
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
59

1
88

9
A

1
EP003591889A1

(11) EP 3 591 889 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
08.01.2020 Bulletin 2020/02

(21) Application number: 19170130.9

(22) Date of filing: 18.04.2019

(51) Int Cl.:
H04L 9/00 (2006.01) H04L 9/06 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 05.07.2018 US 201816027521

(71) Applicant: NXP B.V.
5656 AG Eindhoven (NL)

(72) Inventors:
• KNEZEVIC, Miroslav

5656 AG Eindhoven (NL)
• VESHCHIKOV, Nikita

5656 AG Eindhoven (NL)

(74) Representative: Krott, Michel
NXP Semiconductors
Intellectual Property & Licensing
High Tech Campus 60
5656 AG Eindhoven (NL)

(54) SHUFFLING MECHANISM FOR SHUFFLING AN ORDER OF DATA BLOCKS IN A DATA
PROCESSING SYSTEM

(57) A method is provided for shuffling an order of a
plurality of data blocks. In the method, a random number
is generated, the random number corresponding to an
index for a data block of the plurality of data blocks, where
each data block of the plurality of data blocks has an
index that uniquely identifies each data block of the plu-
rality of data blocks. The increment function with a pa-

rameter is applied to the random number to generate a
new index, the new index corresponds to a data block of
the plurality of data blocks. The data block corresponding
to the new index is selected as the next data block of a
reordering of the plurality of data blocks. The method is
iterated until the reordering of the plurality of data blocks
is complete.

EP 3 591 889 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

FIELD

[0001] This disclosure relates generally to data
processing, and more particularly, to a shuffling mecha-
nism for shuffling an order of data blocks in a data
processing system.

RELATED ART

[0002] In secure data processing systems, attackers
may use side-channel attacks to extract secret informa-
tion. Side-channel attacks extract the secret information
using physical properties of the systems. For example,
an attacker may monitor properties such as execution
time and energy consumption of a target device to learn
useful information that can expose stored secrets.
[0003] There are many different countermeasures for
mitigating side-channel attacks. One common counter-
measure is called shuffling. Shuffling reorders independ-
ent operations in a random order. Shuffling countermeas-
ures spread the information leakage across the time do-
main. Shuffling works better as a countermeasure when
there are a lot of independent operations to rearrange,
and if the independent operations are rearranged using
many time slots at which a specific operation can poten-
tially be executed. Also, the system is more secure when
there are more different orders of execution for all rear-
ranged operations.
[0004] There are several different shuffling techniques.
One well-known shuffling technique is called random per-
mutation (RP). Random permutation uses a layer of in-
direction and can produce all possible n! permutations
of independent operations applied on a state of size n.
While RP provides all possible permutations, RP requires
an additional data structure and more time, as compared
to some other shuffling schemes. The additional data
structure is the same size as the number of operations
that are shuffled. Other shuffling techniques include: ran-
dom starting index (RSI), reverse shuffle (RS), and
sweep swap shuffle (SSS). There are advantages and
disadvantages to the various shuffling techniques. For
example, the RSI and RS schemes are faster than RP.
Also, RP requires a significant amount of resources to
implement in a hardware implementation. Also, RP has
the disadvantage of requiring a permutation to be gen-
erated in advance. In addition, some known RP imple-
mentations do not result in uniformly distributed permu-
tations. The RSI and RS schemes do not have the above-
mentioned disadvantages of the RP scheme, but have a
disadvantage of not generating as many permutations
as the RP scheme.
[0005] Therefore, a need exists for a shuffling mecha-
nism or scheme that can generate more permutations
and does not require any large precomputations or ad-

ditional large data structures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention is illustrated by way of
example and is not limited by the accompanying figures,
in which like references indicate similar elements. Ele-
ments in the figures are illustrated for simplicity and clarity
and have not necessarily been drawn to scale.

FIG. 1 illustrates a prior art RSI shuffling mechanism.
Figures 2 - 5 illustrate various shuffling mechanism
embodiments.
FIG. 6 illustrates a data processing system in ac-
cordance with an embodiment.

