[0001] The invention relates to machines, systems and methods for wrapping with a plastic
film products arranged on a pallet. In particular, the invention relates to a measuring
system and a measuring method able to obtain data on physical quantities acting on
a palletized load made of a group of products positioned on a pallet and wrapped by
a plastic film, when the palletized load is moved and transported, for instance from
the production place to the delivery place. The invention also relates to a method
for wrapping a palletized load based on data relative to physical quantities measured
by said measuring system.
[0002] It is known and widespread in the industrial packaging sector the use of film or
web made of cold-stretchable plastic material for wrapping and fastening to a pallet
a plurality of products, objects, packages duly stacked in layers and grouped so as
to form a so called palletized load, which can easily be moved by a forklift and loaded
on different types of transport means (truck, ship, plane, etc.). In particular, the
products are wrapped and fastened together and with the pallet by dispensing the film
so as to form a plurality of bands or stripes of film that are overlapped and twisted
as a helix.
[0003] The plastic film is generally stretched or elongated, elastically and/or plastically,
before being wrapped around the load. Typically, the plastic film is elastically stretched
of a pre-set quantity or percentage in order to be used at its best and to achieve
physical-mechanical characteristics such as to make it more suitable to stand the
forces acting on the load when moved and transported. More precisely, when the stretching
force applied to the film for elongating the latter ends, the elastic springback of
the film thereof causes a tightening force on the load that allows to hold and contain
the products composing the load and to tightly fasten the products to the underlying
pallet. The wrapping tension or force applied to the film while wrapping around the
load also contributes to such containment and wrapping effect.
[0004] Usually the film stretching or elongation is expressed in percentage as a ratio between
the elongation of the film (difference between the final length of the stretched film
and the original length) and the original length. Typically, the elongation or stretching
exerted to the film is comprised between 50% and 400%.
[0005] The film stretching further allows to reduce significantly the thickness of the film
(typically from about 20-25 µm to about 6-7 µm) so as to increase proportionally the
length in order to wrap a wider perimeter of load with the same initial quantity of
unwound film. This allows reducing the film consumption and thus the packaging costs.
[0006] The pre-stretching force also allows to change the mechanical characteristics of
the film thereof. In fact, the film material when duly stretched may pass from an
elastic behaviour, wherein the film tends to return to its original size once the
stress is over, to a plastic behaviour, wherein the film undergoes a permanent deformation
and does not return to its original size once the stress ceases. In this last case,
the plastic material film behaves as a flexible and inextensible element, as a rope
or belt, and may be used for example, to wrap groups of unstable products that must
be kept tightly fastened together.
[0007] Therefore, in order to carry out an efficient and stable wrapping it is necessary
to choose a suitable film of plastic material (composition, initial thickness) and
define the correct wrapping parameters (pre-stretching percentage, wrapping force,
number of film wrappings around the load, overlapping of the wrappings, etc.) in accordance
both with the type of load (fragile, solid, unstable, irregular products, etc.) to
be wrapped and the transport itinerary and/or the moving operations the load must
undergo.
[0008] As known, a relevant percentage of palletized loads (especially in the beverage field,
wherein the palletized loads are composed of a plurality of plastic bottles usually
sub-grouped in bundles) are irremediably damaged during the transport due to the stress
(linear, angular speeds, accelerations/decelerations, vibrations, oscillations, etc.)
they are subjected to. In fact, the load can bend laterally, undergo deformation and
collapse locally, thus provoking damages and/or crushing and/or break of the single
products.
[0009] In order to overcome suck drawbacks, a solution is wrapping the load as tightly as
possible (consistently with the characteristics of the products contained) and with
a high number of wrappings. However, not always such wrappings are free from problems
and furthermore the consumption of film increases considerably, with a relevant impact
on manufacturing costs.
[0010] Hence, it is highly perceived the need in the packaging field to optimize the procedures
or wrapping cycles of palletized loads in order to obtain an optimal wrapping configuration
which guarantees an optimal containment and stabilization of the load and, at the
same time, a reduction of the quantity of film used, both according to the type of
product composing the load and the transport type and itinerary of the palletized
load.
[0011] To this end it is known measuring stresses (speed, acceleration) of the transport
means (truck, ship, plane, etc.) on which the palletized load will be positioned.
Data of the measured stresses are used to calculate and establish the correct wrapping
parameters. However, these data are not precise and complete, as they do not take
into consideration the composition and structure of the transported load and how the
stresses are transmitted, also changing considerably, from the loading platform of
the transport means to the load. In other cases, sensors are used which can be fixed
outside the load to transmit data related to stresses acting on the load during the
transport. However, positioning of sensors on the load can affect the measurement
as sensors modify the structure, the weight and the dynamic behaviour of the load,
wherein dynamic behaviour means the kinematic, dynamic, structural response or reaction
of the load when subjected to stresses such as linear, angular speeds, accelerations/decelerations,
vibrations, oscillations, etc.
[0012] Furthermore, sensors that are not optimally fixed to the load may undergo particular
stresses (vibrations) which do not affect the whole load. Finally, sensors are particularly
vulnerable, as they are exposed during transport and movement operations to impacts
and collisions that can change measurements and/or damage and even break the sensors.
[0013] EP 1818271 discloses a device for loading and transporting a plurality of items or products,
in particular a pallet, which internally contains communication units to communicate
with electromagnetic reading/writing IC tags that are positioned on the transported
items, sensor units for detecting and obtaining environment quantities, a GPS unit,
a data receiving/transmitting unit and a transmitting antenna. In the pallet disclosed
in
EP 1818271 a controller is also mounted which receives data from the different units (communication
unit, sensor unit, GPS unit) and is able to save the data in an inner memory. A rechargeable
and removable battery is also housed inside the pallet. Two sensor units which are
identical (they measure the same physical quantities) are provided for safety reasons
and are positioned at the opposite sides of the pallet in order to guarantee correct
and complete data acquisition even in case of damage or break of one of the two units
(for instance as a consequence of impacts and collisions of the pallet). Each sensor
unit comprises a temperature sensor, a humidity sensor and an impact sensor.
[0014] During the movement and the transport of the pallet and of the products placed therein,
the controller is arranged to detect and save data coming from the sensors periodically,
for example every 10, 30, 60 minutes, or when an impact or collision occurs to the
pallet, that is when the impact sensor detects a stress higher than a threshold value.
[0015] The device disclosed in
EP 1818271 is not able to measure in real time all the stresses (linear, angular speeds, accelerations/decelerations,
vibrations, oscillations, etc.) the products are subjected to during the transport,
but only the humidity and temperature values and an impact occurring (event). Furthermore,
as the controller, the battery and all the different units are housed inside the pallet,
the aforesaid pallet has structure, weight and mass distribution which differ greatly
from those of a standard pallet having the same size. Therefore, its use may significantly
affect the measurements as it modifies the weight and the dynamic behaviour of the
palletized load wherein it is integrated.
[0016] An object of the present invention is to improve the known systems and methods for
measuring and obtaining data related to physical quantities acting on a palletized
load formed by a group of products, items, packages positioned on a pallet and wrapped
by a plastic film, when said palletized load is moved and transported.
[0017] Another object is providing a measuring system and a measuring method that allow
to detect and measure in a precise and accurate way kinematic and environmental physical
quantities acting on a palletized load formed by a group of products wrapped by extensible/stretchable
film during transport and movement.
