
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
60

5
94

7
A

1

(Cont. next page)

EP003605947A1
(11) EP 3 605 947 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
05.02.2020 Bulletin 2020/06

(21) Application number: 18777404.7

(22) Date of filing: 26.03.2018

(51) Int Cl.:
H04L 9/32 (2006.01) H04L 29/06 (2006.01)

H04L 29/08 (2006.01) H04L 12/26 (2006.01)

(86) International application number:
PCT/CN2018/080574

(87) International publication number:
WO 2018/177264 (04.10.2018 Gazette 2018/40)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 30.03.2017 CN 201710203499

(71) Applicant: Tencent Technology (Shenzhen)
Company Limited
Shenzhen, Guangdong 518057 (CN)

(72) Inventors:
• GUO, Rui

Shenzhen
Guangdong 518057 (CN)

• LI, Maocai
Shenzhen
Guangdong 518057 (CN)

• ZHAO, Qi
Shenzhen
Guangdong 518057 (CN)

• ZHANG, Jianjun
Shenzhen
Guangdong 518057 (CN)

• TU, Haitao
Shenzhen
Guangdong 518057 (CN)

• WANG, Zongyou
Shenzhen
Guangdong 518057 (CN)

• LIANG, Jun
Shenzhen
Guangdong 518057 (CN)

• ZHU, Dawei
Shenzhen
Guangdong 518057 (CN)

• CHEN, Lisheng
Shenzhen
Guangdong 518057 (CN)

• LIU, Binhua
Shenzhen
Guangdong 518057 (CN)

(74) Representative: Dondi, Silvia
Bugnion S.p.A.
Largo Michele Novaro, 1/A
43121 Parma (IT)

(54) DISTRIBUTED SYSTEM, MESSAGE PROCESSING METHOD, NODE, CLIENT, AND STORAGE
MEDIUM

(57) The present disclosure discloses a distributed
system, a message processing method, a node, a client,
and a storage medium. The distributed system includes
a client and a plurality of nodes. A leader node receives
a message of the client, sends the message to follower
nodes after successfully verifying a digital signature of
the message; receives reception acknowledgement no-
tifications of a pre-determined quantity of follower nodes;
persistently stores the message after successfully veri-
fying digital signatures; and sends a message storage
notification to the follower nodes. The follower node re-
turns a result to the client when receiving the message

sent by the leader node; sends the reception acknowl-
edgement notification to the leader node after success-
fully verifying the digital signature of the received mes-
sage; and persistently stores the received message after
successfully verifying a digital signature of the received
message storage notification. The client determines an
abnormal node according to the result returned by the
follower node when the follower node receives the mes-
sage.

2

EP 3 605 947 A1

EP 3 605 947 A1

3

5

10

15

20

25

30

35

40

45

50

55

Description

RELATED APPLICATION

[0001] This application is based upon and claims pri-
ority to Chinese Patent Application No.
201710203499.X, filed on March 30, 2017, which is in-
corporated by reference in its entirety.

FIELD OF THE TECHNOLOGY

[0002] The present disclosure relates to the commu-
nications technology, and in particular, to a distributed
system, a message processing method, a node, a client,
and a storage medium.

BACKGROUND OF THE DISCLOSURE

[0003] A distributed system is a computing system that
is commonly used at present, and is applied to various
fields such as block chains and distributed service frame-
works (for example, ZooKeeper).
[0004] In a working process of the distributed system,
nodes need to reach a consensus on a to-be-processed
message from a client, that is, all nodes or most nodes
in the distributed system confirm a received message,
and then synchronously store/process the message.
[0005] For example, when the distributed system is ap-
plied to a private block chain or a federal block chain, the
nodes reach, based on a consensus algorithm, a con-
sensus on a transaction record committed by the client
(that is, determine reliability of the transaction record),
and store the transaction record in block chains main-
tained by the nodes, thereby ensuring consistency of the
transaction record stored by the nodes.
[0006] A consensus algorithm used by a distributed
system implemented in the related technology focuses
on consensus reaching efficiency or on ensuring fault-
tolerant performance in a consensus reaching process.
The fault-tolerant performance means that it is ensured
that most nodes can still reach a consensus when there
is a faulty node or a malicious node.
[0007] For a consensus algorithm provided in the re-
lated technology for ensuring the consensus reaching
efficiency, it is difficult to ensure consensus reliability due
to that a faulty node and a malicious node cannot be
detected.

SUMMARY

[0008] Embodiments of the present disclosure provide
a distributed system, a message processing method, a
node, a client, and a storage medium, to achieve a reli-
able consensus of nodes in a distributed system on a
message.
[0009] Technical solutions of the embodiments of the
present disclosure are implemented in this way:
[0010] According to a first aspect, an embodiment of

the present disclosure provides a distributed system, in-
cluding:

a client and a plurality of nodes,

the node being configured to determine, through a
voting operation when a new consensus cycle in a
first consensus mode starts, whether the node is in
a leader node state or a follower node state;

the node being configured to verify, when the node
is in the leader node state, a digital signature of a
message sent by the client, and send the message
to follower nodes;

the node being configured to: receive, when the node
is in the leader node state, reception acknowledge-
ment notifications of more than a predetermined
quantity of follower nodes, persistently store the
message after verifying digital signatures of the re-
ception acknowledgement notifications, and send a
message storage notification to the follower nodes;

the node further being configured to: return, when
the node is in the follower node state, a result to the
client when receiving a message sent by a leader
node, verify a digital signature of the message re-
ceived from the leader node, and persistently store
the message received from the leader node; and

the client being configured to determine an abnormal
node in the distributed system according to the result
returned by the follower node when the follower node
receives the message.

[0011] According to a second aspect, an embodiment
of the present disclosure provides a message processing
method, applicable to a node in a distributed system. The
message includes:

performing, by the node in the distributed system, a
voting operation when a new consensus cycle in a
first consensus mode starts, to determine, through
the voting operation, whether the node is in a leader
node state or a follower node state; and

performing, by the node, the following operations
when the node is in the leader node state:

receiving a message of a client, verifying a digital
signature of the message, and sending the mes-
sage to follower nodes; and

receiving reception acknowledgement notifica-
tions of more than a predetermined quantity of
follower nodes, persistently storing the message
after verifying digital signatures of the reception
acknowledgement messages, and sending a

1 2

EP 3 605 947 A1

4

5

10

15

20

25

30

35

40

45

50

55

message storage notification to the follower
nodes,

results returned by the follower nodes when the fol-
lower nodes receive the message being used by the
client for determining an abnormal node in the dis-
tributed system.

[0012] According to a third aspect, an embodiment of
the present disclosure provides a message processing
method, applicable to a client in a distributed system.
The message includes:

sending, by the client, a message to a leader node
in nodes of the distributed system, the message car-
rying a digital signature of the client,

the digital signature being verified by the leader
node, and a digital signature of the leader node being
added to the received message to send the message
to follower nodes in the distributed system;

receiving, by the client, results returned by the fol-
lower nodes when the follower nodes receive the
message; and

determining, by the client, an abnormal node in the
distributed system according to the results returned
by the follower nodes when the follower nodes re-
ceive the message.

[0013] According to a fourth aspect, an embodiment
of the present disclosure provides a node, applicable to
a distributed system. The node includes:

a voting unit, configured to perform a voting opera-
tion when a new consensus cycle in a first consensus
mode starts, and determine, through the voting op-
eration, whether the node is in a leader node state
or a follower node state; and

a leader node unit, configured to: receive a message
of a client when the node is in the leader node state,
verify a digital signature of the message, and send
the message to follower nodes; and

receive reception acknowledgement notifications of
more than a predetermined quantity of follower
nodes, persistently store the message after verifying
digital signatures of the reception acknowledgement
messages, and send a message storage notification
to the follower nodes,

results returned by the follower nodes when the fol-
lower nodes receive the message being used by the
client for determining an abnormal node in the dis-
tributed system.

[0014] According to a fifth aspect, an embodiment of
the present disclosure provides a node, applicable to a
distributed system. The node includes one or more proc-
essors, a memory, and one or more programs. The one
or more programs are stored in the memory, the program
may include one or more units each corresponding to
one set of instructions. The one or more processors are
configured to execute the instructions, to implement the
message processing method applied to a node according
to the embodiments of the present disclosure.
[0015] According to a sixth aspect, an embodiment of
the present disclosure provides a client, applicable to a
distributed system. The client includes:

a communications unit, configured to send a mes-
sage to a leader node in nodes of the distributed
system, the message carrying a digital signature of
the client,

the digital signature being verified by the leader
node, and a digital signature of the leader node being
added to the received message to send the message
to follower nodes in the distributed system; and

the communications unit being configured to receive
results returned by the follower nodes when the fol-
lower nodes receive the message; and

a detection unit, configured to determine an abnor-
mal node in the distributed system according to the
results returned by the follower nodes when the fol-
lower nodes receive the message.

[0016] According to a seventh aspect, an embodiment
of the present disclosure provides a client, applicable to
a distributed system. The client includes one or more
processors, a memory, and one or more programs. The
one or more programs are stored in the memory, the
program may include one or more units each correspond-
ing to one set of instructions. The one or more processors
are configured to execute the instructions, to implement
the message processing method applied to a client ac-
cording to the embodiments of the present disclosure.
[0017] According to an eighth aspect, an embodiment
of the present disclosure provides a storage medium,
storing executable instructions, and configured to cause
a processor, when executing the executable program, to
implement the message processing method applied to a
node according to the embodiments of the present dis-
closure.
[0018] According to a ninth aspect, an embodiment of
the present disclosure provides a storage medium, stor-
ing executable instructions, and configured to cause a
processor, when executing the executable program, to
implement the message processing method applied to a
client according to the embodiments of the present dis-
closure.
[0019] The embodiments of the present disclosure

3 4

EP 3 605 947 A1

5

5

10

15

20

25

30

35

40

45

50

55

have such beneficial effects:

(1) Reliability of communication in the distributed
system is ensured by using a digital signature: A dig-
ital signature is used for both parties in communica-
tion, that is, a digital signature of a message is carried
when the message is sent, and reliability of the re-
ceived message is ensured by verifying the digital
signature.

(2) The follower nodes directly return the results to
the client when receiving the message sent by the
leader node, and add necessary information such
as a uniqueness field, a sequence number of the
message, and a digital signature to the result, so that
the client can directly determine consensus reaching
between the follower nodes according to the results
returned by the follower nodes, thereby efficiently
detecting the abnormal node.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020]

FIG. 1 is an optional schematic structural diagram
of a distributed system 100 applied to a block chain
system according to an embodiment of the present
disclosure.

FIG. 2 is an optional schematic diagram of a block
structure according to an embodiment of the present
disclosure.

FIG. 3A is an optional schematic structural diagram
of software/hardware of a node 200 according to an
embodiment of the present disclosure.

FIG. 3B is an optional schematic structural diagram
of software and hardware of a client 300 according
to an embodiment of the present disclosure.

FIG. 4 is an optional schematic diagram of perform-
ing a voting operation by nodes in a first consensus
mode to determine a leader node and follower nodes
according to an embodiment of the present disclo-
sure.

FIG. 5 is an optional schematic flowchart of reaching
a consensus by nodes in a distributed system in a
first consensus mode and detecting a faulty node
and a malicious node according to an embodiment
of the present disclosure.

FIG. 6 is an optional schematic flowchart of switching
between a first consensus mode and a second con-
sensus mode by a distributed system according to
an embodiment of the present disclosure.

FIG. 7 is an optional schematic flowchart of switching
between a first consensus mode and a second con-
sensus mode by a distributed system according to
an embodiment of the present disclosure.

FIG. 8 is an optional schematic flowchart of reaching
a consensus by a block chain system by using a
RAFT algorithm according to an embodiment of the
present disclosure.

FIG. 9 is an optional schematic flowchart of reaching
a consensus by a block chain system by using a
PBFT algorithm according to an embodiment of the
present disclosure.

FIG. 10 is a diagram of an operating status of imple-
menting an adaptive consensus algorithm according
to an embodiment of the present disclosure.

FIG. 11 is a schematic diagram of implementation
of a T-RAFT algorithm consensus according to an
embodiment of the present disclosure.

FIG. 12 is an optional schematic flowchart of switch-
ing back to a T-RAFT algorithm at a preparation
stage of switching to a PBFT algorithm according to
an embodiment of the present disclosure.

FIG. 13 is an optional schematic flowchart of switch-
ing from a T-RAFT algorithm consensus to a PBFT
algorithm consensus by a block chain system ac-
cording to an embodiment of the present disclosure.

FIG. 14 is an optional schematic flowchart of switch-
ing from a PBFT algorithm consensus mode to a T-
RAFT algorithm consensus mode by a block chain
system according to an embodiment of the present
disclosure.

FIG. 15 is an optional schematic diagram of a sce-
nario in which a distributed system is applied to a
federal chain system according to an embodiment
of the present disclosure.

DESCRIPTION OF EMBODIMENTS

[0021] The present disclosure is further described in
detail below with reference to the accompanying draw-
ings and embodiments. The embodiments provided
herein are merely used for explaining the present disclo-
sure instead of limiting the present disclosure. In addition,
technical solutions set forth in the embodiments of the
present disclosure may be implemented in any combi-
nation without conflict.