DETAILED DESCRIPTION

[0007] Generally, there is provided, a shuffling mech-
anism for shuffling an order of a plurality of data blocks
in a data processing system. The data blocks may in-
clude, for example, independent operations to be exe-
cuted in a data processing system. The independent op-
erations are independent because their execution order
can be changed without affecting the functionality of the
application. The method generates a first random
number as a starting index, and a second random number
provides a parameter for use by an increment function.
The increment function is then applied to the index to
determine a next index in a reordering of the data blocks.
The increment function may be, for example, an addition,
multiplication, or exponential function that is performed
on the previously generated index to provide the next
index.
[0008] The disclosed shuffling mechanisms generate
more permutations of the shuffling order than either RSI
or RS. Also, the shuffling mechanisms do not require a
large additional data structures to contain the permuta-
tions. As compared to RP, the disclosed embodiments
only use a small fixed amount of memory to store the
parameter. In addition, no precomputations are required.
Further, the method improves the ability to shuffle differ-
ent operations. The method can be instantiated with only
a few resources in software as well as hardware.
[0009] In accordance with an embodiment, there is pro-
vided, a method for shuffling an order of a plurality of
data blocks, the method including: providing a parameter
for use with an increment function; generating a random
number, the random number corresponding to an index
for a data block of the plurality of data blocks, wherein
each data block of the plurality of data blocks has an
index that uniquely identifies each data block of the plu-
rality of data blocks; applying the increment function with
the parameter to the random number to generate a new
index, the new index corresponding to a data block of
the plurality of data blocks; selecting the data block cor-
responding to the new index as the next data block of a
reordering of the plurality of data blocks; and iterating the

1 2

EP 3 591 889 A1

3

5

10

15

20

25

30

35

40

45

50

55

method until the reordering of the plurality of data blocks
is complete. The increment function may include one or
more of either an addition function, a multiplication func-
tion, or an exponential function. The indexes of the plu-
rality of data blocks may be a sequence of indexes. The
new index may be a starting index for a row of a plurality
of rows, and the method may be repeated to determine
an order of operations for each row of the plurality of
rows. The plurality of data blocks may be organized as
a plurality of rows of data blocks, each of the plurality of
rows having a plurality of entries, wherein the method is
used to select a row of the plurality of rows, and wherein
the method is used for each of the plurality of rows. The
method may further include randomly selecting the in-
crement function from a plurality of increment functions.
Iterating the method may further include iterating the
method by a modulo of a prime number. The plurality of
data blocks may include a plurality of operations to be
executed in a data processing system.
[0010] In another embodiment, there is provided, a
method for shuffling an order of a plurality of operations
to be executed in a data processing system, the method
including: providing a parameter for use with an incre-
ment function; generating a random number, the random
number corresponding to an index for an operation of the
plurality of operations, wherein each operation of the plu-
rality of operations has an index that uniquely identifies
each operation of the plurality of operations; applying the
increment function with the parameter to the random
number to generate a new index, the new index corre-
sponding to an operation of the plurality of operations;
selecting the operation corresponding to the new index
as the next operation in a reordering of the plurality of
operations; and iterating the method until the reordering
of the plurality of operations is complete. The increment
function may include one more of either an addition func-
tion, a multiplication function, or an exponential function.
The new index may be a starting index for a row of a
plurality of rows, and wherein the method may be repeat-
ed to determine an order of operations for each row of
the plurality of rows. The method may be repeated to
determine an order of operations for each row of the plu-
rality of rows using a different increment function. The
plurality of operations may be organized as a plurality of
rows of operations, each of the plurality of rows having
a plurality of entries, wherein the method is used to select
a row of the plurality of rows, and wherein the method is
used for each of the plurality of rows. The method may
further include randomly selecting the increment function
from a plurality of increment functions. Iterating the meth-
od may further include iterating the method by a modulo
of a prime number. The plurality of data blocks may in-
clude a plurality of operations to be executed in a data
processing system.
[0011] In yet another embodiment, there is provided,
a shuffling mechanism, including: a random number gen-
erator for generating a random number for use as an
index for a data block of the plurality of data blocks,

