

(11) EP 3 597 920 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

22.01.2020 Patentblatt 2020/04

(51) Int Cl.:

F04C 18/16 (2006.01)

F04C 18/08 (2006.01)

(21) Anmeldenummer: 19190907.6

(22) Anmeldetag: 27.04.2015

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priorität: 25.04.2014 DE 102014105882

(62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ:

18163593.9 / 3 358 189 15736405.0 / 3 134 649

(71) Anmelder: KAESER KOMPRESSOREN SE 96450 Coburg (DE)

(72) Erfinder: WEIH, Gerald 96472 Rödental (DE)

(74) Vertreter: Zech, Stefan Markus Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 86 06 24 81633 München (DE)

Bemerkungen:

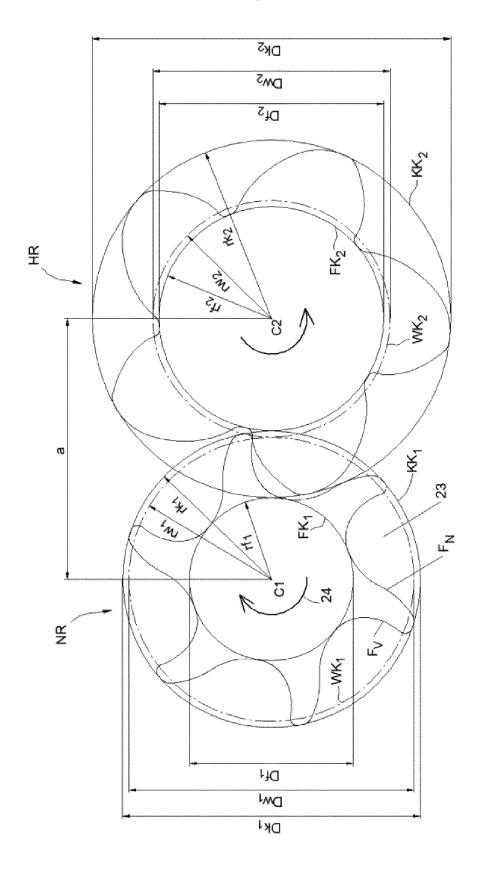
Diese Anmeldung ist am 09.08.2019 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.

(54) ROTORPAAR FÜR EINEN VERDICHTERBLOCK EINER SCHRAUBENMASCHINE

(57) Die Erfindung betrifft ein Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse (C1) rotierenden Nebenrotor (NR) und einen um eine zweite Achse (C2) rotierenden Hauptrotor (HR) besteht,

wobei die Anzahl der Zähne (z_2) beim Hauptrotor (HR) 4 und die Anzahl der Zähne (z_1) beim Nebenrotor (NR) 5 beträgt, wobei die relative Profiltiefe des Nebenrotors

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1}$$


mindestens 0,515, und höchstens 0,58, beträgt, wobei es sich bei rk_1 um einen um den Außenumfang des Nebenrotors (NR) gezogenen Kopfkreisradius und bei rf_1 um einen am Profilgrund des Nebenrotors ansetzenden Fußkreisradius handelt, wobei das Verhältnis vom Achsabstand α der ersten Achse (C1) zur zweiten Achse (C2) und dem Kopfradius rk_1

mindestens 1,683, und höchstens 1,836, bevorzugt höchstens 1,782, beträgt, wobei der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 320° $\leq \Phi_{HR} \leq$ 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR}/a gilt:

$$1.4 \le L_{HR}/a \le 3.3$$
,

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge LHR des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge LHR des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

Figur 7a

Beschreibung

10

20

30

35

50

[0001] Die Erfindung betrifft ein Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse rotierenden Hauptrotor und einem um eine zweite Achse rotierenden Nebenrotor besteht nach den Merkmalen des Anspruchs 1, 9 oder 14. Weiterhin betrifft die Erfindung einen Verdichterblock mit einem entsprechenden Rotorpaar.

[0002] Schraubenmaschinen, sei es als Schraubenverdichter oder als Schraubenexpander, sind seit mehreren Jahrzehnten im praktischen Einsatz. Ausgestaltet als Schraubenverdichter haben sie in vielen Bereichen Hubkolbenverdichter als Verdichterverdrängt. Mit dem Prinzip des ineinandergreifenden Schraubenpaars lassen sich nicht nur Gase unter Aufwendung einer bestimmten Arbeitsleistung komprimieren. Die Anwendung als Vakuumpumpe eröffnet auch den Einsatz von Schraubenmaschinen zur Erzielung eines Vakuums. Schließlich kann durch das Hindurchleiten von unter Druck stehenden Gasen anders herum auch eine Arbeitsleistung erzeugt werden, so dass aus unter Druck stehenden Gasen mittels des Prinzips der Schraubenmaschine auch mechanische Energie gewonnen werden kann.

[0003] Schraubenmaschinen weisen allgemein zwei parallel zueinander angeordnete Wellen auf, auf denen einerseits ein Hauptrotor und andererseits ein Nebenrotor sitzen. Hauptrotor und Nebenrotor greifen mit entsprechender schraubenförmiger Verzahnung ineinander. Zwischen den Verzahnungen und einem Verdichtergehäuse, in dem Haupt- und Nebenrotor aufgenommen sind, wird durch die Zahnlückenvolumina ein Verdichtungsraum (Arbeitskammern) gebildet. Ausgehend von einem Ansaugbereich wird mit fortschreitender Drehung von Haupt- und Nebenrotor die Arbeitskammer zunächst geschlossen und dann kontinuierlich im Volumen verringert, so dass eine Verdichtung des Mediums eintritt. Schließlich wird bei fortschreitender Drehung die Arbeitskammer zu einem Druckfenster hin geöffnet und das Medium in das Druckfenster ausgeschoben. Durch diesen Vorgang der inneren Verdichtung unterscheiden sich als Schraubenkompressoren ausgebildete Schraubenmaschinen von Rootsgebläsen, die ohne innere Verdichtung arbeiten.

[0004] Je nach gefordertem Druckverhältnis (Verhältnis Ausgangsdruck zu Eingangsdruck) sind für eine effiziente Verdichtung unterschiedliche Zähne-Zahlverhältnisse sinnvoll.

[0005] Typische Druckverhältnisse können je nach Zähne-Zahlverhältnis zwischen 1,1 und 20 liegen, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck ist. Die Verdichtung kann ein- oder mehrstufig erfolgen. Erzielbare Enddrücke können beispielsweise im Bereich 1,1 bar bis 20 bar liegen. Soweit an dieser Stelle oder nachfolgend in der vorliegenden Anmeldung auf Druckangaben in "bar" Bezug genommen wird, so beziehen sich derartige Druckangaben jeweils auf Absolutdrücke.

[0006] Schraubenmaschinen können neben der bereits erwähnten Funktion als Vakuumpumpe oder als Schraubenexpander auf unterschiedlichen Gebieten der Technik als Verdichter eingesetzt werden. Ein besonders bevorzugtes Anwendungsgebiet liegt bei der Verdichtung von Gasen, wie z.B. Luft oder inerten Gasen, (Helium, Stickstoff, ...). Es ist aber auch möglich, wenngleich dies im Speziellen baulich andere Anforderungen stellt, eine Schraubenmaschine zur Verdichtung von Kältemitteln, beispielsweise für Klimaanlagen oder Kälteanwendungen, einzusetzen. Bei der Verdichtung von Gasen gerade bei höheren Druckverhältnissen wird meist mit einer fluideingespritzten Verdichtung, insbesondere einer öleingespritzten Verdichtung gearbeitet; es ist aber auch möglich, eine Schraubenmaschine nach dem Prinzip der trockenen Verdichtung zu betreiben. Im Niederdruckbereich werden Schraubenverdichter gelegentlich auch als Schraubengebläse bezeichnet.

[0007] Es sind in den vergangenen Jahrzehnten beträchtliche Erfolge hinsichtlich der Herstellbarkeit, der Zuverlässigkeit, der Laufruhe sowie der Effizienz von Schraubenmaschinen erzielt worden. Verbesserungen bzw. Optimierungen beziehen sich dabei häufig auf Optimierungen des Wirkungsgrades in Abhängigkeit von Zähnezahl, Umschlingungswinkel und Längen-/Durchmesserverhältnis der Rotoren. Die Hinzunahme der Stirnschnitte in den Optimierungsprozess findet man erst in jüngster Zeit.

[0008] Versuche haben gezeigt, dass der Stirnschnitt der Rotoren, insbesondere der Stirnschnitt des Nebenrotors, einen wesentlichen Einfluss auf die Energieeffizienz hat. Zur Einhaltung der Verzahnungsgesetze muss der Stirnschnitt des Nebenrotors seine Entsprechung im Stirnschnitt des Hauptrotors finden. Als Stirnschnitt wird hierbei das Profil des Rotors in einer zur Achse des Rotors senkrechten Ebene bezeichnet. Aus dem Stand der Technik sind mittlerweile unterschiedliche Arten der Stirnschnitterzeugung wie beispielsweise rotor- oder zahnstangenbasierte Stirnschnitt-Erzeugungsverfahren bekannt. Hat man sich für ein bestimmtes Verfahren entschieden, so wird in einem ersten Schritt ein erster Entwurfsstirnschnitt erzeugt. Dieser wird herkömmlicherweise in mehreren folgenden (Überarbeitungs-)Schritten nach verschiedenen Kriterien weiter optimiert.

[0009] Hierbei sind sowohl die Optimierungsziele an sich (Energieeffizienz, Laufruhe, niedrige Kosten) als auch die Tatsache, dass die Verbesserungen eines Parameters z.T. zwangsläufig zur Verschlechterung eines anderen Parameters führen, bekannt. An einer konkreten Lösung, wie ein gutes Gesamt-Optimierungsergebnis (d.h. ein Kompromiss zwischen den verschiedenen Einzelparameter-Optimierungen) erzielt werden kann, mangelt es jedoch.

[0010] Beispielhaft sollen im Folgenden einige Optimierungsansätze, die im Hinblick auf eine Verbesserung der Energieeffizienz, der Laufruhe und der Kosten im Stand der Technik bekannt sind, erläutert werden. Weiterhin sollen Probleme benannt werden, die hierbei auftreten können.

1 Energieeffizienz

5

10

15

30

35

50

55

[0011] Die Energieeffizienz von Verdichterblöcken lässt sich in bekannter Weise vorteilhaft beeinflussen durch die Minimierung der inneren Leckagen im Verdichterblock und insbesondere durch die Verringerung der Spalte zwischen Hauptrotor und Nebenrotor. Konkret sind hier der Profilspalt und das Blasloch zu unterscheiden:

- Über den Profilspalt haben die druckseitigen Arbeitskammern direkte Verbindung zur Ansaugseite und damit eine größtmögliche Druckdifferenz für Rückströmungen.
- Aufeinanderfolgende Arbeitskammern sind über einen theoretisch nicht notwendigen Durchlass miteinander verbunden, der als Blasloch bezeichnet wird. Zum Teil wird dieser auch als Kopfrundungsöffnung bezeichnet. Dieses Blasloch ergibt sich durch die Kopfrundung der Profile, insbesondere des Profils des Nebenrotors.
 Druckseitige Arbeitskammern sind über druckseitige Blaslöcher mit den jeweils benachbarten Arbeitskammern verbunden, saugseitige Arbeitskammern sind über saugseitige Blaslöcher mit den jeweils benachbarten Arbeitskammern verbunden. Soweit nicht anders angegeben ist im Folgenden der Begriff "Blasloch" als "druckseitiges Blasloch" zu verstehen.

[0012] Idealerweise ist zur Minimierung der inneren Leckagen eine kurze Profilspaltlänge mit einem kleinen (druckseitigen) Blasloch zu kombinieren. Die beiden Größen verhalten sich jedoch grundsätzlich gegenläufig. D.h. je kleiner das Blasloch modelliert wird, desto größer wird zwangsläufig die Profilspaltlänge. Umgekehrt wird das Blasloch umso größer, je kürzer die Profilspaltlänge ist. Dies erläutert beispielsweise Helpertz in seiner Dissertation "Methode zur stochastischen Optimierung von Schraubenrotorprofilen", Dortmund, 2003 auf Seite 162.

[0013] Die Forderung nach einer kurzen Profilspaltlänge lässt sich in bekannter Weise mit einem flach ausgeführten Profil mit entsprechend kleiner relativer Profiltiefe des Nebenrotors realisieren. Ob ein Profil eher flach (geringe Profiltiefe) oder tief (große Profiltiefe) ausgeführt ist, lässt sich dabei mit der sog. "relativen Profiltiefe des Nebenrotors" anschaulich quantifizieren, die die Differenz zwischen Kopf- und Fußkreisradius auf den Kopfkreisradius des Nebenrotors bezieht. Je größer der Wert ist, desto kompakter ist der Verdichterblock und hat beispielsweise mehr Liefermenge als ein vergleichbarer Verdichterblock bei gleichen äußeren Abmessungen.

[0014] Sehr flach ausgeführte Profile weisen dementsprechend eine schlechte Bauvolumenausnutzung auf, d.h. sie führen zu großen Verdichterblöcken mit vergleichsweise hohem Materialaufwand bzw. vergleichsweise hohen Herstellkosten.

[0015] Druckseitige Blaslöcher dürfen wie oben beschrieben nicht zu groß ausgeführt werden, um die Rückströmung von bereits verdichtetem Medium in vorhergehende Arbeitskammern (d.h. in Arbeitskammern niedrigeren Drucks) zu minimieren. Solche Rückströmungen erhöhen den Energieaufwand für die insgesamt erzielte Fördermenge und führen zu einem unerwünschten Anstieg des Temperatur- und Druckniveaus während der Verdichtung, was insgesamt den Wirkungsgrad reduziert. Die Fläche des Blaslochs (Blaslochfläche) kann klein gehalten werden, indem die Kopfrundungen der Profile im Stirnschnitt klein ausgeführt werden. Konkret kann dies durch eine starke Krümmung im Kopfbereich der vorlaufenden Zahnflanke des Nebenrotors sowie im Kopfbereich der nachlaufenden Zahnflanke des Hauptrotors bewirkt werden. Je stärker diese Krümmung allerdings ist, desto eher gerät man in fertigungstechnische Grenzbereiche, da dies beispielsweise zu hohem Verschleiß an Profilfräsern und Profilschleifscheiben bei der Herstellung von Hauptrotor und Nebenrotor führt.

[0016] Saugseitig große Blaslöcher wirken sich dagegen nicht negativ auf die Energieeffizienz aus, da über diese nur Arbeitskammern im Ansaugbereich bei gleichem Druck miteinander verbunden sind.

[0017] Weitere Ursache für effizienzmindernde innere Leckagen ist das sogenannte Kammerzwickelvolumen, das beim Ausschub der letzten Arbeitskammer (d.h. der Arbeitskammer, in der der höchste Druck herrscht) in das Druckfenster entstehen kann. Die Arbeitskammer hat dann ab einer bestimmten Drehwinkelstellung der Rotoren keine Verbindung mehr zum Druckfenster. Es verbleibt ein sog. Kammerzwickelvolumen zwischen den beiden Rotoren und der druckseitigen Gehäusestirnwand.

[0018] Dieses Kammerzwickelvolumen ist nachteilig, weil das eingeschlossene verdichtete Medium nicht mehr ins Druckfenster ausgeschoben werden kann, bei der weiteren Drehung der Rotoren noch weiter verdichtet wird, was zu unnötig hoher Leistungsaufnahme (für die Überverdichtung), einem unnötig hohen zusätzlichen Wärmeeintrag, Geräuschentwicklung und einer Reduzierung der Lebensdauer insbesondere der Wälzlager der Rotoren führt. Darüber hinaus wird die spezifische Leistung dadurch verschlechtert, dass der im Kammerzwickelvolumen eingeschlossene Anteil nach der Überverdichtung zurück zur Saugseite gelangt und somit dem Druckluft-Anwender nicht zur Verfügung steht. Bei öleingespritzten Verdichtern ist zusätzlich inkompressibles Öl in dem Kammerzwickel und wird gequetscht.

2 Laufruhe

[0019] Auf ein gutes Profil für Hauptrotor bzw. Nebenrotor haben allerdings noch weitere Eigenschaften wie beispiels-

weise die Laufruhe entscheidenden Einfluss.

[0020] Neben guter Flankenschmiegung und geringen Relativgeschwindigkeiten zwischen den Zahnflanken von Haupt- und Nebenrotor wirkt sich die Aufteilung des Antriebsmoments auf die beiden Rotoren maßgeblich auf die Laufruhe aus. Eine ungünstige Aufteilung führt bekannterweise häufig zu dem sog. Rotorklappern des Nebenrotors, bei dem der Nebenrotor undefinierten Flankenkontakt mit dem Hauptrotor hat, und der Nebenrotor in der Konsequenz abwechselnd Kontakt mit der vorlaufenden und mit der nachlaufenden Hauptrotor-Flanke hat. Werden die beiden Rotoren über ein Synchrongetriebe auf Abstand gehalten, so verlagert sich das o.g. Rotorklappern zwangsläufig ins Synchrongetriebe. Gute Laufruhe gewährleistet nicht nur geringe Schallemissionen des Verdichterblocks sondern sorgt beispielsweise auch für einen wenig schwingungsanfälligen Verdichterblock, eine lange Lebensdauer der Wälzlager sowie geringen Verschleiß in der Verzahnung der Rotoren.

3 Kosten

[0021] Auf die Material- und Fertigungskosten von Schraubenverdichterblöcken wirken sich insbesondere die Fertigbarkeit sowie der Grad der Bauvolumenausnutzung aus.

[0022] Kompakte Verdichterblöcke mit einer hohen Bauvolumenausnutzung werden durch ein großes Zahnlückenvolumen erreicht, das wiederum von der Profiltiefe und der Zahndicke abhängt.

[0023] Je weiter man die relative Profitiefe erhöht, desto höhere Bauvolumenausnutzung erreicht man, desto höher ist gleichzeitig aber auch das Risiko von Problemen bei den Laufeigenschaften und der Fertigbarkeit:

20

25

30

35

15

10

- Mit zunehmender Profiltiefe werden insbesondere die Zahnprofile des Nebenrotors zwangsläufig immer dünner und demzufolge immer biegeweicher. Dies macht die Rotoren zunehmend temperaturempfindlicher und wirkt sich insgesamt betrachtet ungünstig auf die Spalte im Verdichterblock aus. Die Spalte haben erheblichen Einfluss auf die inneren Leckagen, d.h. Rückströmungen von Verdichtungskammern höheren Drucks in Richtung Saugseite, und können damit die Energieeffizienz des Verdichterblocks verschlechtern.
- Des Weiteren steigen bei biegeweichen Zähnen die Schwierigkeiten bei der Rotorfertigung.
 - So steigt beispielsweise das Risiko, dass beim Profilschleifen die ohnehin schon hohen Anforderungen insbesondere an die Formtoleranzen nicht eingehalten werden können.
 - Weiterhin erfordern biegeweiche Zähne geringere Vorschub- und Schnittgeschwindigkeiten sowohl beim Profilfräsen als auch beim anschließenden Profilschleifen und erhöhen dadurch die Bearbeitungszeit und in der Folge die Herstellkosten.
- Eine zunehmende Profiltiefe führt auch dazu, dass der Rotor an sich biegeweicher wird. Je biegeweicher die Rotoren ausgeführt sind, desto mehr nimmt die Gefahr zu, dass die Rotoren untereinander bzw. im Verdichtergehäuse anlaufen. Zur Gewährleistung der Betriebssicherheit auch bei hohen Temperaturen bzw. bei hohen Drücken müssen folglich die Spalte größer dimensioniert werden. Dies wirkt sich wiederrum negativ auf die Energieeffizienz des Verdichterblocks aus.

40 4 Fazit

[0024] Die obigen Erläuterungen sollen zeigen, dass eine Optimierung der einzelnen Kenngrößen jeweils für sich genommen wenig zielführend ist, sondern für ein gutes Gesamtergebnis ein Kompromiss zwischen den verschiedenen (und zum Teil widersprüchlichen) Anforderungen gefunden werden muss.

- [0025] In der Literatur werden bereits vielfach die theoretischen Berechnungsgrundlagen zur Erzeugung von Schraubenrotorprofilen behandelt und auch allgemeine Kriterien für gute Stirnschnittprofile beschrieben. Mit dem von Grafinger entwickelten Computerprogramm lassen sich beispielsweise Rotorprofile erstellen und modifizieren (Habilitation "Die computergestützte Entwicklung der Flankenprofile für Sonderverzahnungen von Schraubenkompressoren", Wien, 2010).
- [0026] Helpertz beschäftigt sich in seiner Dissertation "Methode zur stochastischen Optimierung von Schraubenrotorprofilen", Dortmund, 2003 mit der automatisierten Optimierung ausgehend von einem Entwurfsprofil hinsichtlich unterschiedlich gewichteter Kenngrößen.

[0027] Dementsprechend besteht die Aufgabe der vorliegenden Erfindung darin, ein Rotorpaar für einen Verdichterblock einer Schraubenmaschine anzugeben, das bei hoher Betriebssicherheit und vertretbaren Herstellungskosten sich durch hohe Laufruhe und eine besondere Energieeffizienz auszeichnet.

[0028] Diese Aufgabe wird mit einem Rotorpaar nach den Merkmalen des Anspruchs 1, 9 oder 14 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben. Weiter wird die Aufgabe auch mit einem Verdichterblock gelöst, der ein entsprechend ausgebildetes Rotorpaar umfasst.

[0029] Die Rotorgeometrie ist im Wesentlichen durch die Gestalt des Stirnschnitts sowie durch die Rotorlänge und den Umschlingungswinkel gekennzeichnet, vgl. "Methode zur stochastischen Optimierung von Schraubenrotorprofilen", Dissertation von Markus Helpertz, Dortmund, 2003, S. 11/12.

[0030] In einer Stirnschnittbetrachtung weisen Nebenrotor bzw. Hauptrotor eine vorbestimmte, oftmals unterschiedliche Anzahl pro Rotor gleichartig ausgebildeter Zähne auf. Der um den durch die Achse C1 bzw. C2 gezogene äußerste Kreis über die Scheitelpunkte der Zähne wird jeweils als Kopfkreis bezeichnet. Durch die der Achse nächsten Punkte der Außenfläche der Rotoren wird im Stirnschnitt ein Fußkreis definiert. Die Rippen werden als Zähne des Rotors bezeichnet. Die Nuten (bzw. Aussparungen) werden entsprechend als Zahnlücken bezeichnet. Die Fläche des Zahns am und über dem Fußkreis definiert das Zahnprofil. Die Kontur der Rippen definiert den Verlauf des Zahnprofils. Für das Zahnprofil sind Fußpunkte F1 und F2 sowie ein Scheitelpunkt F5 definiert. Der Scheitelpunkt F5 bzw. H5 ist durch den radial äußersten Punkt des Zahnprofils definiert. Weist das Zahnprofil mehrere Punkte mit gleichem maximalem radialem Abstand vom durch die Achse C1 bzw. C2 definierten Mittelpunkt auf, folgt also das Zahnprofil an seinem radial äußeren Ende einem Kreisbogen auf dem Kopfkreis, so liegt der Scheitelpunkt F5 genau in der Mitte dieses Kreisbogens. Zwischen zwei benachbarten Scheitelpunkten F5 wird eine Zahnlücke definiert.

