(11) EP 3 617 515 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 04.03.2020 Bulletin 2020/10

(21) Application number: **18919391.5**

(22) Date of filing: 06.08.2018

(51) Int Cl.: F04C 29/06 (2006.01)

F04B 39/12 (2006.01)

(86) International application number: **PCT/CN2018/098940**

(87) International publication number: WO 2020/000584 (02.01.2020 Gazette 2020/01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 29.06.2018 CN 201810714128

- (71) Applicant: Anhui Meizhi Compressor Co., Ltd. Hefei, Anhui 230031 (CN)
- (72) Inventors:
 - YI, Peng Hefei, Anhui 230031 (CN)

- HUANG, Gang Hefei, Anhui 230031 (CN)
- YIN, Tiantian Hefei, Anhui 230031 (CN)
- HU, Binbin Hefei, Anhui 230031 (CN)
- MARQUES, Regis Scapini Hefei, Anhui 230031 (CN)
- YAN, Zhiqi
 Hefei, Anhui 230031 (CN)
- (74) Representative: Maucher Jenkins Patent- und Rechtsanwälte 26 Caxton Street London SW1H 0RJ (GB)

(54) CYLINDER HEAD OF PISTON TYPE COMPRESSOR AND PISTON TYPE COMPRESSOR

(57) A cylinder head for a piston compressor and a piston compressor are disclosed. The cylinder head includes a metal outer cover and an isolation inner cover. The metal outer cover covers the isolation inner cover, and the isolation inner cover is made of a heat insulation material.

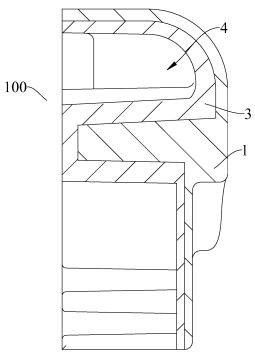


Fig. 3

P 3 617 515 A1

CROSS-REFERENCE TO RELATED APPLICATION

1

[0001] This application claims priority to Chinese Patent Application No. 201810714128.2, filed by ANHUI MEIZHI COMPRESSOR CO., LTD. on June 29, 2018, the entire content of which is incorporated herein by reference.

FIELD

[0002] The present disclosure relates to a field of compressor manufacturing technology, and more particularly to a cylinder head for a piston compressor and a piston compressor having the cylinder head.

BACKGROUND

[0003] In the related art, cylinder heads are used to close crankcases of compressors, and are entirely diecast from metallic aluminum. During operation of compressors, gas exhausted from and gas sucked into cylinder heads perform heat conduction through walls of the cylinder heads. If the temperature sucked into cylinders during suction of compressors is relatively high, resulting in overheating of the suction, the cooling capacity of compressors and the energy efficiency ratio of refrigeration systems will be seriously affected and have room for improvement.

SUMMARY

[0004] The present disclosure aims to solve at least one of the technical problems in the related art. To this end, an objective of the present disclosure is to propose a cylinder head for a piston compressor, and the cylinder head has a composite structure made of closed-cell foamed aluminum and solid aluminum, which results in good heat insulation effect and vibration attenuation performance.

[0005] The cylinder head according to embodiments of the present disclosure includes a metal outer cover and an isolation inner cover, the metal outer cover covering the isolation inner cover, and the isolation inner cover being made of a heat insulation material.

[0006] For the cylinder head according to the embodiments of the present disclosure, since the isolation inner cover has good heat insulation performance, so that the temperature of the gas sucked by the compressor having the cylinder head during operation will not be too high, thereby ensuring a stable cooling capacity and a high energy efficiency ratio.

[0007] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover is made of a porous material.

[0008] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover

is made of a closed-cell foamed aluminum material.

[0009] For the cylinder head according to the embodiments of the present disclosure, the metal outer cover has a groove, and the isolation inner cover is disposed to an inner wall surface of the groove to define an accommodating chamber.

[0010] For the cylinder head according to the embodiments of the present disclosure, the metal outer cover is made of a solid aluminum material.

[0011] For the cylinder head according to the embodiments of the present disclosure, the metal outer cover has a mounting table configured to mount the cylinder head.

[0012] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover has a thickness of N, and the metal outer cover has a thickness of M, which satisfy 0<N≤M.

[0013] For the cylinder head according to the embodiments of the present disclosure, a closed cell of the isolation inner cover has a wall thickness of L which satisfies 0.2mm≤L≤0.5mm.

[0014] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover has an internal aperture of D which satisfies 1mm≤D≤6mm.

[0015] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover has an internal porosity of A which satisfies 30% \leq A \leq 75%.

[0016] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover has an elasticity modulus of E which satisfies 1.4GPa≤E≤8.0GPa.

[0017] For the cylinder head according to the embodiments of the present disclosure, the isolation inner cover has a silicon carbide additive, and the contained silicon carbide has a mass fraction of B which satisfies $0.1\% \le B \le 1.1\%$.

[0018] The present disclosure further proposes a piston compressor.

[0019] The piston compressor according to embodiments of the present disclosure is provided with the cylinder head according to any one of the above embodiments.

[0020] The piston compressor has the same advantages as the above cylinder head, compared with the related art, which will not be elaborated herein.

[0021] Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference the accompanying

drawings, in which:

Fig. 1 illustrates a schematic view of a cylinder head according to embodiments of the present disclosure. Fig. 2 illustrates a front view of a cylinder head according to embodiments of the present disclosure. Fig. 3 illustrates a sectional view of a cylinder head according to embodiments of the present disclosure. Fig. 4 illustrates a top view of a piston compressor according to embodiments of the present disclosure. Fig. 5 illustrates an exploded view of a cylinder head and a valve assembly according to embodiments of the present disclosure.

Fig. 6 illustrates a sectional view of a piston compressor according to embodiments of the present disclosure.

