TECHNICAL FIELD
[0001] The present invention relates to a vibration analyzer and a machine component diagnosis
system, and more specifically, to a vibration analyzer configured to analyze vibration
of a machine component and a machine component diagnosis system configured to diagnose
the vibration of the machine component by using the vibration analyzer and an information
terminal.
RELATED ART
[0002] In the related art, a machine component diagnosis system including an information
terminal and a server connected via a communication network and configured to diagnose
abnormality of a machine component has been known (for example, refer to Patent Document
1). The information terminal of the machine component diagnosis system disclosed in
Patent Document 1 includes a measured data transmission means for receiving measured
acceleration data and temperature data and transmitting the same to the server, and
a diagnosis result display means for displaying a diagnosis result returned from the
server. Also, the server includes a diagnosis means for diagnosing abnormality of
the machine component from the acceleration data and temperature data and a diagnosis
result transmission means for returning the diagnosis result to the information terminal.
Citation List
Patent Documents
SUMMARY OF THE INVENTION
Problems To Be Solved By the Invention
[0004] However, according to Patent Document 1, since the acceleration data and temperature
data measured with the information terminal are transmitted to the server as they
are, and the server processes the data to diagnose the abnormality of the machine
component, a data amount to be transmitted from the information terminal to the server
becomes enormous. For this reason, it takes much time to transfer the data and the
power consumption of the information terminal increases, so that there is a room for
improvement.
[0005] The present invention has been made in view of the above situations, and an object
thereof is to provide a vibration analyzer and a machine component diagnosis system
capable of reducing a data amount to be transmitted from the vibration analyzer to
an information terminal and shortening data transfer time.
Means for Solving the Problems
[0006] The object of the present invention is achieved by following configurations.
- (1) A vibration analyzer which is configured to analyze vibration of a machine component
and which capable of performing an operation operating on the basis of a signal received
from an information terminal and transmitting a signal obtained as a result of the
operation to the information terminal, the vibration analyzer including:
a vibration sensor configured to detect the vibration of the machine component;
a filter processing unit configured to extract a predetermined frequency band from
a waveform of a signal detected by the vibration sensor, and
a calculation processing unit configured to analyze frequency of a waveform after
filter processing obtained by the filter processing unit and to obtain spectrum data.
- (2) The vibration analyzer of the above (1), wherein the vibration analyzer is a wireless
type vibration analyzer.
- (3) A machine component diagnosis system including the vibration analyzer of the above
(1) or (2) and an information terminal capable of transmitting and receiving a signal
to and from the vibration analyzer,
wherein the information terminal includes:
a diagnosis unit configured to compare a frequency component, which is included in
the spectrum data transmitted from the vibration analyzer, and a damaging frequency
resulting from a damage of the machine component, and to diagnose abnormality of the
machine component, and
a display unit configured to output a diagnosis result diagnosed by the diagnosis
unit.
- (4) The machine component diagnosis system of the above (3), wherein the information
terminal includes a database in which the damaging frequency resulting from the damage
of the machine component is preserved as a converted damaging frequency obtained by
converting the damaging frequency on the basis of a predetermined rotating speed of
the machine component, and
wherein the damaging frequency is provided by calculating the converted damaging frequency
in the database by using an actual rotating speed of the machine component.
- (5) The machine component diagnosis system of the above (4), wherein the machine component
is a bearing,
wherein in the database, a bearing damaging frequency resulting from damages of an
inner ring, an outer ring, a rolling element and a cage of the bearing is preserved
as a converted bearing damaging frequency obtained by converting the bearing damaging
frequency on the basis of a predetermined rotating speed of the bearing, and
wherein the bearing damaging frequency is provided by calculating the converted bearing
damaging frequency in the database by using an actual rotating speed of the bearing.