[0031] Die radial der Achse C1 bzw. C2 nächsten Punkte zwischen einem betrachteten und dem jeweils benachbarten Zahn definieren Fußpunkte F1 und F2. Auch hier gilt für den Fall, dass mehrere Punkte der Achse C1 bzw. C2 gleich nahe kommen, also das Zahnprofil an seinem tiefsten Punkt abschnittsweise dem Fußkreis folgt, der entsprechende Fußpunkt F1 bzw. F2 dann auf der Hälfte dieses auf dem Fußkreis liegenden Kreisbogens liegt.

[0032] Schließlich wird durch das Ineinandergreifen von Hauptrotor und Nebenrotor sowohl für den Nebenrotor als auch für den Hauptrotor jeweils ein Wälzkreis definiert. Bei Schraubenmaschinen als auch bei Zahnrädern oder Reibrädern, gibt es stets zwei Kreise im Stirnschnitt der Verzahnung, die bei der Bewegung aneinander abrollen. Diese Kreise, auf denen im vorliegenden Fall Hauptrotor und Nebenrotor aneinander abrollen, werden als jeweilige Wälzkreise bezeichnet. Die Wälzkreisdurchmesser von Hauptrotor und Nebenrotor können mit Hilfe von Achsabstand und Zähnezahlverhältnis bestimmt werden.

[0033] Auf den Wälzkreisen sind die Umfangsgeschwindigkeiten von Hauptrotor und Nebenrotor identisch.

30

35

50

[0034] Schließlich sind noch Zahnlückenflächen zwischen den Zähnen und dem jeweiligen Kopfkreis KK definiert, nämlich Zahnlückenfläche A6 zwischen dem Profilverlauf des Nebenrotors NR zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ bzw. eine Fläche A7 als Zahnlückenfläche zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂.

[0035] Das Zahnprofil des Nebenrotors (aber auch des Hauptrotors) weist eine in Drehrichtung jeweils vorlaufende Zahnflanke als auch eine in Drehrichtung nachlaufende Zahnflanke auf. Beim Nebenrotor (NR) wird die vorlaufende Zahnflanke im Folgenden mit F_V, die nachlaufende Zahnflanke mit F_N bezeichnet.

[0036] Die nachlaufende Zahnflanke F_N bildet in ihrem Abschnitt zwischen Kopfkreis und Fußkreis einen Punkt aus, in dem sich die Krümmung des Verlaufs des Zahnprofils ändert. Dieser Punkt wird im Folgenden mit F8 bezeichnet und unterteilt die nachlaufende Zahnflanke F_N in einen konvex gekrümmten Anteil zwischen F8 und dem Kopfkreis und einen konkav gekrümmten Anteil zwischen dem Fußkreis und F8. Kleinteilige Profilveränderungen, etwa durch Dichtleisten oder durch andere lokale Profilumbildungen, werden bei der Betrachtung des vorstehend geschilderten Krümmungswechsels nicht berücksichtigt.

[0037] Über den reinen Stirnschnitt hinaus sind für die dreidimensionale Ausgestaltung noch folgende Begriffe bzw. Parameter für einen Rotor, insbesondere den Nebenrotor maßgeblich: Zunächst wird ein Umschlingungswinkel Φ definiert. Dieser Umschlingungswinkel ist der Winkel, um den der Stirnschnitt von der saugseitigen zur druckseitigen Rotorstirnfläche verdreht ist, vgl. hierzu auch die näheren Erläuterungen im Zusammenhang mit Figur 8.

[0038] Der Hauptrotor weist eine Rotorlänge L_{HR} auf, die als Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer druckseitigen Hauptrotor-Rotorstirnfläche definiert ist. Der Abstand der parallel zueinander verlaufenden ersten Achse C1 des Nebenrotors zur zweiten Achse C2 des Hauptrotors wird im Folgenden als Achsabstand a bezeichnet. Es wird darauf hingewiesen, dass in den meisten Fällen die Länge des Hauptrotors L_{HR} der Länge des Nebenrotors L_{NR} entspricht, wobei auch beim Nebenrotor die Länge als Abstand einer saugseitigen Nebenrotor-Rotorstirnfläche zu einer druckseitigen Nebenrotor-Rotorstirnfläche verstanden wird. Schließlich wird ein Rotorlängenverhältnis L_{HR} /a definiert, also ein Verhältnis der Rotorlänge des Hauptrotors zum Achsabstand. Das Verhältnis L_{HR} /a ist insofern ein Maß für die axiale Dimensionierung des Rotorprofils.

[0039] Die Eingriffslinie bzw. der Profilspalt entstehen durch das Zusammenwirken von Hauptrotor und Nebenrotor miteinander. Dabei ergibt sich die Eingriffslinie wie folgt: Die Zahnflanken von Hauptrotor und Nebenrotor berühren einander bei spielfreier Verzahnung abhängig von der Drehwinkelstellung der Rotoren in bestimmten Punkten. Diese Punkte werden als Eingriffspunkte bezeichnet. Der geometrische Ort aller Eingriffspunkte heißt Eingriffslinie und lässt sich bereits anhand des Stirnschnitts der Rotoren im Zweidimensionalen berechnen, vgl. Figur 7j.

[0040] Die Eingriffslinie wird in der Stirnschnittbetrachtung durch die Verbindungslinie zwischen den beiden Mittelpunkten C1 und C2 in zwei Abschnitte geteilt, und zwar in einen (vergleichsweise kurzen) saugseitigen und einen (vergleichsweise langen) druckseitigen Abschnitt.

[0041] Bei zusätzlicher Angabe des Umschlingungswinkels und der Rotorlänge (= Abstand zwischen der saugseitigen Stirnfläche und der druckseitigen Stirnfläche) lässt sich die Eingriffslinie auch dreidimensional erweitern und entspricht der Berührlinie von Hauptrotor und Nebenrotor. Die axiale Projektion der dreidimensionalen Eingriffslinie auf die Stirnschnittebene ergibt wiederum die anhand von Figur 7j veranschaulichte zweidimensionale Eingriffslinie. Der Begriff "Eingriffslinie" wird in der Literatur sowohl für die zweidimensionale als auch die dreidimensionale Betrachtung verwendet. Im Folgenden soll, sofern nichts anderes angegeben wird, unter "Eingriffslinie" allerdings die zweidimensionale Eingriffslinie, also die Projektion auf den Stirnschnitt verstanden werden.

[0042] Der Profileingriffsspalt ist wie folgt definiert: Im realen Verdichterblock einer Schraubenmaschine ist bei Einbauachsabstand von Hauptrotor und Nebenrotor Spiel zwischen beiden Rotoren vorhanden. Der Spalt zwischen Hauptrotor und Nebenrotor wird als Profileingriffsspalt bezeichnet und ist der geometrische Ort aller Punkt, in denen sich die beiden gepaarten Rotoren gegenseitig berühren oder den geringsten Abstand zueinander haben. Durch den Profileingriffsspalt stehen die verdichtenden sowie die ausschiebenden Arbeitskammern in Verbindung zu Kammern, die noch Kontakt zur Saugseite haben. Am Profileingriffsspalt liegt somit das gesamte maximale Druckverhältnis an. Durch den Profileingriffsspalt wird bereits verdichtetes Arbeitsfluid wieder zur Saugseite zurücktransportiert und reduziert damit die Effizienz der Verdichtung. Da es sich beim Profileingriffsspalt bei spielfreier Verzahnung um die Eingriffslinie handeln würde, wird der Profileingriffsspalt auch als "Quasi-Eingriffslinie" bezeichnet.

[0043] Blaslöcher zwischen Arbeitskammern entstehen durch Kopfrundungen der Zähne des Profils. Über Blaslöcher sind die Arbeitskammern mit vorlaufenden und nachfolgenden Arbeitskammern verbunden, so dass (im Gegensatz zum Profileingriffsspalt) an einem Blasloch nur die Druckdifferenz von einer Arbeitskammer zur nächsten Arbeitskammer anliegt.

[0044] Weiterhin sind bekanntermaßen bei Schraubenmaschinen bestimmte Zahnpaarungen üblich, beispielsweise ein Rotorpaar, bei dem der Hauptrotor 3 und der Nebenrotor 4 Zähne oder eine Rotorpaarung, bei dem der Hauptrotor 4 Zähne und der Nebenrotor 5 Zähne oder weiterhin eine Rotorpaargeometrie, bei dem der Hauptrotor 5 Zähne und der Nebenrotor 6 Zähne aufweist. Für unterschiedliche Anwendungsgebiete bzw. Einsatzzwecke kommen unter Umständen Rotorpaare bzw. Schraubenmaschinen mit unterschiedlichem Zähne-Zahlverhältnis zum Einsatz. Beispielsweise gelten Rotorpaaranordnungen mit einem Zähne-Zahlenverhältnis 4 / 5 (Hauptrotor mit 4 Zähnen, Nebenrotor mit 5 Zähnen) als geeignete Paarung für öleingespritzte Verdichtungsanwendungen in moderaten Druckbereichen.

[0045] Insofern gibt die Zähne-Zahl bzw. das Zähne-Zahlverhältnis unterschiedliche Typen von Rotorpaarungen und daraus resultierend auch unterschiedliche Typen von Schraubenmaschinen, insbesondere Schraubenverdichtern, vor.

[0046] Für eine Schraubenmaschine bzw. ein Rotorpaar mit 3 Zähnen beim Hauptrotor und 4 Zähnen beim Nebenrotor wird eine Geometrie mit folgenden Vorgaben beansprucht, die als besonders energieeffizient anzusehen ist:

Es wird eine relative Profiltiefe des Nebenrotors ausgebildet mit

30

35

40

45

50

55

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1},$$

wobei PT_{rel} mindestens 0,5, bevorzugt mindestens 0,515, und höchstens 0,65, bevorzugt höchstens 0,595, beträgt, wobei es sich bei PT_{rel} um die relative Profiltiefe, bei rk_1 um einen um den Außenumfang des Nebenrotors gezogenen Kopfkreisradius und bei rf_1 um einen am Profilgrund ansetzenden Fußkreisradius handelt. Weiterhin ist das Verhältnis vom Achsabstand α der ersten Achse C1 zur zweiten Achse C2 und dem Kopfkreisradius rk_1

$$\frac{a}{rk_1}$$

so festgelegt, dass rk_{\perp} mindestens 1,636 und höchstens 1,8, bevorzugt höchstens 1,733, beträgt, wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° \leq Φ_{HR} \leq 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

$$1.4 \le L_{HR}/a \le 3.4$$
,

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

[0047] Für eine Schraubenmaschine bzw. ein Rotorpaar mit vier Zähnen beim Hauptrotor und fünf Zähnen beim Nebenrotor wird eine Geometrie mit folgenden Vorgaben beansprucht, die als besonders energieeffizient anzusehen ist: Es wird eine relative Profiltiefe des Nebenrotors ausgebildet mit

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1},$$

5

10

15

20

25

30

35

40

45

50

55

wobei PT_{rel} mindestens 0,5, bevorzugt mindestens 0,515 und höchstens 0,58 beträgt, wobei es sich bei PT_{rel} um die relative Profiltiefe, bei rk₁ um einen um den Außenumfang des Nebenrotors gezogenen Kopfkreisradius und bei rf₁ um einen am Profilgrund ansetzenden Fußkreisradius handelt. Weiterhin ist das Verhältnis vom Achsabstand a der ersten Achse C1 zur zweiten Achse C2 und dem Kopfkreisradius rk₁

$$\frac{a}{rk_1}$$

so festgelegt, dass $\overline{rk_1}$ mindestens 1,683 und höchstens 1,836, bevorzugt höchstens 1,782 beträgt, wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° $\leq \Phi_{HR} \leq$ 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

$$1,4 \leq L_{HR}/a \leq 3,3,$$

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

[0048] Für eine Schraubenmaschine bzw. ein Rotorpaar mit fünf Zähnen beim Hauptrotor und sechs Zähnen beim Nebenrotor wird eine Geometrie mit folgenden Vorgaben beansprucht, die als besonders energieeffizient anzusehen ist: Es wird eine relative Profiltiefe des Nebenrotors ausgebildet mit

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1},$$

wobei PT_{rel} mindestens 0,44 und höchstens 0,495, bevorzugt höchstens 0,48 beträgt, wobei es sich bei PT_{rel} um die relative Profiltiefe, bei rk_1 um einen um den Außenumfang des Nebenrotors gezogenen Kopfkreisradius und bei rf_1 um einen am Profilgrund ansetzenden Fußkreisradius handelt. Weiterhin ist das Verhältnis von Achsabstand a der ersten Achse C1 zur zweiten Achse C2 und den Kopfkreisradius rk_1

$$\frac{a}{rk_1}$$

so festgelegt, dass $\overline{rk_1}$ mindestens 1,74, bevorzugt mindestens 1,75 und höchstens 1,8, bevorzugt höchstens 1,79 beträgt, wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° \leq $\Phi_{HR} \leq$ 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

$$1,4 \le L_{HR}/a \le 3,2,$$

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

[0049] Liegen die Werte für die relative Profiltiefe einerseits und dem Verhältnis von Achsabstand zum Kopfkreisradius des Nebenrotors andererseits für die angegebenen Zähne-Zahlverhältnisse jeweils in den angegebenen vorteilhaften Bereichen, so werden dadurch die Grundvoraussetzungen für ein gutes Nebenrotorprofil bzw. ein gutes Zusammenwirken von Nebenrotorprofil und Hauptrotorprofil geschaffen, insbesondere wird hierdurch ein besonders günstiges Verhältnis von Blaslochfläche zu Profilspaltlänge ermöglicht. Hinsichtlich der ausschlaggebenden Parameter wird für alle angesprochenen Zähnezahl-Verhältnisse ergänzend auf die Veranschaulichung in Figur 7a verwiesen. Die relative Profiltiefe des Nebenrotors ist ein Maß dafür, wie tief die Profile geschnitten sind. Mit zunehmender Profiltiefe steigt beispielsweise die Bauvolumenausnutzung, allerdings auf Kosten der Biegesteifigkeit des Nebenrotors. Für die relative Profiltiefe des Nebenrotors gilt:

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1} = \frac{PT_1}{rk_1} = \frac{rk_1 - (a - rk_2)}{rk_1} = 1 - \frac{a - rk_2}{rk_1}$$

mit $PT_1 = rk_1 - rf_1$ und $rf_1 = a - rk_2$

10

25

35

50

[0050] Insofern besteht ein Zusammenhang mit dem Verhältnis von $\frac{a}{rk_1}$ Achsabstand a zum Nebenrotor-Kopfkreisradius rk_1 .

[0051] Die angegebenen Werte für das Rotorlängenverhältnis L_{HR} /a sowie den Umschlingungswinkel Φ_{HR} stellen für das jeweils angegebene Zähne-Zahlverhältnis vorteilhafte bzw. zweckmäßige Werte dar, um in der axialen Dimension eine vorteilhafte Rotorpaarung festzulegen.

1. Bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 3 / 4

[0052] Nachstehend werden bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 3 / 4, also für ein Rotorpaar, bei dem der Hauptrotor 3 Zähne und der Nebenrotor 4 Zähne aufweist, dargelegt:

Eine erste bevorzugte Ausgestaltungsform sieht vor, dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt durch die Achse C1 gegeben ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert r_{25} = rf_1 + 0,25 * (rk_1 - rf_1) hat, der Radius r_{50} von B_{50} den Wert r_{50} = rf_1 + 0,5 * (rk_1 - rf_1) hat und der Radius r_{75} von B_{75} den Wert r_{75} = rf_1 + 0,75 * (rk_1 - rf_1) hat, und wobei die Kreisbögen B_{25} , B_{50} , B_{75} jeweils durch die vorlaufende Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt werden, wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b_{75} der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert sind und folgende Bemessung eingehalten ist:

 $0.65 \le \epsilon_1 < 1.0 \text{ und/oder } 0.50 \le \epsilon_2 \le 0.85, \text{ bevorzugt } 0.80 \le \epsilon_1 < 1.0 \text{ und/oder } 0.50 \le \epsilon_2 \le 0.79.$

[0053] Ziel ist es, ein kleines Blasloch mit kurzer Länge des Profileingriffsspalts zu kombinieren. Die beiden Parameter verhalten sich jedoch gegenläufig, d.h. je kleiner das Blasloch modelliert wird, desto größer wird zwangsläufig die Länge des Profileingriffsspalts. Umgekehrt wird das Blasloch umso größer, je kürzer die Länge des Profileingriffsspalts ist. In den beanspruchten Bereichen wird eine besonders günstige Kombination der beiden Parameter erzielt. Gleichzeitig wird eine ausreichend hohe Biegesteifigkeit des Nebenrotors gewährleistet. Darüber hinaus stellen sich auch Vorteile, was den Kammerausschub anbelangt, und beim Nebenrotor-Drehmoment ein. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figur 7c verwiesen.

[0054] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors Fußpunkte F1 und F2 am Fußkreis und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_Z übersteht und wobei $8 \le A2/A1 \le 60$ eingehalten ist.

[0055] Die Zahnteilfläche A1 an der vorlaufenden Zahnflanke F_V des Nebenrotors hat wesentlichen Einfluss auf die Blaslochfläche. Die Zahnteilfläche A2 an der nachlaufenden Zahnflanke F_N des Nebenrotors hat hingegen wesentlichen Einfluss auf die Länge des Profileingriffsspalts, den Kammerausschub sowie das Nebenrotordrehmoment. Für das Zahnteilflächenverhältnis A2/A1 gibt es einen vorteilhaften Bereich, der einen guten Kompromiss zwischen Länge des Profileingriffsspalts einerseits und Blasloch andererseits ermöglicht. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf Figur 7d verwiesen.

[0056] In einer weiteren bevorzugten Ausführungsform weist das Rotorpaar einen Nebenrotor auf, bei dem in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D₇ definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende

Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $7,0 \le A3/A1 \le 35$ eingehalten ist. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figur 7d verwiesen.

[0057] Weiterhin wird es bezüglich der Gestaltung des Nebenrotors als vorteilhaft angesehen, wenn in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht, wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und wobei $0.5\% \le A1/A0 \le 4.5\%$ eingehalten ist. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figuren 7d sowie 7e verwiesen.

[0058] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen Zahnteilungswinkel γ entsprechend 360° /Zahl der Zähne des Nebenrotors (NR) definiert, wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist, wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet, wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und wobei 14 $\% \le \delta \le 25$

$$\delta = \frac{\beta}{\gamma} * 100 \, [\%].$$

% eingehalten ist, mit

10

20

30

35

40

55

[0059] Zunächst wird nochmals klargestellt, dass der Versatzwinkel bevorzugtermaßen stets positiv ist, also stets der Versatz in Richtung auf die Rotationsrichtung gegeben ist und nicht entgegen. Der Zahn des Nebenrotors ist insofern zur Rotationsrichtung des Nebenrotors hin gekrümmt. Allerdings sollte der Versatz sich in dem als vorteilhaft angegebenen Bereich halten, um einen günstigen Kompromiss zwischen der Blaslochfläche, der Form der Eingriffslinie, der Länge und der Form des Profileingriffsspalts, dem Nebenrotordrehmoment, der Biegesteifigkeit der Rotoren sowie dem Kammerausschub ins Druckfenster zu ermöglichen. Hinsichtlich einer Veranschaulichung der Parameter wird ergänzend auf Figur 7f verwiesen.

[0060] Es wird als vorteilhaft angesehen, wenn in einer Stirnschnittbetrachtung die zwischen F1 und F5 ausgebildete nachlaufende Zahnflanke F_N eines Zahns des Nebenrotors (NR) einen konvexen Längenanteil von mindestens 45 % bis höchstens 95 % aufweist.

[0061] Der mit dem Bereich festgelegte, relative lange konvexe Längenanteil der nachlaufenden Zahnflanke F_N eines Zahn des Nebenrotors erlaubt einen guten Kompromiss zwischen Länge des Profileingriffsspalts, Kammerausschub, Nebenrotordrehmoment einerseits und Biegesteifigkeit des Nebenrotors andererseits. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf Figur 7g verwiesen.

[0062] Bevorzugtermaßen ist der Nebenrotor derart ausgestaltet, dass in einer Stirnschnittbetrachtung der von der Achse C1 des Nebenrotors (NR) durch F5 gezogene Radialstrahl R das Zahnprofil in einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 und einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 teilt und wobei

$5 \le A4/A5 \le 14$

eingehalten ist. Es sei an dieser Stelle nochmals darauf hingewiesen, dass das Zahnprofil nach radial innen zur Achse C1 hin durch den Fußkreis FK₁ begrenzt ist. Hierbei kann es auftreten, dass der Radialstrahl R das Zahnprofil derart teilt, dass zwei disjunkte Flächenanteile mit einem Gesamtflächenanteil A5, die der vorlaufenden Zahnflanke F_V zugeordnet sind, entstehen, vgl. Figur 7g. Würde der Scheitelpunkt F5 derart zur vorlaufenden Zahnflanke hin versetzt sein, dass der Radialstrahl R die vorlaufende Zahnflanke F_V nicht nur berührt, sondern in zwei Punkten schneidet, so sind wiederum zwei der vorlaufenden Zahnflanke zugeordnete disjunkte Flächenanteile mit einem Gesamtflächenanteil A5 definiert. Der der nachlaufenden Zahnflanke F_N zugeordnete Flächenanteil A4 wird dann zum einen durch den Radialstrahl R und abschnittsweise, nämlich zwischen den zwei Schnittpunkten der vorlaufenden Zahnflanke F_V mit dem Radialstrahl R, zum anderen auch durch die vorlaufende Zahnflanke F_V begrenzt.

[0063] Eine weitere bevorzugte Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $290^{\circ} \le \Phi_{HR} \le 360^{\circ}$, vorzugsweise $320^{\circ} \le \Phi_{HR} \le 360^{\circ}$.

[0064] Mit zunehmendem Umschlingungswinkel kann bei gleichem eingebautem Volumenverhältnis die Druckfensterfläche größer gestaltet werden. Zusätzlich verkürzt sich dadurch auch die axiale Erstreckung der auszuschiebenden

Arbeitskammer, die sog. Profiltaschentiefe. Dies reduziert insbesondere bei größeren Drehzahlen die Ausschiebedrosselverluste und ermöglicht damit eine bessere spezifische Leistung. Ein zu großer Umschlingungswinkel wirkt sich allerdings wiederum nachteilig auf das Bauvolumen aus und führt zu größeren Rotoren.

[0065] Darüber hinaus ist in einer vorteilhaften Ausführungsform ein Rotorpaar vorgesehen, das derart ausgebildet ist und miteinander zusammenwirkt, dass ein Blaslochfaktor μ_{Bl} mindestens 0,02 % und höchstens 0,4 %, bevorzugtermaßen höchstens 0,25 % beträgt,

wobei
$$\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$$
 und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und den Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

[0066] Während die absolute Größe des druckseitigen Blaslochs alleine noch keine sinnvolle Aussage über die Wirkung auf die Leckmassenströme ermöglicht, ist ein Verhältnis von absoluter druckseitiger Blaslochfläche A_{BI} zur Summe aus der Zahnlückenfläche A6 des Nebenrotors sowie der Zahnlückenfläche A7 des Hauptrotors wesentlich aussagekräftiger. Hinsichtlich der weiteren Veranschaulichung der Parameter wird hierbei ergänzend auch auf Figur 7b verwiesen. Je kleiner der Zahlenwert μ_{BI} ist, umso geringer ist der Einfluss des Blaslochs auf das Betriebsverhalten. Dies erlaubt einen Vergleich unterschiedlicher Profilformen. Die druckseitige Blaslochfläche lässt sich damit unabhängig von der Baugröße der Schraubenmaschine darstellen.