(1) A distributed system is a system including a plu-
rality of nodes and a client that are connected
through network communication. Content of a mes-

5 6

EP 3 605 947 A1

6

5

10

15

20

25

30

35

40

45

50

55

sage used for the network communication varies ac-
cording to actual service scenarios. For example,
the message may be a transaction record or an in-
struction executed by a state machine of a node.

(2) Consensus: In the distributed system, a node (or
a node sending a message) verifies correctness of
another message sent by another node (that is, an-
other node in the distributed system other than the
node sending the message), sends, if successfully
verifying the correctness, a confirmation to the node
sending the message, and persistently stores the
message to support subsequent query.
For example, when the distributed system is imple-
mented as a block chain system, a node verifies val-
idness of a new block (including a newly generated
transaction record) committed by another node,
sends, if successfully verifying the validness, a con-
firmation to the node sending the new block, and
adds the new block to a tail portion of a block chain
stored by the corresponding node, to complete a
consensus on the transaction record in the block
chain.

(3) A consensus mode is also referred to as a con-
sensus algorithm, and is an algorithm used for en-
suring that nodes in the distributed system reach a
consensus. The consensus mode may include the
following types:

First consensus mode is a consensus mode in
which relatively high consensus efficiency can
be achieved, and a node fault or a Byzantine
problem (a case in which one party sends a mes-
sage to another party and the another party does
not receive the message or receives wrong in-
formation) can be detected, but the Byzantine
problem cannot be resolved. For example, al-
gorithms implementing the first consensus
mode include a Paxos algorithm and a recursive
algorithm for fault tolerance (RAFT).

A second consensus mode is a consensus
mode used for resolving the Byzantine problem.
Algorithms implementing the second consensus
mode include a Byzantine fault tolerance (BFT)
algorithm, a practical Byzantine fault tolerance
(PBFT) algorithm, a Byzantine fault tolerance-
recursive algorithm for fault tolerance (BFT-
RAFT), a BFT-Paxos algorithm, and the like.

(4) Consensus mode switching is also referred to as
consensus mode adaptation. For a consensus algo-
rithm used in a distributed network, when a network
environment is desirable, an algorithm that has high
consensus efficiency and that can be used for de-
tecting an abnormal node (for example, a node hav-
ing a Byzantine problem) is automatically used, to

implement the first consensus mode; and when a
malicious node is found or a node is erroneous, the
consensus algorithm is automatically switched to an
algorithm supporting Byzantine fault tolerance, to im-
plement the second consensus mode.

[0022] A distributed system implementing the embod-
iments of the present disclosure includes a client and a
plurality of nodes (computing devices in any form in an
access network, for example, a server and a user termi-
nal) that are connected through network communication.
Functions of the client and the node are described below.
[0023] The node is configured to determine, through a
voting operation when a new consensus cycle in a first
consensus mode starts, whether the node is in a leader
node state or a follower node state.
[0024] The node is configured to verify, when the node
is in the leader node state, a digital signature of a mes-
sage sent by the client, and send the message to follower
nodes.
[0025] The node is configured to: receive, when the
node is in the leader node state, reception acknowledge-
ment notifications of more than a predetermined quantity
of follower nodes, persistently store the message after
verifying digital signatures of the reception acknowledge-
ment notifications, and send a message storage notifi-
cation to the follower nodes.
[0026] The node is further configured to: return, when
the node is in the follower node state, a result to the client
when receiving a message sent by a leader node, verify
a digital signature of the message received from the lead-
er node, and send a reception acknowledgement notifi-
cation to the leader node.
[0027] The node is configured to verify, when the node
is in the follower node state, a digital signature of the
message storage notification received from the leader
node, and persistently store the message received from
the leader node.
[0028] The client is configured to determine an abnor-
mal node in the distributed system according to the result
returned by the follower node when the follower node
receives the message.
[0029] In an embodiment, the client is further config-
ured to: compare a uniqueness field (or unique informa-
tion) included in the received result with a uniqueness
field of the sent message after verifying a digital signature
of the received result, determine that a follower node cor-
responding to an inconsistent uniqueness field is an er-
roneous node, and determine that a follower node not
returning a result is a faulty node.
[0030] In an embodiment, the client is further config-
ured to compare a sequence number carried in the re-
ceived result with a sequence number of the sent mes-
sage, and determine, when a quantity of follower nodes
sending inconsistent sequence numbers exceeds an in-
consistency quantity threshold, that the leader node is a
malicious node.
[0031] In an embodiment, the client is further config-

7 8

EP 3 605 947 A1

7

5

10

15

20

25

30

35

40

45

50

55

ured to determine that the leader node is a malicious
node; or trigger, when determining there is a faulty node
in the follower nodes, the nodes in the distributed system
to switch to a second consensus mode.
[0032] In an embodiment, the node is further config-
ured to compare, at a preparation stage of switching to
the second consensus mode, a hash value of the mes-
sage persistently stored by the node with a hash value
of a message persistently stored by a node in the distrib-
uted system, and send a consistency confirmation to the
client when determining that the hash values are consist-
ent. The consistency confirmation carries a digital signa-
ture of the corresponding node.
[0033] The client is further configured to instruct, when
receiving consistency confirmations of all the nodes with-
in a pre-determined time, the nodes in the distributed
system to return to the first consensus mode; or instruct,
when not receiving consistency confirmations of all the
nodes within a pre-determined time, the nodes in the dis-
tributed system to continue switching to the second con-
sensus mode.
[0034] In an embodiment, the node is further config-
ured to compare, at a preparation stage of switching to
the second consensus mode, a hash value of the mes-
sage persistently stored by the node with a hash value
of a message persistently stored by a node in the distrib-
uted system, and send a data confirmation to a sending
node of the message when determining that the hash
values are consistent. The data confirmation carries a
digital signature of the corresponding node.
[0035] The client is further configured to trigger, when
nodes reaching a consensus do not receive, within a pre-
determined time, a data confirmation from a node not
reaching the consensus or the nodes in the distributed
system do not receive a data confirmation in a pre-de-
termined time, the nodes in the distributed system to con-
tinue switching to the second consensus mode.
[0036] In an embodiment, the node is further config-
ured to switch to the first consensus mode with the fol-
lower nodes when the node is in the leader node state
and when a quantity of times counted in the second con-
sensus mode exceeds a consensus quantity-of-times
threshold of the leader node. The counted quantity of
times is a count of forming consensuses with the follower
nodes on the received message.
[0037] In an embodiment, the node is further config-
ured to send, to the follower nodes when the node is in
the leader node state and when the counted quantity of
times exceeds the consensus quantity-of-times thresh-
old of the leader node, a notification of switching to the
first consensus mode, and start to synchronously switch
to the first consensus mode with the follower nodes when
receiving switch acknowledgements sent by all the fol-
lower nodes.
[0038] In an embodiment, the node is further config-
ured to receive, when the node is in the follower node
state, a notification of switching to the first consensus
mode, and send a switch acknowledgement to the leader

node when a counted quantity of times that a consensus
is reached on the received message exceeds a consen-
sus quantity-of-times threshold of the follower node.
[0039] In an embodiment, the node is further config-
ured to perform the voting operation again when not re-
ceiving heartbeat information of the leader node or when
the leader node is a malicious node, to determine whether
the node is in the leader node state or the follower node
state.
[0040] In an embodiment, the node is further config-
ured to: send a voting request to the nodes in the distrib-
uted system when the new consensus cycle starts and
heartbeat information of no node is received, convert into
the leader node state when receiving voting acknowl-
edgements returned by a pre-determined quantity of
nodes, and periodically send heartbeat information to the
nodes in the distributed system.
[0041] The voting acknowledgement is sent by the
nodes in the distributed system, and a digital signature
carried in the voting request is verified before the voting
acknowledgement is sent.
[0042] In an embodiment, the node is further config-
ured to convert into the follower node state when the new
consensus cycle starts and heartbeat information sent
by a node in the distributed system is received.
[0043] Descriptions are provided below by using an
example in which the distributed system is implemented
as a block chain system. FIG. 1 is an optional schematic
structural diagram of a distributed system 100 imple-
mented as a block chain system according to an embod-
iment of the present disclosure. The distributed system
100 includes a plurality of nodes 200 (computing devices
in any form in an access network, for example, a server
and a user terminal), and further includes a client 300. A
peer-to-peer (P2P) network is formed between the nodes
200. The P2P protocol is an application-layer protocol
running over the Transmission Control Protocol (TCP).
[0044] Referring to functions of the node 200 in the
block chain system shown in FIG. 1, the functions include
the following:

(1) Routing: which is a basic function of the node,
and is used for supporting communication between
nodes.

[0045] In addition to the routing function, the node 200
may further have the following functions:
(2) Application: which is deployed in a block chain, and
is used for implementing a particular service according
to an actual service requirement, recording data related
to function implementation to form recorded data, adding
a digital signature to the recorded data to indicate a
source of task data, and sending the recorded data to
another node in the block chain system (that is, any node
receiving the recorded data in the block chain system),
so that the another node adds the recorded data to a
temporary block when verifying a source and integrity of
the recorded data.

9 10

EP 3 605 947 A1

8

5

10

15

20

25

30

35

40

45

50

55

[0046] For example, services implemented by the ap-
plication include:

(2.1) Wallet: used for providing a transaction function
with electronic money, including transaction initiation
(where to be specific, a transaction record of a cur-
rent transaction is sent to another node in the block
chain system, and the another node stores, after suc-
cessfully verifying the transaction record, recorded
data of the transaction to a temporary block in a block
chain in response to admitting that the transaction
is valid). Certainly, the wallet further supports que-
rying for remaining electronic money in an electronic
money address.

(2.2) Shared account book: used for providing func-
tions of operations such as storage, query, and mod-
ification of account data. Recorded data of the op-
erations on the account data is sent to another node
in the block chain system. The another node stores,
after verifying that the account data is valid, the re-
corded data to a temporary block in response to ad-
mitting that the account data is valid, and may further
send an acknowledgement to a node initiating the
operations.

(2.3) Intelligent contract: which is a computerized
protocol, can be used for executing conditions of a
contract, and is implemented by using code that is
deployed in the shared account book and that is ex-
ecuted when a condition is satisfied. The code is
used for completing, according to an actual service
requirement, an automated transaction, for example,
searching for a delivery status of goods purchased
by a purchaser, and transferring electronic money
of the purchaser to an address of a merchant after
the purchaser signs for the goods. Certainly, the in-
telligent contract is not limited only to a contract used
for executing a transaction, and may further be a
contract used for processing received information.

(3) Block chain: including a series of blocks that are
consecutive in a chronological order of generation.
Once a new block is added to the block chain, the
new block is no longer removed. The block records
recorded data committed by the node in the block
chain system.

[0047] In an example, FIG. 2 is an optional schematic
diagram of a block structure according to an embodiment
of the present disclosure. Each block includes a hash
value of a transaction record stored in the current block
(a hash value of the current block) and a hash value of
a previous block. Blocks are connected according to hash
values to form a block chain. In addition, the block may
further include information such as a timestamp indicat-
ing a block generation time.
[0048] Composition of the distributed system imple-

menting the embodiments of the present disclosure can
flexibly vary. For example, in the distributed system, any
machine such as a server or a terminal can be added to
the distributed system to become a node. In terms of
hardware, for example, FIG. 3A is an optional schematic
structural diagram of software/hardware of a node 200
according to an embodiment of the present disclosure.
The node 200 includes a hardware layer, a driver layer,
an operating system layer, and an application layer. A
structure of the node 200 shown in FIG. 3A is merely an
example and does not constitute a limitation on the struc-
ture of the node 200. For example, the node 200 may be
provided with more components than those shown in
FIG. 3A according to an implementation requirement, or
some components may be omitted.
[0049] The hardware layer of the node 200 includes a
processor 210, an input/output interface 240, a storage
medium 230, and a network interface 220. The compo-
nents may be connected through a system bus for com-
munication.
[0050] The processor 210 may be implemented by us-
ing a central processing unit (CPU), a microcontroller unit
(MCU), an application-specific integrated circuit (ASIC),
or a field programmable gate array (FPGA).
[0051] The input/output interface 240 may be imple-
mented by using an input/output device such as a display
screen, a touchscreen, or a speaker.
[0052] The storage medium 230 may be implemented
by using a non-volatile storage medium such as a flash,
a hard disk, or an optical disc, or may be implemented
by using a volatile storage medium such as a double data
rate (DDR) dynamic cache. The storage medium 230
stores executable instructions used for performing a
message processing method.
[0053] The network interface 220 provides external da-
ta, for example, a remotely set access capability of the
storage medium 230, to the processor 210. For example,
the network interface 220 can implement communication
based on communication standards such as Code Divi-
sion Multiple Access (CDMA) and Wideband Code Divi-
sion Multiple Access (WCDMA) and evolved standards
thereof.
[0054] The driver layer includes middleware 250 used
by an operating system 260 for identifying the hardware
layer and communicating with each component of the
hardware layer, and for example, may be a set of drivers
for each component of the hardware layer.
[0055] The operating system 260 is configured to pro-
vide a user-oriented graphics interface, and display var-
ious intermediate results and final results of various
block-chain-based application processing.
[0056] The application layer includes a consensus
mechanism 270 (configured to adaptively switch be-
tween a first consensus mode and a second consensus
mode) configured to implement consensus reaching be-
tween nodes and functions, for example, an electronic
money wallet 280 and an intelligent contract 290, that
are implemented by the nodes based on the distributed