Effects of the Invention
[0007] The vibration analyzer of the present invention includes the vibration sensor configured
to detect the vibration of the machine component, the filter processing unit configured
to extract the predetermined frequency band from the waveform of the vibration signal,
and the calculation processing unit configured to analyze frequency of the waveform
after the filter processing and to obtain the spectrum data, and is configured to
transmit the obtained spectrum data to the information terminal. Accordingly, it is
possible to reduce a data amount to be transmitted from the analyzer to the information
terminal, thereby shortening data transfer time.
[0008] Also, the machine component diagnosis system of the present invention includes the
vibration analyzer, and the information terminal capable of transmitting and receiving
the signal to and from the vibration analyzer, the information terminal includes the
diagnosis unit configured to compare the frequency component, which is included in
the spectrum data transmitted from the vibration analyzer, and the damaging frequency
resulting from the damage of the machine component, and to diagnose abnormality of
the machine component, and the display unit configured to output the diagnosis result
diagnosed by the diagnosis unit. Accordingly, it is possible to reduce the data amount
to be transmitted from the analyzer to the information terminal, thereby diagnosing
the machine component at high speed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009]
FIG. 1 is a block diagram depicting a configuration of a machine component diagnosis
system in accordance with a first embodiment of the present invention.
FIG. 2 is a flowchart depicting a sequence of bearing diagnosis that is to be performed
by the machine component diagnosis system shown in FIG. 1.
FIG. 3 is a table showing parts of a rolling bearing of the first embodiment and damaging
frequencies corresponding to the parts.
FIG. 4 is a flowchart depicting a sequence of vibration value measurement and simple
diagnosis that are to be performed by the machine component diagnosis system shown
in FIG. 1.
FIG. 5 is a flowchart depicting a sequence of frequency analysis that is to be performed
by the machine component diagnosis system shown in FIG. 1.
FIG. 6 is a block diagram depicting a configuration of a machine component diagnosis
system in accordance with a second embodiment of the present invention.
FIG. 7 is a flowchart depicting a sequence of sound detection that is to be performed
by the machine component diagnosis system shown in FIG. 6.
DETAILED DESCRIPTION OF EMBODIMENTS
<First Embodiment>
[0010] Hereinafter, a machine component diagnosis system in accordance with a first embodiment
of the present invention will be described in detail with reference to FIGS. 1 to
5.
[0011] FIG. 1 is a block diagram depicting a configuration of a machine component diagnosis
system in accordance with the first embodiment. As shown in FIG. 1, a machine component
diagnosis system 10 includes a wireless type vibration analyzer 20 (hereinafter, referred
to as "analyzer 20") and an information terminal 40. The machine component diagnosis
system 10 is configured to diagnose a machine component. Meanwhile, in the below,
a rolling bearing 11 will be exemplified as the machine component.
[0012] The rolling bearing 11 includes an outer ring 12 that is to be internally fitted
to a housing 15 or the like, an inner ring 13 that is to be externally fitted to a
spindle shaft of a machine equipment (not shown), a plurality of rolling elements
14 rollingly arranged between the outer ring 12 and the inner ring 13, and a cage
(not shown) configured to rollingly keep the rolling elements 14.
[0013] The wireless type vibration analyzer 20 mainly includes a vibration sensor 21, a
high-pass filter (HP filter) 27 and an anti-aliasing filter (AA filter) 29 as a filter
processing unit 22, an amplifier 28, an A/D conversion circuit 30, a calculation processing
unit 23, an internal memory 24, a transmitting and receiving unit 26, and a power
supply 31.
[0014] The vibration sensor 21 is configured by a piezoelectric type acceleration sensor
and the like, for example, and can detect vibration of the rolling bearing 11 when
the analyzer 20 is mounted to the housing 15 and power is fed thereto from the power
supply 31.
[0015] For example, a leading end potion of the analyzer 20 to which the vibration sensor
21 is mounted is formed with a female screw part (not shown), and a magnet is mounted
to a member to be screwed to the female screw part, so that the analyzer 20 may be
fixed to the housing 15.