[0067] In einer weiterhin bevorzugten Ausführungsform ist ein Rotorpaar derart ausgebildet und aufeinander abgestimmt, dass für einen Blasloch-/Profilspaltlängenfaktor $\mu_l*\mu_{Bl}$

$$0.1 \% \le \mu_{l} * \mu_{Bl} \le 1.72 \%$$

eingehalten ist mit

10

25

30

35

50

$$\mu_l = \frac{l_{sp}}{PT_1},$$

wobei I_{sp} die Länge des räumlichen, also dreidimensionalen Profileingriffspalts einer Zahnlücke des Nebenrotors und PT_1 die Profiltiefe des Nebenrotors mit $PT_1 = rk_1 - rf_1$ bezeichnen

 $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ [\%] \\ \text{wobei A}_{\text{Bl}} \text{ eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen} \\ \text{des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und den Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.}$

[0068] μ_l bezeichnet einen Profilspaltlängenfaktor, wobei die Länge des Profileingriffsspalts einer Zahnlücke ins Verhältnis zur Profiltiefe PT $_1$ gesetzt wird. Damit lässt sich ein Maß für die Länge des Profileingriffspalts festlegen unabhängig von der Baugröße der Schraubenmaschine. Je kleiner der Zahlenwert der Kennzahl μ_l ist, umso kürzer ist bei gleicher Profiltiefe der Profilspalt einer Zahnteilung und damit umso geringer der Leckvolumenstrom zurück auf die Saugseite. Aus dem Faktor $\mu_l * \mu_{Bl}$ ergibt sich das Ziel, ein kleines druckseitiges Blasloch mit einem kurzen Profilspalt zu kombinieren. Die beiden Kennzahlen verhalten sich, wie bereits erwähnt, jedoch gegenläufig.

[0069] Es wird darüber hinaus als vorteilhaft angesehen, wenn Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis Π von bis zu 3, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 3, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck bezeichnet.

[0070] Eine weiterhin bevorzugte Ausführungsform sieht ein Rotorpaar vor, derart, dass der Hauptrotor (HR) bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s betreibbar ausgebildet ist. [0071] Eine weitere Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_{v} = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,145 \le D_v \le 1,30$$

eingehalten ist, wobei Dk_1 den Durchmesser des Kopfkreises KK_1 des Nebenrotors (NR) und Dk_2 den Durchmesser des Kopfkreises KK_2 des Hauptrotors (HR) bezeichnen.

2. Bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 4 / 5

5

10

30

35

50

[0072] Nachstehend werden bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 4/5, also für ein Rotorpaar, bei dem der Hauptrotor vier Zähne und der Nebenrotor fünf Zähne aufweist, dargelegt:

Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B $_{25}$, B $_{50}$, B $_{75}$, deren gemeinsamer Mittelpunkt durch die Achse C1 gegeben ist, definiert sind, wobei der Radius r_{25} von B $_{25}$ den Wert r_{25} = rf_1 + 0,25 * (rk_1 - rf_1) hat, der Radius r_{50} von B $_{50}$ den Wert r_{50} = rf_1 + 0,75 * (rk_1 - rf_1) hat, und wobei die Kreisbögen B $_{25}$, B $_{50}$, B $_{75}$ jeweils durch die vorlaufende Zahnflanke F $_V$ und die nachlaufende Zahnflanke F $_N$ begrenzt werden, und wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b $_{25}$, b $_{50}$, b $_{75}$ der Kreisbögen B $_{25}$, B $_{50}$, B $_{75}$ mit ϵ_1 = b $_{50}$ /b $_{25}$ und ϵ_2 = b $_{75}$ /b $_{25}$ definiert werden und folgende Bemessung eingehalten ist: $0.75 \le \epsilon_1 \le 0.85$ und/oder $0.65 \le \epsilon_2 \le 0.74$.

[0073] Ziel ist es, ein kleines Blasloch mit kurzer Länge des Profileingriffsspalts zu kombinieren. Die beiden Parameter verhalten sich jedoch gegenläufig, d.h. je kleiner das Blasloch modelliert wird, desto größer wird zwangsläufig die Länge des Profileingriffsspalts. Umgekehrt wird das Blasloch umso größer, je kürzer die Länge des Profileingriffsspalts ist. In den beanspruchten Bereichen wird eine besonders günstige Kombination der beiden Parameter erzielt. Gleichzeitig wird eine ausreichend hohe Biegesteifigkeit des Nebenrotors gewährleistet. Darüber hinaus stellen sich auch Vorteile, was den Kammerausschub anbelangt, und beim Nebenrotor-Drehmoment ein. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figur 7c verwiesen.

[0074] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 am Fußkreis und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_Z übersteht und wobei $6 \le A2/A1 \le 15$ eingehalten ist. [0075] Die Zahnteilfläche A1 an der vorlaufenden Zahnflanke F_V des Nebenrotors hat wesentlichen Einfluss auf die Blaslochfläche. Die Zahnteilfläche A2 an der nachlaufenden Zahnflanke F_N des Nebenrotors hat hingegen wesentlichen Einfluss auf die Länge des Profileingriffsspalts, den Kammerausschub sowie das Nebenrotordrehmoment. Für das Zahnteilflächenverhältnis A2/A1 gibt es einen vorteilhaften Bereich, der einen guten Kompromiss zwischen Länge des Profileingriffsspalts einerseits und Blasloch andererseits ermöglicht. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf Figur 7d verwiesen.

[0076] In einer weiteren Ausführungsform weist das Rotorpaar einen Nebenrotor auf, bei dem in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $9,0 \le A3/A1 \le 18$ eingehalten ist. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figur 7d verwiesen.

[0077] Weiterhin wird es bezüglich der Gestaltung des Nebenrotors als vorteilhaft angesehen, wenn in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht, wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und wobei 1,5 % \leq A1/A0 \leq 3,5 % eingehalten ist.

[0078] Hinsichtlich der Festlegung der Parameter wird auf die Figuren 7d sowie 7e verwiesen.

[0079] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und

F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors NR definiert, wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist, wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet, wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und wobei

$$14 \% \le \delta \le 18 \%$$

10

15

20

25

30

$$\delta = \frac{\beta}{\gamma} * 100 \, [\%].$$

eingehalten ist, mit

[0080] Zunächst wird nochmals klargestellt, dass der Versatzwinkel bevorzugtermaßen stets positiv ist, also stets der Versatz in Richtung auf die Rotationsrichtung gegeben ist und nicht entgegen. Der Zahn des Nebenrotors ist insofern zur Rotationsrichtung des Nebenrotors hin gekrümmt. Allerdings sollte der Versatz sich in dem als vorteilhaft angegebenen Bereich halten, um einen günstigen Kompromiss zwischen der Blaslochfläche, der Form der Eingriffslinie, der Länge und Form des Profileingriffsspalts, dem Nebenrotordrehmoment, der Biegesteifigkeit der Rotoren sowie dem Kammerausschub ins Druckfenster zu ermöglichen. Hinsichtlich einer Veranschaulichung der Parameter wird ergänzend auf Figur 7f verwiesen.

[0081] Es wird weiterhin als vorteilhaft angesehen, wenn in einer Stirnschnittbetrachtung die zwischen F1 und F5 ausgebildete nachlaufende Zahnflanke F_N eines Zahns des Nebenrotors (NR) einen konvexen Längenanteil von mindestens 55 % bis höchstens 95 % aufweist.

[0082] Der mit dem Bereich festgelegte, relative lange konvexe Längenanteil der nachlaufenden Zahnflanke F_N eines Zahn des Nebenrotors erlaubt einen guten Kompromiss zwischen Länge des Profileingriffsspalts, Kammerausschub, Nebenrotordrehmoment einerseits und Biegesteifigkeit des Nebenrotors andererseits. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf Figur 7g verwiesen.

[0083] Bevorzugtermaßen ist der Nebenrotor so ausgestaltet, dass in einer Stirnschnittbetrachtung der von der Achse C1 des Nebenrotors (NR) durch F5 gezogene Radialstrahl R das Zahnprofil in einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 und einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 teilt und wobei

$4 \le A4/A5 \le 9$

35

50

55

eingehalten ist. Es sei an dieser Stelle nochmals darauf hingewiesen, dass das Zahnprofil nach radial innen zur Achse C1 hin durch den Fußkreis FK_1 begrenzt ist. Hierbei kann es auftreten, dass der Radialstrahl R das Zahnprofil derart teilt, dass zwei disjunkte Flächenanteile mit einem Gesamtflächenanteil A5, die der vorlaufenden Zahnflanke F_V zugeordnet sind, entstehen, vgl. Figur 7g. Würde der Scheitelpunkt F5 derart zur vorlaufenden Zahnflanke hin versetzt sein, dass der Radialstrahl R die vorlaufende Zahnflanke F_V nicht nur berührt, sondern in zwei Punkten schneidet, so sind wiederum zwei der vorlaufenden Zahnflanke zugeordnete disjunkte Flächenanteile mit einem Gesamtflächenanteil A5 definiert. Der der nachlaufenden Zahnflanke F_N zugeordnete Flächenanteil A4 wird dann zum einen durch den Radialstrahl R abschnittsweise, nämlich zwischen den zwei Schnittpunkten der vorlaufenden Zahnflanke F_V mit dem Radialstrahl R, zum anderen auch durch die vorlaufende Zahnflanke F_V begrenzt.

[0084] Eine weitere bevorzugte Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: 320° ≤ Φ_{HR} ≤ 360°, vorzugsweise 330° ≤ Φ_{HR} ≤ 360°.

[0085] Mit zunehmendem Umschlingungswinkel kann bei gleichem eingebautem Volumenverhältnis die Druckfensterfläche größer gestaltet werden. Zusätzlich verkürzt sich dadurch auch die axiale Erstreckung der auszuschiebenden Arbeitskammer, die sog. Profiltaschentiefe. Dies reduziert insbesondere bei größeren Drehzahlen die Ausschiebedrosselverluste und ermöglicht damit eine bessere spezifische Leistung. Ein zu großer Umschlingungswinkel wirkt sich allerdings wiederum nachteilig auf das Bauvolumen aus und führt zu größeren Rotoren.

[0086] Darüber hinaus ist in einer vorteilhaften Ausführungsform ein Rotorpaar vorgesehen, das derart ausgebildet ist und miteinander zusammenwirkt, dass ein Blaslochfaktor μ_{Bl} mindestens 0,02 % und höchstens 0,4 %, bevorzugtermaßen höchstens 0,25 % beträgt,

eingehalten ist, wobei $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \mbox{[\%]}$ und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors NR bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK $_1$ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK $_2$ eingeschlossene Fläche bezeichnen.

[0087] Während die absolute Größe des druckseitigen Blaslochs alleine noch keine sinnvolle Aussage über die Wirkung auf die Leckmassenströme ermöglicht, ist ein Verhältnis von absoluter druckseitiger Blaslochfläche A_{Bl} zur Summe aus der Zahnlückenfläche A6 des Nebenrotors sowie der Zahnlückenfläche A7 des Hauptrotors wesentlich aussagekräftiger. Hinsichtlich der Veranschaulichung der Parameter wird hierbei ergänzend auch auf Figur 7b verwiesen. Je kleiner der Zahlenwert μ_{Bl} ist, umso geringer ist der Einfluss des Blaslochs auf das Betriebsverhalten. Dies erlaubt einen Vergleich unterschiedlicher Profilformen. Die druckseitige Blaslochfläche lässt sich damit unabhängig von der Baugröße der Schraubenmaschine darstellen.

[0088] In einer weiterhin bevorzugten Ausführungsform ist ein Rotorpaar derart ausgebildet und aufeinander abgestimmt, dass für einen Blasloch-/Profilspaltlängenfaktor $\mu_l * \mu_{Bl}$

$$0.1 \% \le \mu_{l} * \mu_{Bl} \le 1.72 \%$$

eingehalten ist mit

5

10

15

20

25

35

50

55

$$\mu_l = \frac{l_{sp}}{PT_1},$$

wobei I_{sp} die Länge des räumlichen, also dreidimensionalen Profileingriffspalts einer Zahnlücke des Nebenrotors und PT_1 die Profiltiefe des Nebenrotors mit $PT_1 = rk_1 - rf_1$ bezeichnen

 $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \left[\%\right]_{\text{wobei A}_{Bl} \text{ eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.$

[0089] μ_l bezeichnet einen Profilspaltlängenfaktor, wobei die Länge des Profileingriffsspalts einer Zahnlücke ins Verhältnis zur Profiltiefe PT $_1$ gesetzt wird. Damit lässt sich ein Maß für die Länge des Profileingriffsspalts festlegen unabhängig von der Baugröße der Schraubenmaschine. Je kleiner der Zahlenwert der Kennzahl μ_l ist, umso kürzer ist bei gleicher Profiltiefe der Profilspalt und damit umso geringer der Leckvolumenstrom zurück auf die Saugseite. Aus dem Faktor μ_l * μ_{Bl} ergibt sich das Ziel, ein kleines druckseitiges Blasloch mit einem kurzen Profilspalt zu kombinieren. Die beiden Kennzahlen verhalten sich, wie bereits erwähnt, jedoch gegenläufig.

[0090] Es wird darüber hinaus als vorteilhaft angesehen, wenn Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis von bis zu 5, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 5, oder alternativ eine fluideingespritzte Verdichtung mit einem Druckverhältnis von bis zu 16, insbesondere mit einem Druckverhältnis größer 1 und bis zu 16, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck bezeichnet.

[0091] Eine weiterhin bevorzugte Ausführungsform sieht ein Rotorpaar vor, derart, dass im Fall einer trockenen Verdichtung der Hauptrotor bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s und im Fall einer fluideingespritzten Verdichtung der Hauptrotor mit einer Umfangsgeschwindigkeit in einem Bereich von 5 bis 50 m/s betreibbar ausgebildet ist.

[0092] Eine weitere Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$1,195 \leq D_{v} \leq 1,33$

eingehalten ist, wobei Dk₁ den Durchmesser des Kopfkreises KK₁ des Nebenrotors (NR) und Dk₂ den Durchmesser des Kopfkreises KK₂ des Hauptrotors (HR) bezeichnet.

3. Bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 5 / 6

10

30

35

50

[0093] Nachfolgend werden bevorzugte Ausgestaltungen für ein Rotorpaar mit Zähne-Zahlverhältnis 5/6, also für ein Rotorpaar, bei dem der Hauptrotor fünf Zähne und der Nebenrotor sechs Zähne aufweist, dargelegt:

Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt durch die Achse C1 gegeben ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert r_{25} = rf_1 + 0,25 * (rk_1 - rf_1) hat, der Radius r_{50} von B_{50} den Wert r_{50} = rf_1 + 0,5 * (rk_1 - rf_1) hat und der Radius r_{75} von B_{75} den Wert r_{75} = rf_1 + 0,75 * (rk_1 - rf_1) hat, und wobei die Kreisbögen B_{25} , B_{50} , B_{75} jeweils durch die vorlaufende Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt werden, wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b_{75} der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert werden und folgende Bemessung eingehalten ist: $0,76 \le \epsilon_1 \le 0,86$ und/oder $0,62 \le \epsilon_2 \le 0,72$. [0094] Ziel ist es, ein kleines Blasloch mit kurzer Länge des Profileingriffsspalts zu kombinieren. Die beiden Parameter verhalten sich jedoch gegenläufig, d.h. je kleiner das Blasloch modelliert wird, desto größer wird zwangsläufig die Länge des Profileingriffsspalts. Umgekehrt wird das Blasloch umso größer, je kürzer die Länge des Profileingriffsspalts ist. In den beanspruchten Bereichen wird eine besonders günstige Kombination der beiden Parameter erzielt. Gleichzeitig wird eine ausreichend hohe Biegesteifigkeit des Nebenrotors gewährleistet. Darüber hinaus stellen sich auch Vorteile, was den Kammerausschub anbelangt, und beim Nebenrotor-Drehmoment ein. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auf die Figur 7c verwiesen.

[0095] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 am Fußkreis und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_Z übersteht und wobei $4 \le A2/A1 \le 7$ eingehalten ist. [0096] Die Zahnteilfläche A1 an der vorlaufenden Zahnflanke F_V des Nebenrotors hat wesentlichen Einfluss auf die Blaslochfläche. Die Zahnteilfläche A2 an der nachlaufenden Zahnflanke F_N des Nebenrotors hat hingegen wesentlichen Einfluss auf die Länge des Profileingriffsspalts, den Kammerausschub sowie das Nebenrotordrehmoment. Für das Zahnteilflächenverhältnis A2/A1 gibt es einen vorteilhaften Bereich, der einen guten Kompromiss zwischen Länge des Profileingriffsspalts einerseits und Blasloch andererseits ermöglicht. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auf Figur 7d verwiesen.

[0097] In einer weiteren bevorzugten Ausführungsform weist das Rotorpaar einen Nebenrotor auf, bei dem in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $8 \le A3/A1 \le 14$ eingehalten ist. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figur 7d verwiesen.

[0098] Weiterhin wird es bezüglich der Gestaltung des Nebenrotors als vorteilhaft angesehen, wenn in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht, wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und wobei 1,9 % \leq A1/A0 \leq 3,2 % eingehalten ist. Hinsichtlich der Veranschaulichung der Parameter wird ergänzend auch auf die Figuren 7d sowie 7e verwiesen.

[0099] Eine weitere bevorzugte Ausführungsform sieht vor, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors NR definiert, wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist, wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet, wobei ein Versatzwinkel β durch den in

Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und wobei

$$13.5 \% \le \delta \le 18 \%$$

eingehalten ist, mit

5

15

25

30

35

45

50

 $\delta = \frac{\beta}{\gamma} * 100 \, [\%].$

[0100] Zunächst wird nochmals klargestellt, dass der Versatzwinkel bevorzugtermaßen stets positiv ist, also stets der Versatz in Richtung auf die Rotationsrichtung gegeben ist und nicht entgegen. Der Zahn des Nebenrotors ist insofern zur Rotationsrichtung des Nebenrotors hin gekrümmt. Allerdings sollte der Versatz sich in dem als vorteilhaft angegebenen Bereich halten, um einen günstigen Kompromiss zwischen der Blaslochfläche, der Form der Eingriffslinie, der Profilspaltlänge und -form, dem Nebenrotordrehmoment, der Biegesteifigkeit der Rotoren sowie dem Kammerausschub ins Druckfenster zu ermöglichen. Hinsichtlich einer Veranschaulichung der Parameter wird ergänzend auf Figur 7f verwiesen.

[0101] Eine weitere bevorzugte Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $320^{\circ} \le \Phi_{HR} \le 360^{\circ}$, vorzugsweise $330^{\circ} \le \Phi_{HR} \le 360^{\circ}$. Mit zunehmendem Umschlingungswinkel kann bei gleichem eingebautem Volumenverhältnis die Druckfensterfläche größer gestaltet werden. Zusätzlich verkürzt sich dadurch auch die axiale Erstreckung der auszuschiebenden Arbeitskammer, die sog. Profiltaschentiefe. Dies reduziert insbesondere bei größeren Drehzahlen die Ausschiebedrosselverluste und ermöglicht damit eine bessere spezifische Leistung. Ein zu großer Umschlingungswinkel wirkt sich allerdings wiederum nachteilig auf das Bauvolumen aus und führt zu größeren Rotoren.

[0102] Darüber hinaus ist in einer vorteilhaften Ausführungsform ein Rotorpaar vorgesehen, das derart ausgebildet ist und miteinander zusammenwirkt, dass ein Blaslochfaktor μ_{Bl} mindestens 0,03 % und höchstens 0,25 %, bevorzugtermaßen höchstens 0,2 % beträgt,

wobei
$$\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$$
 und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors NR bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

[0103] Während die absolute Größe des druckseitigen Blaslochs alleine noch keine sinnvolle Aussage über die Wirkung auf die Leckmassenströme ermöglicht, ist ein Verhältnis von absoluter druckseitiger Blaslochfläche A_{Bl} zur Summe aus der Zahnlückenfläche A6 des Nebenrotors sowie der Zahnlückenfläche A7 des Hauptrotors wesentlich aussagekräftiger. Hinsichtlich der Veranschaulichung der Parameter wird hierbei ergänzend auch auf Figur 7b verwiesen. Je kleiner der Zahlenwert μ_{Bl} ist, umso geringer ist der Einfluss des Blaslochs auf das Betriebsverhalten. Dies erlaubt einen Vergleich unterschiedlicher Profilformen. Die druckseitige Blaslochfläche lässt sich damit unabhängig von der Baugröße des Schraubenverdichters darstellen.

[0104] In einer weiterhin bevorzugten Ausführungsform ist ein Rotorpaar derart ausgebildet und aufeinander abgestimmt, dass für einen Blasloch-/Profilspaltlängenfaktor $\mu_l * \mu_{Bl}$

$$0.1 \% \le \mu_I * \mu_{BI} \le 1.26 \%$$

eingehalten ist mit

$$\mu_l = \frac{l_{sp}}{PT_1}$$

wobei I_{sp} die Länge des räumlichen, also dreidimensionalen Profileingriffspalts einer Zahnlücke des Nebenrotors und PT₁ die Profiltiefe des Nebenrotors mit PT₁ = rk_1 - rf_1 bezeichnen

 $\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%] \ \text{wobei A}_{Bl} \ \text{eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen} \ \text{des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die$

zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.

[0105] μ_l bezeichnet einen Profilspaltlängenfaktor, wobei die Länge des Profileingriffsspalts einer Zahnlücke ins Verhältnis zur Profiltiefe PT $_1$ gesetzt wird. Damit lässt sich ein Maß für die Länge des Profileingriffsspalts festlegen unabhängig von der Baugröße der Schraubenmaschine. Je kleiner der Zahlenwert der Kennzahl μ_l ist, umso kürzer ist bei gleicher Profiltiefe der Profilspalt und damit umso geringer der Leckvolumenstrom zurück auf die Saugseite. Aus dem Faktor μ_l * μ_{Bl} ergibt sich das Ziel, ein kleines druckseitiges Blasloch mit einem kurzen Profilspalt zu kombinieren. Die beiden Kennzahlen verhalten sich, wie bereits erwähnt, jedoch gegenläufig.

5

25

30

35

40

50

[0106] Es wird darüber hinaus als vorteilhaft angesehen, wenn Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis von bis zu 5, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 5, oder alternativ eine fluideingespritzte Verdichtung mit einem Druckverhältnis von bis zu 20, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 20, erzielbar sind, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck bezeichnet.

[0107] Eine weiterhin bevorzugte Ausführungsform sieht ein Rotorpaar vor, derart, dass der Hauptrotor (HR) bezogen auf einen Kopfkreis KK_2 im Falle einer trockenen Verdichtung mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s und im Falle einer fluideingespritzten Verdichtung mit einer Umfangsgeschwindigkeit in einem Bereich von 5 bis 50 m/s betreibbar ausgebildet ist.