[0018] A further object is providing a measuring system and a measuring method that can
be used for any type of load and product, item or package and capable to measure the
real stresses without introducing alterations or modifications.
[0019] In a first aspect of the invention a measuring system for a palletized load according
to claim 1 is provided.
[0020] In a second aspect of the invention a method for measuring physical quantities acting
on a palletized load according to claim 9 is provided.
[0021] In a third aspect of the invention it is provided a wrapping method according to
claim 10 is provided.
[0022] The invention will be better understood and implemented with reference to the enclosed
drawings showing an exemplifying and non-limiting embodiment, wherein:
- figure 1 is a perspective view of the measuring system of the invention, in particular
showing a supporting frame for a load of products, a second detecting module and a
processing module;
- figure 2 is a bottom perspective view of the measuring system of figure 1 that is
associated to a group of superimposed products, grouped and wrapped with a plastic
film for forming a palletized load;
- figure 3 shows a perspective schematic view of the supporting frame of the measuring
system of figure 1, wherein some parts have been removed in order to better highlight
a first and a second detecting module;
- figure 4 is a perspective enlarged view of the first detecting module of the measuring
system of figure 1:
- figure 5 is a perspective enlarged view of the second detecting module of the measuring
system of figure 1;
- figure 6 is a perspective partial view of the measuring system of the invention wherein
a casing of the processing module is partially disassembled;
- figure 7 is a block diagram showing measurement chains formed by the components of
the detecting modules and processing module of the measuring system of the invention;
- figure 8 is a top perspective view of the measuring system of the invention associated
with a different group of stacked products, grouped and wrapped with a plastic film.
[0023] Referring to figures 1 to 7, the measuring system 1 of the invention is shown that
is associable to a group of products 100 to be wrapped with a film 50, in particular
of the cold-stretchable type. The measuring system 1 can be wrapped with the plastic
film 50 together with the group of products 100 in order to form a palletized load
110 and is arranged to measure a plurality of physical quantities
a, ω, t, p, u acting on said products 100 when the palletized load is moved and transported, for
example by one or more means of transport along an itinerary.
[0024] The measuring system 1, otherwise called instrumented pallet, includes a supporting
frame 2, or pallet, that is provided with a supporting plane 31 for the products 100,
a first detecting module 3 and a second detecting module 4. The first detecting module
3 is housed inside the supporting frame or pallet 2 and is provided with first sensor
means 13 to detect and measure with a first data acquisition time
t1 first physical quantities
a, ω acting on the products 100 and on the measuring system 1 of the palletized load 110.
The second detecting module 4 is housed inside the supporting frame 2 and is provided
with second sensor means 14 to detect and measure with a second data acquisition time
t2 second physical quantities
t, p, u acting on the products 100 and on the measuring system 1 of said palletized load
110.
[0025] The measuring system 1 also includes a processing module 5, which is positioned on
the supporting surface 31 of the supporting frame 2, placed among or included in the
group of products 100 (i.e. interposed and in contact with said products 100) and
including a first computing unit that is connected to the first detecting module 3
to receive and process data related to the first physical quantities
a, ω and save said data in a first memory unit 17 so as to form a first measurement chain
10 of the first physical quantities
a, ω. The latter ones include physical quantities of the kinematic type, in particular
linear accelerations
a along three orthogonal axis and angular speeds
ω according to three orthogonal axis, acting on said measuring system 1 and said group
of products 100 during movement and transport. The processing module 5 also includes
a second computing unit 7 that is connected to the second detecting module 4 to receive
and process data related to second physical quantities
t, p, u and save said data in a second memory unit 18 so as to form a second measurement
chain 20 of the second physical quantities
t, p, u. The latter ones include environment-type physical quantities, in particular temperature
t, pressure
p, humidity
u of an environment wherein the measuring system 1 and the group of products 100 are
during movement and transport.
[0026] The processing module 5 has dimensions and weight comparable to those of one of the
products 100 so as not to modify the weight mass distribution and dynamic behaviour
of the group of products 100, the dynamic behaviour meaning the kinematic, dynamic,
structural response or reaction of the load when subjected to stresses such as linear,
angular speeds, accelerations/decelerations, vibrations, oscillations, etc.
[0027] The first computing unit 6 and/or the second computing unit 7 can be further programmed
and configured so as to process the data respectively received by the first detecting
module 3 and/or by the second detecting module 4 and obtain processed and/or filtered
data to be saved in the memory units 17, 18. For example, data obtained by the detecting
modules 4, 5 can be processed by the computing units 6, 7 in the frequency domain,
through suitable algorithms based on the Fourier transform (and its variants). Such
algorithms allow, as known, to perform a sampling of the signals acquired in the domain
of time, their transformation in the domain of frequencies and a following digitalization
without reducing the information content, thus obtaining data that can be more easily
interpreted and analysed, at the same time reducing the computing complexity and the
memory filling. The first detecting module 3 comprises a first microprocessor 15 suitable
to receive and process data detected by first sensor means 13 with the first acquisition
time
t1 and to transmit said data to the first computing unit 6 of the processing module
5. Similarly, the second detecting module 4 comprises a second microprocessor 16 suitable
to receive and process data detected by second sensor means 14 with the second acquisition
time
t2 and transmit said data to the second computing unit 7 of the processing module 5.
[0028] As it will be better described in the following, the two data acquisition times
t1, t2 are different and in particular the first data acquisition time
t1 of the first measurement chain 10 is smaller than the second data acquisition time
t2 of the second measurement chain 20. The processing module 5 further includes two
different power supply units 26, 27 for electrically powering the two measurement
chains 10, 20, separately and independently. More precisely, the processing module
5 comprises a first power supply unit 26 to electrically power the first measurement
chain 10, that is to power the first computing unit 6, the first memory unit 17 and
the first detecting module 3, and a second supply unit 27 to electrically power the
second measurement chain 20, that is to power the second computing unit 7, the second
memory unit 18 and the second detecting module 4.
[0029] The power supply units 26, 27 are batteries or electrical accumulators capable to
provide the measurement chains 10, 20 with an adequate operative autonomy.
[0030] In the shown and disclosed embodiment, the second detecting module 4 of the measuring
system 1 also comprises third sensor means 19 connected to the second microprocessor
16 and arranged to measure a position of the measuring system 1 with respect to an
external environment, that is to measure a distance of palletized load 110 from an
external reference (for example walls of a truck load compartment). The second microprocessor
16 receives and processes data detected by the third sensor means 14 with a third
acquisition time
t3 and transmits said data to the second computing unit 7 of the processing module 5.
The third sensor means 19 are therefore included in the second measurement chain 20.
Computing units 6, 7 of processing module 5 include respective single-board electronic
computers, so called micro PC, for example micro PC Raspberry Pi, capable to receive
and process data from microprocessors 15, 16 of the detecting modules 3, 4 and to
save or store said data in the respective memory units 17, 18.
[0031] The first microprocessor 15 and the second microprocessor 16 comprises, for example,
respective integrated microprocessors provided with specific programmes for deleting
errors (debugger) and for programming (programmer) capable to analyse and transmit,
especially via cable, data coming from the sensor means 13, 14.
[0032] The first sensor means comprises a first sensor integrated unit 13, in particular
an integrated electronic unit or board, provided with MEMS (Micro Electro Mechanical
Systems) sensors, suitable to detect and measure at least the first physical quantities
of kinematic type, in particular linear accelerations
a along three orthogonal axis and angular speeds
ω according to three orthogonal axis. To this end, the first sensor integrated unit
13 includes at least a three-axial accelerometer and a three-axial gyroscope.