[0016] The power supply 31 is configured by a lithium battery or the like, so that it can
be charged from an outside through a USB cable or the like. Also, a side of the analyzer
20 is provided with a switch (not shown) for turning on/off the power supply 31.
[0017] A vibration signal detected by the vibration sensor 21 passes through the HP filter
27, the amplifier 28, the AA filter 29 and the A/D conversion circuit 30 in corresponding
order. For this reason, the HP filter 27 and AA filter 29 configuring the filter processing
unit 22 function as a bandpass filter, so that a specific frequency band of the detected
vibration signal is extracted, is amplified by the amplifier 28, is converted into
a digital signal by the A/D conversion circuit 30 and is then transmitted to the calculation
processing unit 23.
[0018] The calculation processing unit 23 has a filter processing function, and is configured
to perform filter processing for the specific frequency band extracted by the HP filter
27 and the AA filter 29. Therefore, in the first embodiment, the filter processing
function of the calculation processing unit 23 functions as a part of the filter processing
unit 22 of the present invention. Also, the calculation processing unit 23 is configured
to perform absolute value processing or envelope processing and then FFT analysis
for the signal after the filter processing, thereby generating spectrum data, as necessary.
[0019] The calculated spectrum data and the like are temporarily stored in the internal
memory 24.
[0020] The transmitting and receiving unit 26 is configured by Bluetooth (registered trademark)
and the like, for example, and is configured to receive an operation command signal
from the information terminal 40 and to transmit, to the information terminal 40,
the signal of the spectrum data obtained by the analysis function of the calculation
processing unit 23. In the meantime, the communication between the analyzer 20 and
the information terminal 40 may be performed in a wired manner.
[0021] The information terminal 40 is a portable information terminal such as a tablet,
for example, and can be connected to the analyzer 20 via a communication network such
as the Internet. Also, the information terminal can be connected to a host computer
of a headquarters 41 via the Internet, and can perform update by downloading an application
program from the host computer.
[0022] The information terminal 40 mainly includes a transmitting and receiving unit 42,
a calculation processing unit 43, an internal memory 44, a display operation unit
(display unit) 45, and a speaker 46.
[0023] The information terminal 40 is configured to perform calculation processing at the
calculation processing unit 43 in accordance with a predetermined sequence while referring
to a database of damaging frequencies and the like stored in the internal memory 44,
based on the spectrum data received from the transmitting and receiving unit 26 of
the analyzer 20 by the transmitting and receiving unit 42, and to output a result
of the calculation processing to the display operation unit 45.
[0024] The transmitting and receiving unit 42 is configured to transmit and receive a variety
of data to and from the analyzer 20, such as transmission of the operation command
signal, receiving of the spectrum data, and the like.
[0025] The display operation unit 45 is configured by a liquid crystal panel, and can switch
a screen by control software embedded in the information terminal 40. The display
operation unit 45 is configured to display a vibration value, a diagnosis result,
and a processing result of various waveforms and the like, and can select and input
a diagnosis menu of the rolling bearing 11, a bearing number 11, a rotating speed
of a rotating ring, and the like.
[0026] The calculation processing unit 43 is configured to check whether the rolling bearing
11 is abnormal and an abnormal part thereof by referring to the database of the damaging
frequencies and the like stored in the internal memory 44, based on the spectrum data
received from the transmitting and receiving unit 26 of the analyzer 20.
[0027] In the meantime, the damaging frequency resulting from damage of the rolling bearing
11 and stored in the internal memory 44 is a converted damaging frequency of each
part of the rolling bearing 11 converted on the basis of a predetermined rotating
speed of the rolling bearing 11, and the damaging frequency that is to be used for
diagnosis is obtained by calculating the converted damaging frequency by using an
actual rotating speed of the rolling bearing 11. For example, an inner ring damaging
component Si1, an outer ring damaging component So1, a rolling element damaging component
Sb1 and a cage component Sc1 upon unit rotation speed, which are calculated in advance
from the internal specification of the registered bearing number (sizes necessary
for relation equations shown in FIG. 3, the number of the rolling element, and the
like), are set as the converted bearing damaging frequencies by using the relation
equations, and the converted bearing damaging frequencies are preserved as DLL (Dynamic
Link Library).