[0108] Eine weitere Ausführungsform weist ein Rotorpaar auf, das dadurch gekennzeichnet ist, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,19 \le D_v \le 1,26$$

eingehalten ist, wobei Dk_1 den Durchmesser des Kopfkreises KK_1 des Nebenrotors (NR) und Dk_2 den Durchmesser des Kopfkreises KK_2 des Hauptrotors (HR) bezeichnet.

4. Bevorzugte Ausgestaltung für ein Rotorpaar mit Zähne-Zahlverhältnis 3/4, 4/5 oder 5/6

[0109] Allgemein wird es als bevorzugt angesehen, dass in einer Stirnschnittbetrachtung sich die Zähne des Nebenrotors nach außen hin verjüngen, d.h. alle zu einem vom durch die Achse C1 definierten Mittelpunkt ausgehenden, durch den Punkt F5 gezogenen Radialstrahl senkrecht verlaufenden Kreisbögen von der nachlaufenden Zahnflanke F_N zur vorlaufenden Zahnflanke F_V ausgehend von F1 nach F2 in der Abfolge nach radial außen abnehmen (oder abschnittsweise zumindest gleichbleiben). Mit anderen Worten gilt in einer Stirnschnittbetrachtung für alle innerhalb eines Zahns des Nebenrotors verlaufenden Bogenlängen b(r) der jeweils zugehörigen konzentrischen Kreisbögen mit dem Radius $r_1 < r < r_1$ und dem gemeinsamen, durch die Achse C1 definierten Mittelpunkt, die jeweils durch die vorlaufende Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt werden, dass die Bogenlängen b(r) mit zunehmendem Radius r monoton abnehmen.

[0110] Die Zähne des Nebenrotors sind in dieser bevorzugten Ausgestaltung also derart ausgebildet, dass sich keine Einschnürungen ergeben, also die Breite eines Zahns des Nebenrotors an keiner Stelle zunimmt, sondern nach radial außen abnimmt oder maximal gleichbleibt. Dies wird als sinnvoll angesehen, um ein einerseits kleines druckseitiges Blasloch bei einer dennoch kurzen Profileingriffsspaltlänge zu erzielen.

[0111] Vorteilhafterweise ist die Stirnschnittgestaltung des Nebenrotors (NR) derart vorgenommen, dass die Wirkrichtung des Drehmoments, das aus einem Referenzdruck auf die eine Arbeitskammer begrenzende Teiloberfläche des Nebenrotors resultiert, entgegen der Drehrichtung des Nebenrotors gerichtet ist.

[0112] Eine derartige Stirnschnittgestaltung bewirkt, dass das gesamte Drehmoment aus den Gaskräften auf den Nebenrotor der Drehrichtung des Nebenrotors entgegen gerichtet ist. Dadurch wird ein definierter Flankenkontakt zwischen der nachlaufenden Nebenrotorflanke F_N und der vorlaufenden Hauptrotorflanke erzielt. Dies trägt dazu bei, das Problem des sog. Rotorklapperns zu vermeiden, welches in ungünstigen, insbesondere instationären Betriebssituationen auftreten kann. Unter Rotorklappern wird ein der gleichförmigen Drehbewegung überlagertes Vor- und Nacheilen des Nebenrotors um seine Drehachse verstanden, welches mit einem schnell wechselnden Aufprallen der nachlaufenden Nebenrotorflanken an den vorlaufenden Hauptrotorflanken und anschließend der vorlaufenden Nebenrotorflanken an

den nachlaufenden Hauptrotorflanken usw. einhergeht. Dieses Problem tritt insbesondere dann auf, wenn das Moment aus den Gaskräften zusammen mit anderen Momenten (z.B. aus Lagerreibung) auf den Nebenrotor undefiniert (z.B. nahe Null) ist, was durch die vorteilhafte Stirnschnittgestaltung wirksam vermieden wird.

[0113] In einer konkret möglichen, fakultativen Ausgestaltung sind Hauptrotor (HR) und Nebenrotor (NR) zum Fördern von Luft oder inerten Gasen, wie Helium oder Stickstoff, ausgebildet und aufeinander abgestimmt.

[0114] Bevorzugtermaßen ist in einer Stirnschnittbetrachtung das Profil eines Zahns des Nebenrotors bezogen auf den vom Mittelpunkt, der durch die Achse C1 definiert ist, durch den Scheitelpunkt F5 gezogenen Radialstrahl R asymmetrisch ausgebildet. Beim Nebenrotor sind somit vorlaufende Zahnflanke und nachlaufende Zahnflanke jedes Zahns zueinander unsymmetrisch ausgebildet.

[0115] Diese unsymmetrische Ausbildung ist per se für Schraubenverdichter bereits bekannt. Sie trägt aber wesentlich zu einer effizienten Verdichtung bei.

[0116] Eine weiterhin bevorzugte Ausgestaltung sieht vor, dass in einer Stirnschnittbetrachtung ein Punkt C auf der Verbindungsstrecke $\overline{C1C2}$ zwischen der ersten Achse C1 und der zweiten Achse C2 definiert ist, wo sich die Wälzkreise WK₁ des Nebenrotors (NR) und WK₂ des Hauptrotors (HR) berühren, dass K5 den Schnittpunkt des Fußkreises FK₁ des Nebenrotors (NR) mit der Verbindungsstrecke $\overline{C1C2}$ definiert, wobei r_1 den Abstand zwischen K5 und C bemisst, und dass K4 den Punkt des saugseitigen Teils der Eingriffslinie bezeichnet, der am weitesten von der Verbindungsstrecke $\overline{C1C2}$ zwischen C1 und C2 beabstandet liegt, wobei r_2 den Abstand zwischen K4 und C bemisst und wobei gilt:

$$0.9 \le \frac{r_1}{r_2} \le 0.875 \times \frac{z_1}{z_2} + 0.22$$

mit z₁: Zahl der Zähne beim Nebenrotor (NR) und z₂: Zahl der Zähne beim Hauptrotor (HR).

[0117] Über den Verlauf des saugseitigen Teils der Eingriffslinie zwischen dem Geradenabschnitt $\overline{C1C2}$ und der saugseitigen Verschneidungskante lassen sich unter anderem das Nebenrotordrehmoment (= Drehmoment auf den Nebenrotor) und der Kammerausschub ins Druckfenster beeinflussen.

Charakteristische Merkmale des o.g. Verlaufs des saugseitigen Teils der Eingriffslinie lassen sich anhand des Radienverhältnisses r_1/r_2 zweier konzentrischer Kreise um den Punkt C (= Berührpunkt von Wälzkreis WK₁ des Nebenrotors und Wälzkreis WK₂ des Hauptrotors) beschreiben. Liegt das Radienverhältnis r_1/r_2 in dem angegebenen Bereich, wird die Arbeitskammer im Wesentlichen vollständig ins Druckfenster ausgeschoben.

[0118] In einer bevorzugten Ausgestaltung ist das Rotorpaar derart ausgebildet und ausgestaltet, dass für ein Rotorlängenverhältnis LHR/a gilt:

$$0.85 * (z_1/z_2) + 0.67 \le L_{HR}/a \le 1.26 * (z_1/z_2) + 1.18$$

bevorzugt

10

20

25

30

35

40

50

55

$$0.89 * (z_1/z_2) + 0.94 \le L_{HR}/a \le 1.05 * (z_1/z_2) + 1.22$$

mit z_1 : Zahl der Zähne beim Nebenrotor (NR) und z_2 : Zahl der Zähne beim Hauptrotor (HR), wobei das Rotorlängenverhältnis L_{HR} /a das Verhältnis der Rotorlänge L_{HR} zum Achsabstand a angibt und Rotorlänge L_{HR} der Abstand der saugseitigen Hauptrotor-Rotorstirnfläche zur druckseitigen Hauptrotor-Rotorstirnfläche ist.

[0119] Je kleiner der Wert von L_{HR}/a wird, desto höher wird (bei gleichem Schluckvolumen) die Biegesteifigkeit der Rotoren. In dem beanspruchten Bereich ist die Biegesteifigkeit der Rotoren ausreichend hoch, so dass sich die Rotoren im Betrieb nicht nennenswert durchbiegen und daher die Spalte (zwischen den Rotoren bzw. zwischen Rotoren und Verdichtergehäuse) verhältnismäßig eng ausgeführt werden können, ohne dass dadurch das Risiko entsteht, dass die Rotoren bei ungünstigen Betriebsbedingungen (hohe Temperaturen und/oder hohe Drücke) aneinander anlaufen bzw. im Verdichtergehäuse anlaufen. Enge Spalte bieten den Vorteil von geringen Rückströmungen und tragen damit zur Energieeffizienz bei. Gleichzeitig ist trotz kleiner Spaltmaße die Betriebssicherheit gewährleistet. Auch bei der Rotorfertigung ist eine hohe Biegesteifigkeit der Rotoren zur Einhaltung der hohen Anforderungen an die Formtoleranzen vorteilhaft.

[0120] Andererseits ist das Verhältnis von L_{HR}/a aber so groß bemessen, dass der Achsabstand a im Verhältnis zur Rotorlänge L_{HR} nicht übermäßig groß ist. Vorteilhaft ist dies, da in der Konsequenz auch die Rotordurchmesser und ganz konkret die Stirnflächen der Rotoren nicht übermäßig groß sind. Hierdurch können einerseits die Spaltlängen klein gehalten werden; dadurch Minderung der Rückströmung in vorhergehende Arbeitskammern und dadurch wiederum

Verbesserung der Energieeffizienz. Andererseits können durch klein dimensionierte Stirnflächen auch die aus den druckbeaufschlagten druckseitigen Stirnflächen der Rotoren resultierenden Axialkräfte vorteilhaft klein gehalten werden, diese Axialkräfte wirken im Betrieb auf die Rotoren und insbesondere auf die Rotorlagerung. Durch eine Minimierung dieser Axialkräfte kann die Belastung der (Wälz)lager minimiert, bzw. können die Lager kleiner dimensioniert werden.

[0121] Es kann vorteilhafterweise weiterhin vorgesehen sein, dass in einer Stirnschnittbetrachtung das Zahnprofil des Nebenrotors (NR) an seinem radial äußeren Abschnitt abschnittsweise einem Kreisbogen mit Radius rk_1 folgt, also mehrere Punkte der vorlaufenden Zahnflanke F_V und der nachlaufenden Zahnflanke F_N auf dem Kreisbogen mit Radius rk_1 um den durch die Achse C1 definierten Mittelpunkt liegen, wobei bevorzugtermaßen der Kreisbogen ARC₁ einen Winkel bezogen auf die Achse C1 zwischen 0.5° und 5° , weiter vorzugsweise zwischen 0.5° und 2.5° einschließt,

wobei F10 der von F5 am weitest beabstandete Punkt auf der vorlaufenden Zahnflanke auf diesem Kreisbogen ist und wobei der zwischen F10 und den durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) gezogene Radialstrahl R_{10} die vordere Zahnflanke F_V in mindestens einem Punkt berührt oder in zwei Punkten schneidet, vgl. insbesondere die Veranschaulichung in Fig. 7h.

10

15

20

30

35

40

[0122] Die vorbeschriebene Ausgestaltung des Zahnprofils des Nebenrotors ist vor allem für ein Zähne-Zahlverhältnis von 3/4 bzw. 4/5 relevant. Bei einem derartigen Zähne-Zahlverhältnis kann durch das Einhalten der oben wiedergegebenen Bedingung die Blaslochfläche reduziert werden. Beim Zähne-Zahlverhältnis 5/6 erscheint ein vorgenannter Berührungspunkt bzw. vorgenannte Schnittpunkte mit der vorlaufenden Zahnflanke F_V hingegen nicht erstrebenswert, da die Zähne des Nebenrotors dann möglicherweise zu dünn und in Konsequenz zu biegeweich werden.

[0123] Weiterhin wird noch ein Verdichterblock umfassend ein Verdichtergehäuse sowie ein Rotorpaar wie vorstehend beschrieben als erfindungsgemäß beansprucht, wobei das Rotorpaar einen Hauptrotor HR und einen Nebenrotor NR umfasst, die jeweils rotierbar im Verdichtergehäuse gelagert sind.

[0124] In einer bevorzugten Ausgestaltung ist der Verdichterblock derart ausgestaltet, dass die Stirnschnittgestaltung derart vorgenommen ist, dass die zwischen den Zahnprofilen von Hauptrotor (HR) und Nebenrotor (NR) gebildete Arbeitskammer im Wesentlichen komplett ins Druckfenster ausgeschoben werden kann.

[0125] Allgemein wird es auch als vorteilhaft angesehen, dass bei der hier propagierten Wahl der Profile von Nebenrotor und Hauptrotor es möglich ist, auf eine Entlastungsnut/Geräuschnut gänzlich zu verzichten bzw. diese kleiner auszuführen.

[0126] Durch die Stirnschnittgestaltung der beiden Rotoren wird vorteilhaft erreicht, dass sich beim Ausschieben der Arbeitskammer in das Druckfenster kein Kammerzwickelvolumen zwischen den beiden Rotoren bildet. Die Verdichtung kann besonders effizient erfolgen, da keine Rückströmung von bereits verdichtetem Medium auf die Ansaugseite stattfindet, und hiermit auch kein zusätzlicher Wärmeeintrag anfällt. Darüber hinaus kann das gesamte verdichtete Volumen von nachgeordneten Druckluftverbrauchern genutzt werden. Dadurch, dass eine Überverdichtung vermieden wird, ergeben sich Vorteile für die Energieeffizienz, für die Laufruhe des Verdichterblocks und für die Lebensdauer der Rotor-Lager. Bei öleingespritzten Verdichtern wird ein Quetschen des Öls verhindert, und somit die Laufruhe des Verdichters verbessert, die Belastung der Rotor-Lagerung verringert und die Beanspruchung des Öls reduziert.

[0127] In einer weiterhin bevorzugten Ausgestaltung ist ein Wellenende des Hauptrotors aus dem Verdichtergehäuse herausgeführt und zur Anbindung an einen Antrieb ausgebildet, wobei vorzugsweise beide Wellenenden des Nebenrotors vollständig innerhalb des Verdichtergehäuses aufgenommen sind.

[0128] Die Erfindung wird nachstehend auch hinsichtlich weiterer Merkmale und Vorteile anhand der Beschreibung von Ausführungsbeispielen noch näher erläutert. Hierbei zeigen:

	Figur 1	einen Stirnschnitt einer ersten Ausführungsform mit einem Zähne-Zahlverhältnis 3/4.
45	Figur 2	einen Stirnschnitt einer zweiten Ausführungsform mit einem Zähne-Zahlverhältnis 3/4.
43	Figur 3	einen Stirnschnitt einer dritten Ausführungsform mit einem Zähne-Zahlverhältnis 4/5.
	Figur 4	ein viertes Ausführungsbeispiel in einer Stirnschnittbetrachtung mit einem Zähne-Zahlverhältnis 5/6.
50	Figur 5	eine Veranschaulichung des isentropen Blockwirkungsgrads für das zweite Ausführungsbeispiel zum 3/4 Zähne-Zahlverhältnis im Vergleich zum Stand der Technik.
55	Figur 6	eine Veranschaulichung des isentropen Blockwirkungsgrads für das vierte Ausführungsbeispiel zum 5/6 Zähne-Zahlverhältnis im Vergleich zum Stand der Technik.
55	Figur 7a - 7k	Veranschaulichungsdiagramme für die verschiedenen Parameter der Geometrie des Nebenrotors bzw. des Rotorpaars bestehend aus Hauptrotor und Nebenrotor.

	Figur 8	eine Veranschaulichung des Umschlingungswinkels beim Hauptrotor.
	Figur 9	eine schematische Schnittzeichnung einer Ausführungsform eines Verdichterblocks.
5	Figur 10	eine Ausführungsform für ein miteinander verzahntes Rotorpaar bestehend aus einem Hauptrotor und einem Nebenrotor in dreidimensionaler Darstellung.
10	Figur 11	eine perspektivische Darstellung einer Ausführungsform eines Nebenrotors zur Veranschaulichung der räumlichen Eingriffslinie.
10	Figuren 12a, 12b	eine Veranschaulichung der für die Drehmomentwirkungen relevanter Flächen bzw. Teilflächen einer Arbeitskammer einer Ausführungsform des Nebenrotors.
15	Figur 13	den Stirnschnitt der Ausführungsform nach Figur 1 zur Erläuterung des Profilverlaufs von Haupt- und Nebenrotor bei dieser Ausführungsform.
	Figur 14	den Stirnschnitt der Ausführungsform nach Figur 2 zur Erläuterung des Profilverlaufs von Haupt- und Nebenrotor bei dieser Ausführungsform.
20	Figur 15	den Stirnschnitt der Ausführungsform nach Figur 3 zur Erläuterung des Profilverlaufs von Haupt- und Nebenrotor bei dieser Ausführungsform.
25	Figur 16	den Stirnschnitt der Ausführungsform nach Figur 4 zur Erläuterung des Profilverlaufs von Haupt- und Nebenrotor bei dieser Ausführungsform.
20	rungsbeispiele stell	den sollen die Ausführungsbeispiele nach den Figuren 1 bis 4 erläutert werden. Alle vier Ausfüh- den taugliche Profile dar im Sinne der vorliegenden Erfindung. Bechenden geometrischen Vorgabewerte für den Hauptrotor HR bzw. den Nebenrotor NR sind in den
30	nachstehend wiede	ergegebenen Tabellen 1 bis 4 angegeben.
35		
40		
45		
50		

Tabelle 1

	Ausführungsbeispiel 1	Ausführungsbeispiel 2	Ausführungsbeispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 Ausführungsbeispiel 4	Ausführungsbeispiel 4
Zähnezahl HR z ₂	8	ε	4	5
Zähnezahl NR z ₁	4	4	9	9
PT _{rel} [-]	0,588	0,54	0,528	0,455
a/rk ₁ [-]	1,66	1,72	1,764	1,78

Ausführungsbeispiel 4

Tabelle 2

Die Profile wurden mit folgenden Achsabständen a erstellt:

Ausführungsbeispiel 1 | Ausführungsbeispiel 2 | Ausführungsbeispiel 3

Achsabstand a[mm]

Tabelle 3

	Ausführungsbeispiel 1	Ausführungsbeispiel 2	Ausführungsbeispiel 3	Ausführungsbeispiel 4			
Dk ₂ [mm]	191	186,1	186	154			
Dk ₁ [mm]	153	147,7	144	124,7			
rw ₂ [mm]	54	.,4	56,4	50,5			
rw ₁ [mm]	72	2,6	70,6	60,5			

Ausführungsbeispiel 1 | Ausführungsbeispiel 2 | Ausführungsbeispiel 3 | Ausführungsbeispiel 4

235,5

Rotorlänge L_{HR}[mm]

Tabelle 4

Weitere Hauptabmessungen der Rotoren:

[0131] Es ergeben sich bei den dargestellten Ausführungsbeispielen die folgenden erfindungsgemäßen Merkmale

	und Kenngrößen, die in Tabelle 5 zusammengestellt sind:
5	
10	
15	
20	
25	
30	
35 40	
45	
50	
55	

	_	spiel 3 Ausführungsbeispiel 4	62'0	9,0	6,2	2,3	11,6	15,2			Kopfkreisradius rk ₁ monoton ab.	•		•	330,3	0,18		1,058	ausgeschoben werden.	ler Drehrichtung des Nebenrotors geri	1,0	1,235	2.12
		Ausführungsbei	08'0	69'0	10,0	2,2	12,6	15,7%		62,7%	reisradius rf ₁ bis zum ł	inden Zahnflanke F $_{ m V}$		5,5	330,3	0,106		0,631	nplett ins Druckfenster	moments ist entgegen d	0,984	1,292	231
Tabelle 5		Ausführungsbeispiel 2	0,82	0,64	37,8	1,1	19,6	21,1		71,2%	Jenrotorzähne nimmt vom Fuß	2 Schnittpunkte mit der vorlaufe		10,1	7°	0,086		0,53	ımer kann im Wesentlichen kor	kräften resultierenden NR-Dreh	1,044	1,26	67.6
	kmale und Kenngrößen:	Ausführungsbeispiel 1	0,85	0,74	15,7	2,3	6'6	18,5		%6'99	Die Zahndicke der Neb	RadiaIstrahl R ₁₀ hat 2		7,5	334,	0,159		0,94	Die Arbeitskam	Die Wirkrichtung des aus den Gas	1,037	1,248	0.7.0
	nmenstellung der weiteren Mer	Merkmal	Zahndickenverhältnis ϵ_1 [-]	Zah ndickenverhältnis ϵ_2 [-]	Flächenverhältnis A2/A1 [-]	Flächenverhältnis A1/A0 [%]	Flächenverhältnis A3/A1 [-]	Zahnkrümmungsverhältnis∂ [%]		Konvexer Längenanteil [%]	Radialer Zahndickenverlauf	Radialstrahl R ₁₀		Flächenverhältnis A4/A5 [-]	Umschlingungswinkel Φ_{HR}	[%] I8 ^{rl}		տBI*µI [%]	Profilstirnschnittgestal tung bzgl. Kammerausschub	Profilstirnschnittgestal tung bzgl. Nebenrotor- Drehmoment	Form der Eingriffslinie r ₁ /r ₂	Durchmesserverhältnis D _v	Dotorlandonyerbaltnis
	Tabelle 5		Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3	rößen: veispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,64 0,69	Tabelle 5 rößen: Ausführungsbeispiel 3 beispiel 1 Ausführungsbeispiel 3 0,80 0,64 0,69 37,8 10,0 10,0 10,0	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 37,8 10,0 11,1	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,69 0,64 0,69 10,0 1,1 2,2 19,6 12,6	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 19,6 19,6 12,6 21,1 15,7% 15,7% 15,7%	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,69 0,64 0,69 10,0 37,8 10,0 2,2 19,6 12,6 21,1 21,1 15,7% 15,7%	Tabelle 5 righen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 11,6 19,6 12,6 21,1 21,1 15,7% 15,7% 0,71,2% 62,7% 12,6	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 14,6 19,6 12,6 21,1 21,1 62,7% 15,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius ff₁ bis zum Kopfkreisradius 12,6	Tabelle 5 peispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 12,6 19,6 12,6 12,6 1,1 15,7% 15,7% 10,0 62,7% 62,7% 10,0 12,6 12,6 10,0 12,6 12,6 10,0 12,7% 12,7% 10,0 62,7% 12,7% 10,0 62,7% 12,1 10,0 12,1 12,1 10,0 12,1 12,2% 10,0 12,2% 12,1 10,0 12,1 12,1 10,0 12,2% 12,1 10,0 12,1 12,1 10,0 12,1 12,1 10,0 12,1 12,1 10,0 12,1 12,1 10,0 12,1 12,1 10,0 12,1 12	Tabelle 5 veispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 12,6 19,6 12,6 12,6 1,1 2,2 12,6 21,1 15,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁0 hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 12,0	Tabelle 5 veispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,64 0,69 1,1 2,2 19,6 12,6 21,1 15,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁0 hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke Fy 10,1 5,5	Tabelle 5 neispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,64 0,69 1,1 2,2 19,6 12,6 21,1 15,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁₀ hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 10,1 5,5 334,7° 330,3	Tabelle 5 veispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 12,6 19,6 12,6 12,6 21,1 15,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁₀ hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 10,1 5,5 10,1 5,5 330,3 330,3 10,086 0,106 0,106	Tabelle 5 veispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,64 0,80 0,80 0,64 0,69 10,0 1,1 2,2 12,6 1,1 2,2 12,6 21,1 15,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁0 hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 5,5 334,7° 0,086 0,106	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 10,0 1,1 2,2 12,6 19,6 12,6 12,6 10,0 11,1 2,2 21,1 15,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf, bis zum Kopfkreisradius strahl R₁₀ hat 2 Schnittbunkte mit der vorlaufenden Zahnflanke F√ 5,5 10,1 5,5 330,3 10,0 0,086 0,106 10,0 0,086 0,106	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,80 0,64 0,69 0,69 1,1 2,2 12,6 19,6 12,6 12,6 19,6 12,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁0 hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 5,5 10,1 5,5 330,3 10,086 0,106 0,106 10,086 0,0631 0,631 Die Arbeitskammer kann im Wesentlichen komplett ins Druckfenster ausgeschoben 20,631	Tabelle 5 rößen: Ausführungsbeispiel 2 Ausführungsbeispiel 3 0,82 0,80 0,69 0,64 0,69 10,0 1,1 2,2 12,6 1,1 2,2 12,6 1,1 2,2 12,6 21,1 15,7% 62,7% ndicke der Nebenrotorzähne nimmt vom Fußkreisradius rf₁ bis zum Kopfkreisradius strahl R₁₀ hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 62,7% 10,0 hat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 330,3 0,631 10,0 bat 2 Schnittpunkte mit der vorlaufenden Zahnflanke F√ 330,3 0,631 10,0 bat 2 Schnittpunkte mit Wesentlichen komplett ins Druckfenster ausgeschoben Die Arbeitskammer kann im Wesentlichen komplett ins Druckfenster ausgeschoben es aus den Gaskräffen resultierenden NR-Drehmoments ist entgegen der Drehrichtungen ausgeschoben des aus den Gaskräffen resultierenden NR-Drehmoments ist entgegen der Drehrichtung	Tabelle 5 Markmale und Kenngrößen: Merkmal Ausführungsbeispiel 1 Ausführungsbeispiel 2 Ausführungsbeispiel 3 Ausführungsbeispiel 3 Ausführungsbeispiel 3 Ausführungsbeispiel 3 O 7 Zahn dickenvenhältnis π2, H3 0,74 0,64 0,69 0,69 0,69 Flächenvenhältnis π2, H3 1,57 37,8 10,0 62,2 2.3 Flächenvenhältnis π2, H3 2,3 1,1 2,2 2.3 1,1 Flächenvenhältnis M2, H4, H3 9,9 19,6 12,6 12,6 1,1 Zahnkrümmungsverhältnis M3, H4, H3 66,9% 71,2% 62,7% 1,1 1,5 Konvexer Längenanteil [%] 66,9% 71,2% 62,7% 1,1 1,5 Kohlingungswirkel Ф, R8 7,5 10,1 5,5 - - Radialstrahl R, G 7,5 10,1 5,5 - - I µB1 [%] 0,194 0,38 0,106 0,106 0,106 0,106 Profilistinrachnitgestal tung Drewindentein	Labelle 5 Merkmale und Kenngrößen: Austührungsbeispiel 1 Austührungsbeispiel 2 Austührungsbeispiel 3 Austührungsbeispiel 3 Austührungsbeispiel 3 Austührungsbeispiel 3 Austührungsbeispiel 3 O 0 7 O 0 8 O 0