wherein each data block of the plurality of data blocks
has an index that uniquely identifies each data block of
the plurality of data blocks; an increment function block
for receiving a parameter and the index, and in response,
generating a new index by applying an increment function
with the parameter to the index, the new index corre-
sponding to a data block of the plurality of data blocks;
a storage element for storing the plurality of data blocks;
and a processor for selecting the data block correspond-
ing to the new index as the next data block of a reordering
of the plurality of data blocks. The increment function
may include one or more of either an addition function,
a multiplication function, or an exponential function. The
plurality of data blocks may include a plurality of opera-
tions to be executed in the processor. The increment
function may be selected randomly from a plurality of
increment functions.
[0012] FIG. 1 illustrates a prior art RSI shuffling mech-
anism 10. Shuffling mechanism 10 includes random
number generator (RNG) 12, index storage 14, increment
function 16, and current operation storage 18. Random
number generator 12 provides a random number that is
used as an initial index to index storage 14. The initial
index may be an address or other reference used to iden-
tify an instruction, operation, data block, or other data
structure having a plurality of entries. In one embodiment,
shuffling mechanism 10 is used to shuffle the order of
independent operations of an application, as for example,
the 16 operations shown as operations 20 in FIG. 1. In-
dependent operations are operations that may not have
to be executed in any particular order. Generally, using
shuffling mechanism 10 to shuffle operations will result
in only the starting operation being random. In an oper-
ation to reorder, or shuffle, the plurality of independent
operations 20 ordered from 0 - 15, random number gen-
erator 12 is used to generate an initial index labeled "IN-
ITIAL INDEX" in FIG. 1 which is stored in index storage
14. The INITIAL INDEX is then provided to increment
function 16 as a previous index PREVIOUS INDEX. The
INITIAL INDEX is incremented by increment function 16
by adding 1 to the PREVIOUS INDEX. The new index
replaces the index stored in index storage 14. If the INI-
TIAL INDEX is the number "3", shuffling mechanism 10
will provide the plurality of operations in the order 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2. In an attack
of a data processing system having shuffling mechanism
10, the starting operation can be learned by an attacker,
the subsequent operations will then be known to the at-
tacker because the subsequent operations will be exe-
cuted in the same order. The shuffling mechanism RS
differs from RSI in that RS only changes the direction
operations are executed instead of changing the starting
index.
[0013] FIG. 2 illustrates shuffling mechanism 24 for
changing the order of a plurality of operations in accord-
ance with an embodiment. Shuffling mechanism 24 in-
cludes RNG 26, index storage 28, parameter storage 30,
increment function block 32, and current operation stor-

3 4

EP 3 591 889 A1

4

5

10

15

20

25

30

35

40

45

50

55

age 34. Index storage 28, parameter storage 30, and
current operation storage 34 may be implemented as one
or memories or register files. A plurality of data blocks
36 are also illustrated in FIG. 2. The plurality of data
blocks 36 are sequentially numbered with an index that
uniquely identifies each data block. A method will be de-
scribed for shuffling the order of the plurality of data
blocks 36. In one embodiment, the plurality of data blocks
may be independent operations to be executed in a data
processing system, such as data processing system 110
in FIG. 6. In another embodiment, the method may be
used to shuffle the order of a plurality of entries of any
type of data blocks such as operations, instructions or
other data structures. The shuffling method shuffles an
order of the plurality of data blocks 36 to reorder the plu-
rality of operations. Current operation storage 34 may be
used to store, for example, a current instruction, an index
of a data element to be handled next, or an operation to
be executed next. An example of a method for shuffling
a plurality of independent operations of an application in
a data processing system is provided as example for us-
ing shuffling mechanism 24. To begin shuffling with shuf-
fling mechanism 24, RNG 26 provides two random num-
bers, an initial index labeled "INITIAL INDEX" and a pa-
rameter labeled "PARAMETER." Random number gen-
erator 26 may be implemented as one or more random
number generators or pseudo random number genera-
tors. The parameter is provided to a first input of incre-
ment function block 32. The INITIAL INDEX is provided
to a second input of increment function block 32. Incre-
ment function block 32 performs an addition function on
the currently stored index using the parameter. In another
embodiment, the increment function can be another par-
ametrized increment function instead of the addition func-
tion. For example, the increment function may be a mul-
tiplication function or an exponential function. In other
embodiments, the increment function can be a combina-
tion of functions. Also, the increment function may require
more than one parameter. For example, the increment
function can be NEW INDEX = ((PREVIOUS INDEX ∗
PARAMETER 1) (mod A) + PARAMETER 2) (mod B),
were A and B are fixed depending on the size of the data
structure to be shuffled. To begin reordering a plurality
of data blocks, increment function block 32 is first loaded
with the parameter. Increment function block 32 performs
an addition function on the index labeled "PREVIOUS
INDEX" received from index storage 28 using the param-
eter to produce a new index labeled "NEW INDEX." The
new index "NEW INDEX" is provided to index storage 28
to replace the previously stored index and may also be
provided to current operation storage 34 to indicate a
current operation for the processor to execute if the data
block included, for example, an operation. Note that in
one embodiment, the storage used to implement index
storage 28 may be reused to provide current operation
storage 34. The increment function provided by incre-
ment function block 32 is iterated with the previous index
to provide a new index until all the plurality of independent