[0033] The second sensor means comprises a second sensor integrated unit 14, in particular
an integrated electronic unit or board, provided with MEMS (Micro Electro Mechanical
Systems) sensors, suitable to detect and measure at least the second physical quantities
of environment-type, in particular temperature
t, pressure
p, humidity
u. To this end, the second sensor integrated unit 14 includes at least a humidity and
temperature sensor and a pressure sensor.
[0034] In the illustrated embodiment, the first sensor integrated unit 13 and the second
sensor integrated unit 14 include respective integrated electronic boards, that are
identical and provided with MEMS sensors, each of which provided with a three-axial
accelerometer, a three-axial gyroscope, a humidity and temperature sensor and a pressure
sensor. As better explained in the hereinafter description, only some of these sensors
are used by each detecting module 3, 4
[0035] The third sensor means 19 comprises at least two proximity sensors 19a, 19b suitable
to measure along two substantially orthogonal axis distances
d1, d2 separating the measuring system 1, that is the palletized load 110, from walls of
an external environment, e.g. of a load compartment of a means of transport, in order
to measure possible displacement or sliding of the palletized load 110 during transport.
In particular, the third sensor means comprises a third integrated electronic unit
or board 19 provided with two proximity sensors 19a, 19b and connected to the second
microprocessor 16 to transmit data related to the detected distances. The third sensor
means 19 and/or the second microprocessor 16 are configured so as to detect and measure
distances
d1, d2 with the third data acquisition time
t3, which is longer than the first data acquisition time
t1 and shorter than the second data acquisition time
t2.
[0036] Proximity sensors 19a, 19b are, for example, proximity and ambient light sensors,
which operate using the technology Time of Flight (ToF). This technology provides
enlightening the environment where measuring is to be performed with a source of modulated
light so that the proximity sensor can detect luminous pulses reflected by the object
(from which the distance is measured by the sensor), transform such pulses into electric
signals and transmit the signals to the processor ToF that measures the phase displacement
between the emitted light and the reflected light; such phase displacement allows
to calculate the distance from the object. In fact, the processor detects the time
taken by the light pulse to carry out the itinerary from the source to the object
and back to the sensor, namely the so called "Time of Flight".
[0037] Referring in particular to figures 1 to 3, the supporting frame 2 is substantially
a pallet, made of wood, metal or plastic and almost identical to the pallets normally
used to package groups of products with wrapped with bands or strips of film in such
a way as to form a palletized load. The supporting frame 2 has the dimensions of the
standard pallets existing on the market, for example the dimensions 1200x800 mm (length
by width) of a Euro Pallet.
[0038] As shown in the figures, the supporting frame or pallet 2 includes three spars 34,
35, 36 arranged in parallel and spaced apart between them, on the upper part mutually
connected by the supporting plane 31. The longitudinal spaces among the spars 34,
35, 36 allow to insert the lift forks.
[0039] In one of the spars, for example in the central spar 35, the two detecting modules
3, 4 are inserted and fixed.
[0040] Each detecting module 3,4 comprises a respective container 23, 24, in particular
made of plastic material, inside which respective sensor means 13, 14 and microprocessor
15, 16 are fixed. The containers 23, 24 are inserted and fixed inside a respective
supporting element 32, 33 of the supporting frame 2, in particular of the central
spar 35.
[0041] More precisely, a first container 23 of the first detecting module 3 is inserted,
in particular press-fitted, inside a first central supporting element 32 of the central
spar 35, while a second container 24 of the second detecting module 4 is inserted,
in particular press-fitted, inside a second peripheral supporting element 33 of the
central spar 35. The second container 24 and the second peripheral supporting element
33 have respective aligned through openings which allow the proximity sensors 19a,
19b of third sensor means 19 to measure respective distances that separate the latter,
i.e. the measuring system 1, from two orthogonal references, for example the walls
of a load compartment.
[0042] The two supporting elements 32, 33 are inserted and tightly fastened inside the structure
of central spar 35.
[0043] To be noted that the containers 23, 24, made of plastic material, in particular ABS,
ensure a high strength, rigidity and duration so as to guarantee the containment and
protection of electronic components inserted therein. Sensor integrated boards or
units 13, 14 and microprocessors 15, 16 are tightly fixed inside the respective containers
23, 24 for example through suitable fixing plates, so that free movements and/or vibrations
of the sensor integrated boards that may hinder and alter measuring are prevented.
[0044] To be noted also that the weight of detecting modules 3, 4 and related containers
23, 24 is limited and such as not to modify the overall weight of the supporting frame
2 which is substantially equal to that of usually used supporting frames or pallets.
Similarly, positioning of detecting modules 3, 4 inside the supporting frame 2, in
particular inside the supporting elements 32, 33 of the central spar 35, does not
affect weight/mass distribution of the supporting frame 2 and its dynamic behaviour
when associated and fastened to the products 100 and subjected to stresses (linear,
angular speeds, accelerations/decelerations, vibrations, oscillations, etc.) when
moved and transported.
[0045] The processing module 5 also comprises a respective casing 25 suitable to house therein
the two computing units 6, 7, the external memory units 17, 18 and the power supply
units 26, 27.
[0046] To be noted that the processing module 5 with its casing 25 has dimensions and weight
comparable to those of one of the products 100 to be wrapped, so that weight, geometry
and structure of the palletized load 110 to be measured is not affected. Thereby,
weight and dynamic behaviour of the palletized load 110 (including the supporting
frame 2 provided with the detecting modules 3, 4 and the processing module 5) are
almost equal to weight and dynamic behaviour of a palletized load formed by the same
group of products 100 positioned on a standard pallet.
[0047] Therefore, the containment casing 25 will change according to the products 100 to
be wrapped and hence it will have different weight and dimensions. For example, its
dimensions and weight will change in case of bundles 6x4 of 0.5-litre bottles of water
(figure 8) or bundles of 6x2 of 2-litre bottles of water.
[0048] Since the processing module 5 is positioned on the supporting plane 31 of the supporting
frame 2 at the detecting modules 3, 4 in order to simplify the wiring of the latter
ones, the casing 25 will have to be strong enough to bear the weight and stresses
of the adjacent and overlying products 100.
[0049] In the case of bottle bundles, the casing 25 is a closed box structure made of sheet
metal. In use, the supporting frame or pallet 2 of the measuring system 1 is loaded
with a definite number of products 100 arranged according to pre-set rows on different
layers, substantially reproducing a pallet loading configuration used in the ordinary
production. The processing module 5 of the measuring system 1, which has dimensions
and weight equal to those of a product 100, is previously positioned on the supporting
plane 31 of the pallet 2 in replacement of an original product 100. However, as already
said, as its dimensions and weight are substantially comparable to those of the replaced
product, the group of products so formed has almost the same structure and dynamic
behaviour of a group of products of the production.
[0050] Then the measuring system 1 and the group of products 100 associated therewith are
wrapped with a cold-stretchable plastic film by a wrapping machine, known and not
illustrated, in order to form the palletized load 10. Wrapping is performed according
to an initial wrapping configuration defined by pre-set wrapping parameters (pre-stretching
percentage, number of wrappings, overlying of film bands, etc.) selected according
to the type of products 100 (fragile, irregular, unstable, etc.).