[0132] Der isentrope Blockwirkungsgrad im Vergleich zum Stand der Technik ist für das zweite Ausführungsbeispiel zum 3/4 Zähne-Zahlverhältnis in Figur 5 veranschaulicht. Wiedergegeben sind dort zwei Kurven gleichen Druckverhältnisses.

[0133] Das konkret wiedergegebene Druckverhältnis beträgt 2,0 (Verhältnis Ausgangsdruck zu Eingangsdruck). Der isentrope Blockwirkungsgrad konnte gegenüber den mit dem Stand der Technik erreichbaren Werten deutlich verbessert werden.

[0134] In Figur 6 ist der isentrope Blockwirkungsgrad im Vergleich zum Stand der Technik beim vierten Ausführungsbeispiel (5/6 Zähne-Zahlverhältnis) veranschaulicht. Auch hier sind zwei Kurven gleichen Druckverhältnisses wiedergegeben. Das hier wiedergegebene Druckverhältnis beträgt 9,0 (Verhältnis Ausgangsdruck zu Eingangsdruck). Auch hier konnte der isentrope Blockwirkungsgrad gegenüber den mit dem Stand der Technik erzielbaren Werten deutlich verbessert werden.

[0135] Die in den Figuren 5 und 6 jeweils angegebene Liefermenge entspricht dem Fördervolumenstrom des Verdichterblocks bezogen auf den Ansaugzustand.

[0136] Figur 7a zeigt in einer Stirnschnittbetrachtung eine Ausführungsform für Nebenrotor NR und Hauptrotor HR mit den durch die entsprechenden Achsen C1 und C2 gegebenen Mittelpunkten. Weiterhin sind die geometrischen Hauptabmessungen bzw. Hauptparameter der Stirnschnittbetrachtung dargestellt:

- Kopfkreis KK₁ des Nebenrotors mit zugehörigem Kopfkreisradius rk₁ bzw. Kopfkreisdurchmesser Dk₁
- Kopfkreis KK₂ des Hauptrotors mit zugehörigem Kopfkreisradius rk₂ bzw. Kopfkreisdurchmesser Dk₂
- \bullet Fußkreis FK₁ des Nebenrotors mit zugehörigem Fußkreisradius rf₁ bzw. Fußkreisdurchmesser Df₁
- Fußkreis FK₂ des Hauptrotors mit zugehörigem Fußkreisradius rf₂ bzw. Fußkreisdurchmesser Df₂
- Achsabstand a zwischen der ersten Achse C1 und der zweiten Achse C2
- Wälzkreis WK₁ des Nebenrotors mit zugehörigem Wälzkreisradius rw₁ bzw. Wälzkreisdurchmesser Dw₁
- Wälzkreis WK₂ des Hauptrotors mit zugehörigem Wälzkreisradius rw₂ bzw. Wälzkreisdurchmesser Dw₂

[0137] Weiterhin dargestellt sind auch die Drehrichtung 24 des Nebenrotors sowie die sich zwangsläufig ergebende Drehrichtung des Hauptrotors bei Betrieb als Verdichter.

[0138] Stellvertretend für alle Zähne des Nebenrotors sind an einem Nebenrotorzahn die vorlaufende Zahnflanke F_V sowie die nachlaufende Zahnflanke F_N gekennzeichnet. Stellvertretend für alle Zahnlücken des Nebenrotors ist eine Zahnlücke 23 gekennzeichnet. Der anhand von Figur 7a dargestellte Profilverlauf der vorlaufenden Zahnflanke F_V sowie der nachlaufenden Zahnflanke F_N entspricht dem anhand der Figur 4 für ein Zähnezahlverhältnis von 5/6 erläuterten Ausführungsbeispiel.

[0139] Figur 7b zeigt in einer Stirnschnittbetrachtung die Zahnlückenflächen A6 und A7 sowie eine Seitenansicht eines Blaslochs. Die in Figur 7b zur Erläuterung der Zahnlückenflächen A6 und A7 dargestellten Profilverläufe entsprechen dem für ein Zähnezahlverhältnis von 3/4 anhand von Figur 1 veranschaulichten Ausführungsbeispiel.

[0140] Weiterhin zeigt Fig. 7b die Lage des Koordinatensystems der in Fig. 7k dargestellten Blaslochfläche A_{BI} in Relation zum Rotorpaar.

[0141] Das Koordinatensystem wird aufgespannt durch die zu den Rotorstirnflächen parallele u-Achse entlang der druckseitigen Verschneidungskante 11.

[0142] Das druckseitige Blasloch liegt in dem beschriebenen Koordinatensystem und ganz konkret in einer zu den Rotor-Stirnflächen senkrechten Ebene zwischen der druckseitigen Verschneidungskante 11 und einem Eingriffslinienpunkt K2 des druckseitigen Teils der Eingriffslinie.

[0143] In einer Stirnschnittbetrachtung wird die Eingriffslinie 10 durch die Verbindungslinie zwischen den beiden Mittelpunkten C1 und C2 in zwei Abschnitte geteilt: Der saugseitige Teil der Eingriffslinie ist unterhalb, der druckseitige Teil oberhalb der Verbindungslinie dargestellt.

[0144] K2 bezeichnet den Punkt des druckseitigen Teils der Eingriffslinie 10, der am weitesten von der Geraden durch C1 und C2 hindurch beabstandet liegt. Durch die Verschneidung der Kopfkreise der beiden Rotoren entstehen eine druckseitige Verschneidungskante 11 und eine saugseitige Verschneidungskante 12. In Fig. 7b ist die druckseitige Verschneidungskante 11 in einer Stirnschnittbetrachtung als Punkt dargestellt. Entsprechendes gilt für die Darstellung der saugseitigen Verschneidungskante 12.

[0145] Die u-Achse ist eine Parallele zu den Rotorstirnflächen und entspricht in einer Stirnschnittbetrachtung dem Vektor vom Eingriffslinienpunkt K2 zu der druckseitigen Verschneidungskante 11.

Weitere Details zur druckseitigen Blaslochfläche ${\rm A_{BI}}$ ergeben sich aus Figur 7k.

[0146] Figur 7c zeigt in einer Stirnschnittbetrachtung einen Zahn des Nebenrotors mit den innerhalb des Rotorzahns verlaufenden konzentrischen Kreisbögen B_{25} , B_{50} , B_{75} um den Mittelpunkt C1 mit den zugehörigen Radien r_{25} , r_{50} , r_{75} und den zugehörigen Bogenlängen b_{25} , b_{50} , b_{75} .

[0147] Die Kreisbögen B_{25} , B_{50} , B_{75} werden jeweils durch die vorlaufenden Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt. Der anhand von Figur 7c dargestellte Profilverlauf der vorlaufenden Zahnflanke F_V sowie der

25

30

35

50

nachlaufenden Zahnflanke F_N entspricht dem anhand der Figur 4 für ein Zähnezahlverhältnis von 5/6 erläuterten Ausführungsbeispiel.

[0148] Figur 7d zeigt in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors und dem jeweils benachbarten Zahn des Nebenrotors Fußpunkte F1 und F2 am Fußkreis sowie am radial äußersten Punkt des Zahns einen Scheitelpunkt F5. Weiterhin ist das durch die Punkte F1, F2 und F5 definierte Dreieck D_Z dargestellt.

[0149] Figur 7d zeigt folgende (Zahnteil-)Flächen:

30

35

50

Zahnteilfläche A1 entspricht der Fläche, mit der der betrachtete Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V über das Dreieck D_Z in einem radial äußeren Bereich übersteht.

[0150] Zahnteilfläche A2 entspricht der Fläche, mit der der betrachtete Zahn mit seiner zwischen F5 und F1 ausgebildeten nachlaufenden Zahnflanke F_N über das Dreieck D_7 in einem radial äußeren Bereich übersteht.

[0151] Fläche A3 entspricht der Fläche, mit der der betrachtete Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke gegenüber dem Dreieck D₇ zurücktritt.

[0152] Weiterhin dargestellt ist der Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors. Der anhand von Figur 7d dargestellte Profilverlauf der vorlaufenden Zahnflanke F_V sowie der nachlaufenden Zahnflanke F_N entspricht dem anhand der Figur 4 für ein Zähnezahlverhältnis von 5/6 erläuterten Ausführungsbeispiel.

[0153] Figur 7e zeigt in einer Stirnschnittbetrachtung die Querschnittsfläche A0 eines Zahns des Nebenrotors, die durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den Mittelpunkt C1 begrenzt wird. Der anhand von Figur 7e dargestellte Profilverlauf der vorlaufenden Zahnflanke F_V sowie der nachlaufenden Zahnflanke F_N entspricht dem anhand der Figur 4 für ein Zähnezahlverhältnis von 5/6 erläuterten Ausführungsbeispiel.

[0154] Figur 7f zeigt in einer Stirnschnittbetrachtung den Versatzwinkel β. Dieser ist definiert durch den in Rotationsrichtung des Nebenrotors betrachteten Versatz von Punkt F11 zu Punkt F12. F11 ist ein Punkt auf dem halben Kreisbogen B zwischen F1 und F2 um den Mittelpunkt C1 und entspricht demzufolge dem Schnittpunkt der Winkelhalbierenden des Zahnteilungswinkels γ mit dem Kreisbogen B.

F12 ergibt sich aus dem Schnittpunkt des vom Mittelpunkt C1 zum Scheitelpunkt F5 gezogenen Radialstrahls R mit dem Kreisbogen B. Der anhand von Figur 7f dargestellte Profilverlauf der vorlaufenden Zahnflanke F_V sowie der nachlaufenden Zahnflanke F_N entspricht dem anhand der Figur 4 für ein Zähnezahlverhältnis von 5/6 erläuterten Ausführungsbeispiel.

[0155] Figur 7g zeigt in einer Stirnschnittbetrachtung den Wendepunkt F8 auf der nachlaufenden Zahnflanke F_N des Nebenrotors, in dem sich die Krümmung des Verlaufs des Zahnprofils zwischen Kopf- und Fußkreis ändert.

[0156] Die nachlaufende Zahnflanke F_N des Nebenrotors wird durch den Punkt F8 in einen im Wesentlichen konvex gekrümmten Anteil zwischen F8 und dem Scheitelpunkt F5 sowie einen im Wesentlichen konkav gekrümmten Anteil zwischen F8 und dem Fußpunkt F1 unterteilt.

[0157] Figur 7h zeigt in einer Stirnschnittbetrachtung zwei Schnittpunkte des Radialstrahls R_{10} von C1 zu F10 mit der vorlaufenden Zahnflanke F_V des Nebenrotors, wobei der Punkt F10 denjenigen Punkt der vorlaufenden Zahnflanke F_V bezeichnet, der auf dem Kopfkreis KK_1 mit rk_1 liegt und am weitesten von F5 beabstandet ist. Die Zahnflanke folgt radial außen also über einen definierten Abschnitt einem Kreisbogen ARC_1 mit Radius rk_1 um den durch die Achse C1 definierten Mittelpunkt des Nebenrotors. Die anhand von Figur 7h erläuterten Profilverläufe der vorlaufenden Zahnflanke F_V und der nachlaufenden Zahnflanke F_N entsprechen dem für ein Zähnezahlverhältnis von 3/4 beschriebenen Ausführungsbeispiel nach Figur 1.

[0158] Figur 7i zeigt in einer Stirnschnittbetrachtung das durch den von C1 zu F5 gezogenen Radialstrahl R geteilte Zahnprofil.

[0159] Konkret wird in der dargestellten Ausführungsform das Zahnprofil in einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 sowie einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 geteilt. Die anhand von Figur 7i erläuterten Profilverläufe der vorlaufenden Zahnflanke F_V und der nachlaufenden Zahnflanke F_N entsprechen dem für ein Zähnezahlverhältnis von 5/6 beschriebenen Ausführungsbeispiel nach Figur 4.

[0160] Figur 7j zeigt in einer Stirnschnittbetrachtung die Eingriffslinie 10 zwischen Haupt- und Nebenrotor sowie die beiden konzentrischen Kreise um den Punkt C mit den Radien r_1 und r_2 zur Beschreibung der charakteristischen Merkmale des Verlaufs des saugseitigen Teils der Eingriffslinie.

[0161] Die Eingriffslinie 10 wird durch die Verbindungsstrecke zwischen der ersten Achse C1 und der zweiten Achse C2 in zwei Abschnitte geteilt: Der saugseitige Teil der Eingriffslinie ist unterhalb, der druckseitige Teil oberhalb der Verbindungsstrecke C1C2 dargestellt.

[0162] Punkt C ist der Berührpunkt des Wälzkreises WK₁ des Nebenrotors mit dem Wälzkreis WK₂ des Hauptrotors. [0163] K4 bezeichnet den Punkt des saugseitigen Teils der Eingriffslinie, der am weitesten von der Verbindungsstrecke zwischen C1 und C2 beabstandet liegt.

[0164] Radius r₁ ist der Abstand zwischen K5 und C, Radius r₂ bezeichnet den Abstand zwischen K4 und C.

Figur 7k:

50

[0165] Figur 7k zeigt eine druckseitige Blaslochfläche A_{Bl} einer Arbeitskammer und zwar in einer Schnittansicht senkrecht zu den Rotorstirnflächen. Die Begrenzung der Blaslochfläche A_{Bl} entsteht dabei aus der Schnittlinie 27 der oben beschriebenen gedachten ebenen Fläche mit der vorlaufenden Nebenrotor-Flanke F_{v} , der Schnittlinie 26 der Ebene mit der nachlaufenden HR-Flanke und einem Geradenabschnitt [K1 K3] der druckseitigen Verschneidungskante 11.

[0166] Das Koordinatensystem des druckseitigen Blaslochs liegt in der in Fig. 7b beschriebenen ebenen Fläche und wird aufgespannt durch

- die zu den Rotorstirnflächen parallele u-Achse (Vektor vom Eingriffslinienpunkt K2 zu der druckseitigen Verschneidungskante 11)
 - die druckseitige Verschneidungskante 11.
- [0167] In Figur 8 ist der bereits mehrfach angesprochene Umschlingungswinkel Φ nochmals bildlich veranschaulicht. Konkret handelt es sich um den Winkel Φ, um den der Stirnschnitt von der saugseitigen zur druckseitigen Rotorstirnfläche verdreht ist. Dies ist vorliegend durch die Verdrehung des Profils zwischen einer druckseitigen Stirnfläche 13 und einer saugseitigen Stirnfläche 14 um den Winkel Φ_{HR} beim Hauptrotor HR veranschaulicht.
 - [0168] Figur 9 zeigt eine schematische Schnittansicht eines Verdichterblocks 19 umfassend ein Gehäuse 15 sowie darin gelagert zwei miteinander paarweise verzahnte Rotoren, nämlich einen Hauptrotor HR und einen Nebenrotor NR. Hauptrotor HR und Nebenrotor NR sind jeweils über geeignete Lager 16 drehbar im Gehäuse 15 gelagert. Eine Antriebsleistung kann auf eine Welle 17 des Hauptrotors HR, beispielsweise mit einem Motor (nicht dargestellt) über eine Kupplung 18 aufgebracht werden.
 - **[0169]** Bei dem dargestellten Verdichterblock handelt es sich um einen öleingespritzten Schraubenverdichter, bei dem die Drehmomentübertragung zwischen Hauptrotor HR und Nebenrotor NR direkt über die Rotorflanken erfolgt. Im Gegensatz dazu kann bei einem trockenen Schraubenverdichter eine Berührung der Rotorflanken mittels eines Synchronisationsgetriebes (nicht dargestellt) vermieden werden.
 - [0170] Weiterhin nicht dargestellt sind ein Ansaugstutzen zum Ansaugen des zu komprimierenden Mediums sowie ein Auslass für das komprimierte Medium.
- [0171] In Figur 10 sind noch ein miteinander verzahnter Hauptrotor HR sowie Nebenrotor NR in einer perspektivischen Ansicht dargestellt.
 - **[0172]** Figur 11 zeigt die räumliche Eingriffslinie 10 genau einer Zahnlücke 23. Die Profilspaltlänge I_{sp} ist die Länge der räumlichen Eingriffslinie genau einer Zahnlücke 23. Dies entspricht demzufolge der Profilspaltlänge genau einer Zahnteilung.
- [0173] Das gesamte Drehmoment aus den Gaskräften auf den Nebenrotor setzt sich zusammen aus der Summe der Drehmomentwirkungen der Gasdrücke in allen Arbeitskammern auf die die jeweiligen Arbeitskammern begrenzenden Teiloberflächen des Nebenrotors. In Fig. 12a ist eine solche, eine Arbeitskammer begrenzende Teiloberfläche (22) des Nebenrotors beispielhaft schraffiert dargestellt.
 - [0174] Figur 12b zeigt die Aufteilung der in Figur 12a dargestellten eine Arbeitskammer begrenzende Teiloberfläche (22) in eine gepunktet dargestellte Fläche (28) und eine kreuzschraffiert dargestellte Fläche (29). Nur die kreuzschraffiert dargestellte Fläche (29) leistet einen Beitrag zum Drehmoment.
 - [0175] Die Teiloberfläche (22) ergibt sich aus der konkreten Stirnschnittgestaltung und der Steigung des Nebenrotors. Die Steigung des Nebenrotors bezieht sich auf die Steigung der schraubenförmigen Verzahnung des Nebenrotors. Die in Fig. 12a ebenfalls dargestellte, die Teiloberfläche begrenzende dreidimensionale Eingriffslinie (10) wird ebenfalls durch die Stirnschnittgestaltung des Nebenrotors und die Steigung festgelegt.
 - **[0176]** Teiloberfläche (22) wird außerdem begrenzt durch Schnittlinie (27). Details zu Schnittlinie (27) wurden bereits im Rahmen der Figuren 7b und 7k dargestellt und beschrieben. Gleiches gilt für den Eingriffslinienpunkt K2.
 - [0177] Die von der Winkelstellung des Nebenrotors zum Hauptrotor abhängige konkrete Länge einer Arbeitskammer in Richtung der Rotorachse zwischen der Nebenrotorstirnfläche (20) einerseits und der Begrenzung durch die dreidimensionale Eingriffslinie (10) und Schnittlinie (27) andererseits spielt hierbei keine wesentliche Rolle, weil wie in der einschlägigen Literatur beschrieben wird die Gasdrücke auf Bereiche der Rotoroberfläche, die in einer Schnittebene senkrecht zur Achse des Rotors vollständigen Zahnlücken entsprechen (in Fig. 12b gepunktet dargestellt), keinen Beitrag zum Drehmoment leisten. Die Steigung des Nebenrotors wirkt sich nur auf den Betrag, jedoch nicht auf die Wirkrichtung des Drehmoments aus.
- ⁵⁵ **[0178]** Die in Fig. 12b gepunktet dargestellte Fläche (28) und die in Fig. 12b kreuzschraffiert dargestellte Fläche (29) bilden zusammen die Teiloberfläche (22).
 - [0179] Nur die in Fig. 12b kreuzschraffiert dargestellte Fläche (29) leistet einen Beitrag zum Drehmoment.
 - [0180] Somit wird in jeder Arbeitskammer die Wirkrichtung des Drehmoments, das der Gasdruck in der Arbeitskammer

(bzw. ein beliebiger Referenzdruck) auf die die Arbeitskammer begrenzende Teiloberfläche des Nebenrotors bewirkt, durch die Stirnschnittgestaltung des Nebenrotors festgelegt.

[0181] Die oben beschriebene vorteilhafte Stirnschnittgestaltung des Nebenrotors (NR) führt deshalb für jede eine Arbeitskammer begrenzende Teiloberfläche (22) des Nebenrotors und somit für den gesamten Nebenrotor zu einer Wirkrichtung (25) des Drehmoments aus den Gaskräften, die entgegen der Drehrichtung (24) des Nebenrotors gerichtet ist, wodurch das Rotorklappern wirksam vermieden wird.

[0182] Die dargestellten Ausführungsbeispiele belegen, dass mit der vorliegenden Erfindung eine erhebliche Effizienzsteigerung für ein in Schraubenmaschinen eingesetztes Rotorpaar bestehend aus Hauptrotor und Nebenrotor mit entsprechender Profilgeometrie erzielt werden konnte.