[0028] The bearing number 11 may be selected from a bearing number list displayed on a display
screen of the information terminal 40 or may be manually input, individually. In the
meantime, in the case of the rolling bearing 11 of which the bearing number has not
been registered, the specification of the rolling bearing 11 and the actual rotating
speed of the machine component are directly input, so that the damaging frequency
resulting from the damage of each part of the rolling bearing 11 is calculated using
the relation equations shown in FIG. 3 by the calculation processing unit 43. Alternatively,
in the case of the rolling bearing 11 of which the bearing number has not been registered,
the converted damaging frequency may be input. In this case, the relation equations
shown in FIG. 3 are preserved in the database.
[0029] Alternatively, in the case of the rolling bearing 11 of which the bearing number
has not been registered, the converted damaging frequency at a predetermined rotating
speed calculated at the outside may be directly input from the display operation unit
45, and the calculation processing unit 43 may be configured to calculate the damaging
frequency by using the converted damaging frequency, based on the actual rotating
speed of the machine component.
[0030] In any configuration, the converted damaging frequency of the rolling bearing 11
of which the bearing number has not been registered is preferably preserved in the
internal memory 44 together with the bearing number so that it can be called when
actually operating the machine component.
[0031] Subsequently, a sequence of measurement, diagnosis and the like that are to be performed
by the machine component diagnosis system 10 of the first embodiment is described.
[0032] First, an operator turns on the switch of the power supply 31 of the analyzer 20
and selects a diagnosis menu from an input screen of the display operation unit 45
of the information terminal 40 (step S1).
[0033] The diagnosis menu mainly includes respective functions of a bearing diagnosis function,
a vibration value measuring function, a simple diagnosis function, and a frequency
analysis function. The bearing diagnosis function is to diagnose whether the inner
and outer rings, the rolling element and the cage of the bearing are damaged and damaged
parts thereof. The vibration value measuring function is to measure effective values,
peak values and crest factors of displacement, velocity, acceleration and the like
of vibration. The simple diagnosis function is to simply diagnose whether the rolling
bearing is abnormal by comparing the effective values, peak values and crest factors
of the displacement, velocity, acceleration and the like of the detected vibration,
with preset thresholds. The frequency analysis function is to display an FFT waveform
obtained by analyzing frequency of a vibration waveform by FFT or the like.
<Bearing Diagnosis>
[0034] When the bearing diagnosis function of the machine component diagnosis system 10
is selected, a bearing number, a revolution and the like of the bearing to be diagnosed
are first manually input and the various information such as the converted damaging
frequency corresponding to the bearing of the stored bearing number is called and
set from the internal memory 44 in step S1, and diagnosis start is instructed (step
S2), as shown in FIG. 2.
[0035] The analyzer 20 operates on the basis of a command signal transmitted from the transmitting
and receiving unit 42 of the information terminal 40, and the vibration sensor 21
acquires a temporal waveform of the vibration of the rolling bearing 11 (step S3).
[0036] The acquired vibration signal is filter-processed by the HP filter 27 and the AA
filter 29 (step S4), and the specific frequency band thereof is extracted. Thereafter,
a predetermined frequency band is further extracted from the specific frequency band
by the filter function of the calculation processing unit 23.
[0037] Then, the calculation processing unit 23 performs the frequency analysis for the
extracted predetermined frequency band to calculate an FFT waveform (step S5) or performs
the frequency analysis after performing the absolute value processing or envelope
processing, thereby calculating an envelope FFT waveform (step S6). In the meantime,
the FFT waveform is subjected to averaging processing by using an exponential mean.