[0051] A palletized load 110 is obtained that is almost equal to palletized loads obtained
in the ordinary production. Detecting modules 3, 4 inserted in the pallet 2 allow
to measure physical quantities acting on the palletized load 110 when the latter is
moved and transported.
[0052] In particular, by means of the first measurement chain 10 it is possible to measure
and save data related to kinematic quantities such as accelerations
a and angular speeds
ω acting on the palletized load 110 when transported. These two kinematic quantities
measured on the three axis precisely describe the dynamic stress (vibrations, oscillations,
...) the palletized load 110 is subjected to and which can cause inclination, deformation,
collapse of the palletized load with resulting damage and deformation of products
100.
[0053] The second measurement chain 20 allows to measure and save environment quantities
(temperature, pressure, humidity) and measuring possible displacement or sliding of
the palletized load 110 during the transport. As known, relevant variations in the
environment quantities, in particular, temperature and humidity, may strongly affect
the quality of the film wrapping.
[0054] The second measurement chain 20 also allows, thanks to third sensor means 19 that
comprises two proximity sensors 19a, 19b, to measure the distances
d1, d2, which separate the palletized load 110 from walls of an external environment, so
as to verify if the fixing modes of the palletized load on the means of transport
were suitable or not sufficient.
[0055] To be noted that the measuring system 1 of the invention measures physical quantities,
in particular kinematic quantities, directly on the supporting frame or pallet 2 i.e.
on the body (typically fixed to the loading platform of the means of transport) which
undergoes stresses and transfers such stresses to the overlying load. Hence physical
quantities acting on the means of transport are not measured nor those detected by
sensors directly fixed to the products.
[0056] By using two different measurement chains 10, 20 the measuring system 1 of the invention
can obtain extremely precise and accurate measurements of the physical quantities,
in particular of the kinematic quantities. Furthermore, by using two measurement chains
formed by respective and separate detecting modules 3,4, microprocessors 15, 16, computing
units 6,7, memory units 17, 18 and power supply units 26, 27 ensures greater reliability,
safety and operative autonomy to the measuring system 1.
[0057] More precisely, the first measurement chain 10, which uses MEMS sensors linear three-axial
accelerometer and three-axial gyroscope of the first sensor integrated unit 13, allows
to have a very short first data acquisition or reading time
t1 (e.g. about 5-10 ms), for instance the minimum acquisition time allowed by the electronic
components, in order to have the highest sampling frequency and to be able to analyse
the signals, in particular in the frequency domain, in a wide bandwidth. Tests carried
out by the Applicant showed in fact that values of linear accelerations and angular
speeds (six values on three axes) must be acquired together, with the same sampling
time, in order to detect and define the kinematic and dynamic behaviours of the palletized
load 110.
[0058] These high performances may be obtained as in the first measurement chain 10 only
data related to first physical quantities are detected, processed and saved while
data related to second physical environment quantities are not taken in consideration;
in other words temperature, humidity and pressure sensors of the first sensor integrated
unit 13 are not used.
[0059] Data relative to second physical environment quantities
t, p, u are detected, processed and saved with a second data acquisition time
t2 having much higher value (for example 60s) by the second measurement chain 20 using
the humidity and temperature MEMS sensor and pressure MEMS sensor of the second sensor
integrated unit 14.
[0060] The same second measurement chain 20 allows to process and save data relative to
distances
d1, d2, which are detected and measured by the two proximity sensors 19a, 19b of the third
electronic integrated unit 19 and transmitted to the second processor 16 with a third
data acquisition time
t3, having a value (for example 100 ms) higher than the first data acquisition time
t1 and shorter than the second data acquisition time
t2.
[0061] Thus, it is possible for the first computing unit 6 and the second computing unit
7 to process and save in complete and accurate way all the data from the respective
detecting modules 3, 4.
[0062] The advantage of performing the measurement of physical quantities by means of two
distinct measurement chains 10, 20 is even more evident in the case wherein computing
units 6, 7 in a variant of the measuring system 1 of the invention, are programmed
and configured to process data acquired respectively from the first detecting module
3 and/or the second detecting module 4 in order to obtain processed and/or filtered
data, in particular in the frequency domain, to be saved in the memory units 17, 18.
[0063] The measuring method of the invention to measure physical quantities acting on a
palletized load 100 formed by a group of products 100 wrapped by a plastic film 50
when the palletized load is moved and/or transported using the above described measuring
system 1 provides:
- detecting and measuring with a first data acquisition time t1 first physical quantities a, ω, acting on the palletized load 110 by means of a first measurement chain 10 of the
measuring system1, in particular said first physical quantities comprising kinematic
quantities, such as linear acceleration a, angular speed ω;
- detecting and measuring with a second data acquisition time t2 second physical quantities t, p, u, acting on said palletized load 110 by means of a second measurement chain 20 of the
measuring system 1, in particular said second physical quantities comprising environment
physical quantities, such as temperature t, pressure p, humidity u.
[0064] Furthermore, the method provides storing data related to first physical quantities
and second physical quantities respectively by the first measurement chain 10 and
second measurement chain 20.
[0065] According to the method of the invention, the first data acquisition time
t1 of the first measurement chain 10 is shorter than the second data acquisition time
t2 of the second measurement chain 20; in particular, the first data acquisition time
t1 is equal to a minimum acquisition time of the first measurement chain 10.
[0066] It is further provided processing data related to first physical quantities
a, ω and/or data related to second physical quantities
t, p, u in order to obtain processed and/or filtered data to be saved, in particular said
processing comprising processing said data in the frequency domain through the Fourier
transform (or variants thereof).
[0067] The measuring system and method of the invention allow to detect and measure in a
precise and accurate way kinematic and environment physical quantities acting on a
palletized load 110 when the latter is moved, in particular along a transport itinerary
on one or more means of transport.
[0068] The palletized load 110 is formed by a definite number of products 100 arranged side
by side and superimposed according to a definite order (number of rows and layers),
enveloped and wrapped by a plastic film 50 according to a pre-set wrapping configuration
that is defined by pre-set wrapping parameters (pre-stretching percentage, wrapping
force, number of wrappings of the film around the load) selected according to characteristics
of the plastic material film (composition, initial thickness) and of the type of load
(fragile products, number, positioning, etc.)
[0069] Data obtained by the measuring system 1 of the invention allow to know the stresses
the palletized load 110 is subjected to in order to optimize the wrapping configuration
for instance changing the wrapping parameters, and to verify that the palletized load
110 has been correctly fixed and fastened to the means of transport.
[0070] Physical quantities data, in particular kinematic quantities, in fact may be used
to verify in one simulation the different effects on the palletized load obtained,
with the same transport itinerary and various movement operations, by changing the
wrapping configurations in order to optimize the latter ones.
[0071] The method of the invention for wrapping a group of products 100 with a plastic film
50 comprises:
- wrapping with a plastic film 50 according to an initial wrapping configuration a palletized
load 110 formed by the group of products 100 and by the above described measuring
system 1;
- measuring physical quantities a, ω, t, p, u acting on the palletized load 110 when the latter is moved and/or transported;
- calculating an optimal wrapping configuration based on data related to physical quantities
a, ω, t, p, u and measured and processed by the measuring system;
- wrapping the group of products 100 with the plastic film 50 according to the optimal
wrapping configuration.