11 12

EP 3 605 947 A1

9

5

10

15

20

25

30

35

40

45

50

55

system. In an example, the application layer is configured
to be operable in the first consensus mode and the sec-
ond consensus mode.
[0057] Using the application layer as an example, re-
ferring to FIG. 3A, the consensus mechanism 270 of the
application layer of the node 200 provided in FIG. 3A
includes: a voting unit 2701, a leader node unit 2702, and
a follower node unit 2703.
[0058] The voting unit 2701 is configured to enable the
node 200 and other nodes in the distributed system to
perform a voting operation when a new consensus cycle
in the first consensus mode starts, to determine whether
the node 200 is in a leader node state or a follower node
state.
[0059] The leader node unit 2702 is configured to: re-
ceive a message of a client when the node 200 is in the
leader node state; send the message to follower nodes
after verifying a digital signature of the message; when
receiving reception acknowledgement notifications of
more than a predetermined quantity of follower nodes,
persistently store the message after verifying digital sig-
natures of the reception acknowledgement messages;
and send a message storage notification to the follower
nodes.
[0060] Results returned by the follower nodes when
the follower nodes receive the message are used by the
client for determining an abnormal node in the distributed
system.
[0061] The follower node unit 2703 is configured to:
when the node 200 is in the follower node state, persist-
ently store the received message after verifying a digital
signature of the received message storage notification.
The message is used by the client for determining the
abnormal node.
[0062] In an embodiment, the follower node unit 2703
is configured to perform the following operations when
the node 200 is in the follower node state: receiving the
message sent by a leader node, returning a result to the
client, sending a reception acknowledgement notification
to the leader node after verifying a digital signature of the
received message, and persistently storing the received
message after verifying the digital signature of the re-
ceived message storage notification.
[0063] In an embodiment, when the node 200 is in the
follower node state, the result returned by the follower
node to the client carries the following information: a
uniqueness field of the message and a digital signature
of the follower node. The result is used by the client for:
verifying the carried digital signature, compare the
uniqueness field included in the result with a uniqueness
field of the sent message, determining a follower node
corresponding to an inconsistent uniqueness field is an
erroneous node, and determining a follower node not re-
turning a corresponding result is a faulty node.
[0064] In an embodiment, when the node 200 is in the
follower node state, the result returned by the follower
node carries a sequence number of the message re-
ceived by the follower node. The sequence number car-

ried in the result is used by the client for comparing the
sequence number carried in the received result and a
sequence number of the sent message, and determining,
when a quantity of follower nodes sending inconsistent
sequence numbers exceeds an inconsistency quantity
threshold (or a threshold), that the leader node is a ma-
licious node.
[0065] In an embodiment, the consensus mechanism
270 further includes a switching unit 2704, configured to
switch to the second consensus mode in response to
trigger of the client when the client determines that the
leader node is a malicious node or determines that there
is a faulty node in the follower nodes.
[0066] In an embodiment, the switching unit 2704 is
further configured to perform the following operations
when the node 200 is at a preparation stage of switching
to the second consensus mode:

comparing a hash value of the message persistently
stored by the node 200 with a hash value of a mes-
sage persistently stored by a node in the distributed
system (that is, a node in the distributed system other
than the node 200), sending a consistency confirma-
tion to the client when determining that the hash val-
ues are consistent, where the consistency confirma-
tion carries a digital signature of the corresponding
node that is verified by the client when the client re-
ceives the consistency confirmation; and

switching to the first consensus mode in response
to a notification of the client when the client receives
consistency confirmations of all the nodes within a
pre-determined time; or

continuing switching to the second consensus mode
in response to a notification of the client when the
client does not receive consistency confirmations of
all the nodes within a predetermined time.

[0067] In an embodiment, the switching unit 2704 is
further configured to perform the following operations
when the node 200 is at a preparation stage of switching
to the second consensus mode:
comparing a hash value of the message persistently
stored by the node with a hash value of a message per-
sistently stored by a node in the distributed system (that
is, a node in the distributed system other than the node
200), and sending a data confirmation to a sending node
of the message when determining that the hash values
are consistent, where the data confirmation carries a dig-
ital signature of the corresponding node.
[0068] The data confirmation is used by the client for
triggering, when nodes reaching a consensus do not re-
ceive, within a pre-determined time, a data confirmation
of a node not reaching the consensus or the nodes in the
distributed system do not receive, within a pre-deter-
mined time, a data confirmation sent by another node,
the nodes in the distributed system to continue switching

13 14

EP 3 605 947 A1

10

5

10

15

20

25

30

35

40

45

50

55

to the second consensus mode.
[0069] In an embodiment, the leader node unit 2702 is
further configured to switch to the first consensus mode
with the follower nodes when the node 200 is in the leader
node state and a quantity of times that a consensus is
reached with the follower nodes on the received message
that is counted in the second consensus mode exceeds
a consensus quantity-of-times threshold of the leader
node.
[0070] In an embodiment, the leader node unit 2702 is
further configured to send, to the follower nodes when
the quantity of times counted in the second consensus
mode exceeds the consensus quantity-of-times thresh-
old of the leader node, a notification of switching to the
first consensus mode, and start to synchronously switch
to the first consensus mode with the follower nodes when
switch acknowledgements sent by all the follower nodes
are received. The counted quantity of times is a count of
forming consensuses with the follower nodes on the re-
ceived message.
[0071] In an embodiment, the follower node unit 2703
is further configured to perform the following operations
when the node is in the follower node state: counting,
when receiving a notification of switching to the first con-
sensus mode, a quantity of times that a consensus is
reached on the received message, and sending a switch
acknowledgement to the leader node when the counted
quantity of times exceeds a consensus quantity-of-times
threshold of the follower node.
[0072] In an embodiment, the voting unit 2701 is further
configured to perform a voting operation with the nodes
in the distributed system (that is, the nodes in the distrib-
uted system other than the node 200) when heartbeat
information of the leader node is not received or the lead-
er node is a malicious node, to determine whether the
node 200 is in the leader node state or the follower node
state.
[0073] In an embodiment, the voting unit 2701 is further
configured to send a voting request to the nodes in the
distributed system when the new consensus cycle starts
and heartbeat information sent by a node in the distrib-
uted system is not received, where the voting request
carries a digital signature of the node; switch to the leader
node state when voting acknowledgements returned by
a pre-determined quantity of nodes are received, and
periodically send heartbeat information to the nodes in
the distributed system to remain in the leader node state.
The voting acknowledgements are sent by the nodes in
the distributed system after the nodes verify the digital
signature carried in the voting request.
[0074] The voting unit 2701 is further configured to
switch to the follower node state when the new consen-
sus cycle starts and heartbeat information sent by a node
in the distributed system is received.
[0075] In the distributed system, the client may be a
combination of hardware and a software environment de-
ployed on the hardware. Based on this, the client may
also be referred to as a client device, configured to im-

plement functions such as mining (for example, Bitcoin
mining), node management, and deployment of an intel-
ligent contract.
[0076] FIG. 3B is an optional schematic structural di-
agram of software/hardware of a client according to an
embodiment of the present disclosure. A client 300 in-
cludes a hardware layer, a driver later, an operating sys-
tem layer, and an application layer. A structure of the
client 300 shown in FIG. 3B is merely an example and
does not constitute a limitation on the structure of the
client 300. For example, the client 300 may be provided
with more components than those shown in FIG. 3B ac-
cording to an implementation requirement, or some com-
ponents may be omitted according to an implementation
requirement.
[0077] The hardware layer of the client 300 includes a
processor 310, an input/output interface 340, a storage
medium 330, and a network interface 320. The compo-
nents may be connected through a system bus for com-
munication.
[0078] The processor 310 may be implemented by us-
ing a CPU, an MCU, an ASIC, or an FPGA.
[0079] The input/output interface 340 may be imple-
mented by using an input/output device such as a display
screen, a touchscreen, or a speaker.
[0080] The storage medium 330 may be implemented
by using a non-volatile storage medium such as a flash,
a hard disk, or an optical disc, or may be implemented
by using a DDR. The storage medium 330 stores exe-
cutable instructions used for performing the foregoing
communication status processing method (or the mes-
sage processing method described above).
[0081] The network interface 320 provides external da-
ta, for example, a remotely set access capability of the
storage medium 330, to the processor 310. For example,
the network interface 320 can implement communication
based on communication standards such as CDMA and
WCDMA and evolved standards thereof.
[0082] The driver layer includes middleware 350 used
by an operating system 360 for identifying the hardware
layer and communicating with each component of the
hardware layer, and for example, may be a set of drivers
for each component of the hardware layer.
[0083] The operating system 360 is configured to pro-
vide a user-oriented graphics interface, and display var-
ious intermediate results and final results of various
block-chain-based application processing.
[0084] The application layer is configured to: send a
message to nodes in a distributed system, so that the
nodes reach a consensus on the message to persistently
store the message; detect an abnormal node in the dis-
tributed system; and trigger the nodes to switch a con-
sensus mode.
[0085] Using the application layer as an example, FIG.
3B provides a functional structure of the application layer
of the client 300. The functional structure includes a man-
agement node 380, a deployed intelligent contract 390,
and a consensus 370.

15 16

EP 3 605 947 A1

11

5

10

15

20

25

30

35

40

45

50

55

[0086] In an example, the consensus 370 includes an
communications unit 3701 and a detection unit 3702.
[0087] The communications unit 3701 is configured to
send a message to a leader node in the nodes of the
distributed system. The message carries a digital signa-
ture of a client.
[0088] The digital signature is verified by the leader
node. A digital signature of the leader node is added to
the received message to send the message to follower
nodes in the distributed system.
[0089] The communications unit 3701 is configured to
receive a result returned by the follower node when the
follower node receives the message.
[0090] The detection unit 3702 is configured to deter-
mine an abnormal node in the distributed system accord-
ing to the result returned by the follower node when the
follower node receives the message.
[0091] In an embodiment, the detection unit 3702 is
further configured to: compare a uniqueness field includ-
ed in the received result with a uniqueness field of the
sent message after verifying a digital signature of the
received result, determine that a follower node corre-
sponding to an inconsistent uniqueness field is an erro-
neous node, and determine that a follower node not re-
turning a corresponding result is a faulty node.
[0092] In an embodiment, the detection unit 3702 is
further configured to compare a sequence number car-
ried in the received result with a sequence number of the
sent message, and determine, when a quantity of follow-
er nodes sending inconsistent sequence numbers ex-
ceeds an inconsistency quantity threshold, that the lead-
er node is a malicious node.
[0093] In an embodiment, the consensus 370 further
includes a switching unit 3703, configured to trigger,
when it is determined that the leader node is a malicious
node or there is a faulty node in the follower nodes, the
nodes in the distributed system to switch to a second
consensus mode.
[0094] In an embodiment, the switching unit 3703 is
further configured to instruct, when receiving consistency
confirmations of all the nodes within a pre-determined
time, all the nodes to return to a first consensus mode;
or instruct, when not receiving consistency confirmations
of all the nodes within a pre-determined time, all the
nodes to continue switching to the second consensus
mode.
[0095] The consistency confirmation carries a digital
signature of the node and is sent when the node is at a
preparation stage of switching to the second consensus
mode. The node determines, before sending, that a hash
value of the message persistently stored by the node is
consistent with a hash value of a message persistently
stored by a node in the distributed system.
[0096] In an embodiment, the switching unit 3703 is
further configured to trigger, when nodes reaching a con-
sensus do not receive, within a pre-determined time, a
data confirmation from a node not reaching the consen-
sus or the nodes in the distributed system do not receive,

within a pre-determined time, a data confirmation sent
by another node, the nodes in the distributed system to
continue switching to the second consensus mode.
[0097] The data confirmation carries a digital signature
of a corresponding node and is sent by the node 200 at
a preparation stage of switching to the second consensus
mode. The node 200, determines, before sending, that
a hash value of the message persistently stored by the
node 200 is consistent with a hash value of a message
persistently stored by a node in the distributed system
(that is, a node in the distributed system other than the
node 200).
[0098] For the distributed system provided in this em-
bodiment of the present disclosure, the nodes reach a
consensus on the message from the client in the first
consensus mode. The first consensus mode can ensure
consensus reaching efficiency of the nodes. Certainly,
that the nodes in the distributed system reach a consen-
sus on the message from the client in the second con-
sensus mode by default is not excluded from this em-
bodiment of the present disclosure.
[0099] An implementation of reaching the consensus
in the first consensus mode is described. FIG. 5 is an
optional schematic flowchart of reaching a consensus by
nodes in a distributed system in a first consensus mode
and detecting a faulty node and a malicious node accord-
ing to an embodiment of the present disclosure. Descrip-
tions are provided with reference to step 101 to step 108.
[0100] Step 101: A plurality of nodes in the distributed
system performs a voting operation when a new consen-
sus cycle in a first consensus mode starts, to determine
whether the nodes are in a leader node state or a follower
node state.
[0101] In an embodiment, the nodes in the distributed
system include three types (also referred to as states):
a competitive node, a leader node, and a follower node.
Each node in the distributed system enables a timer.
When the new consensus cycle used for reaching a con-
sensus reaches, each node is a competitive node. Each
competitive node attempts to convert into a leader node
(where one distributed system has only one valid leader
node) through the voting operation, and a competitive
node not becoming the leader node converts into a fol-
lower node.
[0102] When the new consensus cycle starts, each
competitive node detects whether heartbeat information
sent by another node is received. If no heartbeat infor-
mation is received, it indicates that no leader node is
generated within the current consensus cycle, and the
competitive node sends a voting request to other nodes.
The voting request carries a digital signature of the send-
ing node. After successfully verifying the digital signature
in the voting request, a receiving node determines relia-
bility of the voting request, that is, sends a voting ac-
knowledgement to the sending node. When a node re-
ceives voting acknowledgements from a sufficient quan-
tity (where a pre-determined quantity may be half a quan-
tity of the nodes) of other nodes, the node converts into

