may have a thickness of about
8mm and the groove may have depth of about 4mm.
[0021] The radial groove, in the mounted state of the washer, preferably faces the flange
surface.
[0022] The groove in the washer at the lower flange of the connection serves as a drainage
for water/moist that for some reason has entered in the through bores. If the water
would stay in the bores the bolts might get exposed too long to the moist and get
corroded, whereby the risk of failure of the bolt increases. By draining the possible
water from the bores through the groove this risk is reduced.
[0023] The invention will be further elucidated in the following description with reference
to the drawing, wherein:
Fig. 1 shows in a view from above a flange connection of a pylon according to the
invention,
Fig. 2 shows a cross section according to C-C as indicated in Fig. 1,
Fig. 3 shows in a view from above one of the flanges of the connection of Fig. 1,
Fig. 4 shows a cross section according to A-A in Fig. 3,
Fig. 5 shows a detail of Fig. 4, and
Fig. 6 shows a view in perspective of a washer for a connection shown in Fig. 1.
[0024] In Figs 1 and 2 is illustrated a flange connection to connect two tubular segments
1 and 2 of a power pylon. Such a power pylon carries overhead power lines. The tubular
segments 1, 2 each have a tubular wall indicated by reference numerals 3, 4 respectively.
In a practical embodiment of the pylon the tubular walls of the pylon may have an
outer diameter of about 1,1 - 1,2 m at the location of the flanged connection. The
outer diameter
Do (cf. Fig. 3) of the flanges corresponds to the outer diameter of the tubular walls
[0025] The upper tubular segment 1 has an upper flange 5, which is attached to the lower
end of the upper tubular wall 3. The flange 5 is attached to the tubular wall by welding
and extends radially inwards therefrom. The weld is indicated by reference numeral
7.
[0026] The lower tubular segment 2 has a lower flange 6, which is attached to the upper
end of the lower tubular wall 4. The flange 6 is attached to the tubular wall by welding
and extends radially inwards therefrom. The weld is indicated by reference numeral
8.
[0027] The flanges 5, 6 have an upstanding circumferential rim 19, at which the flange is
welded to the tubular walls. The rim 19 may have a height of about 25 mm. This rim
19 has the advantage that the welding heat is applied at some distance of the flanges
5, 6 whereby the effect of deformation, thermal tension and additional unevenness
of the flanges 5, 6 is reduced.
[0028] In the preferred embodiment the flanges 5 and 6 are identical. The separate flange
5, 6 is shown in Fig. 3 and 4. Identical flanges 5, 6 results in that all flanges
can be made by the same forming and machining process and no mistakes can be made
regarding which flange has to be welded to which tubular wall 3, 4.
[0029] The flanges 5,6 of the power pylon may have thickness
t ≥ 30 mm, for example 60 - 80 mm. The flanges 5, 6 may have an inner diameter
Di of 700 - 800 mm.
[0030] The flanges 5, 6 are provided with through bores 9 distributed over the circumference
of the flange, as can be seen in Figs 3 and 4.
[0031] In the particular embodiment shown in the figures there are twenty-four bores 9 provided
in the flange 5, 6. Bolts 10 with a threaded shank are inserted through the aligned
bores 9 of the two opposing flanges 5, 6. The bolts 10 are inserted from below such
that the bolt head 10A is located at the lower flange 6. Nuts 11 are screwed on the
bolts 10 to tighten the flanges 5, 6 together. For the pylon according to the invention
M48 bolts can be used.
[0032] Between the nut 11 and the upper flange a washer 13 is arranged. Also between the
bolt head 10A and the lower flange a washer 12 is arranged. The lower washer 12 is
shown separately in Fig. 6. The washer 12 has an upper surface 12A in which a radial
groove 14 is formed. When mounted the upper surface 12A is facing the flange 6. The
radial groove 14 forms with the flange surface a channel that communicates with the
bore 9. This has as an advantage that if moist/water somehow ends up in the bore 9,
it will be able to drain at the lower side from the bore 9 through the formed channel.
In this way a retention of water in the bores 9, which is potentially detrimental
for the bolt 10, is prevented.
[0033] In a practical embodiment the washer 12 may have a thickness of about 8mm and the
groove 14 may have a depth of about 4mm.
