(19)
(11) EP 3 594 498 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
15.01.2020  Patentblatt  2020/03

(21) Anmeldenummer: 19207550.5

(22) Anmeldetag:  06.11.2019
(51) Internationale Patentklassifikation (IPC): 
F04B 9/115(2006.01)
F04D 29/02(2006.01)
F04B 43/073(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
KH MA MD TN

(71) Anmelder: PFEIFFER VACUUM GMBH
35614 Asslar (DE)

(72) Erfinder:
  • Oberbeck, Sebastian
    35781 Weilburg (DE)
  • Becker, Jonas
    35435 Wettenberg (DE)

(74) Vertreter: Manitz Finsterwald Patent- und Rechtsanwaltspartnerschaft mbB 
Martin-Greif-Strasse 1
80336 München
80336 München (DE)

   


(54) GASREZIRKULATIONSEINRICHTUNG UND SYSTEM MIT EINER SOLCHEN


(57) Die Erfindung betrifft eine Rezirkulationseinrichtung für ein Gas einer Prozesseinrichtung umfassend eine Rezirkulationspumpe, wobei die Rezirkulationspumpe eine Seitenkanalpumpe ist.


Beschreibung


[0001] Die vorliegende Erfindung betrifft eine Rezirkulationseinrichtung für ein Gas einer Prozesseinrichtung umfassend eine Rezirkulationspumpe. Die Erfindung betrifft außerdem ein System umfassend eine Prozesseinrichtung mit einem Raum und/oder einer Leitung zur Aufnahme eines Gases und eine Rezirkulationseinrichtung für das Gas.

[0002] Gasrezirkulationen werden in verschiedenen technischen Bereichen benötigt. Üblicherweise wird aus einem größeren Volumen, in dem ein Prozess stattfindet, Gas entnommen, in geeigneter Weise aufbereitet und dann dem Prozess wieder zugeführt. Zur Überwindung der in den Gasführungen und einer gegebenenfalls vorhandenen Aufbereitung entstehenden Druckverluste wird eine Pumpe eingesetzt, die den nötigen Überdruck und Volumenstrom bereitstellen kann. Dabei sind die Eigenschaften der Gase oder Gasgemische, das generelle Druckniveau, das Gasvolumen und die Gastemperatur einige, aber nicht alle Parameter, die es zu berücksichtigen gilt.

[0003] Üblicherweise finden sich in solchen bekannten Rezirkulationseinrichtungen Membrankompressoren oder Drehschieberkompressoren, manchmal auch zweiwellige Kompressoren, wie Roots-, Schrauben- oder Klauenkompressoren (die Begriffe "Kompressor" und "Pumpe" werden hierin synonym verwendet).

[0004] Membran- und Drehschieberkompressoren sind reibungs- und verschleißbehaftet und bedürfen deshalb regelmäßiger Wartung. Membrankompressoren weisen eine pulsierende Förderung aufgrund diskreter Schöpfraumvolumina, schlechte Skalierbarkeit durch begrenzte Drehzahlvariabilität und diskrete Volumina, Verschleiß an Lagern, Membranen, Kurbelwellen, Pleueln und Ventilen sowie Vibrationen durch oszillierende Bewegung von Membranen und Pleueln auf. Drehschieberkompressoren weisen je nach Bauart Öl oder Abrieb im Schöpfraum auf, wobei beides nachteilig für die Prozesse sein kann. Die eingeschränkte Skalierbarkeit durch Drehzahl wegen diskreter Volumina und Reibung im System kann ebenfalls nachteilig sein.

[0005] Roots-, Schrauben-, bzw. Klauenkompressoren sind als berührungslose Pumpen weniger verschleißbehaftet, allerdings sind die Herstellkosten dieser zweiwelligen Systeme mit Synchrongetrieben erheblich höher. Rootskompressoren weisen allgemein eine relativ große Baugröße und hohe Kosten aufgrund des zweiwelligen Aufbaus mit erforderlicher Synchronisation der Wellen auf. Das Kompressionsverhältnis ist bei relativ großem Schöpfraum relativ gering. Dadurch sind Rootskompressoren über Drehzahlvariation nur beschränkt skalierbar. Der Wirkungsgrad ist außerdem wegen erheblicher Spaltverluste relativ gering. Außerdem müssten die Wellendurchführungen aufwendig abgedichtet werden.

[0006] Im Stand der Technik sind also eine Vielzahl von Pumpen zur Gasrezirkulation bekannt, die jeweils spezifische Vorteile, aber auch, wie dargelegt, zahlreiche Nachteile aufweisen.