[0072] The initial and optimal wrapping configurations comprise respective sets of wrapping
parameters (pre-stretching percentage, wrapping strength, number of wrappings of the
film around the load, overlaying of film bands, ...) selected according to the type
of products 100 (fragile, irregular, unstable, etc.), the type of palletized load
(dimensions) and the characteristics of the film 50 (width, thickness, density, composition,
etc.).
[0073] The optimal wrapping configuration may coincide with the initial wrapping configuration,
typically when the latter already guarantees a right containment and stabilization
of the load.
[0074] According to the wrapping method of the invention, measuring physical quantities
includes:
- detecting and measuring with a first data acquisition time t1 first physical quantities a, ω acting on the palletized load 110 by means of a first measurement chain 10 of the
measuring system 1, in particular the first kinematic quantities comprising kinematic-type
quantities a, ω;
- detecting and measuring with a second data acquisition time t2 second physical quantities t, p, u acting on the palletized load 110 by means of the second measurement chain 20 of
the measuring system 1, in particular the second physical quantities comprising environment-type
quantities t, p, u.
[0075] It is also provided saving data related to the first physical quantities
a, ω and the second physical quantities
t, p, u respectively by means of the first measurement chain 10 and the second measurement
chain 20.
[0076] The first data acquisition time
t1 of the first measurement chain 10 is shorter than the second data acquisition time
t2 of the second measurement chain 20; in particular, the first data acquisition time
t1 is equal to a minimum acquisition time of the first measurement chain 10.
[0077] The method further provides processing data related to first physical quantities
a, ω and/or data related to second physical quantities
t, p, u in order to obtain processed and/or filtered data to be saved, in particular said
processing comprising processing said data in the frequency domain through Fourier
transform (or variants thereof).
[0078] Thanks to the wrapping method of the invention by using data obtained by the measuring
system 1- which allows to detect and measure physical quantities of the kinematic
and environment type, occurring to the palletized load 110 wrapped with a defined
initial wrapping configuration when the palletized load is moved and/or transported
- it is possible to determine an optimal wrapping configuration for the group of products
100, that is a wrapping configuration with the film 50 which allows to obtain an optimal
containment and stabilization of the group of products 100 during movement and/or
transport and, at the same time, a reduction in the quantity of film used.
[0079] The optimal wrapping configuration may coincide with the initial wrapping configuration
when data related to the first physical quantities measured by the measuring system
1 highlight correct containment and suitable stability of the palletized load 100
that is transported.
1. Measuring system (1) associable with a group of products (100), wrappable with a plastic
film (50) together with said group of products (100) to form a palletized load (110)
and arranged to measure a plurality of physical quantities acting on said palletized
load (110) when moved and/or transported, comprising:
- a supporting frame (2) provided with a supporting plane (31) for said group of products
(100);
- a first detecting module (3) housed inside said supporting frame (2) and provided
with first sensor means (13) to detect and measure with a first acquisition time (t1) first physical quantities (a, ω) acting on said palletized load (110);
- a second detecting module (4) housed in said supporting frame (2) and provided with
second sensor means (14) to detect and measure with a second acquisition time (t2) second physical quantities (t, p, u) acting on said palletized load (110);
- a processing module (5) positioned on said supporting surface (31), inserted among
said products (100) and having dimensions and weight comparable to those of one of
said products (100), said processing module (5) comprising:
- a first computing unit (6) connected to said first detecting module (3) for receiving
and processing data related to said first physical quantities (a, ω) and for saving said data on a first memory unit (17), said first computing unit (6),
said first memory unit (17) and said first detecting module (3) forming a first measurement
chain (10) of said first physical quantities (a, ω) having said first data acquisition time (t1);
- a second computing unit (7) connected to said second detecting module (4) for receiving
and processing data related to said second physical quantities (t, p, u) and for saving said data on a second memory unit (18), said second computing unit
(7), said second memory unit (18) and said second detecting module (4) forming a second
measurement chain (20) of said second physical quantities (t, p, u) having said second data acquisition time (t2).
2. Measuring system (1) according to claim 1, wherein said first detecting module (3)
comprises a first microprocessor (15) suitable to receive and process data obtained
by said first sensor means (13) and transmit said data to said first computing unit
(6) of said processing module (5) and wherein said second detecting module (4) comprises
a second microprocessor (16) suitable to receive and process data obtained by said
second sensor means (14) and transmit said data to said second computing unit (7)
of said processing module (5).
3. Measuring system (1) according to claim 2, wherein said second detecting module (4)
includes third sensor means (19) connected to said second microprocessor (16) and
arranged to detect and measure, in particular with a third data acquisition time (t3), a distance of said palletized load (110) from an external reference, said third
sensor means (19) being included in said second measurement chain (20).
4. Measuring system (1) according to any preceding claim, wherein at least one between
said first computing units (6) and said second computing unit (7) is programmed and
arranged to process data received respectively from said first detecting module (3)
and said second detecting module (4) in order to obtain processed and/or filtered
data, in particular data processed in the frequency domain by means of Fourier transform,
to be respectively saved in said first memory unit (17) and said second memory unit
(18).
5. Measuring system (1) according to any preceding claim, wherein said processing module
(5) comprises a first power supply unit (26) for electrically powering said first
measurement chain (10) and a second power supply unit (27) for electrically powering
said second measurement chain (20).
6. Measuring system (1) according to any preceding claim, wherein said first sensor means
comprises a first sensor integrated unit (13), in particular an integrated electronic
board provided with MEMS sensors suitable to detect at least said first physical quantities
of kinematic-type, in particular linear accelerations (a) along three orthogonal axes and angular speeds (ω) in three orthogonal axes, and/or wherein said second sensor means comprises a second
sensor integrated unit (14), in particular an integrated electronic board provided
with MEMS sensors suitable to detect at least said second physical quantities of environment-type,
in particular temperature (t), pressure (p), humidity (u).
7. Measuring system (1) according to claim 3, wherein said third sensor means (19) comprise
at least two proximity sensors (19a, 19b) suitable to measure distances (d1, d2) along two substantially orthogonal axis that separate said palletized load (110)
from walls of an external environment.
8. Measuring system (1) according to claim 6, wherein said first sensor integrated unit
(13) and said second sensor integrated unit (14) comprise respective integrated electronic
boards provided with MEMS sensors comprising a three-axial accelerometer, a three-axial
gyroscope, a humidity and temperature sensor and a pressure sensor.
9. Method for measuring physical quantities acting on a palletized load (110) formed
by a group of products (100) associated with a measuring system (1) according to any
preceding claim and wrapped by a plastic film (50), when said palletized load (110)
is moved and/or transported, comprising:
- detecting and measuring with a first data acquisition time (t1) first physical quantities (a, ω) acting on said palletized load (110) by means of the first measurement chain (10)
of said measuring system (1), in particular said first physical quantities including
kinematic-type quantities (a, ω);
- detecting and measuring with a second data acquisition time (t2) second physical quantities (t, p, u) acting on the palletized load (110) by means of the second measurement chain (20)
of said measuring system (1), in particular second physical quantities including environment-type
quantities (t, p, u).
10. Method for wrapping with a plastic film (50) a group of products (100) positioned
on a supporting frame comprising:
- wrapping with said plastic film (50) according to an initial wrapping configuration
a palletized load (110) formed by said group of products (100) and a measuring system
(1) according to any one of claims 1 to 8;
- measuring physical quantities (a, ω, t, p, u) acting on said palletized load (110) when the latter is moved and/or transported;
- determining an optimal wrapping configuration based on data relative to said physical
quantities, (a, ω, t, p, u), said data being measured and processed by said measuring system (1);
- wrapping said group of products (100) on said supporting frame with said plastic
film (50) according to said optimal wrapping configuration.