[0034] The opposing annular flanges 5, 6 each have an end face 15, which faces the end face
15 of the other one of the flanges 5, 6. The end face 15 has a central annular recessed
zone 16 that extends circumferentially. The annular recessed zone 16 is machined in
said end face 15. The central annular recessed zone 16 is flanked by a radially outward
engagement surface 17 and a radially inward engagement surface 18. The radially outward
engagement surface 17 and radially inward engagement surface 18 form the interface
with the same surfaces 17, 18 of the opposing flange 5, 6 when the flanges 5, 6 are
clamped together (cf. Fig. 2). These surfaces 17, 18 are machined such that they each
form an even plane. The radially inward engagement surface 18 may be a little recessed
with respect to the outward engagement surface 17.
[0035] The central annular zone 16 has a depth d of about 2mm with regard to the outer and
inner engagement surfaces 17, 18.
[0036] By providing the recessed central annular zone 16 the contact surface between the
engaging flanges 5, 6 is reduced whereby the evenness and thus the tightness between
the opposing contacting surfaces 17, 18 can be better guaranteed. This has a positive
influence on the prevention of water penetration between the flanges without the use
of a separate sealing gasket or the like between the flanges.
[0037] The total flange width
Wt may be about 185 mm. The width
Wcz of the recessed annular zone 16 may be about 130mm. The width
Weso,
Wesi, of the engagement surfaces 17, 18 may be 25-30mm.
1. Annular flange to be welded to a tubular segment of a power pylon, said annular flange
having an end face (15) to face an end face (15) of an opposing flange (5, 6), the
annular flange (5, 6) having through bores (9) distributed in a circle, wherein the
end face (15) has a central annular recessed zone (16), said central annular recessed
zone (16) being flanked by a radially outward engagement surface (17) and a radially
inward engagement surface (18) which form the interface with the opposing flange (5,
6), characterized in that the central annular recessed zone (16) is machined in said end face (15), and in that the engagement surfaces (17, 18) are machined such that they each form an even plane,
wherein the radially inward engagement surface (18) is a little recessed with respect
to the outward engagement surface (17).
2. Annular flange according to claim 1, wherein the central annular recessed zone (16)
has a width (Wcz) that is between 70% - 75%, preferably around 73% of the width (Wt) of the end face of the annular flange.
3. Annular flange according to any of the preceding claims, wherein the radially outward
engagement surface (17) and the radially inward engagement surface (18) have substantially
the same width.
4. Annular flange according to any of the preceding claims, wherein the flange (5, 6)
has a thickness (t) and the central annular recessed zone (16) has a depth (d) with
respect to the radially outward and radially inward engagement surfaces, wherein the
ratio (d/t) between said depth (d) and said thickness (t) is within the range 0,02 - 0,03, preferably
around 0,027.
5. Annular flange according to any of the preceding claims, wherein the flange (5, 6)
has an outer diameter (Do) and the central annular recessed zone (16) has a depth (d) with respect to the radially
outward and radially inward engagement surfaces (17, 18), wherein the ratio (d/Do)between said depth (d) and an outer diameter (Do) of the flange (5, 6) is between 0,001 - 0,002, preferably between 0,0015 and 0,0020,
more preferably around 0,0017.
6. Annular flange connection for interconnecting tubular segments of a power pylon, said
annular flange connection comprising two opposing annular flanges (5, 6) which are
respectively adapted to be attached to the respective ends of the tubular segments,
said annular flanges each having an end face (15) to face the end face (15) of the
opposing flange (5, 6),
the annular flanges (5, 6) each having through bores (9) distributed in a circle,
wherein the through bores (9) of the two opposing flanges (5, 6) are adapted to be
aligned, so as to allow passing bolts (10) through said aligned through bores (9),
so as to bolt the opposing flanges (5, 6) together using nuts (11) cooperating with
said bolts,
wherein at least one of the opposing annular flanges (5, 6) is a flange according
to any of the claims 1-5.
7. Annular flange connection according to claim 6, wherein both of the opposing annular
flanges (5, 6) are a flange according to any of the claims 1-5.
8. Power pylon comprising at least two tubular segments which are interconnected by an
annular flange connection according to claim 6 or 7.