17 18

EP 3 605 947 A1

12

5

10

15

20

25

30

35

40

45

50

55

the leader node, and periodically sends heartbeat infor-
mation to the other nodes. A competitive node receiving
the heartbeat information converts into the follower node.
When no node receives the sufficient quantity of voting
acknowledgements within a consensus cycle, a new con-
sensus cycle starts to continue the voting operation until
the leader node and the follower nodes are determined.
[0103] Using a RAFT algorithm as an example of the
first consensus mode, FIG. 4 is an optional schematic
diagram of performing a voting operation by nodes in a
first consensus mode to determine a leader node and
follower nodes according to an embodiment of the
present disclosure.
[0104] In a distributed system, at any time point, any
node is in one of the following three states: a leader node,
a follower node, and a competitive node. In most time of
normal running of the distributed system, the distributed
system includes one leader node, and other nodes are
all follower nodes. The leader node receives a message
of a client.
[0105] Working time of the distributed system is divided
into consecutive consensus cycles which are also re-
ferred to as terms herein. Each term may be of any du-
ration, and the terms are numbered by using consecutive
integers. The leader node is first voted in each term. At
a voting stage, a plurality of competitive nodes contends
for the leader node. Once a node becomes the leader
node, other competitive nodes convert into follower
nodes. In an embodiment, the node becoming the leader
node serves as the leader node all the time within the
term. If the leader node is faulty, the other nodes perform
a voting operation in a new term.
[0106] There cannot be a plurality of leader nodes with-
in any term (unless a malicious node disguises as the
leader node). Each node maintains a count of a current
term, and communication between nodes each time in-
cludes the count of the term. When each node detects
that a term count maintained by the node is less than a
term count maintained by another node, the node up-
dates the term count of the node to be a maximum value
that is detected.
[0107] When a leader node and a competitive node in
a previous consensus cycle find out that their term counts
are less than a term count of another node, the leader
node and the competitive node immediately convert into
follower nodes, to ensure that there is only one leader
node within each term, for example.
[0108] The leader node voting operation is triggered
by using a heartbeat mechanism in the RAFT algorithm.
When the distributed system is started, all nodes are in-
itialized into a follower node state to set a term to 0, and
enable a timer. After the timer expires, a follower node
converts into a competitive node. Once the follower node
converts into the competitive node, the follower node per-
forms the following operations:

Step 1011: Increase a term count of the node.

Step 1012: Enable a new timer.

Step 1013: Send a voting request (Request Vote)
Remote Procedure Call (RPC) Protocol message to
other nodes, and wait for the other nodes to reply a
voting acknowledgement.

[0109] If receiving voting acknowledgements from
most nodes before the timer expires, the node converts
into a leader node. If an Append Entries heartbeat RPC
message whose appended content is null and that is sent
by another node is received, it indicates that the another
node has been selected as the leader node, and the node
converts into a follower node. If none of the foregoing
two types of information is received when the timer ex-
pires, a new voting operation is performed.
[0110] After the node receives votes from most nodes
to become the leader node, the node immediately sends
an Append Entries heartbeat RPC message to all nodes.
After receiving the Append Entries heartbeat RPC mes-
sage, the competitive node converts into a follower node,
and the voting operation ends.
[0111] Step 102: The client adds a digital signature to
a message, and sends the message carrying the digital
signature to a leader node.
[0112] The client encrypts a digest of the message by
using a private key of the client (where any digest algo-
rithm may be used to extract the digest from the message
in this embodiment of the present disclosure), to form the
digital signature.
[0113] Step 103: After successfully verifying the digital
signature of the message, the leader node adds a digital
signature of the leader node to the message, and sends
the message to follower nodes.
[0114] The leader node decrypts the digital signature
by using a public key to obtain the digest, and compares
the digest with a digest obtained by using a digest algo-
rithm (which is consistent with the digest algorithm used
by the client). If the digests are consistent, it indicates
that a source of the message is reliable. The leader node
encrypts the digest of the message by using a private
key of the leader node to form the digital signature of the
leader node, and adds the digital signature of the leader
node to the message to send the message to each fol-
lower node. A digital signature of the client may be or
may not be carried in the message. If comparing that the
digests are inconsistent, the leader node may discard
the message and requests the client to retransmit the
message.
[0115] Step 104: After receiving the message sent by
the leader node, the follower node verifies the digital sig-
nature of the received message, sends a reception ac-
knowledgement notification to the leader node after the
verification succeeds, and sends a result to the client.
[0116] The follower node decrypts the digital signature
of the received message by using the public key to obtain
the digest, and compares the digest with a digest ob-
tained by using a digest algorithm (which is consistent

19 20

EP 3 605 947 A1

13

5

10

15

20

25

30

35

40

45

50

55

with the digest algorithm used by the leader node). If the
digests are consistent, it indicates that a source of the
message is reliable. The follower node encrypts a digest
of the reception acknowledgement notification by using
a private key of the follower node to form a digital signa-
ture of the follower node, and returns the reception ac-
knowledgement notification to the leader node.
[0117] The result sent by the follower node to the client
includes two cases:

(1) Within a current consensus cycle, if the follower
node receives the message sent by the leader node
for the first time, the result sent to the client includes:
a sequence number of the received message; a
uniqueness field of the message (a field in the mes-
sage, which can be distinguished from a field of an-
other message); and a digital signature of the follow-
er node for the result. The digital signature is ob-
tained by encrypting a digest of the result by using
the private key of the follower node.

(2) Within a current consensus cycle, if the follower
node receives the message sent by the leader node
not for the first time, the result sent to the client in-
cludes a uniqueness field of the message (a field in
the message, which can be distinguished from a field
of another message) and a digital signature of the
follower node for the result. The digital signature is
obtained by encrypting a digest of the result by using
the private key of the follower node.

[0118] Step 105: The leader node verifies a digital sig-
nature carried in the received reception acknowledge-
ment notification, persistently stores the message after
continuously receiving reception acknowledgement no-
tifications sent by a pre-determined quantity of follower
nodes, and sends a message storage notification to the
follower nodes.
[0119] The message storage notification carries a dig-
ital signature of the leader node for the message storage
notification, and the digital signature is obtained by en-
crypting a digest of the message storage notification by
using the private key of the leader node.
[0120] Persistent storage means that the leader node
stores the message in a non-volatile manner. For exam-
ple, in a block chain system, a node (the leader node)
receiving a transaction record committed by the client
stores the transaction record in a new block of a block
chain.
[0121] Step 106: The follower node receives the mes-
sage storage notification, persistently stores the mes-
sage locally after successfully verifying a carried digital
signature, and sends a message storage acknowledge-
ment carrying a digital signature to the leader node.
[0122] The follower node decrypts the digital signature
of the received message storage notification by using the
public key to obtain the digest, and compares the digest
with a digest obtained by using a digest algorithm (which

is consistent with a digest algorithm used by the leader
node). If the digests are consistent, it indicates that a
source of the message storage notification is reliable.
The follower node encrypts a digest of the message stor-
age acknowledgement by using the private key of the
follower node to form the digital signature of the follower
node, and returns the message storage acknowledge-
ment carrying the digital signature to the leader node.
[0123] Step 107: The leader node verifies a digital sig-
nature of the received message storage acknowledge-
ment, and sends the message storage acknowledge-
ment to the client if receiving message storage acknowl-
edgements of follower nodes whose quantity exceeds
half the quantity of the nodes and successfully verifying
digital signatures.
[0124] The message storage acknowledgement sent
by the leader node to the client carries the digital signa-
ture of the leader node that is used by the client for ver-
ifying reliability of a source of the message storage ac-
knowledgement.
[0125] Step 108: The client detects an abnormal node
according to the result returned by the follower node
when the follower node receives the message: determine
whether the leader node is a malicious node, and deter-
mine whether there is a faulty node in the follower nodes.
[0126] In an embodiment, after successfully verifying
the digital signature of the result returned by each follower
node (where the result is sent by each follower node after
the follower node receives the message sent by the lead-
er node), the client compares a uniqueness field included
in the received result with a uniqueness field of the sent
message; determines, if the uniqueness fields are not
consistent, that a follower node sending the inconsistent
uniqueness field is an erroneous node; and determines
that a follower node not returning a result is a faulty node.
[0127] In an embodiment, when the leader node is a
leader node newly generated within a new consensus
cycle, and when the follower node receives the message
sent by the leader node, the result sent by the follower
node to the client further includes a sequence number of
the received message in addition to the uniqueness field
and the digital signature, so that the client can compare
the sequence number carried in the received result with
a sequence number of the sent message. When a quan-
tity of follower nodes sending inconsistent sequence
numbers exceeds a quantity threshold, it indicates that
the newly generated leader node sends a forged mes-
sage to the follower nodes. Therefore, it is determined
that the leader node is a malicious node.
[0128] It may be learned from the foregoing steps that
in the first consensus mode:

(1) Communication reliability is ensured by using the
digital signature:
Both parties in any communication use digital signa-
tures. That is, a sender adds a digital signature of a
message when sending the message, for example,
encrypting a digest of the message by using a private

21 22

EP 3 605 947 A1

14

5

10

15

20

25

30

35

40

45

50

55

key of an asymmetrical encryption algorithm of the
sender, to form a digital signature of the sender. A
receiver verifies the digital signature to ensure reli-
ability of the message, that is, decrypts the signature
of the message by using a public key of the asym-
metrical encryption algorithm (where it is ensured
that the receiver and the sender use the same asym-
metrical encryption algorithm, and therefore the re-
ceiver pre-learns of the public key), and compares
a digest obtained through decryption with the digest
extracted from the message. If the digests are con-
sistent, it indicates that the digital signature is suc-
cessfully verified, and the message sent by the send-
er is reliable.

(2) The follower node directly returns the result to
the client when receiving the message sent by the
leader node, and adds information such as the
uniqueness field, the sequence number of the mes-
sage, and the digital signature to the result, so that
the client can directly determine consensus reaching
of the follower nodes according to the result returned
by the follower node, thereby easily detecting the
abnormal node.

[0129] When the abnormal node is detected in the first
consensus mode, because the first consensus mode is
applicable to ensure consensus efficiency of the node
but has a limitation on abnormal fault-tolerant perform-
ance of the node, the embodiments of the present dis-
closure provide a solution of enabling a distributed sys-
tem to switch to a second consensus mode with better
fault-tolerant performance when there is an abnormal
node in the distributed system.
[0130] FIG. 6 is an optional schematic flowchart of
switching between a first consensus mode and a second
consensus mode by a distributed system according to
an embodiment of the present disclosure. Descriptions
are provided with reference to step 109 to step 112.
[0131] Step 109: A client triggers, when determining
that there is an abnormal node in the distributed system,
nodes in the distributed system to switch to the second
consensus mode.
[0132] When a leader node is a malicious node, or
there is a faulty node in follower nodes, or there is an
abnormal node in follower nodes, the client broadcasts,
to the nodes in the distributed system, a notification of
switching to the second consensus mode.
[0133] Step 110: A node in the distributed system
sends a hash value and a digital signature of a message
persistently stored by the corresponding node to other
nodes at a preparation stage of switching to the second
consensus mode.
[0134] Using a node 200 as an example, the node 200
sends a hash value and a digital signature of a message
persistently stored by the node 200 to nodes in the dis-
tributed system other than the node 200 at the prepara-
tion stage of switching to the second consensus mode.