11. Method according to claim 10, wherein said wrapping configurations comprise respective
sets of wrapping parameters, which are selected according to characteristics of the
plastic film, load and products.
12. Method according to claim 10 or 11, wherein said measuring said physical quantities
comprises:
- detecting and measuring with a first data acquisition time (t1) first physical quantities acting on said palletized load (110) by means of the first
measurement chain (10) of said measuring system (1), in particular said first physical
quantities comprising kinematic-type quantities (a, ω);
- detecting and measuring with a second data acquisition time (t2) second physical quantities acting on said palletized load (110) by means of the
second measurement chain (20) of said measuring system (1), in particular second physical
quantities comprising environment-type quantities (t, p, u).
13. Method according to claim 9 or 12, further comprising saving data related to said
first physical quantities (a, ω) and said second physical quantities (t, p, u) respectively by means of said first measurement chain (10) and said second measurement
chain (20).
14. Method according to claim 9 or 12, wherein said first data acquisition time (t1) of said first measurement chain (10) is shorter than said second data acquisition
time (t2) of said second measurement chain (20), in particular said first data acquisition
time (t1) being equal to a minimum acquisition time of said first measurement chain (10).
15. Method according to claim 9 or 12, further comprising processing data relative to
said first physical quantities (a, ω) and/or data relative to said second relative physical quantities (t, p, u) in order to obtain processed and/or filtered data to be saved, in particular said
processing comprising processing said data in the domain of frequencies through Fourier
transform.
1. Messsystem (1), das einer Gruppe von Produkten (100) zuordenbar ist, das zusammen
mit der Gruppe von Produkten (100) mit einem Plastikfilm (50) einwickelbar ist, um
eine palettierte Last (110) zu bilden und das angeordnet ist, um eine Mehrzahl von
physikalischen Größen zu messen, die auf die palettierte Last (110) wirken wenn sie
bewegt und/oder transportiert wird, umfassend:
- einen Stützrahmen (2), der mit einer Stützebene (31) für die Gruppe von Produkten
(100) versehen ist;
- ein erstes Detektionsmodul (3), das innerhalb des Stützrahmens (2) untergebracht
ist und mit ersten Sensormitteln (13) versehen ist, um erste physikalische Größen
(a, ω), die auf die palettierte Last (110) wirken, mit einer ersten Erfassungszeit (t1) zu detektieren und zu messen;
- ein zweites Detektionsmodul (4), das innerhalb des Stützrahmens (2) untergebracht
ist und mit zweiten Sensormitteln (14) versehen ist, um zweite physikalische Größen
(t, p, u), die auf die palettierte Last (110) wirken, mit einer zweiten Erfassungszeit (t2) zu detektieren und zu messen
- ein Verarbeitungsmodul (5), das an der Stützoberfläche (31) positioniert ist, zwischen
den Produkten (100) eingeführt ist und Dimensionen und Gewicht aufweist, die mit denen
der Produkte (100) vergleichbar sind, wobei das Verarbeitungsmodul (5) umfasst:
- eine erste Berechnungseinheit (6), die mit dem ersten Detektionsmodul (3) verbunden
ist zum Empfangen und Verarbeiten von Daten, die sich auf die ersten physikalischen
Größen (a, ω) beziehen und zum Sichern der Daten auf einer ersten Speichereinheit (17), wobei die
erste Berechnungseinheit (6), die erste Speichereinheit (17) und das erste Detektionsmodul
(3) eine erste Messkette (10) der ersten physikalischen Größen (a, ω) aufweisend die erste Datenerfassungszeit (t1) bilden;
- eine zweite Berechnungseinheit (7), die mit dem zweiten Detektionsmodul (4) verbunden
ist zum Empfangen und Verarbeiten von Daten, die sich auf die zweiten physikalischen
Größen (t, p, u) beziehen und zum Sichern der Daten auf einer zweiten Speichereinheit (18), wobei
die zweite Berechnungseinheit (7), die zweite Speichereinheit (18) und das zweite
Detektionsmodul (4) eine zweite Messkette (20) der zweiten physikalischen Größen (t, p, u) aufweisend die zweite Datenerfassungszeit (t2) bilden.
2. Messsystem (1) gemäß Anspruch 1, wobei das erste Detektionsmodul (3) einen ersten
Mikroprozessor (15) umfasst, der geeignet ist, um Daten zu empfangen und verarbeiten,
die von den ersten Sensormitteln (13) gewonnen werden und die Daten an die erste Berechnungseinheit
(6) des Verarbeitungsmoduls (5) zu übertragen und wobei das zweite Detektionsmodul
(4) einen zweiten Mikroprozessor (16) umfasst, der geeignet ist, um Daten zu empfangen
und verarbeiten, die von den zweiten Sensormitteln (14) gewonnen werden und die Daten
an die zweite Berechnungseinheit (7) des Verarbeitungsmoduls (5) zu übertragen.
3. Messsystem (1) gemäß Anspruch 2, wobei das zweite Detektionsmodul (4) dritte Sensormittel
(19) enthält, die mit dem zweiten Mikroprozessor (16) verbunden und angeordnet sind,
um, insbesondere mit einer dritten Datenerfassungszeit (t3), eine Distanz der palettierten Last (110) von einer externen Referenz zu detektieren
und zu messen, wobei die dritten Sensormittel (19) in der zweiten Messkette (20) enthalten
sind.
4. Messsystem (1) gemäß jedem vorhergehenden Anspruch, wobei zumindest eine zwischen
der ersten Berechnungseinheiten (6) und der zweiten Berechnungseinheit (7) programmiert
und angeordnet ist, um Daten zu verarbeiten, die jeweils von dem ersten Detektionsmodul
(3) und dem zweiten Detektionsmodul (4) empfangen werden, um verarbeitete und/oder
gefilterte Daten zu gewinnen, insbesondere Daten, die in dem Frequenzbereich mittels
Fouriertransformation verarbeitet werden, um jeweils in der ersten Speichereinheit
(17) und der zweiten Speichereinheit (18) gesichert zu werden.
5. Messsystem (1) gemäß jedem vorhergehenden Anspruch, wobei das Verarbeitungsmodul (5)
eine erste Leistungsversorgungseinheit (26) zum elektrischen Versorgen der ersten
Messkette (10) und eine zweite Leistungsversorgungseinheit (27) zum elektrischen Versorgen
der zweiten Messkette (20) umfasst.
6. Messsystem (1) gemäß jedem vorhergehenden Anspruch, wobei die ersten Sensormittel
eine erste sensor-integrierte Einheit (13) umfassen, insbesondere eine integrierte
elektronische Platine, die mit MEMS-Sensoren versehen ist, die geeignet sind, zumindest
die ersten physikalischen kinematischen Größen zu detektieren, insbesondere lineare
Beschleunigungen (a) entlang drei orthogonalen Achsen und Winkelgeschwindigkeiten (ω) in drei orthogonalen Achsen, und/oder wobei die zweiten Sensormittel eine zweite
sensor-integrierte Einheit (14) umfassen, insbesondere eine integrierte elektronische
Platine, die mit MEMS-Sensoren versehen ist, die geeignet sind, zumindest die zweiten
physikalischen Umgebungs-Größen zu detektieren, insbesondere Temperatur (t), Druck (p), Feuchtigkeit (u).