[0007] Es ist eine Aufgabe der Erfindung, eine Gasrezirkulationseinrichtung bereitzustellen, die bei guter Wirksamkeit einfach und kostengünstig ausgeführt ist. Insbesondere sollen außerdem die vorstehend dargelegten Nachteile überwunden werden.

[0008] Diese Aufgabe wird durch eine Rezirkulationseinrichtung nach Anspruch 1 gelöst, und insbesondere dadurch, dass die Rezirkulationspumpe eine Seitenkanalpumpe ist. Die Seitenkanalpumpe weist eine besonders gute Wirksamkeit bei einfacher und kostengünstiger Ausführung in Herstellung und Betrieb auf.

[0009] Die Seitenkanaltechnik ist insbesondere aufgrund ihrer strömungsdynamischen Eigenschaften, des nahezu mechanisch reibungsfreien Betriebs und ihrer Anpassbarkeit an verschiedene Prozesse über Drehzahl, Seitenkanal- und Rotorschaufelgeometrie, Anzahl der Stufen und einer Vielzahl zur Verfügung stehender Materialkombinationen vorteilhaft. Die Seitenkanalpumpe arbeitet im Wesentlichen berührungslos, ermöglicht somit lange Lebensdauern und ist nahezu verschleißfrei. Die Seitenkanalpumpe erlaubt eine bedarfsgerechte Anpassung und präzise Einstellung des bereitgestellten Drucks und des Durchflusses, z.B. durch Wahl einer ein- oder mehrstufigen Ausführung und/oder durch eine Drehzahlregelung. Des Weiteren können eine Rotorschaufel- und eine Seitenkanalform an die zu fördernden Gase angepasst werden. Für korrosive Medien können entsprechend beständige Materialien eingesetzt werden.

[0010] Die Seitenkanalpumpe weist insbesondere lediglich eine Welle auf. Auch eine mehrstufige Seitenkanalpumpe lässt sich mit einer einzigen Welle herstellen, beispielsweise mit einer Mehrzahl an Rotoren, die auf ein und derselben Welle angeordnet sind. Die Seitenkanalpumpe ist somit besonders einfach und kostengünstig herzustellen.

[0011] Bisher wurde anwendungsabhängig aus einer Vielzahl von Pumpen ausgewählt, sodass die spezifischen Vorteile ausgenutzt wurden. Die erfindungsgemäße Rezirkulationseinrichtung erlaubt nun eine besonders gute Anwendungsbreite bei einfachem Aufbau und geringen Herstellungs- und Betriebskosten.

[0012] Die Rezirkulationseinrichtung kann beispielsweise eine Aufbereitungseinrichtung für das Gas aufweisen. Die Aufbereitungseinrichtung kann beispielsweise dazu ausgebildet sein, das Gas zu reinigen, bestimmte Gasanteile abzuscheiden oder anzureichern, dem Gas etwas hinzuzufügen oder das Gas in sonstiger Weise für einen Prozess nutzbar zu machen oder zu verbessern.

[0013] Generell kann das Gas auch nur teilweise zurück in die Prozesseinrichtung geführt werden. Es kann beispielsweise das gesamte entnommene Gas zurückgeführt werden oder nur ein Teil, insbesondere ein bestimmter Bestandteil.

[0014] Das Gas kann beispielsweise Wasserstoff, Temperierungsmittel, insbesondere Kühlmittel, und/oder CO2 enthalten oder sein. Weiter beispielsweise kann das Gas Luft, Helium und/oder Neon enthalten oder sein. Generell ist das Gas insbesondere wenigstens im Betrieb in der Prozesseinrichtung, insbesondere einem Raum oder einer Leitung, vorhanden.

[0015] Die Seitenkanalpumpe kann beispielsweise wenigstens einen Rotor mit einer Mehrzahl an Rotorschaufeln umfassen. Vorteilhafterweise kann es vorgesehen sein, dass die Rotorschaufeln jeweils wenigstens eines von gerade, pfeilförmig, gekrümmt, in Bewegungsrichtung geteilt oder verbunden, oder in Bewegungsrichtung nach vorne oder nach hinten geneigt sind. Auch Kombinationen dieser Merkmale je Rotorschaufel, je Rotor und/oder je Pumpstufe sind vorteilhaft.

[0016] Ein Zwischenraum zwischen zwei in Bewegungsrichtung benachbarten Rotorschaufeln kann beispielsweise flach sein oder eine spitzdachförmige Struktur aufweisen. Eine flache Struktur ist besonders einfach herzustellen. Eine spitzdachförmige Struktur unterstützt eine Vortexbildung des zu fördernden Gases im Seitenkanal und damit die Pumpwirkung. Dabei kann eine Firstkante oder ein Firstbereich beispielsweise im Wesentlichen parallel zur Bewegungsrichtung der Schaufeln verlaufen und/oder die Schaufeln verbinden oder schräg verlaufen, insbesondere von einer Schaufel zu einem Grund einer benachbarten Schaufel abfallen. Die spitzdachförmige Struktur kann ebene und/oder gekrümmte, insbesondere konkave, Seitenflächen aufweisen.