The calculation processing unit 23 is an FFT calculation unit configured to calculate
a frequency spectrum of the vibration signal, too, so that it calculates a frequency
spectrum of the vibration signal on the basis of FFT algorithm and envelope analysis.
[0038] The calculated frequency spectrum is transmitted, as spectrum data, from the transmitting
and receiving unit 26 of the analyzer 20 to the information terminal 40. Since the
data to be transmitted to the information terminal 40 is the spectrum data obtained
by FFT processing the temporal waveform signal detected at the vibration sensor 21,
a data amount to be transmitted is remarkably reduced, as compared to a case where
the temporal waveform is transmitted to the information terminal 40. For this reason,
the data transfer time is shortened, so that the communication time is reduced.
[0039] The bearing diagnosis unit of the calculation processing unit 43 analyzes the spectrum
data received at the transmitting and receiving unit 42 of the information terminal
40 to diagnose whether the rolling bearing 11 is abnormal by referring to the bearing
information recorded in the internal memory 44 (step S7).
[0040] Specifically, the bearing damaging frequency resulting from the damage of each part
of the rolling bearing 11 is calculated in advance by using the converted bearing
damaging frequency corresponding to the rolling bearing and the actual rotating speed
of the rolling bearing 11. Then, the spectrum data received from the analyzer 20 is
compared with each bearing damaging frequency (it is satisfied whether the peak frequency
corresponds to the bearing damaging frequency), so that it is checked whether the
abnormality such as damage of the rolling bearing 11 has occurred and the damaged
part is specified.
[0041] That is, the bearing damaging frequency component of the rolling bearing 11 includes
the bearing damaging component, i.e., the inner ring damaging component Si, the outer
ring damaging component So, the rolling element damaging component Sb and the cage
component Sc, and each level of the frequency components is extracted. Then, it is
specified which of the outer ring 12, the inner ring 13, the rolling element 14 and
the cage is the abnormal part. Then, a result thereof is output and displayed to the
display operation unit 45 (step S8).
<Vibration Value Measurement/Simple Diagnosis>
[0042] In step S1, when the vibration value measurement/simple diagnosis by the machine
component diagnosis system 10 is selected, an operation command to perform the vibration
value measurement/simple diagnosis is transmitted to the analyzer 20 via the transmitting
and receiving unit 42 and the transmitting and receiving unit 26, so that the vibration
sensor 21 acquires the temporal waveform of the vibration of the rolling bearing 11
(step S3), as shown in FIG. 4.
[0043] Then, the calculation processing unit 23 calculates a vibration value, which is a
diagnosis parameter to be used for diagnosis in the simple diagnosis function (step
S10). As the diagnosis parameter, at least one vibration value of the effective value
(rms), the peak value (peak) and the crest factor (c.f.) of the acceleration and velocity
of the vibration and the peak value (peak) of displacement is extracted as a simple
diagnosis value.
[0044] Thereafter, the calculated vibration value is transmitted to the information terminal
40 via the transmitting and receiving units 26, 42.
[0045] Then, from the calculated diagnosis parameters of the acceleration, velocity and
displacement, it is possible to determine an absolute value on the basis of the ISO
standard (for example, ISO 10816-1 and the like) by the simple diagnosis function.
Also, it is possible to determine any threshold. That is, the effective value (rms),
the peak value (peak) and the crest factor (c.f.) of the acceleration and velocity
and the peak value (peak) of displacement, which are the calculated diagnosis parameters,
are compared with the respective thresholds for simple diagnosis (step S11). In the
case of "effective value (rms), peak value (peak) and crest factor (c.f.)>each threshold",
it is determined that the rolling bearing 11 is abnormal. When each value is equal
to or smaller than the threshold, it is determined that there is no abnormality. To
this end, each threshold is preserved in the internal memory 44.