7. Messsystem (1) gemäß Anspruch 3, wobei die dritten Sensormittel (19) zumindest zwei
Näherungssensoren (19a, 19b) umfassen, die geeignet sind, um Distanzen (d1, d2) entlang zwei im Wesentlichen orthogonalen Achsen zu messen, die die palettierte Last
(110) von Wänden einer externen Umgebung trennen..
8. Messsystem (1) gemäß Anspruch 6, wobei die erste sensor-integrierte Einheit (13) und
die zweite sensor-integrierte Einheit (14) umfassen jeweilige integrierte elektronische
Platinen, die mit MEMS-Sensoren versehen sind, umfassend einen dreiachsigen Beschleunigungsmesser,
ein dreiachsiges Gyroskop, einen Feuchtigkeits- und Temperatursensor und einen Drucksensor.
9. Verfahren zum Messen von physikalischen Größen, die auf eine palettierte Last (110)
wirken, die von einer Gruppe von Produkten (100) gebildet wird, die einem Messsystem
(1) gemäß jedem vorhergehenden Anspruch zugeordnet sind und mit einem Plastikfilm
(50) eingewickelt sind, wenn die palettierte Last (110) bewegt und/oder transportiert
wird, umfassend:
- Detektieren und Messen mit einer ersten Datenerfassungszeit (t1) erste physikalische Größen (a, ω), die auf die palettierte Last (110) wirken mittels der ersten Messkette (10) des Messsystems
(1), wobei insbesondere die ersten physikalischen Größen kinematische Größen (a, ω) enthalten;
- Detektieren und Messen mit einer zweiten Datenerfassungszeit (t2) zweite physikalische Größen (t, p, u), die auf die palettierte Last (110) wirken mittels der zweiten Messkette (20) des
Messsystems (1), wobei insbesondere zweite physikalische Größen Umgebungsgrößen (t, p, u) enthalten.
10. Verfahren zum Einwickeln einer Gruppe von Produkten (100), die auf einem Stützrahmen
positioniert sind, mit einem Plastikfilm (50), umfassend:
- Einwickeln einer palettierten Last (110), die von der Gruppe von Produkten (100)
und einem Messsystem (1) gemäß jedem der Ansprüche 1 bis 8 gebildet wird, mit dem
Plastikfilm (50) gemäß einer Anfangs-Einwickelkonfiguration;
- Messen von physikalischen Größen (a, ω, t, p, u), die auf die palettierte Last (110) wirken, wenn letztere bewegt und/oder transportiert
wird;
- Bestimmen einer optimalen Einwickelkonfiguration basierend auf Daten relativ zu
den physikalischen Größen, (a, ω, t, p, u), wobei die Daten von dem Messsystem (1) gemessen und verarbeitet werden;
- Einwickeln der Gruppe von Produkten (100) auf dem Stützrahmen mit dem Plastikfilm
(50) gemäß der optimalen Einwickelkonfiguration.
11. Verfahren gemäß Anspruch 10, wobei die Einwickelkonfigurationen jeweilige Mengen von
Einwickelparametern umfassen, die gemäß Charakteristiken des Plastikfilms, Last und
Produkten ausgewählt sind.
12. Verfahren gemäß Anspruch 10 oder 11, wobei das Messen der physikalischen Größen umfasst:
- Detektieren und Messen mit einer ersten Datenerfassungszeit (t1) erste physikalische Größen, die auf die palettierte Last (110) wirken, mittels der
ersten Messkette (10) des Messsystems (1), wobei insbesondere die ersten physikalischen
Größen kinematische Größen (a, ω) umfassen;
- Detektieren und Messen mit einer zweiten Datenerfassungszeit (t2) zweite physikalische Größen, die auf die palettierte Last (110) wirken, mittels der
zweiten Messkette (20) des Messsystems (1), wobei insbesondere die zweiten physikalischen
Größen Umgebungsgrößen (t, p, u) umfassen.
13. Verfahren gemäß Anspruch 9 oder 12, weiter umfassend Sichern von Daten, die sich auf
die ersten physikalischen Größen (a, ω) und die zweiten physikalischen Größen (t, p, u) beziehen, jeweils mittels der ersten Messkette (10) und der zweiten Messkette
(20).
14. Verfahren gemäß Anspruch 9 oder 12, wobei die erste Datenerfassungszeit (t1) der ersten Messkette (10) kürzer ist als die zweite Datenerfassungszeit (t2) der zweiten Messkette (20), wobei insbesondere die erste Datenerfassungszeit (t1) gleich einer minimalen Erfassungszeit der ersten Messkette (10) ist.
15. Verfahren gemäß Anspruch 9 oder 12, weiter umfassend Verarbeiten von Daten relativ
zu den ersten physikalischen Größen (a, ω) und/oder Daten relativ zu den zweiten relativen physikalischen Größen (t, p, u) um verarbeitete und/oder gefilterte, zu sichernde Daten zu gewinnen, wobei insbesondere
das Verarbeiten ein Verarbeiten der Daten im Bereich der Frequenzen durch Fouriertransformation
umfasst.
1. Système de mesure (1) pouvant être associé à un groupe de produits (100), pouvant
être enveloppés d'un film plastique (50) avec ledit groupe de produits (100) afin
de former une charge palettisée (110) et agencé pour mesurer une pluralité de quantités
physiques agissant sur ladite charge palettisée (110) lorsqu'elle est déplacée et/ou
transportée, comprenant :
- un cadre de support (2) pourvu d'un plan de support (31) pour ledit groupe de produits
(100) ;
- un premier module de détection (3) logé à l'intérieur dudit cadre de support (2)
et pourvu d'un premier moyen de détection (13) pour détecter et mesurer avec un premier
temps d'acquisition (t1) des premières quantités physiques (a, ω) agissant sur ladite charge palettisée (110) ;
- un deuxième module de détection (4) logé dans ledit cadre de support (2) et pourvu
d'un deuxième moyen de détection (14) pour détecter et mesurer avec un deuxième temps
d'acquisition (t2) des deuxièmes quantités physiques (t, p, u) agissant sur ladite charge palettisée (110) ;
- un module de traitement (5) positionné sur ladite surface de support (31), inséré
parmi lesdits produits (100) et présentant des dimensions et un poids comparables
à ceux de l'un desdits produits (100), ledit module de traitement (5) comprenant :
- une première unité de calcul (6) connectée audit premier module de détection (3)
pour recevoir et traiter des données liées auxdites premières quantités physiques
(a, ω) et pour sauvegarder lesdites données sur une première unité de mémoire (17), ladite
première unité de calcul (6), ladite première unité de mémoire (17) et ledit premier
module de détection (3) formant une première chaîne de mesure (10) desdites premières
quantités physiques (a, ω) ayant ledit premier temps d'acquisition de données (t1) ;
- une deuxième unité de calcul (7) connectée audit deuxième module de détection (4)
pour recevoir et traiter des données liées auxdites deuxièmes quantités physiques
(t, p, u) et pour sauvegarder lesdites données sur une deuxième unité de mémoire (18), ladite
deuxième unité de calcul (7), ladite deuxième unité de mémoire (18) et ledit deuxième
module de détection (4) formant une deuxième chaîne de mesure (20) desdites deuxièmes
quantités physiques (t, p, u) ayant ledit deuxième temps d'acquisition de données (t2).