[0183] Mit der vorliegenden Erfindung ist es gelungen, unabhängig von einer konkret beanspruchten Profildefinition die Effizienz und Laufruhe von Rotorprofilen gegenüber dem Stand der Technik noch weiter zu verbessern.

[0184] Obwohl es dem Fachmann anhand der angegebenen Parameterwerte ohne weiteres möglich sein wird, mit den im Stand der Technik üblichen Methoden geeignete Profilverläufe zu erzeugen, werden nachstehend rein exemplarisch die Profilverläufe bei den vorstehend abgehandelten Ausführungsbeispielen nach den Figuren 1 bis 4 näher erläutert. Zur Generierung von Profilverläufen können - wie dem auf dem vorliegenden Gebiet tätigen Fachmann bestens bekannt - Profilverläufe auch mittels öffentlich zugänglicher Computerprogramme erzeugt werden.

[0185] Rein exemplarisch wird in diesem Zusammenhang SV_Win, ein Projekt der TU Wien, wobei diese Software in der eingangs genannten Habilitationsschrift von Grafinger sehr ausführlich beschrieben wird, genannt. Ein alternatives, öffentlich zugängliches Computerprogramm stellt darüber hinaus die DISCO-Software und insbesondere das Modul SCORPATH der City University London (Centre for Positive Displacement Compressor Technology) dar. Allgemeine Informationen ergeben sich hierzu aus http://www.city-compressors.co.uk/. Infos zur Installation der Software ergeben sich aus http://www.staff.city.ac.uk/~ra600/DISCO/DISCO/Instalation%20instructions.pdf. Ein Preview zur DISCO-Software kann unter http://www.staff.city.ac.uk/~ra600/DISCO/DISCO/DISCO%20Preview.htm gefunden werden.

20

30

35

50

[0186] Eine weitere alternative Software stellt die Software ScrewView dar, die auch in der Dissertation "Directed Evolutionary Algorithms" von Stefan Berlik, Dortmund 2006 (S. 173 f.) erwähnt wird. Auf der Internetseite http://pi.informatik.unisiegen.de/Mitarbeiter/berlik/projekte/ wird die ScrewView-Software im Zusammenhang mit dem Projekt "Methode zur Auslegung trockenlaufender Rotationsverdrängermaschinen" näher beschrieben.

[0187] In den Figuren 13 bis 16 wird ein Zahn mit nachlaufender Rotorflanke F_N und vorlaufender Rotorflanke F_V konkret wie folgt erzeugt: Der Abschnitt S1 bis S2 ergibt sich aus einem Kreisbogen auf dem Nebenrotor NR um den Mittelpunkt C1, erzeugt durch den Kreisbogenabschnitt T1 bis T2 um den Mittelpunkt C2 auf dem Hauptrotor HR. Der Abschnitt S2 bis S3 ergibt sich aus einer Hüllkurve zu einer Trochoiden, erzeugt von Kreisbogenabschnitt T2 bis T3 um den Mittelpunkt M4 auf dem Hauptrotor HR. Der Abschnitt S3 bis S4 ist durch einen Kreisbogen um den Mittelpunkt M1 definiert. Der Abschnitt S4 bis S5 ist durch einen Kreisbogen um den Mittelpunkt M2 vorgegeben.

[0188] Der Abschnitt S5 bis S6 ist durch einen Kreisbogen um den Mittelpunkt C1 festgelegt. Der sich anschließende Abschnitt S6 bis S7 wird durch einen Kreisbogen um den Mittelpunkt M3 vorgegeben. Der Abschnitt S7 bis S1 schließlich ist durch eine Hüllkurve zu einer Trochoiden, erzeugt vom Kreisbogenabschnitt T7 bis T1 um den Mittelpunkt M5 auf dem Hauptrotor HR vorgegeben. Die vorbeschriebenen Abschnitte schließen jeweils in der angegebenen Reihenfolge nahtlos aneinander an. Die Tangenten am Ende eines Abschnitts und am Beginn des benachbarten Abschnitts sind jeweils gleich. Die Abschnitte gehen insofern unmittelbar, stufenlos sowie knickfrei ineinander über.

[0189] Der Profilverlauf der Zähne des Hauptrotors HR wird für das Ausführungsbeispiel nach den Figuren 1 bis 4 ebenfalls anhand der Figuren 13 bis 16 nachstehend kurz erläutert. Der Abschnitt T1-T2 ergibt sich durch einen Kreisbogen auf dem Hauptrotor HR um den Mittelpunkt C2 auf dem Hauptrotor HR. Der Abschnitt T2-T3 wird durch den Kreisbogen auf dem Hauptrotor HR um den Mittelpunkt M4 definiert. Der Abschnitt T3-T4 ergibt sich aus einer Hüllkurve zu einer Trochoiden, erzeugt vom Abschnitt S3-S4 auf dem Nebenrotor NR. Der Abschnitt T4-T5 ist durch eine Hüllkurve zu einer Trochoiden, erzeugt vom Abschnitt S4-S5 auf dem Nebenrotor vorgegeben. Der Abschnitt T5-T6 ist durch einen Kreisbogen um den Mittelpunkt C2, erzeugt durch den Kreisbogenabschnitt S5-S6 um den Mittelpunkt C1 auf dem Nebenrotor NR definiert. Der Abschnitt T6-T7 ergibt sich durch eine Hüllkurve zu einer Trochoiden, erzeugt vom Abschnitt S6-S7 auf dem Nebenrotor NR. Der Abschnitt T7-T1 schließlich ist durch einen Kreisbogen um den Mittelpunkt M5 festgelegt. Auch hier gilt: Die vorbeschriebenen Abschnitte schließen jeweils in der angegebenen Reihenfolge nahtlos aneinander an. Die Tangenten am Ende eines Abschnitts und am Beginn des benachbarten Abschnitts sind jeweils gleich. Die Abschnitte gehen insofern unmittelbar, stufenlos sowie knickfrei ineinander über.

[0190] Generell ist festzuhalten, dass die Profilverläufe von Nebenrotor NR und Hauptrotor HR natürlich aufeinander abgestimmt sind und insofern die Hüllkurven zu einer Trochoiden jeweils Kreisbogenabschnitten auf dem Gegenrotor entsprechen. Darüber hinaus ist jeweils, wie bereits erwähnt, ein tangentialer Übergang von einem zum nächsten Abschnitt gewährleistet. Eine generelle Vorgehensweise bei der Berechnung des Profilverlaufs des Gegenrotors ist beispielsweise in der Dissertation von Helpertz, "Methode zur stochastischem Optimierung von Schraubenrotorprofilen", Dortmund, 2003, S. 60 ff. beschrieben.

[0191] Die Erfindung wird auch durch folgende bevorzugte Aspekte noch näher charakterisiert:

- 1. Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse (C1) rotierenden Nebenrotor (NR) und einen um eine zweite Achse (C2) rotierenden Hauptrotor (HR) besteht, wobei die Anzahl der Zähne (z₂) beim Hauptrotor (HR) 3 und die Anzahl der Zähne (z₁) beim Nebenrotor (NR) 4 beträgt,
- wobei die relative Profiltiefe des Nebenrotors

10

15

20

25

30

35

40

55

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1}$$

mindestens 0,5, bevorzugt mindestens 0,515, und höchstens 0,65, bevorzugt höchstens 0,595, beträgt, wobei es sich bei rk_1 um einen um den Außenumfang des Nebenrotors (NR) gezogenen Kopfkreisradius und bei rk_1 um einen am Profilgrund des Nebenrotors ansetzenden Fußkreisradius handelt,

wobei das Verhältnis vom Achsabstand α der ersten Achse (C1) zur zweiten Achse (C2) und dem Kopfkreisradius rk₁

$$\frac{a}{rk_1}$$

mindestens 1,636, und höchstens 1,8, bevorzugt höchstens 1,733, beträgt, wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° $\leq \Phi_{HR} \leq$ 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

$$1.4 \le L_{HR}/a \le 3.4$$
,

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

- 2. Rotorpaar nach Aspekt 1, dadurch gekennzeichnet,
- dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt durch die Achse C1 gegeben ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert r_{25} = $rf_1+0.25^*(rk_1-rf_1)$ hat, der Radius r_{50} von B_{50} den Wert r_{50} = $rf_1+0.5^*(rk_1-rf_1)$ hat und der Radius r_{75} von B_{75} den Wert $rf_1+0.75^*(rk_1-rf_1)$ hat, und wobei die Kreisbögen R_{25} , R_{50} , R_{75} jeweils durch die vorlaufende Zahnflanke R_{10} begrenzt werden,

wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b75 der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert sind und folgende Bemessung eingehalten ist:

- $0.65 \le \epsilon_1 < 1.0 \text{ und/oder } 0.50 \le \epsilon_2 \le 0.85, \text{ bevorzugt } 0.80 \le \epsilon_1 < 1.0 \text{ und/oder } 0.50 \le \epsilon_2 \le 0.79.$
- 3. Rotorpaar nach Aspekt 1 oder 2, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,
- wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und
- wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_Z übersteht und wobei $8 \le A2/A1 \le 60$ eingehalten ist.
- 4. Rotorpaar nach einem der Aspekte 1 bis 3, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D₇ definiert ist und
 - wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $7,0 \le A3/A1 \le 35$ eingehalten sind.
 - 5. Rotorpaar nach einem der Aspekte 1 bis 4, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwi-

schen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck D7 definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht,

wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und

wobei $0.5 \% \le A1/A0 \le 4.5 \%$ eingehalten ist.

6. Rotorpaar nach einem der Aspekte 1 bis 5, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen

Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors (NR) definiert,

wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist,

wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet,

wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und

wobei

5

15

20

25

30

35

40

45

50

55

$14 \% \le \delta \le 25 \%$

eingehalten ist, mit $\delta = \frac{\beta}{\gamma} * 100 \ [\%].$

- 7. Rotorpaar nach einem der Aspekte 1 bis 6, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung die zwischen F1 und F5 ausgebildete nachlaufende Zahnflanke F_N eines Zahns des Nebenrotors (NR) einen konvexen Längenanteil von mindestens 45 % bis höchstens 95 % aufweist.
- 8. Rotorpaar nach einem der Aspekte 1 bis 7, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung der von der Achse C1 des Nebenrotors (NR) durch F5 gezogene Radialstrahl das Zahnprofil in einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 und einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 teilt und wobei

$5 \le A4/A5 \le 14$

eingehalten ist.

- 9. Rotorpaar nach einem der Aspekte 1 bis 8, dadurch gekennzeichnet, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $290^{\circ} \le \Phi_{HR} \le 360^{\circ}$, vorzugsweise $320^{\circ} \le \Phi_{HR} \le 360^{\circ}$.
- 10. Rotorpaar nach einem der Aspekte 1 bis 9, dadurch gekennzeichnet, dass ein Blaslochfaktor μ_{Bl} mindestens 0,02 % und höchstens 0,4 %, bevorzugtermaßen höchstens 0,25 % beträgt,

wobei
$$\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$$
 und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

11. Rotorpaar nach einem der Aspekte 1 bis 10, dadurch gekennzeichnet, dass für einen Blasloch-/Profilspaltlän-

genfaktor μ_l * μ_{Bl}

$$0.1 \% \le \mu_{l} * \mu_{Bl} \le 1.72 \%$$

eingehalten ist mit

5

10

15

20

25

30

35

40

45

50

$$\mu_l = \frac{l_{sp}}{PT_1}$$

wobei I_{sp} die Länge des Profileingriffspalts einer Zahnlücke des Nebenrotors und PT₁ die Profiltiefe des Nebenrotors mit PT₁ = rk_1 - rf_1 bezeichnet

 $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \left[\%\right] \\ \text{wobei A}_{Bl} \text{ eine absolute Blaslochfläche und A6 und A7 Profilflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.$

- 12. Rotorpaar nach einem der Aspekte 1 bis 11, dadurch gekennzeichnet, dass Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis Π von bis zu 3, insbesondere mit einem Druckverhältnis Π größer als 1 und bis zu 3, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck ist, erzielbar ist.
- 13. Rotorpaar nach einem der Aspekte 1 bis 12, dadurch gekennzeichnet, dass der Hauptrotor (HR) bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s betreibbar ausgebildet ist.
- 14. Rotorpaar nach einem der Aspekte 1 bis 13, dadurch gekennzeichnet, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,145 \le D_n \le 1,30$$

eingehalten ist, wobei Dk_1 den Durchmesser des Kopfkreises KK_1 des Nebenrotors (NR) und Dk_2 den Durchmesser des Kopfkreises KK_2 des Hauptrotors (HR) bezeichnen.

15. Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse (C1) rotierenden Nebenrotor (NR) und einen um eine zweite Achse (C2) rotierenden Hauptrotor (HR) besteht, wobei die Anzahl der Zähne (z₂) beim Hauptrotor (HR) 4 und die Anzahl der Zähne (z₁) beim Nebenrotor (NR) 5 beträgt.

wobei die relative Profiltiefe des Nebenrotors

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1}$$

mindestens 0,5, bevorzugt mindestens 0,515, und höchstens 0,58, beträgt, wobei es sich bei rk₁ um einen um den Außenumfang des Nebenrotors (NR) gezogenen Kopfkreisradius und bei rf₁ um einen am Profilgrund des Nebenrotors ansetzenden Fußkreisradius handelt,

wobei das Verhältnis vom Achsabstand α der ersten Achse (C1) zur zweiten Achse (C2) und dem Kopfradius rk₁

 $\frac{a}{rk_1}$

mindestens 1,683, und höchstens 1,836, bevorzugt höchstens 1,782, beträgt, wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° $\leq \Phi_{HR} \leq$ 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

 $1.4 \le L_{HR}/a \le 3.3$,

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

16. Rotorpaar nach Aspekt 15, dadurch gekennzeichnet,

dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt C1 ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert r_{1} +0.25*(r_{1} - r_{1}) hat, der Radius r_{50} von B_{50} den Wert r_{1} +0.5*(r_{1} - r_{1}) hat und der Radius r_{75} von B_{75} den Wert r_{1} +0.75*(r_{1} - r_{1}) hat, und wobei die Kreisbögen B_{25} , B_{50} , B_{75} jeweils durch die vorlaufende Zahnflanke F_{V} und nachlaufenden Zahnflanke F_{N} begrenzt werden,

wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b_{75} der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert sind und folgende Bemessung eingehalten ist: $0.75 \le \epsilon_1 \le 0.85$ und/oder $0.65 \le \epsilon_2 \le 0.74$.

17. Rotorpaar nach Aspekt 15 oder 16, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck DZ definiert ist und

wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_7 übersteht und

wobei $6 \le A2/A1 \le 15$ eingehalten ist.

5

10

15

20

25

30

35

40

45

50

18. Rotorpaar nach einem der Aspekte 15 bis 17, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck D7 definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $9.0 \le A3/A1 \le 18$ eingehalten ist.

19. Rotorpaar nach einem der Aspekte 15 bis 18, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck DZ definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht,

wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und wobei $1,5 \% \le A1/A0 \le 3,5 \%$ eingehalten ist.

20. Rotorpaar nach einem der Aspekte 15 bis 19, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen

Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors NR definiert,

wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist,

wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet,

wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und

wobei

5

10

15

25

30

35

40

45

55

 $14 \% \le \delta \le 18 \%$

eingehalten ist, mit $\delta = \frac{\beta}{\gamma} * 100 \, [\%].$

- 21. Rotorpaar nach einem der Aspekte 15 bis 20, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung die zwischen F1 und F5 ausgebildete nachlaufende Zahnflanke F_N eines Zahns des Nebenrotors (NR) einen konvexen Längenanteil von mindestens 55 % bis höchstens 95 % aufweist.
- 22. Rotorpaar nach einem der Aspekte 15 bis 21, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung der von der Achse C1 des Nebenrotors (NR) durch F5 gezogene Radialstrahl das Zahnprofil in einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 und einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 teilt und wobei

 $4 \le A4/A5 \le 9$

eingehalten ist.

- 23. Rotorpaar nach einem der Aspekte 15 bis 22, dadurch gekennzeichnet, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $320^{\circ} \le \Phi_{HR} \le 360^{\circ}$, vorzugsweise $330^{\circ} \le \Phi_{HR} \le 360^{\circ}$.
 - 24. Rotorpaar nach einem der Aspekte 15 bis 23, dadurch gekennzeichnet, dass ein Blaslochfaktor μ_{Bl} mindestens 0,02 % und höchstens 0,4 %, bevorzugtermaßen höchstens 0,25 % beträgt,

wobei $\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$ und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors NR bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

25. Rotorpaar nach einem der Aspekte 15 bis 24, dadurch gekennzeichnet, dass für einen Blasloch-/Profilspaltlängenfaktor μ_l * μ_{Bl}

 $0.1 \% \le \mu_I * \mu_{BI} \le 1.72 \%$

50 eingehalten ist mit

 $\mu_l = \frac{l_{sp}}{PT_1},$

wobei I_{sp} die Länge des Profileingriffspalts einer Zahnlücke des Nebenrotors und PT₁ die Profiltiefe des Nebenrotors mit PT₁ = rk_1 - rf_1 bezeichnet

 $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \left[\%\right] \\ \text{wobei A}_{Bl} \text{ eine absolute Blaslochfläche und A6 und A7 Profilflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.$

- 26. Rotorpaar nach einem der Aspekte 15 bis 25, dadurch gekennzeichnet, dass Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis Π von bis zu 5, insbesondere mit einem Druckverhältnis Π von größer als 1 und bis zu 5, oder alternativ eine fluideingespritzte Verdichtung mit einem Druckverhältnis Π von bis zu 16, insbesondere mit einem Druckverhältnis Π von größer als 1 und bis zu 16, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck ist.
 - 27. Rotorpaar nach einem der Aspekte 15 bis 26, dadurch gekennzeichnet, dass im Fall einer trockenen Verdichtung der Hauptrotor bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s und im Fall einer fluideingespritzten Verdichtung der Hauptrotor bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 5 bis 50 m/s betreibbar ausgebildet ist.
 - 28. Rotorpaar nach einem der Aspekte 15 bis 27, dadurch gekennzeichnet, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,195 \le D_v \le 1,33$$

eingehalten ist, wobei Dk_1 den Durchmesser des Kopfkreises KK_1 des Nebenrotors (NR) und DK_2 den Durchmesser des Kopfkreises KK_2 des Hauptrotors (HR) bezeichnen.

29. Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse (C1) rotierenden Nebenrotor (NR) und einen um eine zweite Achse (C2) rotierenden Hauptrotor (HR) besteht, wobei die Anzahl der Zähne (z₂) beim Hauptrotor (HR) 5 und die Anzahl der Zähne (z₁) beim Nebenrotor (NR) 6 beträgt.

wobei die relative Profiltiefe des Nebenrotors

5

20

25

30

35

40

50

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1}$$

mindestens 0,44 und höchstens 0,495, bevorzugt höchstens 0,48, beträgt, wobei es sich bei rk₁ um einen um den Außenumfang des Nebenrotors (NR) gezogenen Kopfkreisradius und bei rf₁ um einen am Profilgrund des Nebenrotors ansetzenden Fußkreisradius handelt,

wobei das Verhältnis vom Achsabstand α der ersten Achse (C1) zur zweiten Achse (C2) und dem Kopfradius rk₁

mindestens 1,74, bevorzugt mindestens 1,75, und höchstens 1,8, bevorzugt höchstens 1,79, beträgt,
wobei vorzugsweise der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 240° \leq Φ_{HR} \leq 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR} /a gilt:

$1.4 \le L_{HR}/a \le 3.2$

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

30. Rotorpaar nach Aspekt 29, dadurch gekennzeichnet,

dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufenden Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt C1 ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert $rf_1+0.25*(rk_1-rf_1)$ hat, der Radius r_{50} von B_{50} den Wert $rf_1+0.5*(rk_1-rf_1)$ hat und der Radius r_{75} von B_{75} den Wert $rf_1+0.75*(rk_1-rf_1)$ hat, und wobei die Kreisbögen B_{25} , B_{50} , B_{75} jeweils durch die vorlaufende Zahnflanke F_V und nachlaufenden Zahnflanke F_N begrenzt werden,

wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b75 der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert sind und folgende Bemessung eingehalten ist: $0.76 \le \epsilon_1 \le 0.86$ und/oder $0.62 \le \epsilon_2 \le 0.72$.

31. Rotorpaar nach Aspekt 29 oder 30, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck D7 definiert ist und

wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_7 übersteht und

wobei $4 \le A2/A1 \le 7$ eingehalten ist.

10

15

20

30

40

32. Rotorpaar nach einem der Aspekte 29 bis 31, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $8 \le A3/A1 \le 14$ eingehalten ist.

35 33. Rotorpaar nach einem der Aspekte 29 bis 32, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D₇ definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht,

wobei der Zahn selbst eine durch den zwischen F1und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und wobei $1,9 \% \le A1/A0 \le 3,2 \%$ eingehalten ist.

34. Rotorpaar nach einem der Aspekte 29 bis 33, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors NR definiert,

50 wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist,

wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet,

wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und

55 wobei

 $13.5 \% \le \delta \le 18 \%$

$$\delta = \frac{\beta}{\gamma}*100~\text{[\%]}.$$
 eingehalten ist, mit

- 35. Rotorpaar nach einem der Aspekte 29 bis 34, dadurch gekennzeichnet, dass der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $320^{\circ} \le \Phi_{HR} \le 360^{\circ}$, vorzugsweise $330^{\circ} \le \Phi_{HR} \le 360^{\circ}$.
 - 36. Rotorpaar nach einem der Aspekte 29 bis 35, dadurch gekennzeichnet, dass ein Blaslochfaktor μ_{Bl} mindestens 0,03 % und höchstens 0,25 %, bevorzugtermaßen höchstens 0,2 % beträgt,

wobei
$$\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$$
 und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors NR bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

37. Rotorpaar nach einem der Aspekte 29 bis 36, dadurch gekennzeichnet, dass für einen Blasloch-/Profilspaltlängenfaktor μ_l * μ_{Bl}

$$0.1 \% \le \mu_I * \mu_{BI} \le 1.26 \%$$

25 eingehalten ist mit

10

15

20

30

35

40

45

50

$$\mu_l = \frac{l_{sp}}{PT_1},$$

wobei I_{sp} die Länge des Profileingriffspalts einer Zahnlücke des Nebenrotors und PT_1 die Profiltiefe des Nebenrotors mit $PT_1 = rk_1 - rf_1$ bezeichnet

- $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \left[\%\right] \\ \text{wobei A}_{Bl} \text{ eine absolute Blaslochfläche und A6 und A7 Profilflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.$
- 38. Rotorpaar nach einem der Aspekte 29 bis 37, dadurch gekennzeichnet, dass Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis Π von bis zu 5, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 5, erzielbar ist oder alternativ eine fluideingespritzte Verdichtung mit einem Druckverhältnis Π von bis zu 20, insbesondere mit einem Druckverhältnis Π von größer 1 und bis zu 20, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck ist.
- 39. Rotorpaar nach einem der Aspekte 29 bis 38, dadurch gekennzeichnet, dass der Hauptrotor (HR) bezogen auf einen Kopfkreis KK₂ im Falle einer trockenen Verdichtung mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s und im Falle einer fluideingespritzten Verdichtung mit einer Umfangsgeschwindigkeit in einem Bereich von 5 bis 50 m/s betreibbar ausgebildet ist.
- 40. Rotorpaar nach einem der Aspekte 29 bis 39, dadurch gekennzeichnet, dass für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,19 \le D_v \le 1,26$$

eingehalten ist, wobei Dk_1 den Durchmesser des Kopfkreises KK_1 des Nebenrotors (NR) und Dk_2 den Durchmesser des Kopfkreises KK_2 des Hauptrotors (HR) bezeichnen.