[0046] A diagnosis result of the simple diagnosis is displayed by the display operation
unit 45 (step S12).
[0047] In the meantime, the simple diagnosis in step S11 may be performed by the analyzer
20. Also, the result display in step S12 may be performed by the analyzer 20. When
the result display is performed by the analyzer 20, light such as LED light, sound
such as alarm and the other general warning method may be adopted.
<Frequency Analysis>
[0048] In step S1, when the frequency analysis by the machine component diagnosis system
10 is selected, an operation command to perform the frequency analysis is transmitted
to the analyzer 20 via the transmitting and receiving unit 42 and the transmitting
and receiving unit 26, as shown in FIG. 5. The analyzer 20 operates on the basis of
the command signal received from the information terminal 40, so that the vibration
sensor 21 acquires the temporal waveform of the vibration of the rolling bearing 11
(step S3).
[0049] The acquired temporal waveform of the vibration is filter-processed by the HP filter
27, the AA filter 29 and the filter processing function of the calculation processing
unit 23 (step S4), so that a predetermined frequency band is extracted, like the case
of the bearing diagnosis.
[0050] Then, the calculation processing unit 23 performs the frequency analysis for the
vibration signal in the extracted predetermined frequency band (step S5). The calculation
processing unit 23 is an FFT calculation unit configured to calculate the frequency
spectrum of the vibration signal, and calculates the FFT waveform on the basis of
the FFT algorithm. In the meantime, the FFT waveform is subjected to the averaging
processing by using the exponential mean, and may be selectively subjected to the
envelope processing.
[0051] The calculated FFT waveform is transmitted from the transmitting and receiving unit
26 of the analyzer 20 to the transmitting and receiving unit 42 of the information
terminal 40, so that the result is displayed on the display operation unit 45 of the
information terminal 40 (step S13).
[0052] As described above, the wireless type vibration analyzer 20 of the first embodiment
includes the vibration sensor 21 configured to detect the vibration of the machine
component, the filter processing unit 22 configured to extract the predetermined frequency
band from the waveform of the vibration signal and the calculation processing unit
23 configured to analyze frequency of the waveform after the filter processing to
obtain the spectrum data, and is configured to transmit the obtained spectrum data
to the information terminal 40. Accordingly, it is possible to reduce the data amount
to be transmitted from the analyzer 20 to the information terminal 40, thereby shortening
the data transfer time. Also, since it is possible to shorten the data transfer time,
it is also possible to reduce the power consumption of the analyzer 20.
[0053] Also, the machine component diagnosis system 10 of the first embodiment includes
the wireless type vibration analyzer 20, and the information terminal 40 capable of
transmitting and receiving the signal to and from the wireless type vibration analyzer
20, the information terminal 40 includes the calculation processing unit (bearing
diagnosis unit) 43 configured to compare the frequency component, which is included
in the spectrum data transmitted from the wireless type vibration analyzer 20, and
the damaging frequency resulting from the damage of the rolling bearing 11 and to
diagnose abnormality of the rolling bearing 11, and the display unit configured to
output the diagnosis result diagnosed by the calculation processing unit 43. Accordingly,
it is possible to reduce the data amount to be transmitted from the wireless type
vibration analyzer 20 to the information terminal 40, thereby diagnosing the rolling
bearing 11 at high speed.
[0054] Also, the information terminal 40 includes the database (the internal memory 44)
in which the damaging frequency resulting from the damage of the rolling bearing 11
is preserved as the converted damaging frequency obtained by converting the damaging
frequency on the basis of the predetermined rotating speed of the rolling bearing
11, and the damaging frequency is provided by calculating the converted damaging frequency
in the database by using the actual rotating speed of the rolling bearing 11. For
this reason, it is not necessary to preserve the respective specification sizes of
the rolling bearing 11 in the information terminal 40, so that it is possible to keep
the specification sizes of the rolling bearing 11 confidential. Also, the machine
component diagnosis system 10 is particularly favorable when the processing is completed
in the information terminal 40.