[0017] Es kann zum Beispiel vorgesehen sein, dass wenigstens ein Seitenkanal der Seitenkanalpumpe eine jeweils zumindest im Wesentlichen kreisförmige, ovale, elliptische, rechteckige oder eiförmige Querschnittsgeometrie aufweist. Es sind auch weitere Querschnittsgeometrien möglich, etwa abgerundete und/oder trapezförmige Querschnitte. Generell kann die Querschnittsgeometrie eines Seitenkanals z.B. symmetrisch oder aber auch unsymmetrisch sein.

[0018] Gemäß einer Ausführungsform verjüngt sich ein Seitenkanal der Seitenkanalpumpe in Strömungsrichtung in seinem Querschnitt, insbesondere von einem Einlass des Seitenkanals bis zu einem Auslass des Seitenkanals. Hierdurch kann auf einfache Weise eine besonders gute Kompression erreicht werden.

[0019] Generell kann ein Seitenkanal beispielsweise zwischen Auslass und Einlass des Seitenkanals durch einen Unterbrecher unterbrochen sein bzw. Auslass und Einlass können durch einen Unterbrecher voneinander getrennt sein.

[0020] Die Seitenkanalpumpe kann bevorzugt ein- oder mehrstufig ausgebildet sein, insbesondere zwei-, drei-, vier- oder fünfstufig. Die Stufen können beispielsweise axial und/oder radial versetz angeordnet sein. Die Leistungsdaten der Seitenkanalpumpe, insbesondere Ausstoßdruck und Gasdurchfluss, können so besonders einfach an eine jeweilige Anwendung angepasst werden.

[0021] Die Seitenkanalpumpe kann beispielsweise eine, insbesondere hermetische, Abdichtung, insbesondere gegenüber der Umgebung, aufweisen. Dabei können insbesondere die zur Erzeugung der Pumpwirkung beweglichen Teile der Pumpe, also insbesondere Welle, Rotor, Motorläufer und/oder bewegliche Lagerteile, innerhalb der Abdichtung angeordnet sein, also insbesondere aus Umgebungssicht hinter der Abdichtung. Die Seitenkanalpumpe kann somit auf einfache Weise für den Einsatz mit korrosiven Medien ausgebildet werden. Die beweglichen Teile können zwecks Abdichtung beispielsweise eingekapselt sein.

[0022] Gemäß einer Weiterbildung weist die Seitenkanalpumpe einen Motor mit einem Läufer auf, wobei der Läufer in einem, insbesondere hermetisch, gegenüber der Umgebung abgedichteten Raum angeordnet ist. Der Läufer kann dazu insbesondere in einem Rohr angeordnet sein. Beispielsweise kann der Motor ein Spaltrohrmotor sein.

[0023] Generell vorteilhaft kann es sich bei dem Motor um einen Permanentmagnetmotor handeln, insbesondere mit einem Permanentmagnetläufer.

[0024] Die Drehzahl der Seitenkanalpumpe kann vorteilhafterweise über einen Frequenzumrichter steuerbar sein. Die Seitenkanalpumpe kann so besonders einfach und präzise an eine jeweilige Anwendung und auch während eines Prozesses an bestimmte Betriebszustände angepasst werden.

[0025] Gemäß einer Ausführungsform ist vorgesehen, dass ein Rotor oder eine Rotorwelle der Seitenkanalpumpe durch wenigstens ein fettgeschmiertes Lager gelagert ist. Dies ermöglicht einen reibungsarmen Lagerlauf ohne ein aufwendiges, zusätzliches Schmierungssystem. Außerdem lässt sich die Lagerung so wartungsarm ausführen und es ist im Wesentlichen kein Betriebsmittelaustausch nötig, wie es bei einer Ölschmierung unter Umständen der Fall wäre.

[0026] Generell kann die Pumpe eine, insbesondere hermetische, Abdichtung aufweisen. Bevorzugt sind dabei alle Lager für die Rotorwelle im Bereich des rezirkulierten Gases angeordnet, also aus Sicht des Umgebungsbereichs hinter der Abdichtung. Insbesondere fettgeschmierte Lager ermöglichen hierbei, dass die Abdichtung der Pumpe möglichst selten, bestenfalls über die Lebensdauer gar nicht aufgehoben werden muss. Hierdurch kann der Wartungsaufwand erheblich verringert werden, da die Wiederherstellung einer, insbesondere hermetischen, Abdichtung meist sehr aufwendig ist und besondere Sachkenntnis erfordert. Zudem sollten bestimmte Gase aus verschiedenen Gründen nicht mit der Umgebung in Kontakt kommen.