- 41. Rotorpaar nach einem der Aspekte 1 bis 40, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung die innerhalb eines Zahns des Nebenrotors verlaufenden Bogenlängen b(r) der jeweils zugehörigen konzentrischen Kreisbögen mit dem Radius $r_1 < r < rk_1$ und dem gemeinsamen, durch die Achse C1 definierten Mittelpunkt jeweils durch die vorlaufende Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt werden und die Bogenlängen b(r) mit zunehmendem Radius r monoton abnehmen.
- 42. Rotorpaar nach einem der Aspekte 1 bis 41, dadurch gekennzeichnet, dass die Stirnschnittgestaltung des Nebenrotors (NR) derart vorgenommen ist, dass die Wirkrichtung des Drehmoments, das aus einem Referenzdruck auf die eine Arbeitskammer begrenzende Teiloberfläche des Nebenrotors resultiert, entgegen der Drehrichtung des Nebenrotors gerichtet ist.
- 43. Rotorpaar nach einem der Aspekte 1 bis 42, dadurch gekennzeichnet, dass Hauptrotor (HR) und Nebenrotor (NR) zum Fördern von Luft oder inerten Gasen, wie Helium oder Stickstoff, ausgebildet und aufeinander abgestimmt sind.
- 44. Rotorpaar nach einem der Aspekte 1 bis 43, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung das Profil eines Zahns des Nebenrotors bezogen auf den vom Mittelpunkt, der durch die Achse C1 definiert ist, durch den Scheitelpunkt F5 gezogenen Radialstrahl R asymmetrisch ausgebildet ist.
- 45. Rotorpaar nach einem der Aspekte 1 bis 44, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung ein Punkt C auf der Verbindungsstrecke (C1C2) zwischen der ersten Achse (C1) und der zweiten Achse (C2) definiert ist, wo sich die Wälzkreise WK₁ des Nebenrotors (NR) und WK₂ des Hauptrotors (HR) berühren, dass K5 den Schnittpunkt des Fußkreises FK₁ des Nebenrotors (NR) mit der Verbindungsstrecke (C1C2) definiert, wobei r₁ den Abstand zwischen K5 und C bemisst.
- und dass K4 den Punkt des saugseitigen Teils der Eingriffslinie bezeichnet, der am weitesten von der Verbindungsstrecke C1C2 zwischen C1 und C2 beabstandet liegt, wobei r₂ den Abstand zwischen K4 und C bemisst und wobei gilt:

$$0.9 \le \frac{r_1}{r_2} \le 0.875 \times \frac{z_1}{z_2} + 0.22$$

mit z₁: Zahl der Zähne beim Nebenrotor (NR) und z₂: Zahl der Zähne beim Hauptrotor (HR).

46. Rotorpaar nach einem der Aspekte 1 bis 45, dadurch gekennzeichnet, dass für ein Rotorlängenverhältnis L_{HR}/a gilt:

$$0.85 * (z_1/z_2) + 0.67 \le L_{HR}/a \le 1.26 * (z_1/z_2) + 1.18$$

bevorzugt

5

10

15

20

25

40

45

50

55

$$0.89 * (z_1/z_2) + 0.94 \le L_{HR}/a \le 1.05 * (z_1/z_2) + 1.22$$

mit z_1 : Zahl der Zähne beim Nebenrotor (NR) und z_2 : Zahl der Zähne beim Hauptrotor (HR), wobei das Rotorlängenverhältnis L $_{\rm HR}$ /a das Verhältnis der Rotorlänge L $_{\rm HR}$ zum Achsabstand a angibt und Rotorlänge L $_{\rm HR}$ der Abstand der saugseitigen Hauptrotor-Rotorstirnfläche zur druckseitigen Hauptrotor-Rotorstirnfläche ist.

47. Rotorpaar nach einem der Aspekte 1 bis 28, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung das Zahnprofil des Nebenrotors (NR) an seinem radial äußeren Abschnitt abschnittsweise einem Kreisbogen ARC₁ mit Radius rk_1 folgt, also mehrere Punkte der vorlaufenden Zahnflanke F_V und der nachlaufenden Zahnflanke F_N auf dem Kreisbogen mit Radius rk_1 um den durch die Achse C1 definierten Mittelpunkt liegen, wobei bevorzugtermaßen der Kreisbogen ARC₁ ein Winkel bezogen auf die Achse C1 zwischen 0,5° und 5°, weiter vorzugsweise zwischen 0,5° und 2,5° einschließt,

wobei F10 der von F5 am weitest beabstandete Punkt auf der vorlaufenden Zahnflanke auf diesem Kreisbogen ist und wobei der zwischen F10 und den durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) gezogene Radialstrahl R_{10} die vorlaufende Zahnflanke F_V in mindestens einem Punkt berührt oder in zwei Punkten schneidet.

- 48. Verdichterblock umfassend ein Verdichtergehäuse (15) sowie ein Rotorpaar nach einem der Aspekte 1 bis 47, wobei das Rotorpaar einen Hauptrotor (HR) und einen Nebenrotor (NR) umfasst, die jeweils rotierbar im Verdichtergehäuse (15) gelagert sind.
- 49. Verdichterblock nach Aspekt 48, dadurch gekennzeichnet, dass die Stirnschnittgestaltung derart vorgenommen ist, dass die zwischen den Zahnprofilen von Hauptrotor (HR) und Nebenrotor (NR) gebildete Arbeitskammer im Wesentlichen komplett ins Druckfenster ausgeschoben werden kann.
 - 50. Verdichterblock nach Aspekt 48 oder 49,
 - dadurch gekennzeichnet, dass
 - ein Wellenende des Hauptrotors aus dem Verdichtergehäuse herausgeführt ist und zur Anbindung an einen Antrieb ausgebildet ist, wobei
 - vorzugsweise beide Wellenenden des Nebenrotors vollständig innerhalb des Verdichtergehäuses aufgenommen sind.

Patentansprüche

5

10

20

25

30

35

40

50

- Rotorpaar für einen Verdichterblock einer Schraubenmaschine, wobei das Rotorpaar aus einem um eine erste Achse (C1) rotierenden Nebenrotor (NR) und einen um eine zweite Achse (C2) rotierenden Hauptrotor (HR) besteht, wobei die Anzahl der Zähne (z₂) beim Hauptrotor (HR) 4 und die Anzahl der Zähne (z₁) beim Nebenrotor (NR) 5 beträgt,
 - wobei die relative Profiltiefe des Nebenrotors

$$PT_{rel} = \frac{rk_1 - rf_1}{rk_1}$$

- mindestens 0,515, und höchstens 0,58, beträgt, wobei es sich bei rk₁ um einen um den Außenumfang des Nebenrotors (NR) gezogenen Kopfkreisradius und bei rf₁ um einen am Profilgrund des Nebenrotors ansetzenden Fußkreisradius handelt,
 - wobei das Verhältnis vom Achsabstand α der ersten Achse (C1) zur zweiten Achse (C2) und dem Kopfradius rk₁

$$\frac{a}{rk_1}$$

mindestens 1,683, und höchstens 1,836, bevorzugt höchstens 1,782, beträgt, wobei der Hauptrotor mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt 320° \leq Φ_{HR} \leq 360°, und wobei vorzugsweise für ein Rotorlängenverhältnis L_{HR}/a gilt:

$$1.4 \le L_{HR}/a \le 3.3$$

wobei das Rotorlängenverhältnis aus dem Verhältnis der Rotorlänge L_{HR} des Hauptrotors und dem Achsabstand a gebildet ist und die Rotorlänge L_{HR} des Hauptrotors durch den Abstand einer saugseitigen Hauptrotor-Rotorstirnfläche zu einer gegenüberliegenden druckseitigen Hauptrotor-Rotorstirnfläche gebildet ist.

2. Rotorpaar nach Anspruch 1, dadurch gekennzeichnet,

dass in einer Stirnschnittbetrachtung innerhalb eines Nebenrotorzahns verlaufende Kreisbögen B_{25} , B_{50} , B_{75} , deren gemeinsamer Mittelpunkt C1 ist, definiert sind, wobei der Radius r_{25} von B_{25} den Wert $r_{1}+0.25*(rk_{1}-rf_{1})$ hat, der Radius r_{50} von B_{50} den Wert $r_{1}+0.5*(rk_{1}-rf_{1})$ hat und der Radius r_{75} von B_{75} den Wert $r_{1}+0.75*(rk_{1}-rf_{1})$ hat, und wobei die Kreisbögen B_{25} , B_{50} , B_{75} jeweils durch die vorlaufende Zahnflanke F_{V} und nachlaufenden Zahnflanke F_{N} begrenzt werden,

wobei Zahndickenverhältnisse als Verhältnisse der Bogenlängen b_{25} , b_{50} , b_{75} der Kreisbögen B_{25} , B_{50} , B_{75} mit ϵ_1 = b_{50}/b_{25} und ϵ_2 = b_{75}/b_{25} definiert sind und folgende Bemessung eingehalten ist: $0.75 \le \epsilon_1 \le 0.85$ und/oder $0.65 \le \epsilon_2 \le 0.74$.

10

15

25

30

35

40

45

50

55

3. Rotorpaar nach Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck D7 definiert ist und

wobei in einem radial äußeren Bereich der Zahn mit seiner zwischen F5 und F2 ausgebildeten vorlaufenden Zahnflanke F_V mit einer Fläche A1 und mit seiner nachlaufenden zwischen F1 und F5 ausgebildeten Zahnflanke F_N mit einer Fläche A2 über das Dreieck D_Z übersteht und wobei $6 \le A2/A1 \le 15$ eingehalten ist.

4. Rotorpaar nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind, wobei durch F1, F2 und F5 ein Dreieck D_Z definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht und in einem radial inneren Bereich gegenüber dem Dreieck D_Z mit einer Fläche A3 zurücktritt und wobei $9,0 \le A3/A1 \le 18$ eingehalten ist.

5. Rotorpaar nach einem der Ansprüche 1 bis 4, **dadurch gekennzeichnet, dass** in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei durch F1, F2 und F5 ein Dreieck DZ definiert ist und

wobei die zwischen F5 und F2 ausgebildete vorlaufende Zahnflanke F_V in einem radial äußeren Bereich des Zahns mit einer Fläche A1 über das Dreieck D_Z übersteht,

wobei der Zahn selbst eine durch den zwischen F1 und F2 verlaufenden Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt begrenzte Querschnittsfläche A0 aufweist und

wobei 1,5 % \leq A1/A0 \leq 3,5 % eingehalten ist.

6. Rotorpaar nach einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet, dass** in einer Stirnschnittbetrachtung zwischen dem betrachteten Zahn des Nebenrotors (NR) und dem jeweils benachbarten Zahn des Nebenrotors (NR) Fußpunkte F1 und F2 und am radial äußersten Punkt des Zahns ein Scheitelpunkt F5 definiert sind,

wobei der zwischen F1 und F2 verlaufende Kreisbogen B um den durch die Achse C1 definierten Mittelpunkt einen Zahnteilungswinkel γ entsprechend 360°/Zahl der Zähne des Nebenrotors NR definiert,

wobei auf dem halben Kreisbogen B zwischen F1 und F2 ein Punkt F11 definiert ist,

wobei ein vom durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) durch den Scheitelpunkt F5 gezogener Radialstrahl R den Kreisbogen B in einem Punkt F12 schneidet,

wobei ein Versatzwinkel β durch den in Rotationsrichtung des Nebenrotors (NR) betrachteten Versatz von F11 zu F12 definiert wird und

wobei

 $14 \% \le \delta \le 18 \%$

 $\delta = \frac{\beta}{\gamma} * 100 \, [\%].$

7 Rotornaar nach einem der A

 Rotorpaar nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung die zwischen F1 und F5 ausgebildete nachlaufende Zahnflanke F_N eines Zahns des Nebenrotors (NR) einen konvexen Längenanteil von mindestens 55 % bis höchstens 95 % aufweist.

8. Rotorpaar nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung der von der Achse C1 des Nebenrotors (NR) durch F5 gezogene Radialstrahl das Zahnprofil in einen der vorlaufenden Zahnflanke F_V zugeordneten Flächenanteil A5 und einen der nachlaufenden Zahnflanke F_N zugeordneten Flächenanteil A4 teilt und wobei

$$4 \le A4/A5 \le 9$$

eingehalten ist.

5

10

15

20

25

30

35

40

45

50

55

- 9. Rotorpaar nach einem der Ansprüche 1 bis 8, **dadurch gekennzeichnet, dass** der Hauptrotor HR mit einem Umschlingungswinkel Φ_{HR} ausgebildet ist, für den gilt: $330^{\circ} \le \Phi_{HR} \le 360^{\circ}$.
- **10.** Rotorpaar nach einem der Ansprüche 1 bis 9, **dadurch gekennzeichnet, dass** ein Blaslochfaktor μ_{Bl} mindestens 0,02 % und höchstens 0,4 %, bevorzugtermaßen höchstens 0,25 % beträgt,

$$\mu_{Bl} = \frac{A_{Bl}}{A6 + A7} * 100 \ [\%]$$
 und

wobei A_{BI} eine absolute druckseitige Blaslochfläche und A6 und A7 Zahnlückenflächen des Nebenrotors NR bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK₁ eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK₂ eingeschlossene Fläche bezeichnen.

11. Rotorpaar nach einem der Ansprüche 1 bis 10, **dadurch gekennzeichnet, dass** für einen Blasloch-/Profilspaltlängenfaktor μ_l * μ_{Bl}

$$0.1 \% \le \mu_I * \mu_{BI} \le 1.72 \%$$

eingehalten ist mit

$$\mu_l = \frac{l_{sp}}{PT_1},$$

wobei I_{sp} die Länge des Profileingriffspalts einer Zahnlücke des Nebenrotors und PT_1 die Profiltiefe des Nebenrotors mit $PT_1 = rk_1 - rf_1$ bezeichnet

 $\mu_{Bl} = \frac{A_{Bl}}{A6+A7}*100~ \left[\%\right] \\ \text{wobei A}_{Bl} \text{ eine absolute Blaslochfläche und A6 und A7 Profilflächen des Nebenrotors (NR) bzw. des Hauptrotors (HR) bezeichnen, wobei die Fläche A6 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Nebenrotors (NR) zwischen zwei benachbarten Scheitelpunkten F5 und dem Kopfkreis KK_1 eingeschlossene Fläche und die Fläche A7 in einer Stirnschnittbetrachtung die zwischen dem Profilverlauf des Hauptrotors (HR) zwischen zwei benachbarten Scheitelpunkten H5 und dem Kopfkreis KK_2 eingeschlossene Fläche bezeichnen.$

- **12.** Rotorpaar nach einem der Ansprüche 1 bis 11, **dadurch gekennzeichnet, dass** Hauptrotor (HR) und Nebenrotor (NR) derart ausgebildet und aufeinander abgestimmt sind, dass eine trockene Verdichtung mit einem Druckverhältnis Π von bis zu 5, insbesondere mit einem Druckverhältnis Π von größer als 1 und bis zu 5, oder alternativ eine fluideingespritzte Verdichtung mit einem Druckverhältnis Π von bis zu 16, insbesondere mit einem Druckverhältnis Π von größer als 1 und bis zu 16, erzielbar ist, wobei das Druckverhältnis das Verhältnis von Verdichtungsenddruck zu Ansaugdruck ist.
- 13. Rotorpaar nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Fall einer trockenen Verdichtung

der Hauptrotor bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 20 bis 100 m/s und im Fall einer fluideingespritzten Verdichtung der Hauptrotor bezogen auf einen Kopfkreis KK₂ mit einer Umfangsgeschwindigkeit in einem Bereich von 5 bis 50 m/s betreibbar ausgebildet ist.

14. Rotorpaar nach einem der Ansprüche 1 bis 13, **dadurch gekennzeichnet**, **dass** für ein durch das Verhältnis der Kopfkreisradien von Hauptrotor (HR) und Nebenrotor (NR) definierte Durchmesserverhältnis

$$D_v = \frac{Dk_2}{Dk_1} = \frac{rk_2}{rk_1}$$

$$1,195 \le D_v \le 1,33$$

eingehalten ist, wobei Dk₁ den Durchmesser des Kopfkreises KK₁ des Nebenrotors (NR) und DK₂ den Durchmesser des Kopfkreises KK₂ des Hauptrotors (HR) bezeichnen.

- 15. Rotorpaar nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung die innerhalb eines Zahns des Nebenrotors verlaufenden Bogenlängen b(r) der jeweils zugehörigen konzentrischen Kreisbögen mit dem Radius rf₁ < r < rk₁ und dem gemeinsamen, durch die Achse C1 definierten Mittelpunkt jeweils durch die vorlaufende Zahnflanke F_V und die nachlaufende Zahnflanke F_N begrenzt werden und die Bogenlängen b(r) mit zunehmendem Radius r monoton abnehmen.
- **16.** Rotorpaar nach einem der Ansprüche 1 bis 15, **dadurch gekennzeichnet, dass** die Stirnschnittgestaltung des Nebenrotors (NR) derart vorgenommen ist, dass die Wirkrichtung des Drehmoments, das aus einem Referenzdruck auf die eine Arbeitskammer begrenzende Teiloberfläche des Nebenrotors resultiert, entgegen der Drehrichtung des Nebenrotors gerichtet ist.
- 17. Rotorpaar nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass Hauptrotor (HR) und Nebenrotor (NR) zum Fördern von Luft oder inerten Gasen, wie Helium oder Stickstoff, ausgebildet und aufeinander abgestimmt sind.
 - **18.** Rotorpaar nach einem der Ansprüche 1 bis 17, **dadurch gekennzeichnet**, **dass** in einer Stirnschnittbetrachtung das Profil eines Zahns des Nebenrotors bezogen auf den vom Mittelpunkt, der durch die Achse C1 definiert ist, durch den Scheitelpunkt F5 gezogenen Radialstrahl R asymmetrisch ausgebildet ist.
 - 19. Rotorpaar nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung ein Punkt C auf der Verbindungsstrecke (C1C2) zwischen der ersten Achse (C1) und der zweiten Achse (C2) definiert ist, wo sich die Wälzkreise WK₁ des Nebenrotors (NR) und WK₂ des Hauptrotors (HR) berühren, dass K5 den Schnittpunkt des Fußkreises FK₁ des Nebenrotors (NR) mit der Verbindungsstrecke (C1C2) definiert, wobei r₁ den Abstand zwischen K5 und C bemisst, und dass K4 den Punkt des saugseitigen Teils der Eingriffslinie bezeichnet, der am weitesten von der Verbindungsstrecke C1C2 zwischen C1 und C2 beabstandet liegt, wobei r₂ den Abstand zwischen K4 und C bemisst und wobei gilt:

$$0.9 \le \frac{r_1}{r_2} \le 0.875 \times \frac{z_1}{z_2} + 0.22$$

mit z₁: Zahl der Zähne beim Nebenrotor (NR) und z₂: Zahl der Zähne beim Hauptrotor (HR).

20. Rotorpaar nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass für ein Rotorlängenverhältnis L_{HR}/a gilt:

$$0.85 * (z_1/z_2) + 0.67 \le L_{HR}/a \le 1.26 * (z_1/z_2) + 1.18$$

bevorzugt

10

20

25

30

35

40

45

50

55

$$0.89 * (z_1/z_2) + 0.94 \le L_{HR}/a \le 1.05 * (z_1/z_2) + 1.22$$

- mit z₁: Zahl der Zähne beim Nebenrotor (NR) und z₂: Zahl der Zähne beim Hauptrotor (HR), wobei das Rotorlängenverhältnis L_{HR}/a das Verhältnis der Rotorlänge L_{HR} zum Achsabstand a angibt und Rotorlänge L_{HR} der Abstand der saugseitigen Hauptrotor-Rotorstirnfläche zur druckseitigen Hauptrotor-Rotorstirnfläche ist.
 - 21. Rotorpaar nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass in einer Stirnschnittbetrachtung das Zahnprofil des Nebenrotors (NR) an seinem radial äußeren Abschnitt abschnittsweise einem Kreisbogen ARC₁ mit Radius rk₁ folgt, also mehrere Punkte der vorlaufenden Zahnflanke F_V und der nachlaufenden Zahnflanke F_N auf dem Kreisbogen mit Radius rk₁ um den durch die Achse C1 definierten Mittelpunkt liegen, wobei bevorzugtermaßen der Kreisbogen ARC₁ einen Winkel bezogen auf die Achse C1 zwischen 0,5° und 5°, weiter vorzugsweise zwischen 0,5° und 2,5° einschließt,
 - wobei F10 der von F5 am weitest beabstandete Punkt auf der vorlaufenden Zahnflanke auf diesem Kreisbogen ist und wobei der zwischen F10 und den durch die Achse C1 definierten Mittelpunkt des Nebenrotors (NR) gezogene Radialstrahl R₁₀ die vorlaufende Zahnflanke F_V in mindestens einem Punkt berührt oder in zwei Punkten schneidet.
 - 22. Verdichterblock umfassend ein Verdichtergehäuse (15) sowie ein Rotorpaar nach einem der Ansprüche 1 bis 21, wobei das Rotorpaar einen Hauptrotor (HR) und einen Nebenrotor (NR) umfasst, die jeweils rotierbar im Verdichtergehäuse (15) gelagert sind.
 - **23.** Verdichterblock nach Anspruch 22, **dadurch gekennzeichnet**, **dass** die Stirnschnittgestaltung derart vorgenommen ist, dass die zwischen den Zahnprofilen von Hauptrotor (HR) und Nebenrotor (NR) gebildete Arbeitskammer im Wesentlichen komplett ins Druckfenster ausgeschoben werden kann.
 - 24. Verdichterblock nach Anspruch 22 oder 23,