[0135] Step 111: A receiving node of a message re-
ceives hash values and digital signatures that are sent
by all other nodes (that is, all nodes other than the re-
ceiving node) in the distributed system; compares, after
successfully verifying digital signatures of the hash val-
ues, the hash values with a hash value of the message
persistently stored by the receiving node; and sends a
consistency confirmation to the client if the hash values
are all consistent.
[0136] For example, a node 1 receiving a notification
in the distributed system sends (for example, broad-
casts), to nodes 2-N (where N is a quantity of nodes in
the distributed system) at the preparation stage of switch-
ing to the second consensus mode, a hash value and a
digital signature of a message persistently stored in the
node. In addition, the node 1 receives hash values sent
by the nodes 2-N. The hash values carry digital signa-
tures of corresponding nodes. After successfully verify-
ing the digital signatures, the node 1 compares the hash
values sent by the nodes 2-N with the hash value of the
message persistently stored by the node 1, and sends a
consistency confirmation to the client if all the hash values
are consistent.
[0137] For the nodes 2-N, processing after receiving
hash values is similar to that of the node 1, and details
are not described herein again.
[0138] Step 112: The client detects whether consist-
ency confirmations of all the nodes are received; and if
yes, instructs the nodes in the distributed system to con-
tinue to switch to the first consensus mode; or if no, in-
structs the nodes in the distributed system to continue
switching to the second consensus mode.
[0139] If the client receives the consistency confirma-
tions sent by all the nodes in the distributed system, it
indicates that detection of the abnormal node is caused
by network fluctuation or discarding of a response mes-
sage, and there is no abnormal node in the distributed
system. Therefore, the nodes re-switch to the first con-
sensus mode, to ensure consensus reaching efficiency
of the nodes.
[0140] If the client does not receive, within a pre-de-
termined time, the consistency confirmations sent by all
the nodes in the distributed system, it indicates that the
abnormal node exists in the distributed system, and the
client instructs the nodes in the distributed system to con-
tinue switching to the second consensus mode.
[0141] FIG. 7 is an optional schematic flowchart of
switching between a first consensus mode and a second
consensus mode by a distributed system according to
an embodiment of the present disclosure. The following
steps are included:
Step 113: A client triggers, when determining that there
is an abnormal node in the distributed system, nodes in
the distributed system to switch to the second consensus
mode.
[0142] When a leader node is a malicious node, or
there is a faulty node in follower nodes, or there is an
abnormal node in follower nodes, the client broadcasts,

23 24

EP 3 605 947 A1

15

5

10

15

20

25

30

35

40

45

50

55

to the nodes in the distributed system, a notification of
switching to the second consensus mode.
[0143] Step 114: A node in the distributed system
sends a hash value and a digital signature of a message
persistently stored by the corresponding node to other
nodes at a preparation stage of switching to the second
consensus mode.
[0144] Step 115: A receiving node of the message re-
ceives a hash value and a digital signature that are sent
by another node in the distributed system; compares,
after successfully verifying a digital signature of the hash
value, the hash value with a hash value of the message
persistently stored by the receiving node; and sends a
data confirmation to a sending node of the message if
the hash values are consistent.
[0145] For example, a node 1 receiving a notification
in the distributed system sends (for example, broad-
casts), to nodes 2-N (where N is a quantity of nodes in
the distributed system) at the preparation stage of switch-
ing to the second consensus mode, a hash value and a
digital signature of a message persistently stored in the
node. In addition, the node 1 receives hash values sent
by the nodes 2-N. The hash values carry digital signa-
tures of corresponding nodes. After successfully verify-
ing the digital signatures, the node 1 compares the hash
values sent by the nodes 2-N with the hash value of the
message persistently stored by the node 1, and sends a
data confirmation to each of the node 2 to the node N if
all the hash values are consistent.
[0146] For the nodes 2-N, processing after receiving
hash values is similar to that of the node 1, and details
are not described herein again.
[0147] Step 116: The client triggers, according to the
data confirmation sent by each node, the nodes in the
distributed system to return to the first consensus mode
or continue switching to the second consensus mode.
[0148] For each node in the distributed system, the
node broadcasts the hash value of the message persist-
ently stored by the node and the digital signature of the
sending node to other nodes. For the receiving node of
the hash value, after verifying the digital signature of the
received hash value, the receiving node compares the
received hash value with a hash value of a message
stored by the receiving node, and sends a data confir-
mation to a sending node of the corresponding hash val-
ue when the hash values are consistent. The data con-
firmation indicates that messages stored by the two
nodes are consistent.
[0149] Two cases are involved herein:
Case 1: For a receiving node of a data confirmation, if
receiving, within the predetermined time, data confirma-
tions sent by all other nodes (nodes other than the re-
ceiving node), the receiving node may send a data con-
firmation to the client. The client learns, according to the
data confirmation, that messages stored by the nodes
are consistent, and it is unnecessary to continue switch-
ing to the second consensus mode. Therefore, the client
may send, to each node in the distributed system, a no-

tification of returning to the first consensus mode, and a
process of switching to the second consensus mode
ends.
[0150] For example, the node 1 sends a hash value to
the node 2 to the node N, and the hash value carries a
digital signature of the node 1. After the node 2 to the
node N-1 successfully verifies the digital signature of the
node 1, using the node 2 as an example, the node 2
compares a hash value (where for a node in a block chain
system, the hash value may be a hash value of a latest
block in a block chain) of a message persistently stored
by the node 2 with the hash value sent by the node 1,
and sends a data confirmation to the node 1 if the hash
values are consistent. Processing performed by the node
3 to the node N-1 is similar to that performed by the node
2.
[0151] Assuming that the node 1 receives data confir-
mations of the node 2 to the node N-1 but does not receive
a data confirmation of the node N, the client does not
receive a data confirmation of the node 1 within the pre-
determined time. Therefore, the client considers that data
of the node 1 is not consistent with that of all other nodes,
and instructs the node 1 to the node N to continue the
operation of switching to the second consensus mode.
[0152] Case 2: When no node receives a data confir-
mation of another node within the predetermined time,
or when the client does not receive a data confirmation
of another node because nodes reaching a consensus
do not receive, within the pre-determined time, a data
confirmation of a node not reaching the consensus, the
client instructs the nodes in the distributed system to con-
tinue switching to the second consensus mode.
[0153] For example, the node 1 sends a hash value to
the node 2 to the node N, and the hash value carries a
digital signature of the node 1. After the node 2 to the
node N-1 successfully verifies the digital signature of the
node 1, using the node 2 as an example, the node 2
compares a hash value (where for a node in a block chain
system, the hash value may be a hash value of a latest
block in a block chain) of a message persistently stored
by the node 2 with the hash value sent by the node 1,
and sends a data confirmation to the node 1 if the hash
values are consistent. Processing performed by the node
3 to the node N-1 is similar to that performed by the node
2.
[0154] Assuming that the node 1 receives data confir-
mations of the node 2 to the node N-1 but does not receive
a data confirmation of the node N within the pre-deter-
mined time, the node 1 sends, to the client, a notification
that the node 1 does not receive data confirmations of
all other nodes within the pre-determined time, and the
client instructs the node 1 to the node N to continue the
operation of switching to the second consensus mode.
[0155] For another example, the node 1 sends a hash
value to the node 2 to the node N, and the hash value
carries a digital signature of the node 1. After the node
2 to the node N-1 successfully verifies the digital signa-
ture of the node 1, using the node 2 as an example, the

25 26

EP 3 605 947 A1

16

5

10

15

20

25

30

35

40

45

50

55

node 2 compares a hash value (where for a node in a
block chain system, the hash value may be a hash value
of a latest block in a block chain) of a message persist-
ently stored by the node 2 with the hash value sent by
the node 1, and sends a data confirmation to the node 1
if the hash values are consistent. Processing performed
by the node 3 to the node N-1 is similar to that performed
by the node 2.
[0156] Assuming that the node 1 receives data confir-
mations of the node 2 to the node N-1 but does not receive
a data confirmation of the node N within the pre-deter-
mined time, the node 1 sends, to the client, a notification
that the node 1 does not receive data confirmations of
all other nodes (that is, nodes in the distributed system
other than the node 1), and the client instructs the node
1 to the node N to continue the operation of switching to
the second consensus mode.
[0157] A manner in which the nodes in the distributed
system switch to the second consensus mode and then
switch from the second consensus mode back to the first
consensus mode continues to be described. For the
switching from the second consensus mode back to the
first consensus mode, there are the following several
manners:
Manner 1: The leader node triggers, when a counted
quantity of times that a consensus is reached exceeds a
consensus quantity-of-times threshold of the leader
node, the follower nodes to switch back to the first con-
sensus mode. The leader node and the follower nodes
remain in the node states (that is, the leader node state
or the follower node state remains unchanged) in the
second consensus mode when switching to the first con-
sensus mode.
[0158] When the distributed system is in the second
consensus mode, for the leader node (where it may be
understood that the leader node herein is specific to a
consensus cycle) in the distributed system, if the leader
node determines, through counting in the second con-
sensus mode, that the quantity of times that a consensus
is reached with the follower nodes on the received mes-
sage exceeds the consensus quantity-of-times threshold
(for example, M times, where M is set according to con-
sensus precision of the nodes in the distributed system,
generally, a higher precision requirement indicates a
larger pre-determined quantity of times, and there is a
positively correlated relationship between the precision
requirement and the pre-determined quantity of times)
of the leader node, it indicates that the leader node and
the follower nodes have reached relatively desirable con-
sensuses on continuous messages from the client. To
further improve the consensus reaching efficiency of the
nodes in the distributed system, a notification of switching
to the first consensus mode may be sent to the follower
nodes.
[0159] For the follower node in the distributed system,
after receiving the notification of switching to the first con-
sensus mode that is sent by the leader node, the follower
node sends a switch acknowledgement to the leader

node (for acknowledging that the leader node can con-
tinue remaining in the leader node state when switching
to the first consensus mode). The leader node and the
follower node remain in the current node states and
switch to the first consensus mode. In this way, a mali-
cious node can be prevented from being the leader node
in the first consensus mode, thereby ensuring the con-
sensus efficiency.
[0160] It may be understood that the foregoing con-
sensus node quantity threshold may be a quantity of all
follower nodes in the distributed system or a minimum
value of a quantity of follower nodes used reach the con-
sensus in the distributed system in the first consensus
mode (that is, a minimum value of a consensus node
quantity used by fault-tolerant performance of the first
consensus mode, where after the threshold is less than
the minimum value, reliability of a reached consensus in
the first consensus mode cannot be ensured).
[0161] Similarly, the foregoing consensus node pro-
portion threshold may correspond to the quantity, that is,
100%, of all follower nodes in the distributed system or
the minimum value, for example, 51%, of the quantity of
follower nodes used to reach the consensus in the dis-
tributed system in the first consensus mode (that is, the
minimum value of a consensus node quantity used by
the fault-tolerant performance of the first consensus
mode, where after the threshold is less than the minimum
value, the reliability of the reached consensus in the first
consensus mode cannot be ensured).
[0162] For example, the distributed system is in a sec-
ond consensus mechanism, assuming that the node 1 is
the leader node and the node 2 to the node N are follower
nodes, and each node counts consensuses reached on
messages from the client, for the node 1, if the node 1
reaches consensuses with the node 2 to the node N on
M (the consensus quantity-of-times threshold of the lead-
er node) latest messages from the client, it indicates that
the nodes have reached a relatively good consensus with
each other. The node 1 broadcasts, to the node 2 to the
node N, the notification of switching to the first consensus
mode, and the node 2 to the node N send a switch ac-
knowledgement to the node 1 to acknowledge that the
node 1 is still the leader node in the first consensus mode
and the node 2 to the node N continue serving as the
follower nodes. Even though there is a malicious node
in the node 2 to the node N, a message from the client
cannot be forged, thereby ensuring the consensus reach-
ing efficiency of the nodes.
[0163] Manner 2: The leader node determines, through
counting, that a quantity of times that a consensus is
reached exceeds a consensus quantity-of-times thresh-
old of the leader node, and triggers the follower nodes
to switch back to the first consensus mode. When deter-
mining, through counting, that a consensus reaching
quantity-of-times threshold exceeds a consensus quan-
tity-of-times threshold of the follower node, the follower
node determines to switch back to the first consensus
mode. The leader node and the follower nodes remain

27 28

EP 3 605 947 A1

17

5

10

15

20

25

30

35

40

45

50

55

in the node states in the second consensus mode (that
is, the leader node state or the follower node state re-
mains unchanged) when switching to the first consensus
mode.
[0164] When the distributed system is in the second
consensus mode, the leader node counts a quantity of
times that a consensus is reached with other nodes (in-
cluding the leader node and other follower nodes) on
messages from the client in the second consensus mode;
and if the quantity of times that a consensus is reached
exceeds a consensus quantity-of-times threshold of the
follower node (which may be less than or equal to the
consensus quantity-of-times threshold of the leader
node, and for example, may be M/2), sends, to the leader
node, a notification of agreeing that the leader node con-
tinues serving as the leader node in the first consensus
mode and the follower nodes in the second consensus
mode continue serving as the follower nodes when
switching to the first consensus mode, to complete a vot-
ing operation for switching to the first consensus mode
and continue reaching a consensus on a message from
the client in the first consensus mode. In this way, a ma-
licious node can be prevented from becoming the leader
node in the first consensus mode, thereby ensuring the
consensus efficiency.
[0165] After the nodes in the distributed system switch
to the first consensus mode, if no abnormal node is de-
tected in the first consensus mode, the nodes continue
remaining in the first consensus mode, and the nodes
re-switch to the second consensus mode if a relatively
desirable consensus still cannot be reached (where for
example, a malicious node, an abnormal node, or an er-
roneous node can still be detected) after the nodes return
to the first consensus mode.
[0166] A pre-determined quantity/proportion herein
may be understood according to the foregoing descrip-
tions, and details are not described herein again.
[0167] For example, the leader node in the distributed
system may synchronously start timing based on a timer
after switching to the second consensus mode; and after
a timing time reaches a timing time threshold (for exam-
ple, 10 minutes), triggers the follower nodes in the dis-
tributed system to synchronously switch back to the first
consensus mode. A voting operation is performed in the
first consensus mode to determine a new leader node
and new follower nodes. If an abnormal node is still de-
tected after the switching to the first consensus mode,
the nodes switch back to the second consensus mode
again (where a manner of switching to the first consensus
mode may be understood according to the foregoing de-
scriptions). Therefore, the consensus reaching efficiency
of the distributed system is maximally improved when a
consensus is reached in the second consensus mode to
ensure the fault-tolerant performance of the distributed
system.
[0168] A pre-determined quantity/proportion herein
may be understood according to the foregoing descrip-
tions, and details are not described herein again.