[0027] Dies wird durch eine wartungsarme Pumpe deutlich erleichtert. Generell bevorzugt sind Rotor, Rotorwelle, Motorläufer und/oder Lager im Bereich des rezirkulierten Gases angeordnet.

[0028] Gegenstand der Erfindung ist ferner ein System umfassend eine Prozesseinrichtung mit einem Raum und/oder einer Leitung zur Aufnahme eines Gases und eine Rezirkulationseinrichtung nach vorstehend beschriebener Art, durch die das Gas aus der Prozesseinrichtung entnehmbar und in die Prozesseinrichtung rückführbar ist.

[0029] Die Prozesseinrichtung ist generell zur Durchführung eines Prozesses ausgebildet, wobei das Gas in irgendeiner Weise für den Prozess relevant ist. Generell muss das Gas nicht Gegenstand des Prozesses sein. Das Gas kann auch lediglich katalytisch oder anderweitig wirken, z.B. ein Temperierungsmedium sein. Bei dem Gas kann es sich um ein im Wesentlichen reines Gas handeln oder auch um ein Gasgemisch, wie etwa Luft. Grundsätzlich kann das Gas beispielsweise auch Partikel und/oder Tröpfchen enthalten.

[0030] Die Rückführung des Gases kann beispielsweise zwecks Aufbereitung, z.B. Reinigung, Temperierung, Abscheidung und/oder Anreicherung durchgeführt werden. Insbesondere kann die Rezirkulationseinrichtung eine entsprechend ausgebildete Aufbereitungseinrichtung aufweisen. Die Rückführung kann aber beispielsweise auch im Wesentlichen ohne Beeinflussung oder Veränderung des Gases zurückgeführt werden. Generell kann das Gas beispielsweise an einem Auslass der Prozesseinrichtung entnommen werden, insbesondere wobei nur ein Teil des Gasstromes am Auslass zurückgeführt wird, und/oder das Gas kann beispielsweise zu einem Einlass der Prozesseinrichtung zurückgeführt werden, insbesondere wobei ein weiterer Gasstrom in den Einlass eintritt.

[0031] Insbesondere kann es sich bei dem System um ein geschlossenes System handeln und/oder es kann ein geschlossener Gaskreislauf vorgesehen sein.

[0032] Die Vorteile der Erfindung entfalten sich im besonderen Maße bei einer Prozesseinrichtung, die einen Laser umfasst. Bei dem Laser kann es sich bevorzugt um einen Gaslaser, insbesondere einen Excimer- oder CO2-Laser, handeln.

[0033] Ebenfalls vorteilhaft ist eine Prozesseinrichtung, die eine Temperierungsvorrichtung, insbesondere Klima- und/oder Kühlvorrichtung, umfasst. Dabei kann beispielsweise mittels der Rezirkulationseinrichtung eine Gasumwälzung bewirkt werden. Hierdurch kann die Temperierungswirkung der Vorrichtung verbessert werden, wobei die erfindungsgemäßen Vorteile besonders gut ausgenutzt werden.

[0034] Die Prozesseinrichtung kann beispielsweise eine Brennstoffzelle umfassen, welche z.B. zur Stromerzeugung eingesetzt werden kann, beispielsweise zum Antrieb eines Fahrzeugmotors. Die Rezirkulationseinrichtung kann vorteilhaft zur Rückführung von überschüssigem Prozessgas der Brennstoffzelle, insbesondere Wasserstoff, angeordnet sein.

[0035] Gemäß einem weiteren vorteilhaften Beispiel umfasst die Prozesseinrichtung eine Verbrennungseinrichtung, insbesondere eine Brennkraftmaschine, beispielsweise eines Fahrzeugantriebs. Die Rezirkulationseinrichtung kann dabei beispielsweise zur Rückführung eines Abgases der Verbrennungseinrichtung, insbesondere zu einem Einlass der Verbrennungseinrichtung, angeordnet sein.

[0036] Generell kann die Prozesseinrichtung also vorteilhaft Teil eines Fahrzeugantriebs sein. Weiter generell kann die Prozesseinrichtung beispielsweise eine beliebige Art von Reaktor, z.B. Brennstoffzelle oder Verbrennungseinrichtung, mit zumindest teilweise gasförmigem Ausstoß umfassen.

[0037] Schließlich können alle zur Rezirkulationseinrichtung beschriebenen Ausführungsformen und Einzelmerkmale zur vorteilhaften Weiterbildung des Systems herangezogen werden und umgekehrt.