operations have been shuffled or reordered in a new or-
der.
[0014] As an example, assume RNG 26 generates a
random initial index to be 6 and the parameter is 11, then
the order of indexes that is generated by increment func-
tion block 32 will be 6, 1, 12, 7, 2, 13, 8, 3, 14, 9, 4, 15,
10, 5, 0, and 11 for an addition with modulo 16 increment
function. As a second example, if the initial index is 7,
and the increment parameter is equal to 3, the shuffling
order will be 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, 5, 8, 11, 14,
1, and 4. There are 27 = 128 different shuffling permuta-
tions possible using the shuffling mechanism of FIG. 2
to reorder 16 operations. The number of operations may
be different in other examples. Note that shuffling mech-
anism 24 may be implemented in a data processing sys-
tem in hardware, software, or a combination of hardware
and software. Also, in one embodiment, the reordered
data blocks may be stored together in a memory.
[0015] FIG. 3 illustrates shuffling mechanism 40 in ac-
cordance with an embodiment. Shuffling mechanism 40
includes RNG 42, first index storage 44, parameter stor-
age 46, increment function 48 second index storage 50,
and current operation storage 52. Note that in one em-
bodiment, the storage used to implement second index
storage 50 may be reused to provide current operation
storage 52. An example of a method for shuffling a pre-
determined number of independent operations of an ap-
plication in a data processing system is provided with
respect to shuffling mechanism 40. Shuffling mechanism
40 differs partially from shuffling mechanism 24 in that
shuffling mechanism 40 uses a multiplication increment
function while shuffling mechanism 24 uses an addition
increment function. To begin a shuffling operation with
shuffling mechanism 24, RNG 42 provides two random
numbers, an initial index labeled "INITIAL INDEX" and a
parameter labeled "PARAMETER." The initial index is
provided to first index storage 44. The parameter is pro-
vided to parameter storage 46. Increment function 48
performs a multiplication function on the index value
stored in first index storage 44 using the parameter from
parameter storage 46. The increment function 48 can be
other parametrized functions besides the multiplication
function. To begin performing a shuffling operation, in-
crement function 48 is set with the parameter. Increment
function 48 performs a multiplication function on the index
received from first index storage 44 using the parameter
to produce a new index "NEW INDEX." The data blocks
are illustrated in FIG. 3 as plurality of data blocks 54. In
the illustrated example where the number of data blocks
to be reordered equals 16, the multiplication function may
be defined using modulo 17 (a prime number). Using
mod 17 in the illustrated example where the number of
operations equals 16 provides a simple solution to the
problem of using every index of the 16 operations without
repeating any of the operations. A zero cannot be used
in the mathematics for this to be true, therefore, the in-
dexes are renumbered to be 1 - 16 before the increment
function. The new index "NEW INDEX" is provided to