1. Ringförmiger Flansch für das Schweißen an ein rohrartiges Segment eines Energiemasts,
wobei der ringförmige Flansch eine Stirnfläche (15) aufweist, die einer Stirnfläche
(15) eines gegenüberliegenden Flansches (5, 6) zugewandt wird, wobei der ringförmige
Flansch (5, 6) in einem Kreis angeordnete Durchgangsbohrungen (9) aufweist, wobei
die Stirnfläche (15) eine mittlere ringförmige eingetiefte Zone (16) aufweist, wobei
die mittlere ringförmige eingetiefte Zone (16) von einer radial äußeren Eingriffsfläche
(17) und einer radial inneren Eingriffsfläche (18), die die Grenzfläche zum gegenüberliegenden
Flansch (5, 6) bilden, flankiert ist, dadurch gekennzeichnet, dass die mittlere ringförmige eingetiefte Zone (16) in der Stirnfläche (15) ausgebildet
ist und dass die Eingriffsflächen (17, 18) derart ausgebildet sind, dass sie jeweils
eine glatte Fläche bilden, wobei die radial innere Eingriffsfläche (18) etwas in Bezug
auf die äußere Eingriffsfläche (17) eingetieft ist.
2. Ringförmiger Flansch nach Anspruch 1, wobei die mittlere ringförmige eingetiefte Zone
(16) eine Breite (Wcz) aufweist, die zwischen 70% - 75%, vorzugsweise um 73% der Breite (Wt) der Stirnfläche des ringförmigen Flansches ausmacht.
3. Ringförmiger Flansch nach einem der vorstehenden Ansprüche, wobei die radial äußere
Eingriffsfläche (17) und die radial innere Eingriffsfläche (18) im Wesentlichen gleich
breit sind.
4. Ringförmiger Flansch nach einem der vorstehenden Ansprüche, wobei der Flansch (5,
6) eine Dicke (t) aufweist und die mittlere ringförmige eingetiefte Zone (16) eine
Tiefe (d) in Bezug auf die radial äußere und die radial innere Eingriffsfläche aufweist,
wobei das Verhältnis (d/t) zwischen der Tiefe (d) und der Dicke (t) im Bereich von
0,02-0,03, vorzugsweise um 0,027 liegt.
5. Ringförmiger Flansch nach einem der vorstehenden Ansprüche, wobei der Flansch (5,
6) einen Außendurchmesser (Do) aufweist und die mittlere ringförmige eingetiefte Zone (16) eine Tiefe (d) in Bezug
auf die radial äußere und die radial innere Eingriffsfläche (17, 18) aufweist, wobei
das Verhältnis (d/Do) zwischen der Tiefe (d) und dem Außendurchmesser (Do) des Flansches (5, 6) zwischen 0,001-0,002, vorzugsweise zwischen 0,0015 und 0,0020,
stärker bevorzugt um 0,0017 liegt.
6. Ringflanschverbindung für das Verbinden von rohrartigen Segmenten eines Energiemasts,
wobei die Ringflanschverbindung zwei gegenüberliegende ringförmige Flansche (5, 6)
umfasst, die jeweils ausgebildet sind, um an entsprechenden Enden der rohrartigen
Segmente befestigt zu werden, wobei die ringförmigen Flansche jeweils eine Stirnfläche
(15) aufweisen, die der Stirnfläche (15) des gegenüberliegenden Flansches (5, 6) zugewandt
wird,
wobei die ringförmigen Flansche (5, 6) jeweils Durchgangsbohrungen (9), die in einem
Kreis angeordnet sind, aufweisen, wobei die Durchgangsbohrungen (9) der zwei gegenüberliegenden
Flansche (5, 6) ausgebildet sind, um aneinander ausgerichtet zu werden, sodass Bolzen
(10) durch die aneinander ausgerichteten Durchgangsbohrungen (9) hindurch gehen können,
um die gegenüberliegenden Flansche (5, 6) unter Verwendung von mit den Bolzen zusammenwirkenden
Muttern (11) zu verbolzen,
wobei wenigstens einer der gegenüberliegenden Flansche (5, 6) ein Flansch gemäß den
Ansprüchen 1-5 ist.