[0038] Gegenstand der Erfindung ist außerdem die Verwendung einer Seitenkanalpumpe als Rezirkulationspumpe einer Rezirkulationseinrichtung für ein Gas einer Prozesseinrichtung, insbesondere einer erfindungsgemäßen Rezirkulationseinrichtung wie hierin offenbart, und insbesondere einer Rezirkulationseinrichtung, die ein Bestandteil eines erfindungsgemäßen Systems ist, wie es hierin offenbart ist.

[0039] Die Erfindung wird nachfolgend lediglich beispielhaft anhand der schematischen Zeichnung erläutert.
Fig. 1
zeigt eine Seitenkanalpumpe in perspektivischer Ansicht.
Fig. 2
zeigt die Seitenkanalpumpe der Fig. 1 in einer Schnittansicht.
Fig. 3
zeigt eine weitere Seitenkanalpumpe in perspektivischer Ansicht.
Fig. 4
zeigt die Seitenkanalpumpe der Fig. 3 in einer Schnittansicht.
Fig. 5
zeigt eine dritte Ausführungsform einer Seitenkanalpumpe in einer perspektivischen Schnittansicht.
Fig. 6
zeigt einen gegenüber Fig. 5 vergrößerten Teilbereich der Seitenkanalpumpe in Schnittansicht.
Fig. 7 bis 12
zeigen verschiedene Ausführungsformen von Rotoren für eine Seitenkanalpumpe.
Fig. 13 bis 15
zeigen verschiedene Systeme mit Prozesseinrichtung und Rezirkulationseinrichtung.


[0040] Fig. 1 zeigt eine Seitenkanalpumpe 20 zum Einsatz als Rezirkulationspumpe in einer erfindungsgemäßen Rezirkulationseinrichtung für ein Gas einer Prozesseinrichtung. Im oberen Bereich ist die Pumpe 20 freigestellt, sodass ein Rotor 22 sichtbar ist, der zum Bereitstellen einer Pumpwirkung rotiert. Aus Fig. 2 ist ersichtlich, dass die Pumpe 20 lediglich einen Rotor 22 aufweist, also einstufig ausgebildet ist. Der Rotor 22 rotiert mit einer Mehrzahl von über seinen Umfang verteilten Rotorschaufeln 24 in einem Seitenkanal 26. Der Seitenkanal 26 ist ein ringförmiger Kanal, der in seinem Querschnitt etwas größer als eine jeweilige Rotorschaufel ausgebildet ist. In der vorliegenden Ausführungsform ist der Seitenkanal 26 im Querschnitt im Wesentlichen rechteckig, jedoch mit abgerundeten Ecken ausgeführt.

[0041] Der Rotor 22 ist auf einer Welle 28 der Seitenkanalpumpe 20 angeordnet. Die Welle 28 und somit der Rotor 22 sind über einen Elektromotor rotatorisch angetrieben, welcher einen Ständer 30 und einen Läufer 32 umfasst. Der Ständer 30 weist bestromte Wicklungen auf, wohingegen der Läufer 32 in dieser Ausführungsform eine Mehrzahl an Permanentmagneten aufweist. Der Läufer 32 ist fest mit der Welle 28 verbunden. Die Welle 28 und somit der Rotor 22 werden also direkt vom Elektromotor 30, 32 angetrieben.

[0042] Der Rotor 22 ist in dieser Ausführungsform mit gekrümmten, in Bewegungsrichtung leicht schräg nach hinten geneigten Rotorschaufeln 24 und mit einem flachen Zwischenraum zwischen den Rotorschaufeln 24 ausgebildet.

[0043] Die Fig. 3 und 4 zeigen eine zweistufig ausgebildete Seitenkanalpumpe 20, welche zwei Rotoren 22.1 und 22.2 aufweist, die auf einer gemeinsamen Welle 28 gelagert sind. Die Rotoren 22.1 und 22.2 rotieren in jeweiligen Seitenkanälen 26.1 und 26.2, welche hier ebenfalls einen im Wesentlichen rechteckigen Querschnitt aufweisen. Im oberen Bereich der Fig. 4 ist eine Verbindung 34 der Seitenkanäle 26.1 und 26.2 sichtbar.

[0044] Die Rotoren 22.1 und 22.2 weisen jeweils pfeilförmige Schaufeln 24 auf, die in Bewegungsrichtung leicht schräg nach hinten geneigt sind. In den Zwischenräumen der Schaufeln 24 ist der Rotor 22 jeweils flach ausgebildet. Die Bewegungsrichtung verläuft hier vorzugsweise in Richtung der Spitzen der jeweiligen pfeilförmigen Schaufeln 24. Grundsätzlich ist jedoch beispielsweise auch ein umgekehrter Betrieb möglich.