2. Système de mesure (1) selon la revendication 1, dans lequel ledit premier module de
détection (3) comprend un premier microprocesseur (15) approprié pour recevoir et
traiter des données obtenues par ledit premier moyen de détection (13) et transmettre
lesdites données à ladite première unité de calcul (6) dudit premier module de traitement
(5) et dans lequel ledit deuxième module de détection (4) comprend un deuxième microprocesseur
(16) approprié pour recevoir et traiter des données obtenues par ledit deuxième moyen
de détection (14) et transmettre lesdites données à ladite deuxième unité de calcul
(7) dudit module de traitement (5).
3. Système de mesure (1) selon la revendication 2, dans lequel ledit deuxième module
de détection (4) comporte un troisième moyen de détection (19) connecté audit deuxième
microprocesseur (16) et agencé pour détecter et mesurer, en particulier avec un troisième
temps d'acquisition de données (t3), une distance de ladite charge palettisée (110) depuis une référence externe, ledit
troisième moyen de détection (19) étant compris dans ladite deuxième chaîne de mesure
(20).
4. Système de mesure (1) selon une quelconque revendication précédente, dans lequel au
moins une parmi ladite première unité de calcul (6) et ladite deuxième unité de calcul
(7) est programmée et agencée pour traiter des données reçues respectivement depuis
ledit premier module de détection (3) et ledit deuxième module de détection (4) afin
d'obtenir des données traitées et/ou filtrées, en particulier des données traitées
dans le domaine fréquentiel à l'aide d'une transformée de Fourier, pour être respectivement
sauvegardées dans ladite première unité de mémoire (17) et ladite deuxième unité de
mémoire (18).
5. Système de mesure (1) selon une quelconque revendication précédente, dans lequel ledit
module de traitement (5) comprend une première unité d'alimentation électrique (26)
pour alimenter électriquement ladite première chaîne de mesure (10) et une deuxième
unité d'alimentation électrique (27) pour alimenter électriquement ladite deuxième
chaîne de mesure (20).
6. Système de mesure (1) selon une quelconque revendication précédente, dans lequel ledit
premier moyen de détection comprend une première unité intégrée de détection (13),
en particulier une carte électronique intégrée pourvue de capteurs MEMS appropriés
pour détecter au moins lesdites premières quantités physiques de type cinématique,
en particulier des accélérations linéaires (a) le long de trois axes orthogonaux et des vitesses angulaires (ω) dans trois axes orthogonaux, et/ou dans lequel ledit deuxième moyen de détection
comprend une deuxième unité intégrée de détection (14), en particulier une carte électronique
intégrée pourvue de capteurs MEMS appropriés pour détecter au moins lesdites deuxièmes
quantités physiques de type environnement, en particulier la température (t), la pression
(p), l'humidité (u).
7. Système de mesure (1) selon la revendication 3, dans lequel ledit troisième moyen
de détection (19) comprend au moins deux capteurs de proximité (19a, 19b) appropriés
pour mesurer des distances (d1, d2) le long de deux axes sensiblement orthogonaux qui séparent ladite charge palettisée
(110) des parois d'un environnement externe.
8. Système de mesure (1) selon la revendication 6, dans lequel ladite première unité
intégrée de détection (13) et ladite deuxième unité intégrée de détection (14) comprennent
des cartes électroniques intégrées respectives pourvues de capteurs MEMS comprenant
un accéléromètre à trois axes, un gyroscope à trois axes, un capteur d'humidité et
de température et un capteur de pression.
9. Procédé de mesure de quantités physiques agissant sur une charge palettisée (110)
formée par un groupe de produits (100) associés à un système de mesure (1) selon une
quelconque revendication précédente et enveloppés d'un film plastique (50), lorsque
ladite charge palettisée (110) est déplacée et/ou transportée, comprenant :
- la détection et la mesure avec un premier temps d'acquisition de données (t1) de premières quantités physiques (a, ω) agissant sur ladite charge palettisée (110) à l'aide de la première chaîne de mesure
(10) dudit système de mesure (1), en particulier lesdites premières quantités physiques
comportant des quantités de type cinématique (a, ω) ;
- la détection et la mesure avec un deuxième temps d'acquisition de données (t2) de deuxièmes quantités physiques (t, p, u) agissant sur la charge palettisée (110) à l'aide de la deuxième chaîne de mesure
(20) dudit système de mesure (1), en particulier les deuxièmes quantités physiques
comportant des quantités de type environnement (t, p, u).
10. Procédé pour envelopper d'un film plastique (50) un groupe de produits (100) positionnés
sur un cadre de support comprenant :
- l'enveloppement à l'aide dudit film plastique (50) selon une configuration d'enveloppement
initiale d'une charge palettisée (110) formée par ledit groupe de produits (100) et
un système de mesure (1) selon l'une quelconque des revendications 1 à 8 ;
- la mesure de quantités physiques (a, ω, t, p, u) agissant sur ladite charge palettisée (110) lorsque cette dernière est déplacée
et/ou transportée ;
- la détermination d'une configuration d'enveloppement optimale basée sur des données
relatives auxdites quantités physiques (a, ω, t, p, u), lesdites données étant mesurées et traitées par ledit système de mesure (1) ;
- l'enveloppement dudit groupe de produits (100) sur ledit cadre de support avec ledit
film plastique (50) selon ladite configuration d'enveloppement optimale.
11. Procédé selon la revendication 10, dans lequel lesdites configurations d'enveloppement
comprennent des ensembles respectifs de paramètres d'enveloppement, qui sont sélectionnés
en fonction de caractéristiques du film plastique, de la charge et des produits.
12. Procédé selon la revendication 10 ou 11, dans lequel ladite mesure desdites quantités
physiques comprend :
- la détection et la mesure avec un premier temps d'acquisition de données (t1) de premières quantités physiques agissant sur ladite charge palettisée (110) à l'aide
de la première chaîne de mesure (10) dudit système de mesure (1), en particulier lesdites
premières quantités physiques comportant des quantités de type cinématique (a, ω) ;
- la détection et la mesure avec un deuxième temps d'acquisition de données (t2) de deuxièmes quantités physiques agissant sur ladite charge palettisée (110) à l'aide
de la deuxième chaîne de mesure (20) dudit système de mesure (1), en particulier les
deuxièmes quantités physiques comportant des quantités de type environnement (t, p, u).
13. Procédé selon la revendication 9 ou 12, comprenant en outre la sauvegarde de données
liées auxdites premières quantités physiques (a, ω) et auxdites deuxièmes quantités physiques (t, p, u) respectivement à l'aide de ladite première chaîne de mesure (10) et de ladite deuxième
chaîne de mesure (20).
14. Procédé selon la revendication 9 ou 12, dans lequel ledit premier temps d'acquisition
de données (t1) de ladite première chaîne de mesure (10) est plus court que ledit deuxième temps
d'acquisition de données (t2) de ladite deuxième chaîne de mesure (20), en particulier ledit premier temps d'acquisition
de données (t1) étant égal à un temps d'acquisition minimum de ladite première chaîne de mesure
(10).
15. Procédé selon la revendication 9 ou 12, comprenant en outre le traitement de données
relatives auxdites premières quantités physiques (a, ω) et/ou de données relatives auxdites deuxièmes quantités physiques relatives (t, p, u) afin d'obtenir des données traitées et/ou filtrées à sauvegarder, en particulier
ledit traitement comprenant le traitement desdites données dans le domaine de fréquences
par le biais d'une transformée de Fourier.