5 6

EP 3 591 889 A1

5

5

10

15

20

25

30

35

40

45

50

55

index storage 44 replacing the previously storage index
"PREVIOUS INDEX". The new index is also provided to
second index storage 50 and to current operation storage
52 to indicate the current operation to execute. A con-
version to modulo 16 (mod 16) may be provided to return
the index numbering to 0 - 15 after the shuffling operation,
and the renumbered index is provided to second index
storage 50. The increment function 48 is iterated with the
previous index to provide a new index until all the prede-
termined number of independent operations have been
shuffled or reordered in a new permutation order. In one
embodiment, shuffling mechanism 40 reorders 16 inde-
pendent operations of an application that can be execut-
ed in any order. In another embodiment, the number of
operations may be any number.
[0016] In a more specific example of the operation of
shuffling mechanism 40, if RNG 26 generates a random
initial index equal to 8 and a parameter equal to 6, then
the order of indexes that is generated by increment func-
tion 48 will be 8,14,0,11,15,5,13,10,9,3,1,6,2,12,4, and
7. There are 27 = 128 different shuffling permutations
possible using the shuffling mechanism of FIG. 3. Note
that because a multiplication increment function is used,
these shuffling order permutations are different from the
128 different shuffling order permutations of the example
of FIG. 2.
[0017] FIG. 4 illustrates a shuffling mechanism 60 in
accordance with another embodiment. Shuffling mech-
anism 60 includes a first shuffling mechanism 62, a sec-
ond shuffling mechanism 72, and multi-level data struc-
ture 84. First and second shuffling mechanisms 62 and
72 may each be comprised of either of the embodiments
of FIG. 2 or FIG. 3. As illustrated in FIG. 4, first shuffling
mechanism 62 includes RNG 64, row index storage 66,
parameter storage 68, and increment function 70. An out-
put of row index storage 66 is coupled to shuffling mech-
anism 62. Shuffling mechanism 72 includes RNG 74, in-
dex storage 76, parameter storage 78, increment func-
tion 80, and current operation storage 82 for providing
the next randomized operation for execution in a data
processing system. Multi-level data structure 84 is parti-
tioned into a plurality of rows labeled "ROW 0" - "ROW
3", where each row has a plurality of sub-parts. The il-
lustrated example has 16 total sub-parts distributed be-
tween the four rows. The sub-parts may be a plurality of
data blocks such as states, operations, data bytes, etc.
A method for operating shuffling mechanism 60 is pro-
vided. First, a row is selected and an index (PREVIOUS
INDEX) of the row is provided to the shuffling mechanism
62. The order of the rows is determined using shuffling
mechanism 62. Within each row, the order of the sub-
parts of the row is ordered using shuffling mechanism
72. Shuffling mechanisms 62 and 72 operate as de-
scribed above for FIG. 2 and FIG. 3, where the function
used by increment functions 70 and 80 can be any func-
tion. Also, a new increment function or a new parameter,
or both, can be chosen for each row to generate more
different permutations. The illustrated example of data

structure 84 has four rows and four data blocks per row
having indexes 0 - 15. In this example, 215 (32,768) dif-
ferent permutations can be generated. As an example,
assume the increment functions for increment functions
70 and 80 are both addition. If, for example, the starting
row is ROW 1 and the increment PARAMETER is also
+1, then the rows would be ordered 1, 2, 3, 0. While
handling each row, a new starting position inside a row
is generated. The increment parameter may be different
than +1, or the same. In the example, the starting values
for each row is 2 for ROW 0, 4 for ROW 1, 9 for ROW 3,
and 13 for ROW 3. The parameters for each row are
ROW 0 = 1, ROW 1 = 1, ROW 2 = 3, and ROW 3 = 1.
This will provide the execution order of indexes 4, 5, 6,
7, 9, 8, 11, 10, 13, 14, 15, 12, 2, 3, 0, and 1. In another
embodiment, the increment functions and parameters
may be different for each row. Shuffling mechanism 60
is particularly useful when the number of data blocks is
not relatively close to a prime number, that is, where the
number of data blocks to be shuffled, plus one, is not a
prime, as shown in the example of FIG. 3. For example,
if the number of data blocks in the multi-level data struc-
ture 84 equals 32, 32 plus 1 equals 33, which is not prime.
The number 31 is prime but cannot be used because it
is smaller than 32. The use of a modulo of a prime number
is useful for ensuring no data is repeated when the in-
crement function includes a multiplication. The use of
modulo of a prime number may not be as helpful when
the increment function is, for example, an addition. How-
ever, by partitioning the data blocks in shuffling mecha-
nism 60 as illustrated, both shuffling mechanisms 62 and
72 may use mod 17 for the number of iterations to com-
pletely order all the data blocks without using an addi-
tional mechanism to prevent repeating a data block.
[0018] FIG. 5 illustrates a shuffling mechanism 90 in
accordance with another embodiment. Shuffling mech-
anism 90 includes RNG 92, and a plurality of shuffling
mechanisms represented by shuffling mechanisms 94,
96, and 98, index storage 100, and current operation stor-
age 102. Each shuffling mechanism functions as de-
scribed for the shuffling mechanisms illustrated in FIG.
2, FIG. 3, or FIG. 4. Shuffling mechanisms 94, 96, and
98 are coupled to receive a random number from RNG
92. Also, each of shuffling mechanisms 94, 96, and 98
are coupled to provide an index to index storage 100, the
index corresponding to a current operation. Each of shuf-
fling mechanisms 94, 96, and 98 implement a different
increment function and may have a different parameter.
For example, as illustrated in FIG. 5, shuffling mechanism
94 includes increment function g1 and parameter pi, shuf-
fling mechanism 96 includes parameter p2 and increment
function g2, and shuffling mechanism 98 includes param-
eter pN and increment function gN, where N is an integer
for the number of shuffling mechanisms with different in-
crement functions. A method of using shuffling mecha-
nism 90 may begin by choosing which of increment func-
tions g1, g2, and gN to use. Increment functions g1, g2,
and gN may be one of either addition, multiplication, ex-