[0045] Die Welle 28, welche die Rotoren 22 trägt, ist durch einen Elektromotor angetrieben. Der Elektromotor weist einen Ständer 30 mit Wicklungen und einen permanentmagnetischen Läufer 32 auf, welcher auf der Welle 28 sitzt. Der Läufer 32 bzw. die Welle 28 sind innerhalb eines Rohres 36 angeordnet, welches Teil einer hermetischen Abdichtung der Pumpe 20 ist. Ein derartiges Rohr 36 wird auch als Spaltrohr bezeichnet, da es sich durch den Spalt zwischen Läufer 32 und Ständer 30 des Elektromotors erstreckt. Entsprechend wird der Elektromotor als Spaltrohrmotor bezeichnet. Das Spaltrohr 36 kann zum Beispiel aus Glasfaserkomposit hergestellt sein. Der Läufer 32 bzw. die Welle 28 befinden sich also aus Umgebungssicht hinter der hermetischen Abdichtung und in einem Bereich, der im Wesentlichen mit dem von der Pumpe zu förderndem Gas durchsetzt ist und ein entsprechendes Druckniveau aufweist.

[0046] Hinter der Abdichtung bzw. im Bereich des zu fördernden Gases befinden sich außerdem zwei Lager 38. Diese sind bevorzugt fett- und/oder dauergeschmiert.

[0047] Die im Gasbereich bzw. hinter der Abdichtung angeordneten Funktionselemente sind also im Wesentlichen unabhängig funktionsfähig. Insbesondere müssen sie nicht leitungsgebunden versorgt werden, etwa mit Strom oder einem Betriebsmittel. Die Rotoren 22 laufen zudem berührungslos in den für sie vorgesehenen Gehäusespalten 40. Die Funktionsteile im Gasbereich sind somit äußerst verschleiß- und wartungsarm. Die hermetische Abdichtung der Pumpe 20 muss also nur äußerst selten bei einer Demontage aufgelöst werden, um die Pumpe zu warten.

[0048] Eine dritte Ausführungsform einer Seitenkanalpumpe 20 ist in Fig. 5 gezeigt. Die Seitenkanalpumpe 20 ist fünfstufig ausgebildet, es sind also fünf Rotoren 22 vorgesehen, die in jeweiligen Seitenkanälen 26 rotieren. Die Rotoren 22 sind wiederum auf einer gemeinsamen Welle 28 angeordnet. Ein in Fig. 5 angedeuteter Bereich A der Seitenkanalpumpe 20 ist in Fig. 6 vergrößert und um 90 Grad gedreht dargestellt.

[0049] Aus Fig. 6 ist ersichtlich, dass die Seitenkanäle 26.1 und 26.2 der ersten beiden Pumpstufen im Wesentlichen rechteckig ausgebildet sind, wohingegen die Seitenkanäle 26.3, 26.4 und 26.5 der übrigen Pumpstufen einen im Wesentlichen ovalen oder eiförmigen Querschnitt aufweisen. Wie es insbesondere aus Fig. 5 ersichtlich ist, weisen die Rotoren 22.1 und 22.2 jeweils gekrümmte Rotorschaufeln auf. Die Rotoren 22.3, 22.4 und 22.5 sind hingegen pfeilförmig ausgebildet. Die Rotoren 22.3, 22.4 und 22.5 weisen außerdem in den jeweiligen Zwischenräumen zwischen benachbarten Rotorschaufeln 24 eine spitzdachförmige Struktur 42 auf, welche die Pumpwirkung dadurch unterstützt, dass sie eine Vortexbildung des Gasstromes im Seitenkanal 26 begünstig.

[0050] In den Fig. 7 bis 12 sind verschiedene vorteilhafte Ausführungsformen von Rotoren 22 gezeigt. Der Rotor 22 der Fig. 7 weist gekrümmte Rotorschaufeln 24 mit flachen Zwischenräumen auf.

[0051] Der Rotor 22 der Fig. 8 weist ebene Rotorschaufeln 24 auf, die sich radial erstrecken. Zwischen den Rotorschaufeln 24 sind jeweils dachartige Strukturen 42 vorgesehen, wobei eine jeweilige Firstkante 44 sich parallel zur Bewegungsrichtung der Rotorschaufeln 24 erstreckt. Die Firstkante 44 verbindet dabei radial äußere Enden der Schaufeln 24. Es handelt sich somit um verbundene Rotorschaufeln 24. Die zur Firstkante 44 hin zulaufenden Flächen 46 sind konkav ausgebildet.