[0169] For example, the distributed system is in a sec-
ond consensus mechanism. Assuming that the node 1
is the leader node and the node 2 to the node N are
follower nodes, and each node counts consensuses
reached on messages from the client. For the node 1, if
the node 1 reaches consensuses with the node 2 to the
node N on M (the consensus quantity-of-times threshold
of the leader node) latest messages from the client, it
indicates that the nodes have reached a relatively desir-
able consensus, and the node 1 broadcasts, to the node
2 to the node N, a notification of switching to the first
consensus mode. For the node 2 to the node N, using
the node 2 as an example, the node 2 counts a quantity
of times that a consensus is reached in the second con-
sensus mode; and if the quantity of times exceeds M/2,
sends a switch acknowledgement to the node 1 (for ac-
knowledging that the node 1 still serves as the leader
node when switching to the first consensus mode and
the node 2 serves as the follower node). Processing of
the node 3 to the node N is similar to that of the node 2,
and details are not described herein again.
[0170] When the node 1 receives a switch acknowl-
edgement sent by each of the node 2 to the node N, the
nodes switch to the first consensus mode, and the node
1 serves as the leader node and the node 2 to the node
N serve as follower nodes in the first consensus mode.
If the node 1 does not receive a switch acknowledgement
sent by each of the node 2 to the node N, the nodes
continue remaining in the second consensus mode, and
the node 1 continues sending, to the node 2 to the node
N at intervals of M/2 quantity of times of consensuses, a
notification of switching to the first consensus mode, until
switch acknowledgements of the node 2 to the node N
are all received.
[0171] An example in which a block chain system (for
example, a consortiumchain system maintained to open
to an individual person or entity) reaches a consensus
by using an improved RAFT (T-RAFT) algorithm in the
first consensus mode and by using a PBFT algorithm in
the second consensus mode is used below. It may be
understood that a Paxos may further be used in the first
consensus mode, and a BFT algorithm, a BFT-RAFT al-
gorithm, and the like may further be used in the second
consensus mode. Any algorithm such as the T-RAFT al-
gorithm that can achieve high consensus efficiency and
can be used for detecting a node fault or a Byzantine
node may be used in the first consensus mode, and any
algorithm that can implement Byzantine fault tolerance
may be used in the second consensus mode.
[0172] The RAFT algorithm provided in the related
technology resolves a problem of data consistency of a
plurality of nodes, but cannot implement the Byzantine
fault tolerance. However, the RAFT algorithm has rela-
tively high efficiency. The PBFT algorithm can implement
the Byzantine fault tolerance. However, a message
needs to be broadcast between nodes in the PBFT al-
gorithm, resulting in relatively low implementation effi-
ciency.

29 30

EP 3 605 947 A1

18

5

10

15

20

25

30

35

40

45

50

55

[0173] In a usage scenario in which a distributed net-
work is applied to a federal chain (a block chain open to
an individual person or entity), generally, there is no node
fault or Byzantine node problem in a block chain system
in most of time, and a consensus between nodes can be
efficiently reached by using the RAFT algorithm.
[0174] The RAFT algorithm provided in the related
technology implements consistency of a plurality of
nodes and has relatively high efficiency, but does not
implement the Byzantine fault tolerance between nodes,
and the PBFT algorithm can ensure the consistency be-
tween a plurality of nodes and implement the Byzantine
fault tolerance between nodes. Therefore, in the embod-
iments of the present disclosure, the PBFT algorithm can
be automatically used to implement the consensus be-
tween the nodes, provided that there is a node fault or a
Byzantine problem. When all the nodes reach the con-
sensus, that is, there is no Byzantine node, the RAFT
algorithm having relatively high consensus efficiency is
then automatically switched to, to implement the consen-
sus between the nodes.
[0175] FIG. 8 is an optional schematic flowchart of
reaching a consensus by a block chain system by using
a RAFT algorithm according to an embodiment of the
present disclosure. After a client sends messages to a
leader node, the leader node sorts the received messag-
es, and delivers the messages to follower nodes in the
sorting order. Other follower nodes store the messages
to logs in an order organized by the leader node, and
each return a RPC result to the leader node. Then, after
storing the messages in logs to a local disk, the leader
node sends a Commit to each follower node. Each fol-
lower node stores the logs in the messages to a local
disk of the follower node, and consistency synchroniza-
tion of the message is completed. This results in relatively
high efficiency but cannot resolve the problem of the Byz-
antine node.
[0176] FIG. 9 is an optional schematic flowchart of
reaching a consensus by a block chain system by using
a PBFT algorithm according to an embodiment of the
present disclosure. A message needs to be actually con-
firmed after being broadcast twice. Due to dependency
on broadcasting, a quantity of messages sent in a con-
sensus reaching process is on the square class of a quan-
tity of nodes. Therefore, the consensus reaching efficien-
cy is relatively low, but the Byzantine fault tolerance be-
tween the nodes can be implemented.
[0177] The RAFT algorithm can implement consisten-
cy and has high efficiency, but cannot implement the Byz-
antine fault tolerance, and therefore is not adopted in
scenarios of many block chain systems. The PBFT algo-
rithm that has lower efficiency but can implement the Byz-
antine fault tolerance can be adopted. Features, to be
specific, a network condition is desirable, there is no Byz-
antine node in most cases, a consensus between a plu-
rality of nodes is to be reached, in an application scenario
of a federal chain is fully used in the embodiments of the
present disclosure. In combination with the advantages

of high efficiency of the RAFT algorithm and the fault
tolerance of the PBFT algorithm, an adaptive consensus
algorithm that is efficient and that can implement the Byz-
antine fault tolerance is provided.
[0178] In a block chain system applied to a federal
chain, a quantity of nodes participating in the consensus
is limited, and there is no Byzantine node in the partici-
pating nodes in most cases, provided that data consist-
ency is ensured. In this case, the T-RAFT algorithm hav-
ing higher efficiency is used. When there is an exception,
for example, when there is a Byzantine fault tolerance
requirement between nodes or there is a node fault, the
exception can be detected in time and the PBFT algo-
rithm that can support the Byzantine fault tolerance is
automatically switched to. When all nodes reach a con-
sensus in the PBFT algorithm, the T-RAFT algorithm hav-
ing higher efficiency is then automatically switched to. In
this way, in most cases, that is, when the network is de-
sirable and there is no Byzantine node, a requirement of
the federal chain on a efficient consensus can be satis-
fied, and correction and fault tolerance can be implement-
ed in real time when there is an abnormal node.
[0179] To implement automatic switching between
consensus algorithms, FIG. 10 is a diagram of an oper-
ating status implementing an adaptive consensus algo-
rithm according to an embodiment of the present disclo-
sure. The block chain system reaches a consensus in
the T-RAFT algorithm by default. When it is detected by
using the T-RAFT algorithm that a quantity of nodes
whose data is inconsistent is less than a threshold (a
quantity of all nodes or a pre-determined proportion of
nodes, which is set according to fault tolerant perform-
ance of the T-RAFT algorithm), the block chain system
enters a data (message) consistence confirmation state:
if it is confirmed that data of the nodes is consistent, the
T-RAFT algorithm is still used; or if data of nodes is in-
consistent, the PBFT algorithm is switched to, to imple-
ment the consensus between the nodes. When it is de-
tected during operation of the PBFT algorithm, that data
of all the nodes is consistent, the T-RAFT algorithm is
then switched back to.
[0180] The T-RAFT algorithm is improvement of the
RAFT algorithm, and can prevent a node from tampering,
replaying, or forging a message and find a malicious node
in time. FIG. 11 is a schematic diagram of implementation
of a T-RAFT algorithm consensus according to an em-
bodiment of the present disclosure. Compared with the
RAFT algorithm, improvement is mainly related to the
following several aspects:

1. A message sent by a client carries a digital signa-
ture of a message entity for the message. In this way,
the message can be prevented from being modified
in a transmission process. In addition, the message
carries a uniqueness field, to prevent the message
from being replayed after being intercepted.

2. A message transmitted between nodes carries a

31 32

EP 3 605 947 A1

19

5

10

15

20

25

30

35

40

45

50

55

digital signature of a sender, and a receiving node
of the message verifies correctness of the digital sig-
nature. In this way, a new node can be prevented
from being forged to participate in a voting operation
or a node is prevented from disguised as a leader
node to send a fake message to follower nodes.

3. After the client requests the leader node, and after
all follower nodes receive a message sent by the
leader node in a process of synchronizing the mes-
sage to the follower nodes by the leader node in a
T-RAFT consensus mode, the follower nodes each
return a result to the client in addition to completing
an original RAFT message procedure. The returned
result carries a uniqueness field of the message and
a digital signature of the follower node. In this way,
the client can determine data (message) consistency
of the nodes by comparing whether results returned
by all the nodes are consistent. If the results received
by the client are not consistent, or the client does not
receive results of all the nodes within a pre-deter-
mined time, it is determined that there is a Byzantine
node or there is a faulty node, and a data consistency
confirmation procedure is triggered.

[0181] The data consistency confirmation process
happens at a middle stage of consensus algorithm
switching, and a data recovery process is actually a con-
sensus process in which the minority is subordinate to
the majority. The consensus process is performed
through message broadcasting. Specifically, the node
uses the T-RAFT algorithm by default. When there is an
erroneous node or a Byzantine node, the client can find
out data inconsistency by comparing the results returned
by the nodes, to determine whether algorithm switching
is used.
[0182] For example, if a consensus mode of the PBFT
algorithm needs to be switched to, the client broadcasts,
to all the nodes, a notification of switching to the PBFT
algorithm. When the node receives the consensus algo-
rithm switching notification and is at a preparation stage,
the node broadcasts a data request acknowledgement
message to all other nodes. The data request acknowl-
edgement message carries a hash value of a block of a
latest consensus in a block chain of the node and a digital
signature of the node.
[0183] A node receiving the data request acknowl-
edgement message, which is referred to as a receiving
node herein, checks whether a hash value of a block of
a latest consensus in a block chain of the node is con-
sistent with the hash value carried in the data request
acknowledgement message, and verifies correctness of
the digital signature of the node. For the receiving node,
if the receiving node receives data request acknowledge-
ment messages of all other nodes, and these data re-
quest acknowledgement messages include correct sig-
natures and hash values consistent with the hash value
of the block of the latest consensus of the receiving node,

the receiving node replies a data consistency confirma-
tion to the client. The data consistency confirmation car-
ries a digital signature of the receiving node.
[0184] If receiving data consistency confirmations of
all the nodes, the client considers that data of block
chains maintained by the nodes is consistent and a data
consistency comparison failure before the algorithm
switching request is caused by network fluctuation or dis-
carding of a response message, and therefore re-switch-
es to the T-RAFT algorithm. For a specific procedure,
refer to the following message flowchart:
[0185] In an example, FIG. 12 is an optional schematic
flowchart of switching back to a T-RAFT algorithm at a
preparation stage of switching to a PBFT algorithm ac-
cording to an embodiment of the present disclosure. In
FIG. 12, nodes 1, 2, 3, and 4 all receive broadcast mes-
sages of data consistency confirmations from other
nodes, and confirm that hash values of blocks of latest
consensuses of the nodes are consistent. The nodes
each return a data consistency confirmation to the client,
and each return to a state of the T-RAFT algorithm. Even
though not receiving a notification of the client of re-
switching to the T-RAFT algorithm, the nodes also enter
a voting procedure of the T-RAFT algorithm after a time-
out time expires.
[0186] If the client does not receive data consistency
confirmations from all the nodes within a timeout time, or
consensus nodes (that is, hash values of latest blocks in
the block chain system are consistent) do not receive
broadcast messages of data consistency confirmations
from all other nodes, the client instructs all the nodes to
switch to the PBFT algorithm.
[0187] In addition, for any node, if not receiving broad-
cast messages of data consistency confirmations of all
other nodes, the node automatically enters a PBFT al-
gorithm state, and broadcasts a notification of switching
to the PBFT algorithm.
[0188] After a node receives at least f+1 new algorithm
broadcast messages (where f is a maximum value of a
quantity of erroneous nodes allowed in the block chain
system according to the PBFT algorithm), the node starts
initiating a voting, also referred to as a view change, of
a leader node in a new algorithm (PBFT), and enters a
consensus stage of the new PBFT algorithm after com-
pleting the voting.
[0189] FIG. 13 is an optional schematic flowchart of
switching from a T-RAFT algorithm consensus to a PBFT
algorithm consensus by a block chain system according
to an embodiment of the present disclosure. In the sche-
matic flowchart of a message, assuming that a node 4 is
faulty, when nodes 1, 2, and 3 receive an algorithm
switching notification of a client to be at a preparation
stage of switching to the PBFT algorithm, the nodes 1,
2, and 3 each broadcast a data request acknowledge-
ment message. The message carries a hash value of a
block of a latest consensus of the node. The node 4 is
faulty, and the nodes 1, 2, and 3 do not receive, within a
timeout time, a data consistency confirmation (a consist-