7 8

EP 3 591 889 A1

6

5

10

15

20

25

30

35

40

45

50

55

ponential, etc. After choosing the increment function and
parameter, the method proceeds as described above re-
garding FIG. 2, FIG. 3, or FIG. 4.
[0019] As an example, suppose shuffling mechanism
90 has two shuffling mechanisms such as shuffling mech-
anisms 94 and 96. Also, shuffling mechanism 94 is im-
plemented as shuffling mechanism 24 in FIG. 2 and shuf-
fling mechanism 96 is implemented as shuffling mecha-
nism 40 in FIG. 3. In general, the number of different
permutations that can be generated is equal to the sum
of permutations of the each of the individual shuffling
mechanisms, assuming all the generated permutations
are non-overlapping. By using shuffling mechanism 90,
256 different order permutations can be generated. In-
cluding more shuffling mechanisms with different incre-
ment functions will increase the number of different per-
mutations that can be generated.
[0020] FIG. 6 illustrates a data processing system 110
in accordance with an embodiment. Data processing sys-
tem 110 includes a system bus 112, central processing
unit (CPU) 114, memory 116, RNG 118, coprocessor
120, and memory 112. System bus 112 may be any type
of system bus for communicating data and instructions.
Central processing unit 114 is bi-directionally connected
to bus 112 and may be one or more of any type of proc-
essor, or processor core, such as a microprocessor
(MPU), microcontroller (MCU), digital system processor
(DSP), etc. Memory 116 is bi-directionally connected to
bus 112 and may be any suitable type of volatile or non-
volatile memory for storing instructions in, for example,
an instruction queue for CPU 114. Random number gen-
erator 118 is bi-directionally connected to bus 112 and
may be one or more of any type of RNG or pseudo RNG
for generating the random numbers used in the disclosed
embodiments. In one embodiment, CPU 114 may be
used to control the method for shuffling and the opera-
tions of the random number generator and increment
function blocks. Coprocessor 120 is bi-directionally con-
nected to bus 112 and may be any type of data processor
or processor core. For example, coprocessor 120 may
be include one or more MPU, MCU, DSP, etc. One or
both of CPU 114 and coprocessor 120 may be used for
implementing an encryption or decryption algorithm. Al-
so, CPU 114 or coprocessor 1120 may be characterized
as being a secure processor or include a secure element
for securely storing of processing information. Memory
122 is bi-directionally connected to bus 112 and may be
any type of volatile or non-volatile memory for storing
data and/or instructions. Memories 116 and 122 may be
implemented as portions of the same memory array. The
described embodiments may be implemented in data
processing system 110 as hardware, software, or a com-
bination of hardware and software. The hardware may
be implemented as electrical or electronic circuits.
[0021] Various embodiments, or portions of the em-
bodiments, may be implemented in hardware or as in-
structions on a non-transitory machine-readable storage
medium including any mechanism for storing information