[0052] Die Rotoren 22 der Fig. 9 bis 11 sind allesamt pfeilförmig ausgebildet und unterscheiden sich im Wesentlichen in Größe und Schaufelanzahl bzw. relativem Schaufelabstand. Sie besitzen außerdem in den Schaufelzwischenräumen eine dachartige Struktur 42 mit einer jeweiligen Firstkante 44. Dabei sind die Firstkanten 44 der Rotoren 22 der Fig. 9 und 10 selbst gekrümmt ausgebildet, wohingegen die Firstkante 44 in Fig. 11 im Wesentlichen gerade ausgebildet ist. Alle Firstkanten 44 der Fig. 9 bis 11 erstrecken sich von einer jeweiligen Schaufelspitze zu einem Grund einer benachbarten Schaufel. Die Rotorschaufeln 24 sind somit unverbunden.

[0053] Die Schaufeln 24 des Rotors 22 der in Fig. 12 gezeigten Ausführungsform sind schließlich gekrümmt ausgebildet, wobei sie sich insbesondere hinsichtlich Zahl und Größe von der Ausführungsform der Fig. 7 unterscheiden.

[0054] In Fig. 13 ist ein System mit einer Prozesseinrichtung 50 und einer Rezirkulationseinrichtung 52 gezeigt, wobei das Rezirkulationssystem 52 eine als Seitenkanalpumpe 20 ausgebildete Rezirkulationspumpe aufweist. Die Prozesseinrichtung 50 weist einen Einlass 54 und einen Auslass 56 auf. Der Einlass 54 ist mit der Rezirkulationseinrichtung 52 derart verbunden, dass ein zurückgeführtes Gas in den Einlass 54 zurückgeführt wird. Dem Einlass 54 wird außerdem über eine weitere Leitung ein weiterer Massenstrom zugeführt. In ähnlicher Weise ist der Auslass 56 sowohl mit der Rezirkulationseinrichtung 52 bzw. der Seitenkanalpumpe 20 verbunden, als auch mit einer weiteren Leitung, die einen Teilmassenstrom des Auslasses 56 aufnimmt. Im System der Fig. 13 wird also ein Teil eines Massenstromes, welcher die Prozesseinrichtung passiert, rezirkuliert. Bei der Prozesseinrichtung 50 kann es sich beispielsweise um eine Brennstoffzelle handeln. In diesem Fall kann der Massenstrom beispielsweise Wasserstoff enthalten. Überschüssiger Wasserstoff, der von der Brennstoffzelle nicht verbraucht wurde, wird über die Rezirkulationseinrichtung 52 zum Einlass 54 zurückgeführt, um schließlich doch verbraucht zu werden. Somit kann die Effizienz der Brennstoffzelle verbessert werden. Insbesondere kann dem Auslass 56 nachgeschaltet ein Separator vorgesehen sein, der der Seitenkanalpumpe 20 einen möglichst großen Teil des überschüssigen Wasserstoffs zuführt.

[0055] Die Prozesseinrichtung 50 des Systems der Fig. 13 kann beispielsweise auch eine Verbrennungseinrichtung, wie etwa eine Brennkraftmaschine sein. Die Rezirkulationseinrichtung 52 bildet dabei eine Abgasrückführung, indem sie Abgas aus dem Massenstrom des Auslasses 56 entnimmt und in den Zuluftstrom am Einlass 54 zurückführt.

[0056] Fig. 14 zeigt ein im Hinblick auf den Gasstrom geschlossenes System mit Prozesseinrichtung 50 und Rezirkulationseinrichtung 52 mit Seitenkanalpumpe 20. Das in der Prozesseinrichtung 50 befindliche Gas kann über die Rezirkulationseinrichtung 52 und deren Seitenkanalpumpe 20 umgewälzt werden, beispielsweise um Phasenbildung eines Gasgemisches in der Prozesseinrichtung zu vermeiden.

[0057] Ein weiteres im Hinblick auf den Gasstrom geschlossenes System zeigt die Fig. 15. Dieses System umfasst ebenfalls eine Prozesseinrichtung 50, eine Rezirkulationseinrichtung 52 und eine Seitenkanalpumpe 20. Die Rezirkulationseinrichtung 52 der Fig. 15 umfasst außerdem eine Aufbereitungseinrichtung 58 zur Aufbereitung des zurückgeführten Gases. Die Aufbereitungseinrichtung 58 kann beispielsweise zur Reinigung und/oder Temperierung des Gases ausgebildet sein. Eine Aufbereitungseinrichtung kann beispielsweise Teil der Rezirkulationseinrichtung der Fig. 13 sein. Insoweit im Zusammenhang mit den Systemen der Fig. 14 und 15 von geschlossenen Systemen die Rede ist, versteht es sich, dass die rein schematischen Zeichnungen weitere Gas- und Leitungssysteme nicht ausschließen.