<Second Embodiment>
[0055] FIG. 6 is a block diagram depicting a configuration of a machine component diagnosis
system in accordance with a second embodiment of the present invention. As shown in
FIG. 6, the machine component diagnosis system 10 includes the wireless type vibration
analyzer 20 and the information terminal 40, and has a sound detection function of
reproducing driving sound of the rolling bearing 11 by the speaker 46, in addition
to the diagnosis function of the rolling bearing 11 described in the first embodiment.
For this reason, in the second embodiment, the sound detection function is added to
the diagnosis menu.
[0056] When detecting the driving sound, the temporal waveform of the vibration of the rolling
bearing 11 acquired by the vibration sensor 21 is used. Therefore, the temporal waveform
of the vibration is transmitted from the analyzer 20 to the information terminal 40.
To this end, the machine component diagnosis system 10 of the second embodiment includes
a filter processing unit 47 at the information terminal 40, and the filter processing
unit 47 is configured to extract a specific frequency band from the temporal waveform
of the vibration of the rolling bearing 11 and to transmit the same to the calculation
processing unit 43. Also, the calculation processing unit 43 of the information terminal
40 has a function of performing the envelope processing or FFT analysis for the temporal
waveform of the specific frequency band.
<Sound Detection>
[0057] In the second embodiment, in step S1, when the sound detection function of the machine
component diagnosis system 10 is selected, an operation command to perform the sound
detection is transmitted to the analyzer 20 via the transmitting and receiving unit
42 and the transmitting and receiving unit 26, as shown in FIG. 7. The analyzer 20
operates on the basis of the command signal received from the information terminal
40, so that the vibration sensor 21 acquires the temporal waveform of the vibration
of the rolling bearing 11 (step S3).
[0058] The acquired temporal waveform of the vibration is transmitted to the information
terminal 40 via the transmitting and receiving unit 26 and the transmitting and receiving
unit 42. The received temporal waveform of the vibration is preserved as data in the
internal memory 44 so that the temporal waveform data can be repetitively used (step
S20).
[0059] Then, the filter processing unit 47 performs the filter processing of extracting
the specific frequency band in which the sound detection is intended (step S21), and
the calculation processing unit 43 calculates the FFT waveform of the vibration signal
on the basis of the FFT algorithm (step S22). The driving sound corresponding to the
calculated FFT waveform is output to the speaker 46 and is then reproduced (step S23).
Also, when it is intended to listen the driving sound of the other frequency band,
the processing returns to step S21, and the temporal waveform of the vibration preserved
in the internal memory 44 is again acquired and the same operations are performed.
[0060] Like this, according to the machine component diagnosis system 10 of the second embodiment,
it is possible to add the sound detection function. In particular, the information
terminal 40 is provided with the filter processing unit 47 and the calculation processing
unit 43 is configured to perform the FFT analysis, so that it is possible to reproduce
and display the driving sound in the plurality of frequency bands.
[0061] The other configurations and operations are the same as the machine component diagnosis
system 10 of the first embodiment.
[0062] In the meantime, the present invention is not limited to the embodiments, and can
be appropriately modified and improved.
[0063] For example, the machine component, which is a diagnosis target, is not limited to
the rolling bearing 11, and the present invention can be applied to a machine component
that is to be vibrated due to the driving thereof, for example, a machine component
such as a gear.
[0064] Also, in the machine component diagnosis system 10 of the embodiments, the analyzer
20 and the information terminal 40 are associated one to one, so that the data is
transmitted and received at the specific analyzer 20 and the specific information
terminal 40. However, regarding the various diagnoses to be performed by the machine
component diagnosis system 10, a plurality of analyzers 20 may be associated with
one information terminal 40 and a plurality of machine components may be monitored
by patrol inspection.