dadurch gekennzeichnet, dass

10

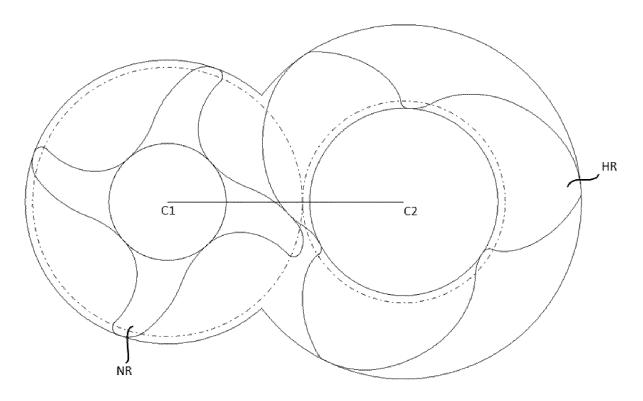
15

20

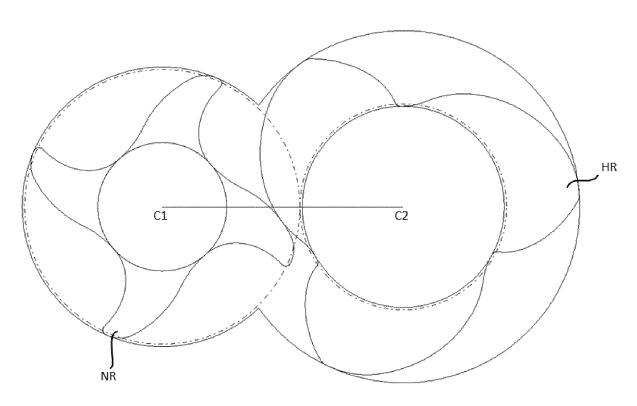
25

30

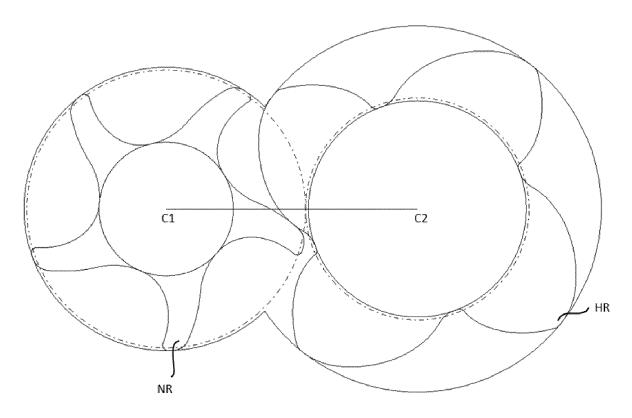
35

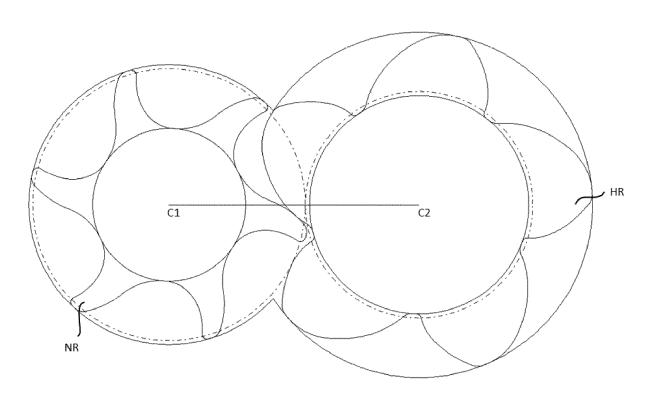

40

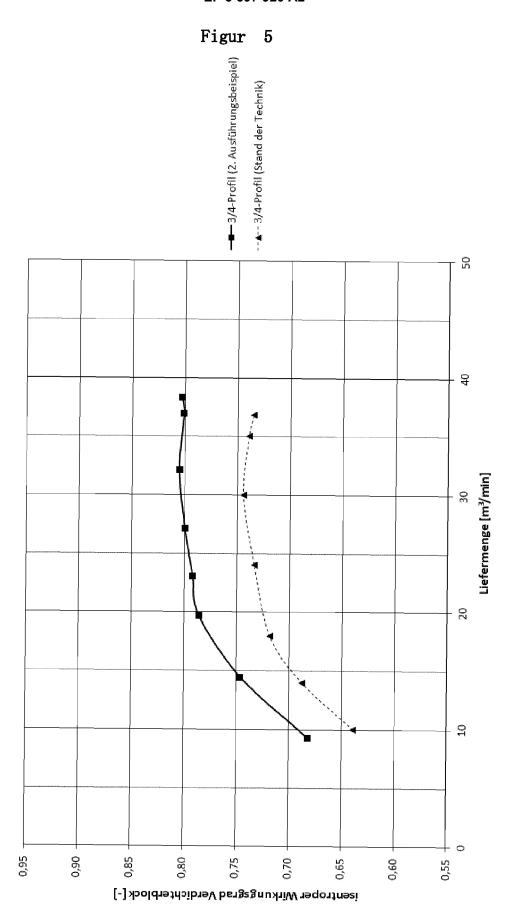
45

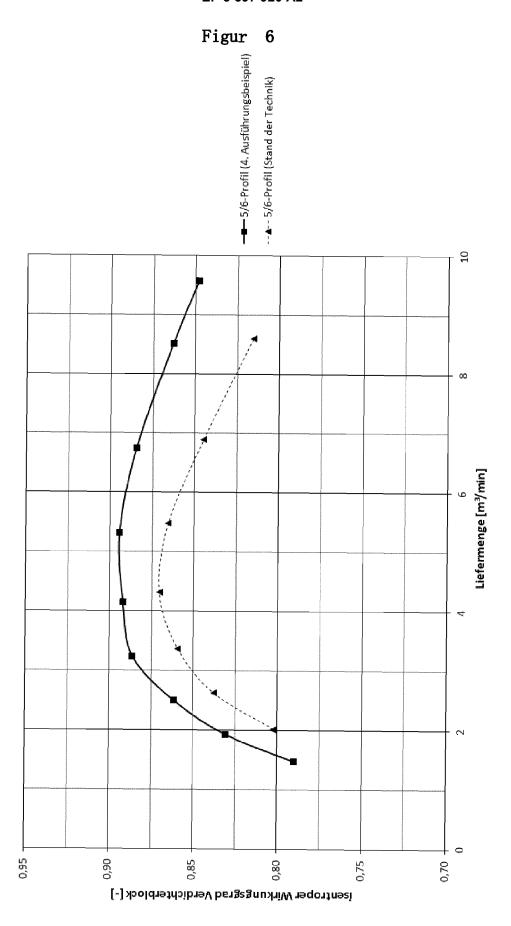

50

55

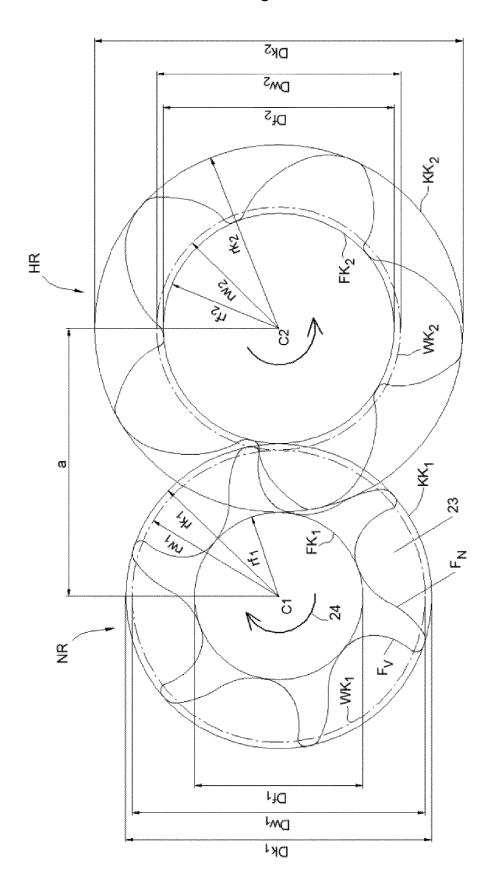

ein Wellenende des Hauptrotors aus dem Verdichtergehäuse herausgeführt ist und zur Anbindung an einen Antrieb ausgebildet ist, wobei vorzugsweise beide Wellenenden des Nebenrotors vollständig innerhalb des Verdichtergehäuses aufgenommen sind.


Figur 1

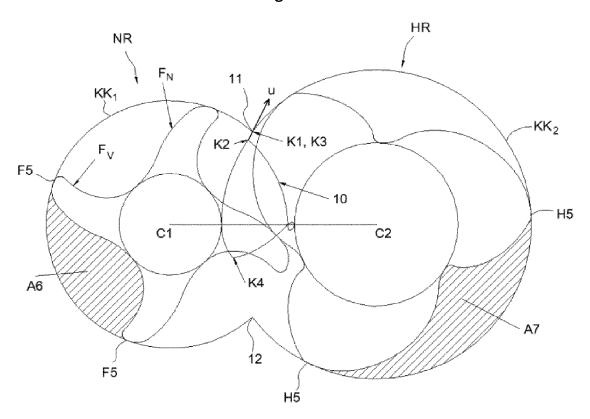

Figur 2

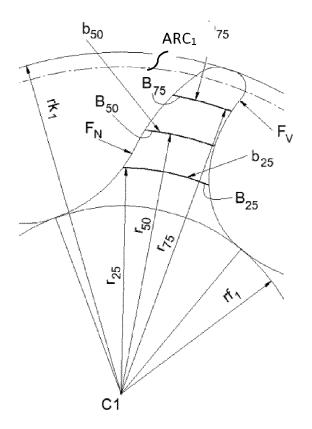


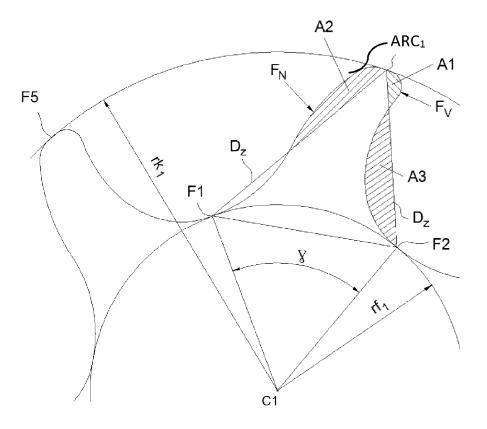
Figur 3

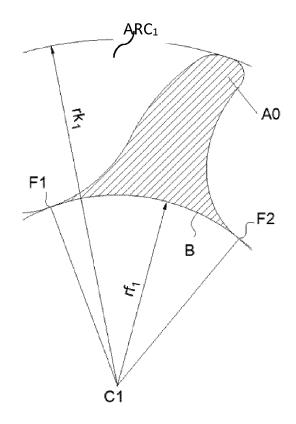


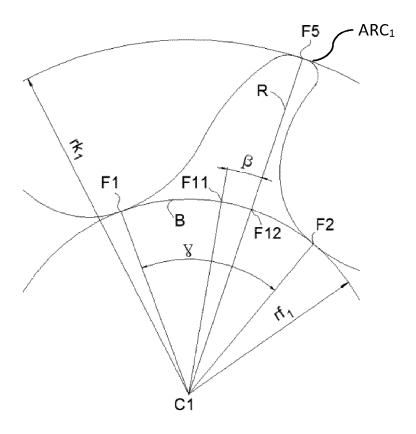
Figur 4

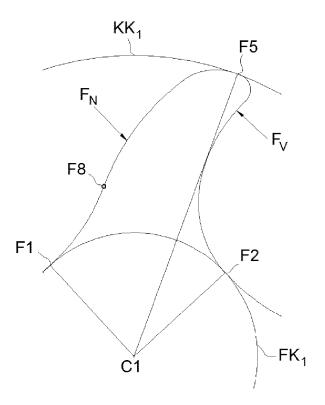


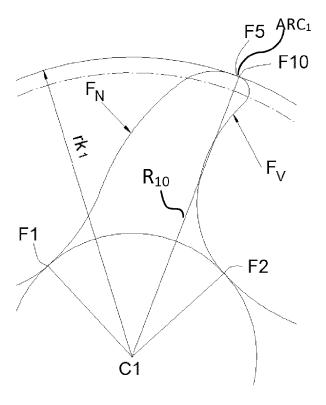

Figur 7a

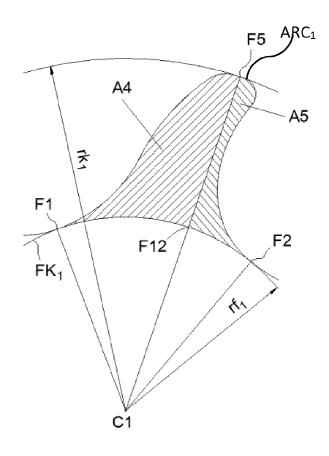

Figur 7b

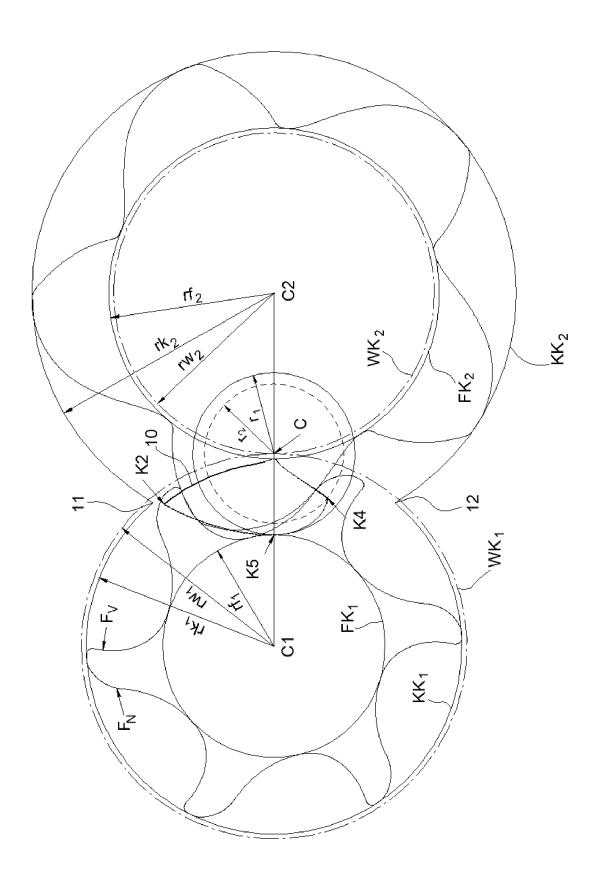

Figur 7c

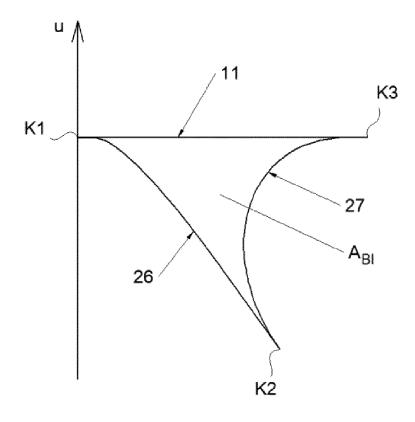

Figur 7d

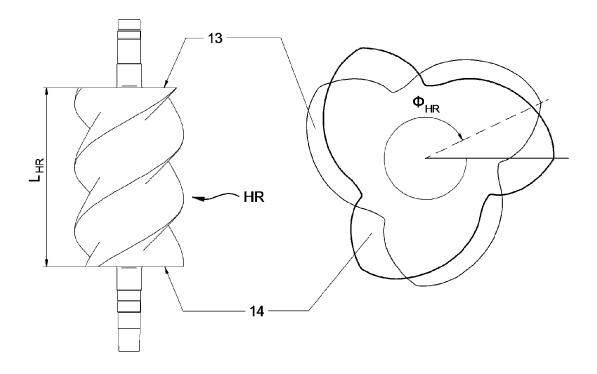

Figur 7e

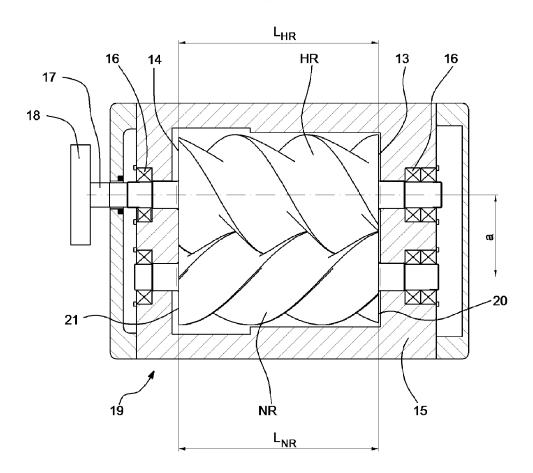

Figur 7f

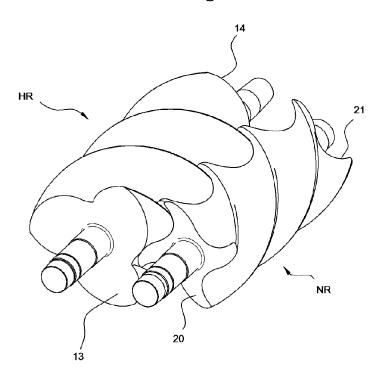

Figur 7g

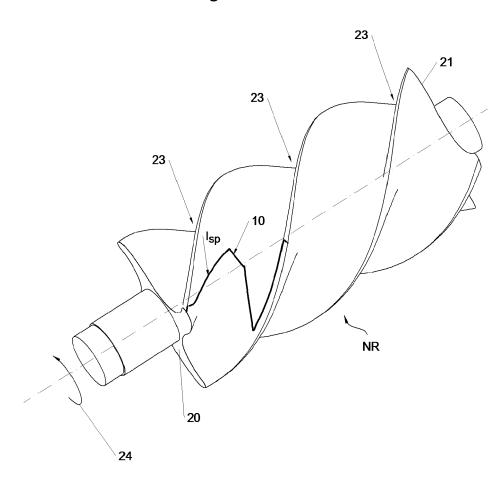

Figur 7h

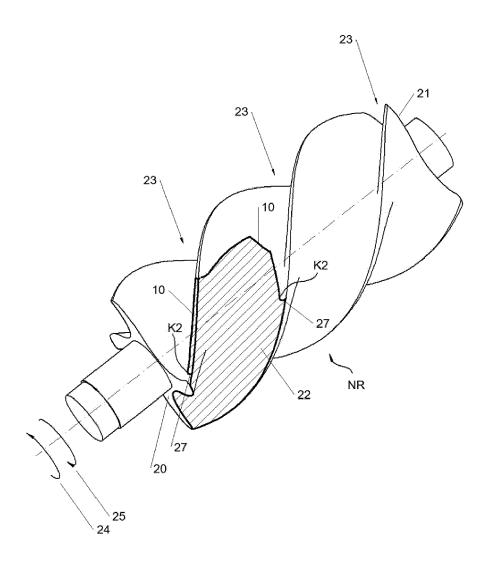

Figur 7i

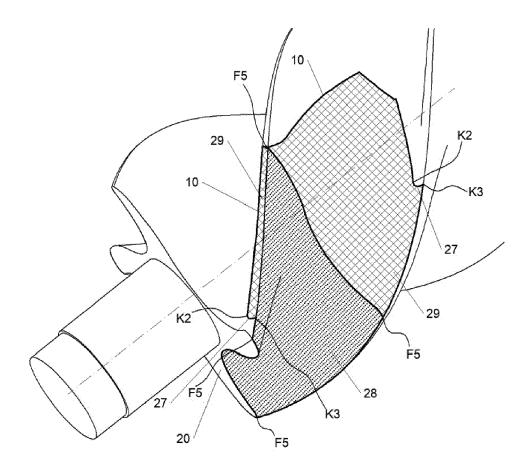

Figur 7j

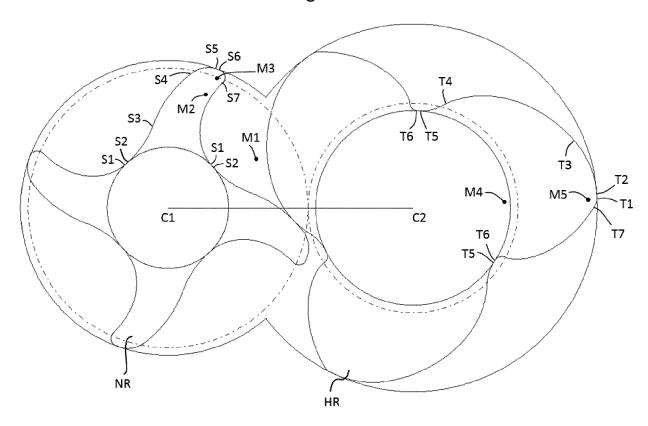

Figur 7k

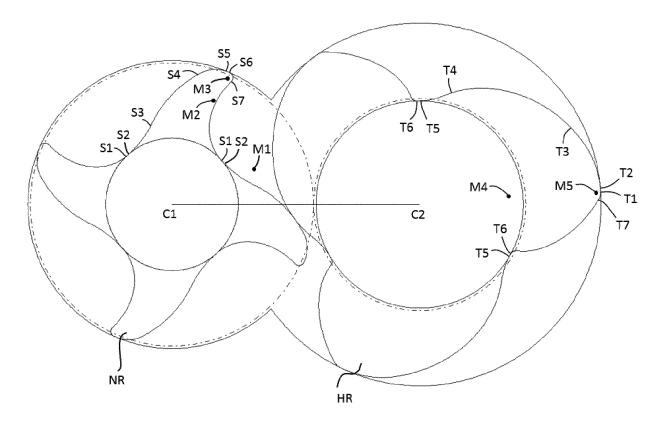

Figur 8

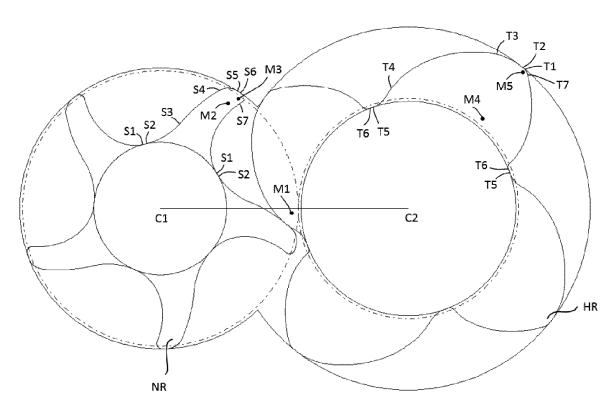

Figur 9

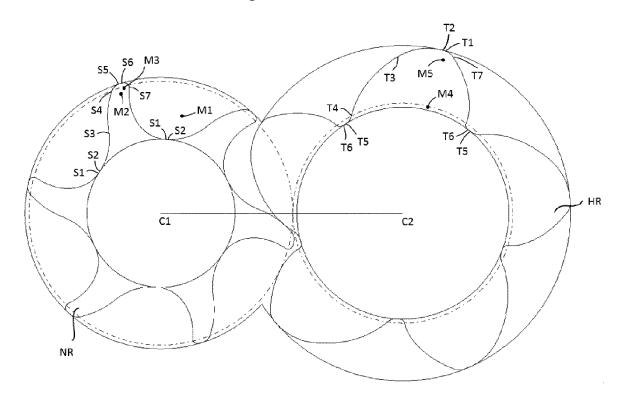

Figur 10


Figur 11


Figur 12a


Figur 12b


Figur 13


Figur 14

Figur 15

Figur 16

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Nicht-Patentliteratur

- Methode zur stochastischen Optimierung von Schraubenrotorprofilen. Dissertation, 2003, 162 [0012]
- WIEN. Die computergestützte Entwicklung der Flankenprofile für Sonderverzahnungen von Schraubenkompressoren. Habilitation, 2010 [0025]
- Methode zur stochastischen Optimierung von Schraubenrotorprofilen. Dissertation, 2003 [0026]
- Methode zur stochastischen Optimierung von Schraubenrotorprofilen. Dissertation von Markus Helpertz, 2003, 11, , 12 [0029]
- STEFAN BERLIK; DORTMUND. Directed Evolutionary Algorithms. *Dissertation*, 2006, 173 f [0186]
- Methode zur stochastischem Optimierung von Schraubenrotorprofilen. Dissertation von Helpertz, 2003, 60 ff [0190]