in a form readable by a machine, such as a personal
computer, laptop computer, file server, smart phone, or
other computing device. The non-transitory machine-
readable storage medium may include volatile and non-
volatile memories such as read only memory (ROM), ran-
dom access memory (RAM), magnetic disk storage me-
dia, optical storage medium, NVM, and the like. The non-
transitory machine-readable storage medium excludes
transitory signals.
[0022] Although the invention is described herein with
reference to specific embodiments, various modifications
and changes can be made without departing from the
scope of the present invention as set forth in the claims
below. Accordingly, the specification and figures are to
be regarded in an illustrative rather than a restrictive
sense, and all such modifications are intended to be in-
cluded within the scope of the present invention. Any
benefits, advantages, or solutions to problems that are
described herein with regard to specific embodiments
are not intended to be construed as a critical, required,
or essential feature or element of any or all the claims.
[0023] Furthermore, the terms "a" or "an," as used
herein, are defined as one or more than one. Also, the
use of introductory phrases such as "at least one" and
"one or more" in the claims should not be construed to
imply that the introduction of another claim element by
the indefinite articles "a" or "an" limits any particular claim
containing such introduced claim element to inventions
containing only one such element, even when the same
claim includes the introductory phrases "one or more" or
"at least one" and indefinite articles such as "a" or "an."
The same holds true for the use of definite articles.
[0024] Unless stated otherwise, terms such as "first"
and "second" are used to arbitrarily distinguish between
the elements such terms describe. Thus, these terms are
not necessarily intended to indicate temporal or other
prioritization of such elements.

Claims

1. A method for shuffling an order of a plurality of data
blocks, the method comprising:

- providing a parameter for use with an incre-
ment function;
- generating a random number, the random
number corresponding to an index for a data
block of the plurality of data blocks, wherein
each data block of the plurality of data blocks
has an index that uniquely identifies each data
block of the plurality of data blocks;
- applying the increment function with the pa-
rameter to the random number to generate a
new index, the new index corresponding to a
data block of the plurality of data blocks;
- selecting the data block corresponding to the
new index as the next data block of a reordering

9 10

EP 3 591 889 A1

7

5

10

15

20

25

30

35

40

45

50

55

of the plurality of data blocks; and
- iterating the method until the reordering of the
plurality of data blocks is complete.

2. The method of claim 1, wherein the increment func-
tion includes one or more of either an addition func-
tion, a multiplication function, or an exponential func-
tion.

3. The method of claim 1 or 2, wherein the indexes of
the plurality of data blocks are a sequence of index-
es.

4. The method of any preceding claim, wherein the new
index is a starting index for a row of a plurality of
rows, and wherein the method is repeated to deter-
mine an order of operations for each row of the plu-
rality of rows.

5. The method of any preceding claim, wherein the plu-
rality of data blocks is organized as a plurality of rows
of data blocks, each of the plurality of rows having a
plurality of entries, wherein the method is used to
select a row of the plurality of rows, and wherein the
method is used for each of the plurality of rows.

6. The method of any preceding claim, further compris-
ing randomly selecting the increment function from
a plurality of increment functions.

7. The method of any preceding claim, wherein iterating
the method further comprises iterating the method
by a modulo of a prime number.

8. The method of any preceding claim, wherein the plu-
rality of data blocks comprises a plurality of opera-
tions to be executed in a data processing system.

9. A shuffling mechanism, comprising:

- a random number generator for generating a
random number for use as an index for a data
block of the plurality of data blocks, wherein
each data block of the plurality of data blocks
has an index that uniquely identifies each data
block of the plurality of data blocks;
- an increment function block for receiving a pa-
rameter and the index, and in response, gener-
ating a new index by applying an increment func-
tion with the parameter to the index, the new
index corresponding to a data block of the plu-
rality of data blocks;
- a storage element for storing the plurality of
data blocks; and
- a processor for selecting the data block corre-
sponding to the new index as the next data block
of a reordering of the plurality of data blocks.

10. The shuffling mechanism of claim 9, wherein the in-
crement function includes one or more of either an
addition function, a multiplication function, or an ex-
ponential function.

11. The shuffling mechanism of claim 9 or 10, wherein
the plurality of data blocks comprises a plurality of
operations to be executed in the processor.

12. The shuffling mechanism of any one of claims 9 to
11, wherein the increment function is selected ran-
domly from a plurality of increment functions.

11 12

EP 3 591 889 A1

8

EP 3 591 889 A1

9

EP 3 591 889 A1

10

EP 3 591 889 A1

11

EP 3 591 889 A1

12

EP 3 591 889 A1

13

EP 3 591 889 A1

14

5

10

15

20

25

30

35

40

45

50

55

EP 3 591 889 A1

15

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