[0065] In the case of the patrol monitoring, the analyzers 20 may be respectively provided
to each of the machine components, and the portable information terminal 40 such as
a tablet may be configured to monitor and diagnose the plurality of machine components.
Also, when the information terminal 40 approaches to the analyzer 20 for patrol monitoring,
i.e., when performing the machine component, the power supply of the analyzer 20 may
be automatically turned on so that the detection/analysis/transmission are to be automatically
performed in accordance with instructions from the information terminal 40.
[0066] Also, the USB terminal provided to the wireless type vibration analyzer 20 may be
configured to transmit the temporal waveform and the spectrum data to the information
terminal 40 in a wired manner, in addition to the function of charging the power supply
31 from the outside, as described above.
[0067] Also, when the various data that is to be preserved in the information terminal 40
is received at the other devices such as a host computer, the more detailed management
such as management of patrol route, management of time trend of the vibration level
and preparation of a simple report becomes possible.
[0068] Also, the database of the converted damaging frequency preserved in the internal
memory 44 of the information terminal 40 of the embodiments is effective to keep the
specification sizes of the machine component (the rolling bearing 11) confidential,
and is not limited to the case where the abnormality is diagnosed using the wireless
type vibration analyzer 20 of the present invention.
[0069] That is, the present invention includes the information terminal configured to extract
the predetermined frequency band from the waveform of the signal of the machine component
detected by the vibration sensor, to compare the analyzed frequency component and
the damaging frequency resulting from the damage of the machine component, and to
diagnose abnormality of the machine component, wherein the information terminal includes
the database in which the damaging frequency resulting from the damage of the machine
component is preserved as the converted damaging frequency obtained by converting
the damaging frequency on the basis of a predetermined rotating speed of the machine
component, and the damaging frequency is provided by calculating the converted damaging
frequency in the database by using an actual rotating speed of the machine component.
[0070] Also, the vibration analyzer of the present invention is not limited to the wireless
type of the embodiments, and may be a wired type.
[0071] Also, in the embodiments, the filter processing unit 22 is configured by the HP filter
27, the AA filter 29 and the filter processing function of the calculation processing
unit 23. However, the filter processing unit 22 of the present invention is not limited
to the embodiments inasmuch as it is configured to extract the predetermined frequency
band, which is to be analyzed frequency, from the waveform of the signal detected
by the vibration sensor, and may be configured only by an analog filter or a digital
filter.
[0072] Also, the vibration analyzer of the present invention may be an analyzer having other
sensor mounted therein. In this case, for example, a temperature gauge may be mounted.
Also, for example, the other sensor may be provided at an outside, and a terminal
configured to receive a signal thereof may be provided.
[0073] Also, the vibration analyzer of the present invention may be mounted at an appropriate
position. For example, the vibration analyzer may be arranged in a vertical direction
(radial direction) to the spindle shaft or may be arranged in a parallel direction
(thrust direction).
[0074] The subject application is based on Japanese Patent Application No.
2017-59297 filed on March 24, 2017, the contents of which are incorporated herein by reference.
Description of Reference Numerals
[0075]
- 10:
- machine component diagnosis system
- 11:
- rolling bearing (machine component)
- 12:
- outer ring
- 13:
- inner ring
- 14:
- rolling element
- 20:
- wireless type vibration analyzer
- 21:
- vibration sensor
- 22:
- filter processing unit
- 23:
- calculation processing unit
- 24:
- internal memory
- 26:
- transmitting and receiving unit
- 40:
- information terminal
- 42:
- transmitting and receiving unit
- 43:
- calculation processing unit
- 44:
- internal memory (database)
- 45:
- display operation unit (display unit)
- 47:
- filter processing unit
- Sb:
- rolling element damaging component (damaging frequency)
- Sc:
- cage component (damaging frequency)
- Si:
- inner ring damaging component (damaging frequency)
- So:
- outer ring damaging component (damaging frequency)