[0058] In den Figuren sind lediglich Ausführungsformen gezeigt, bei denen die Seitenkanäle bzw. die Seitenkanal-Pumpstufen axial versetzt angeordnet sind. Es versteht sich, dass die Seitenkanalpumpe der erfindungsgemäßen Rezirkulationseinrichtung auch beispielsweise radial versetzte Seitenkanal-Pumpstufen aufweisen kann. Auch eine Kombination von axial und radial versetzten Stufen ist möglich. Schließlich kann die Seitenkanalpumpe auch vorteilhaft mit Pumpstufen verbunden werden, welche andere Pumpprinzipien aufweisen.

Bezugszeichenliste



[0059] 
20
Seitenkanalpumpe
22
Rotor
24
Rotorschaufel
26
Seitenkanal
28
Welle
30
Ständer
32
Läufer
34
Verbindung
36
Spaltrohr
38
Lager
40
Spalt
42
spitzdachförmige Struktur
44
Firstkante
46
Fläche
50
Prozesseinrichtung
52
Rezirkulationseinrichtung
54
Einlass
56
Auslass
58
Aufbereitungseinrichtung



Ansprüche

1. Rezirkulationseinrichtung (52) für ein Gas einer Prozesseinrichtung (50) umfassend eine Rezirkulationspumpe,
wobei die Rezirkulationspumpe eine Seitenkanalpumpe (20) ist.
 
2. Rezirkulationseinrichtung (52) nach Anspruch 1,
wobei das Gas Wasserstoff, ein Temperierungsmittel und/oder CO2 enthält.
 
3. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei die Seitenkanalpumpe (20) wenigstens einen Rotor (22) mit einer Mehrzahl an Rotorschaufeln (24) umfasst, und wobei die Rotorschaufeln (24) jeweils wenigstens eines von gerade, schräg, pfeilförmig, gekrümmt, geteilt, ungeteilt, oder in Bewegungsrichtung nach vorne oder nach hinten geneigt sind.
 
4. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei die Seitenkanalpumpe (20) wenigstens einen Rotor (22) mit einer Mehrzahl an Rotorschaufeln (24) umfasst, und wobei ein Zwischenraum zwischen zwei in Bewegungsrichtung benachbarten Rotorschaufeln (24) flach ist oder eine spitzdachförmige Struktur (42) aufweist.
 
5. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei wenigstens ein Seitenkanal (26) der Seitenkanalpumpe (20) eine kreisförmige, ovale, elliptische, rechteckige oder eiförmige Querschnittsgeometrie aufweist.
 
6. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei sich wenigstens ein Seitenkanal (26) der Seitenkanalpumpe (20) in Strömungsrichtung in seinem Querschnitt verjüngt.
 
7. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei die Seitenkanalpumpe (20) ein- oder mehrstufig ausgebildet ist.
 
8. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei die Seitenkanalpumpe (20) eine Abdichtung aufweist, und wobei die zur Erzeugung der Pumpwirkung beweglichen Teile der Pumpe (20) innerhalb der Abdichtung angeordnet sind.
 
9. Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, wobei die Drehzahl der Seitenkanalpumpe (20) über einen Frequenzumrichter steuerbar ist.
 
10. Rezirkulationseinrichtung nach einem der vorstehenden Ansprüche, wobei ein Rotor (24) der Seitenkanalpumpe (20) durch wenigstens ein fettgeschmiertes Lager (38) gelagert ist.
 
11. System umfassend
eine Prozesseinrichtung (50) mit einem Raum und/oder einer Leitung zur Aufnahme eines Gases und
eine Rezirkulationseinrichtung (52) nach einem der vorstehenden Ansprüche, durch die das Gas aus der Prozesseinrichtung (50) entnehmbar und in die Prozesseinrichtung (52) rückführbar ist, insbesondere wobei ein geschlossener Gaskreislauf vorgesehen ist.
 
12. System nach Anspruch 11,
wobei die Prozesseinrichtung (50) einen Laser umfasst.
 
13. System nach Anspruch 11 oder 12,
wobei die Prozesseinrichtung (50) eine Temperierungsvorrichtung umfasst.
 
14. System nach einem der Ansprüche 11 bis 13,
wobei die Prozesseinrichtung (50) eine Brennstoffzelle umfasst.
 
15. System nach einem der Ansprüche 11 bis 14,
wobei die Prozesseinrichtung (50) eine Verbrennungseinrichtung umfasst.
 




Zeichnung






















Recherchenbericht









Recherchenbericht