7. Ringförmiger Flansch nach Anspruch 6, wobei jeder der gegenüberliegenden ringförmigen
Flansche (5, 6) ein Flansch gemäß den Ansprüchen 1-5 ist.
8. Energiemast, der wenigstens zwei rohrartige Segmente umfasst, die durch eine Ringflanschverbindung
gemäß dem Anspruch 6 oder 7 miteinander verbunden sind.
1. Bride annulaire destinée à être soudée à un segment tubulaire d'un pylône électrique,
ladite bride annulaire comprenant une face d'extrémité (15) destinée à faire face
à une face d'extrémité (15) d'une bride (5,6) opposée, la bride annulaire (5,6) présentant
des alésages traversants (9) répartis sur un cercle, dans laquelle la face d'extrémité
(15) présente une zone annulaire centrale en retrait (16), ladite zone annulaire centrale
en retrait (16) étant flanquée d'une surface d'engagement (17) extérieure radialement
et d'une surface d'engagement (18) intérieure radialement qui forment l'interface
avec la bride (5, 6) opposée,
caractérisé en ce que la zone annulaire centrale en retrait (16) est usinée dans ladite face d'extrémité
(15), et en ce que les surfaces d'engagement (17, 18) sont usinées de manière telle qu'elles forment
chacune un plan régulier, dans laquelle la surface d'engagement (18) intérieure radialement
est un peu en retrait par rapport à la surface d'engagement (17) extérieure.
2. Bride annulaire selon la revendication 1, dans laquelle la zone annulaire centrale
en retrait (16) a une largeur (Wcz) comprise entre 70% et 75%, de préférence environ 73%, de la largeur (Wt) de la face d'extrémité de la bride annulaire.
3. Bride annulaire selon l'une quelconque des revendications précédentes, dans laquelle
la surface d'engagement (17) extérieure radialement et la surface d'engagement (18)
intérieure radialement ont sensiblement la même largeur.
4. Bride annulaire selon l'une quelconque des revendications précédentes, dans laquelle
la bride (5, 6) a une épaisseur (t) et la zone annulaire centrale en retrait (16)
a une profondeur (d) par rapport aux surfaces d'engagement extérieure et intérieure
radialement, dans laquelle le rapport (d/t) entre ladite profondeur (d) et ladite
épaisseur (t) est compris dans la plage allant de 0,02 à 0,03, et est de préférence
d'environ 0,027.
5. Bride annulaire selon l'une quelconque des revendications précédentes, dans laquelle
la bride (5, 6) a un diamètre extérieur (Do) et la zone annulaire centrale en retrait (16) a une profondeur (d) par rapport aux
surfaces d'engagement extérieure et intérieure radialement (17, 18), dans laquelle
le rapport (d/Do) entre ladite profondeur (d) et le diamètre extérieur (Do) de la bride (5, 6) est compris entre 0,001 et 0,002, de préférence entre 0,0015
et 0,0020, plus préférablement autour de 0,0017.
6. Raccordement à bride annulaire destinée à interconnecter des segments tubulaires d'un
pylône électrique, ledit raccordement à bride annulaire comprenant deux brides annulaires
opposées (5, 6) qui sont respectivement adaptées à être attachées aux extrémités respectives
des segments tubulaires, lesdites brides annulaires comprenant chacune une face d'extrémité
(15) destinée à faire face à une face d'extrémité (15) de la bride (5,6) opposée,
les brides annulaires (5,6) présentant chacune des alésages traversants (9) répartis
sur un cercle, dans lequel les alésages traversants (9) des deux brides opposées (5,
6) sont adaptés pour être alignés, de manière à laisser passer des boulons (10) à
travers lesdits alésages traversants (9) alignés, de manière à boulonner les brides
opposées (5, 6) entre elles en utilisant des écrous (11) coopérant avec lesdits boulons,
dans lequel au moins l'une des brides opposées (5, 6) est une bride selon l'une quelconques
des revendications 1 à 5.
7. Raccordement à bride annulaire selon la revendication 6, dans lequel chacune des deux
brides annulaires opposées (5, 6) est une bride selon l'une quelconques des revendications
1 à 5.
8. Pylône électrique comprenant au moins deux segments tubulaires qui sont interconnectés
par un raccordement à bride annulaire selon la revendication 6 ou 7.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description