33 34

EP 3 605 947 A1

20

5

10

15

20

25

30

35

40

45

50

55

ency response) broadcast by the node 4, and therefore
do not send a data consistency confirmation to the client.
After the timeout, the nodes 1, 2, and 3 and the client all
broadcast a notification of switching to the PBFT algo-
rithm. A quantity of algorithm switching notifications that
are received by the nodes 1, 2, and 3 is greater than f+1.
A node first receiving f+1 algorithm switching notifications
first initiates a view change procedure. After the view
change is completed, a PBFT algorithm consensus mode
is entered.
[0190] In a PBFT consensus, once determining,
through counting, that data is consistent for consecutive
M (configurable) times, the leader node converts into a
T-RAFT competitive node, and triggers a T-RAFT voting
process. After receiving a voting request, other nodes
agree the competitive node to convert into the leader
node, provided that the other nodes also determine,
through counting, that a quantity of times of consecutive
consensuses is greater than M/2 or greater than a fixed
configured value T. When all follower nodes agree the
competitive node to convert into the leader node, a con-
sensus mode of the T-RAFT algorithm is entered, and
the quantity of times of consecutive consensuses of each
node is zeroed out. The competitive node recovers to an
original state immediately, that is, converts into the leader
node in the PBFT algorithm, provided that there is a fol-
lower node not agreeing the competitive node to convert
into the leader node, and continues executing the PBFT
algorithm. The quantity of times of consensuses counted
by each node continues being accumulated, and a T-
RAFT voting is triggered again until the quantity of times
is M+T. If the T-RAFT voting fails, a T-RAFT voting is
triggered next time at a time point M+2T. The rest can
be deduced by analogy, and a T-RAFT voting is triggered
at a time point M+x∗T until the leader node is successfully
voted. x is the quantity of times.
[0191] FIG. 14 is an optional schematic flowchart of
switching from a PBFT algorithm consensus mode to a
T-RAFT algorithm consensus mode by a block chain sys-
tem according to an embodiment of the present disclo-
sure. In a PBFT algorithm process, when the leader node,
that is, a node 1, determines, through counting, that a
quantity of times that data is continuously consistent
(consensuses) exceeds M times, the node 1 converts
into a T-RAFT competitive node state, and then initiates
a voting of the T-RAFT algorithm. After receiving a voting
request (request vote) message, nodes 2, 3, and 4 de-
termine whether a quantity of times that data is continu-
ously consistent that is greater than M/2 (or a fixed value
T) is also counted, and if yes, return a switch acknowl-
edgement for agreeing the competitive node to convert
into the leader node.
[0192] The competitive node receives the switch ac-
knowledgements of the nodes 2, 3, and 4, converts into
the leader node, and starts a T-RAFT algorithm consen-
sus stage. In a T-RAFT voting process, after receiving a
message of the client, the leader node (the node 1) in an
original PBFT consensus mode no longer sends a se-

quencing message, for example, a pre-preparation mes-
sage in the PBFT algorithm, and after the voting com-
pletes, attaches the message to an Append Entries RPC
in the T-RAFT algorithm to send the Append Entries RPC
to follower nodes.
[0193] Descriptions are further provided with reference
to a usage scenario in an actual application. FIG. 15 is
an optional schematic diagram of a scenario in which a
distributed system is applied to a federal chain system
according to an embodiment of the present disclosure.
The federal chain system is open to an individual person
or entity and includes a plurality of nodes. Each node
provide access for a third-party payment institution and
a bank service system (as a client), and receives trans-
action records committed by the third-party payment in-
stitution and the bank service system. After reaching a
consensus on a committed transaction record, the node
stores the transaction record in a latest block of a block
chain, so that the third-party payment institution and the
subscribed bank perform account reconciliation accord-
ing to corresponding service turnover.
[0194] The node reaches the consensus on the trans-
action record in the T-RAFT consensus mode by default,
and switches to a PBFT consensus mode when there is
an abnormal node to reach the consensus on the trans-
action record.
[0195] A third-party payment terminal of a user is
bound to a credit card account of the user in a bank.
When the user trades with a merchant offline or online,
the third-party payment terminal may transfer money
from the credit card account of the user to an account of
the merchant through pre-obtained pre-authorization of
the credit card account, to form a transaction record.
[0196] For this transaction, a service system of the
third-party payment institution commits a transaction
record (for example, including a payee, a payer, and a
payment amount, and carrying a digital signature of the
third-party payment client) to the accessed leader node
in the distributed system. After successfully verifying the
digital signature of the received transaction record, the
leader node synchronizes the transaction record to other
follower nodes (where the transaction record carries a
digital signature of the leader node). After successfully
verifying the digital signature of the transaction record,
the follower node returns a result (carrying a digital sig-
nature of the follower node and a uniqueness field, and
further carrying a sequence number of the transaction
record when the leader node is a newly voted leader
node) to the service system of the third-party payment
institution, and notifies the leader node that synchroni-
zation is completed. After confirming that each follower
node completes the synchronization, the leader node
stores the transaction record in a latest block of a block
chain and notifies the follower node. The follower node
performs the same operation, to persistently store the
transaction record.
[0197] For the foregoing consensus process for the
transaction record, if determining, according to the result

35 36

EP 3 605 947 A1

21

5

10

15

20

25

30

35

40

45

50

55

returned by the follower node, that the leader node is a
malicious node or the follower node is faulty, the client
triggers the federal chain system to switch to the PBFT
consensus mode to reach the consensus on the trans-
action record, to ensure that the transaction record can
be successfully stored in the block chain of each node;
and may switch back to the T-RAFT consensus mode
according to a consensus case, for example, that a rel-
atively good formula (where the leader node and other
nodes reach consensuses for consecutive M times) is
obtained, of the federal chain system on a transaction
record subsequently committed by the service system of
the third-party payment institution, to improve consensus
efficiency.
[0198] In conclusion, the embodiments of the present
disclosure have the following beneficial effects:

(1) Reliability of communication between the client
and the nodes and between nodes is ensured by
using digital signatures, to avoid message forging
and ensure reliability of communication inside the
distributed system.

(2) The follower node directly returns the result to
the client when receiving the message sent by the
leader node, and adds information such as the
uniqueness field, the sequence number of the mes-
sage, and the digital signature to the result, so that
the client can directly determine consensus reaching
of the follower nodes according to the result returned
by the follower node, thereby easily detecting the
abnormal node.

(3) When an abnormal node is detected, the default
first consensus mode with higher consensus effi-
ciency can be switched to the second consensus
mode with better fault-tolerant performance, to en-
sure that the consensus of the distributed system
can be successfully reached when an exception oc-
curs.

(4) Once a good consensus (for example, deter-
mined based on a quantity of times of consensuses)
is reached in the second consensus mode, the first
consensus mode is switched to again. This adaptive
consensus mode switching implements optimal
combination between the consensus efficiency and
the fault-tolerant performance. The technical effect
of high consensus efficiency is achieved in most time
when a running network status of the distributed net-
work is desirable, and normal processing of a service
function of the distributed system is ensured when
there is a faulty node or a Byzantine node.

[0199] A person skilled in the art may understand that
all or some of the steps in the foregoing method embod-
iments may be implemented by a program instructing
relevant hardware. The program may be stored in a com-

puter-readable storage medium. The program, when ex-
ecuted, performs the steps in the foregoing method em-
bodiments. The foregoing storage medium includes a
medium, such as a mobile storage communication status
processing apparatus, a random access memory (RAM),
a read-only memory (ROM), a magnetic disk, or a com-
pact disc, that can store program code.
[0200] Alternatively, when the integrated module in the
present disclosure is implemented in the form of a soft-
ware function module and sold or used as an independent
product, the integrated module may be stored in a com-
puter readable storage medium. According to such an
understanding, the technical solutions of the embodi-
ments of the present disclosure essentially, or the part
contributing to the related technology may be implement-
ed in a form of a software product. The computer software
product is stored in a storage medium, and includes sev-
eral instructions for instructing a computer communica-
tion status processing apparatus (which may be a per-
sonal computer, a server, a network communication sta-
tus processing apparatus, or the like) to perform all or
some of the steps of the methods described in the em-
bodiments of the present disclosure. The foregoing stor-
age medium includes various media, such as a mobile
storage communication status processing apparatus, a
RAM, a ROM, a magnetic disc, and a compact disc, that
can store program code.
[0201] The foregoing descriptions are merely specific
implementations of the present disclosure, but are not
intended to limit the protection scope of the present dis-
closure. Any variation or replacement readily figured out
by a person skilled in the art within the technical scope
disclosed in the present disclosure shall fall within the
protection scope of the present disclosure. Therefore,
the protection scope of the present disclosure shall be
subject to the protection scope of the claims.

Claims

1. A distributed system, comprising:

a client and a plurality of nodes,
the node being configured to determine, through
a voting operation when a new consensus cycle
in a first consensus mode starts, whether the
node is in a leader node state or a follower node
state;
the node being configured to verify, when the
node is in the leader node state, a digital signa-
ture of a message sent by the client, and send
the message to follower nodes;
the node being configured to: receive, when the
node is in the leader node state, reception ac-
knowledgement notifications of more than a pre-
determined quantity of follower nodes, persist-
ently store the message after verifying digital
signatures of the reception acknowledgement

37 38

EP 3 605 947 A1

22

5

10

15

20

25

30

35

40

45

50

55

notifications, and send a message storage no-
tification to the follower nodes;
the node further being configured to: return,
when the node is in the follower node state, a
result to the client when receiving a message
sent by a leader node, verify a digital signature
of the message received from the leader node,
and send a reception acknowledgement notifi-
cation to the leader node;
the node being configured to verify, when the
node is in the follower node state, a digital sig-
nature of the message storage notification re-
ceived from the leader node, and persistently
store the message received from the leader
node; and
the client being configured to determine an ab-
normal node in the distributed system according
to the result returned by the follower node when
the follower node receives the message.

2. The distributed system according to claim 1, wherein
the client is further configured to: compare a unique-
ness field comprised in the received result with a
uniqueness field of the sent message after verifying
a digital signature of the received result, determine
that a follower node corresponding to an inconsistent
uniqueness field is an erroneous node, and deter-
mine that a follower node not returning a result is a
faulty node.

3. The distributed system according to claim 1, wherein
the client is configured to compare a sequence
number carried in the received result with a se-
quence number of the sent message, and determine,
when a quantity of follower nodes sending inconsist-
ent sequence numbers exceeds an inconsistency
quantity threshold, that the leader node is a malicious
node.

4. The distributed system according to claim 1, wherein
the client is further configured to determine that the
leader node is a malicious node; or trigger, when
determining that there is a faulty node in the follower
nodes, the nodes in the distributed system to switch
to a second consensus mode.

5. The distributed system according to claim 4, wherein
the node is further configured to compare, at a prep-
aration stage of switching to the second consensus
mode, a hash value of the message persistently
stored by the node with a hash value of a message
persistently stored by a node in the distributed sys-
tem, and send a consistency confirmation to the cli-
ent when determining that the hash values are con-
sistent, wherein the consistency confirmation carries
a digital signature of the corresponding node; and
the client is further configured to instruct, when re-
ceiving consistency confirmations of all the nodes

within a pre-determined time, the nodes in the dis-
tributed system to return to the first consensus mode;
or instruct, when not receiving consistency confirma-
tions of all the nodes within a pre-determined time,
the nodes in the distributed system to continue
switching to the second consensus mode.

6. The distributed system according to claim 4, wherein
the node is further configured to compare, at a prep-
aration stage of switching to the second consensus
mode, a hash value of the message persistently
stored by the node with a hash value of a message
persistently stored by a node in the distributed sys-
tem, and send a data confirmation to a sending node
of the message when determining that the hash val-
ues are consistent, wherein the data confirmation
carries a digital signature of the corresponding node;
and
the client is further configured to trigger, when nodes
reaching a consensus do not receive, within a pre-
determined time, a data confirmation from a node
not reaching the consensus or the nodes in the dis-
tributed system do not receive a data confirmation
within a pre-determined time, the nodes in the dis-
tributed system to continue switching to the second
consensus mode.

7. The distributed system according to claim 4, wherein
the node is further configured to switch to the first
consensus mode with the follower node when the
node is in the leader node state and when a quantity
of times counted in the second consensus mode ex-
ceeds a consensus quantity-of-times threshold of
the leader node, wherein the counted quantity of
times is a count of forming consensuses with the
follower nodes on the received message.

8. The distributed system according to claim 7, wherein
the node is further configured to send, to the follower
nodes when the node is in the leader node state and
when the counted quantity of times exceeds the con-
sensus quantity-of-times threshold of the leader
node, a notification of switching to the first consensus
mode, and start to synchronously switch to the first
consensus mode with the follower nodes when re-
ceiving switch acknowledgements sent by all the fol-
lower nodes.

9. The distributed system according to claim 8, wherein
the node is further configured to receive, when the
node is in the follower node state, a notification of
switching to the first consensus mode, and send a
switch acknowledgement to the leader node when a
counted quantity of times that a consensus is
reached on the received message exceeds a con-
sensus quantity-of-times threshold of the follower
node.

39 40

EP 3 605 947 A1

23

5

10

15

20

25

30

35

40

45

50

55

10. The distributed system according to claim 1, wherein
the node is further configured to perform the voting
operation again when not receiving heartbeat infor-
mation of the leader node or when the leader node
is a malicious node, to determine whether the node
is in the leader node state or the follower node state.

11. The distributed system according to claim 1, wherein
the node is further configured to: send a voting re-
quest to the nodes in the distributed system when
the new consensus cycle starts and heartbeat infor-
mation of no node is received, convert into the leader
node state when receiving voting acknowledge-
ments returned by a pre-determined quantity of
nodes, and periodically send heartbeat information
to the nodes in the distributed system, wherein
the voting acknowledgement is sent by the nodes in
the distributed system, and a digital signature carried
in the voting request is verified before the voting ac-
knowledgement is sent; and
the node is further configured to convert into the fol-
lower node state when the new consensus cycle
starts and heartbeat information sent by a node in
the distributed system is received.

12. A message processing method, comprising:

performing, by a node in a distributed system, a
voting operation when a new consensus cycle
in a first consensus mode starts, to determine,
through the voting operation, whether the node
is in a leader node state or a follower node state;
and
performing, by the node, the following opera-
tions when the node is in the leader node state:

receiving a message of a client, verifying a
digital signature of the message, and send-
ing the message to follower nodes; and
receiving reception acknowledgement noti-
fications of more than a predetermined
quantity of follower nodes, persistently stor-
ing the message after verifying digital sig-
natures of the reception acknowledgement
messages, and sending a message storage
notification to the follower nodes,

results returned by the follower nodes when the
follower nodes receive the message being used
by the client for determining an abnormal node
in the distributed system.

13. The message processing method according to claim
12, further comprising:
performing, by the node, the following operations
when the node is in the follower node state:

receiving a message sent by a leader node, re-

turning a result to the client, and sending a re-
ception acknowledgement notification to the
leader node after verifying a digital signature of
the received message; and
persistently storing the received message after
verifying a digital signature of the received mes-
sage storage notification.

14. The message processing method according to claim
12, wherein
when the node is in the follower node state, the result
returned by the follower node to the client carries the
following information: a uniqueness field of the mes-
sage and a digital signature of the follower node; and
the result is used by the client to: verify the carried
digital signature, compare the uniqueness field com-
prised in the result with a uniqueness field of the sent
message, determine that a follower node corre-
sponding to an inconsistent uniqueness field is an
erroneous node, and determine that a follower node
not returning a corresponding result is a faulty node.

15. The message processing method according to claim
12, wherein
when the node is in the follower node state, the result
returned by the follower node carries a sequence
number of the message received by the follower
node; and
the result is used by the client to: compare the carried
sequence number with a sequence number of the
sent message, and determine, when a quantity of
follower nodes sending inconsistent sequence num-
bers exceeds an inconsistency quantity threshold,
that the leader node is a malicious node.

16. The message processing method according to claim
12, further comprising:
switching, by the node, to a second consensus mode
in response to trigger of the client when the client
determines that the leader node is a malicious node
or determines that there is a faulty node in the fol-
lower nodes.

17. The message processing method according to claim
16, further comprising:
performing, by the node, the following operations
when the node is at a preparation stage of switching
to the second consensus mode:

comparing a hash value of the message persist-
ently stored by the node with a hash value of a
message persistently stored by a node in the
distributed system, and sending a consistency
confirmation to the client when determining that
the hash values are consistent, wherein the con-
sistency confirmation carries a digital signature
of the corresponding node; and
continuing, by the node, to switch to the first con-

41 42

EP 3 605 947 A1

24

5

10

15

20

25

30

35

40

45

50

55

sensus mode in response to a notification of the
client when the client receives consistency con-
firmations of all nodes within a pre-determined
time; or
continuing, by the node, switching to the second
consensus mode in response to a specific noti-
fication of the client when the client does not
receive consistency confirmations of all nodes
within a pre-determined time.

18. The message processing method according to claim
16, further comprising:
performing, by the node, the following operations
when the node is at a preparation stage of switching
to the second consensus mode:

comparing a hash value of the message persist-
ently stored by the node with a hash value of a
message persistently stored by a node in the
distributed system, and sending a data confir-
mation to a sending node of the message when
determining that the hash values are consistent,
wherein the data confirmation carries a digital
signature of the corresponding node; and
continuing, by the node, switching to the second
consensus mode in response to trigger of the
client when nodes reaching a consensus do not
receive, within a pre-determined time, a data
confirmation from a node not reaching the con-
sensus or nodes in the distributed system do not
receive a data confirmation in a pre-determined
time.

19. The message processing method according to claim
16, further comprising:

switching, by the node, to the first consensus
mode with the follower nodes when the node is
in the leader node state and a quantity of times
counted in the second consensus mode ex-
ceeds a consensus quantity-of-times threshold
of the leader node
the counted quantity of times being a count of
reaching consensuses with the follower nodes
on the received message.

20. The message processing method according to claim
19, wherein the switching to the first consensus
mode with the follower nodes comprises:
starting to synchronously switch to the first consen-
sus mode with the follower nodes when the leader
node sends, to the follower nodes, a notification of
switching to the first consensus mode and receives
switch acknowledgements sent by all the follower
nodes.

21. The message processing method according to claim
20, further comprising:

performing, by the node, the following operations
when the node is in the follower node state:
counting a quantity of times that a consensus is
reached on the received message when receiving
the notification of switching to the first consensus
mode, and sending a switch acknowledgement to
the leader node when the counted quantity of times
exceeds a consensus quantity-of-times threshold of
the follower node.

22. The message processing method according to claim
12, further comprising:
performing, by the node in the distributed system,
the voting operation again when the follower nodes
do not receive heartbeat information of the leader
node or when the leader node is a malicious node,
to determine whether the node is in the leader node
state or the follower node state.

23. The message processing method according to claim
12, wherein
sending, by the node, a voting request to nodes in
the distributed system when the new consensus cy-
cle reaches and no heartbeat information is received,
wherein the voting request carries a digital signature
of the node; and
switching to the leader node state when receiving
voting acknowledgements returned by a predeter-
mined quantity of nodes, wherein the node periodi-
cally sends heartbeat information to the nodes in the
distributed system, and
the voting acknowledgements are sent by the nodes
in the distributed system after the nodes verify the
digital signature carried in the voting request; or
switching to the follower node state when the new
consensus cycle starts and heartbeat information
sent by a node in the distributed system is received.

24. A message processing method, comprising:

sending, by a client, a message to a leader node
in nodes of a distributed system, the message
carrying a digital signature of the client,
the digital signature being verified by the leader
node, and a digital signature of the leader node
being added to the received message to send
the message to follower nodes in the distributed
system;
receiving, by the client, results returned by the
follower nodes when the follower nodes receive
the message; and
determining, by the client, an abnormal node in
the distributed system according to the results
returned by the follower nodes when the follower
nodes receive the message.

25. The message processing method according to claim
24, wherein the determining, by the client, an abnor-

43 44

EP 3 605 947 A1

25

5

10

15

20

25

30

35

40

45

50

55

mal node in the distributed system according to the
results returned by the follower nodes when the fol-
lower nodes receive the message comprises:
comparing, by the client, a uniqueness field com-
prised in the received result with a uniqueness field
of the sent message after verifying a digital signature
of the received result, determining that a follower
node corresponding to an inconsistent uniqueness
field is an erroneous node, and determining that a
follower node not returning a corresponding result is
a faulty node.

26. The message processing method according to claim
24, wherein the determining, by the client, an abnor-
mal node in the distributed system according to the
results returned by the follower nodes when the fol-
lower nodes receive the message comprises:
comparing, by the client, a sequence number carried
in the received result with a sequence number of the
sent message, and determining, when a quantity of
follower nodes sending inconsistent sequence num-
bers exceeds an inconsistency quantity threshold,
that the leader node is a malicious node.

27. The message processing method according to claim
24, further comprising:
triggering, by the client when determining that the
leader node is a malicious node or determining that
there is a faulty node in the follower nodes, the nodes
in the distributed system to switch to a second con-
sensus mode.

28. The message processing method according to claim
27, further comprising:

instructing, by the client when receiving consist-
ency confirmations of all the nodes within a pre-
determined time, all the nodes to return to a first
consensus mode; or
instructing, by the client when not receiving con-
sistency confirmations of all the nodes within a
pre-determined time, all the nodes to continue
switching to the second consensus mode
the consistency confirmation carrying a digital
signature of the node and being sent by the node
at a preparation stage of switching to the second
consensus mode, and the node determining, be-
fore sending, that a hash value of the message
persistently stored by the node is consistent with
a hash value of a message persistently stored
by a node in the distributed system.

29. The message processing method according to claim
27, further comprising:

triggering, by the client when nodes reaching a
consensus do not receive, within a predeter-
mined time, a data confirmation from a node not

reaching the consensus or the nodes in the dis-
tributed system do not receive a data confirma-
tion in a pre-determined time, the nodes in the
distributed system to continue switching to the
second consensus mode
the data confirmation carrying a digital signature
of a corresponding node and being sent by the
node at a preparation stage of switching to the
second consensus mode, and the node deter-
mining, before sending, that a hash value of the
message persistently stored by the node is con-
sistent with a hash value of a message persist-
ently stored in the distributed system.

30. A node in a distributed system, comprising:

a voting unit, configured to perform a voting op-
eration when a new consensus cycle in a first
consensus mode starts, and determine, through
the voting operation, whether the node is in a
leader node state or a follower node state; and
a leader node unit, configured to: receive a mes-
sage of a client when the node is in the leader
node state, verify a digital signature of the mes-
sage, and send the message to follower nodes;
and
receive reception acknowledgement notifica-
tions of more than a predetermined quantity of
follower nodes, persistently store the message
after verifying digital signatures of the reception
acknowledgement messages, and send a mes-
sage storage notification to the follower nodes,
results returned by the follower nodes when the
follower nodes receive the message being used
by the client for determining an abnormal node
in the distributed system.

31. A node in a distributed system, comprising one or
more processors, a memory, and one or more pro-
grams, the one or more programs being stored in
the memory, the program being capable of compris-
ing one or more units each corresponding to one set
of instructions, the one or more processors being
configured to implement a message processing
method when executing the instructions, and the
message processing method comprising:

performing, by the node in the distributed sys-
tem, a voting operation when a new consensus
cycle in a first consensus mode starts, to deter-
mine, through the voting operation, whether the
node is in a leader node state or a follower node
state; and
performing, by the node, the following opera-
tions when the node is in the leader node state:

receiving a message of a client, verifying a
digital signature of the message, and send-

45 46

EP 3 605 947 A1

26

5

10

15

20

25

30

35

40

45

50

55

ing the message to follower nodes; and
receiving reception acknowledgement noti-
fications of more than a predetermined
quantity of follower nodes, persistently stor-
ing the message after verifying digital sig-
natures of the reception acknowledgement
messages, and sending a message storage
notification to the follower nodes,

results returned by the follower nodes when the
follower nodes receive the message being used
by the client for determining an abnormal node
in the distributed system.

32. A client in a distributed system, comprising:

a communications unit, configured to send a
message to a leader node in nodes of the dis-
tributed system, the message carrying a digital
signature of the client,
the digital signature being verified by the leader
node, and a digital signature of the leader node
being added to the received message to send
the message to follower nodes in the distributed
system; and
the communications unit being configured to re-
ceive results returned by the follower nodes
when the follower nodes receive the message;
and
a detection unit, configured to determine an ab-
normal node in the distributed system according
to the results returned by the follower nodes
when the follower nodes receive the message.

33. A client in a distributed system, comprising one or
more processors, a memory, and one or more pro-
grams, the one or more programs being stored in
the memory, the program being capable of compris-
ing one or more units each corresponding to one set
of instructions, the one or more processors being
configured to implement a message processing
method when executing the instructions, and the
message processing method comprising:

sending, by the client, a message to a leader
node in nodes of the distributed system, the
message carrying a digital signature of the cli-
ent,
the digital signature being verified by the leader
node, and a digital signature of the leader node
being added to the received message to send
the message to follower nodes in the distributed
system;
receiving, by the client, results returned by the
follower nodes when the follower nodes receive
the message; and
determining, by the client, an abnormal node in
the distributed system according to the results

returned by the follower nodes when the follower
nodes receive the message.

34. A storage medium, storing executable programs,
and configured to cause a processor, when execut-
ing the executable programs, to implement the mes-
sage processing method according to any one of
claims 12 to 23.

35. A storage medium, storing executable programs,
and configured to cause a processor, when execut-
ing the executable programs, to implement the mes-
sage processing method according to any one of
claims 24 to 29.

47 48

EP 3 605 947 A1

27

EP 3 605 947 A1

28

EP 3 605 947 A1

29

EP 3 605 947 A1

30

EP 3 605 947 A1

31

EP 3 605 947 A1

32

EP 3 605 947 A1

33

EP 3 605 947 A1

34

EP 3 605 947 A1

35

EP 3 605 947 A1

36

EP 3 605 947 A1

37

EP 3 605 947 A1

38

5

10

15

20

25

30

35

40

45

50

55

EP 3 605 947 A1

39

5

10

15

20

25

30

35

40

45

50

55

EP 3 605 947 A1

40

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 201710203499 X [0001]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