Reference numerals:

[0023]

cylinder head 100,

metal outer cover 1, mounting table 2, isolation inner cover 3, accommodating chamber 4,

cylinder block 101, piston 102, connecting rod 103, crankshaft 104, housing assembly 105, motor stator 106, motor rotor 107,

lift limiter 200, exhaust valve sheet 300, valve plate 400, suction valve sheet 500.

DETAILED DESCRIPTION

[0024] Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings, where same or similar reference numerals are used to indicate same or similar members or members with same or similar functions. The embodiments described herein with reference to the drawings are explanatory, which aim to illustrate the present disclosure, but shall not be construed to limit the present disclosure.

[0025] A cylinder head 100 for a piston compressor according to embodiments of the present disclosure will be described with reference to Figs. 1 to 6.

[0026] As illustrated in Figs. 1-6, the cylinder head 100 according to the embodiments of the present disclosure includes a metal outer cover 1 and an isolation inner cover 3.

[0027] The metal outer cover 1 covers the isolation inner cover 3, and the isolation inner cover 3 is made of a heat insulation material, that is, the isolation inner cover 3 has good heat insulation performance, such that the temperature of gas sucked by the compressor having the cylinder head 100 during operation will not be too high, and hence have a stable cooling capacity and a high energy efficiency ratio.

[0028] As illustrated in Fig. 3, the metal outer cover 1 has a groove, and the isolation inner cover 3 is disposed

to an inner wall surface of the groove to define an accommodating chamber 4, that is, an outer surface of the isolation inner cover 3 is fitted with the inner wall surface of the groove. In some embodiments, the isolation inner cover 3 is made of porous materials, so as to possess heat insulation, sound insulation, and vibration absorption effects. Thus, not only can the compressor have the stable cooling capacity and the high energy efficiency ratio, but also the isolation inner cover 3 can reduce the vibration impact on the cylinder head generated by the gas entering the accommodating chamber, attenuate the impact noise, and improve the vibration attenuation effect. In a specific embodiment shown in Fig. 3, the isolation inner cover 3 is made of a closed-cell foamed aluminum material, wherein the isolation inner cover 3 can be foamed and formed on the inner wall surface of the groove by a powder metallurgy foaming method in solid metal sintering methods. The isolation inner cover 3 can be foamed and formed into complex structures by the powder metallurgy foaming method to allow the isolation inner cover 3 to be closely fitted with the metal outer cover 1.

[0029] It should be noted that the closed-cell foamed aluminum material is a novel light functional material, and has characteristics of low density, high strength, high stiffness ratio, sound absorption, high damping and vibration attenuation performance, and high impact energy absorption rate. The density of the closed-cell foamed aluminum material is usually 0.1-0.4 times the density of metallic aluminum, such that the isolation inner cover 3 has an obvious lightweight effect. Meanwhile, when the acoustic wave frequency is between 800 Hz and 4000 Hz, the sound insulation coefficient of the closed-cell foamed aluminum material is 0.9 or higher. The damping performance is 5-10 times that of metallic aluminum. Therefore, the isolation inner cover 3 made of the closedcell foamed aluminum material has the advantages of light weight, excellent vibration absorption effect, good sound insulation effect, and good heat insulation performance.

[0030] As illustrated in Figs. 4 and 6, the cylinder head 100 is mounted on the piston compressor, and the accommodating chamber 4 of the isolation inner cover 3 can be used to store the gas temporarily. The cylinder head 100 is connected to a cylinder end of a crankcase by threaded fasteners, and at the same time the isolation inner cover 3 is partially in contact with a suction silencer. During the operation of the compressor, a refrigerant gas sucked through the suction silencer performs heat conduction with the refrigerant gas discharged from a cylinder bore into the cylinder head 100, and the refrigerant gas discharged into the cylinder head 100 may impact the cylinder head 100, thereby resulting in vibration and impact noise. However, the isolation inner cover 3 has good heat insulation performance, so that there is no excessive heat exchange between the discharged gas and the sucked gas. In such a way, the temperature of the sucked gas is not excessively high, thereby ensuring

15

the stable cooling capacity of the compressor, and a refrigeration system with such a compressor has a relatively high energy efficiency ratio, improving the practicality and economy of the compressor, and avoiding suction overheating. Moreover, the isolation inner cover 3 has sound absorption and high damping characteristics, which will greatly reduce the impact noise and improve the vibration attenuation effect, so that the compressor has a stable working state during operation.

[0031] For the cylinder head 100 according to the embodiments of the present disclosure, since the isolation inner cover 3 has good heat insulation and sound insulation performance, so that the temperature of the gas sucked by the compressor having the cylinder head 100 during operation is not too high, thereby ensuring a stable cooling capacity and a high energy efficiency ratio. The isolation inner cover 3 can reduce the vibration impact on the cylinder head 100 generated by the gas entering the accommodating chamber 4, weaken the impact noise, and improve the vibration attenuation effect.

[0032] For the cylinder head 100 according to the embodiments of the present disclosure, as illustrated in Figs. 1 and 2, the metal outer cover 1 has a mounting table 2 configured to mount the cylinder head 100, and the cylinder head 100 can be fixedly connected to the cylinder end of the crankcase by threaded fasteners at the mounting table 2, whereby the cylinder head 100 can close the crankcase to facilitate the gas suction and discharge of the compressor.

[0033] In an embodiment, the metal outer cover 1 has four mounting tables 2 spaced apart along an axial direction. As shown in Figs. 1 and 2, the four mounting tables 2 are located at four corners of the metal outer cover 1, such that four corners of the cylinder head 100 are fixedly connected with the cylinder end of the crankcase. A valve assembly is connected between the cylinder head 100 and the cylinder end of the crankcase, and includes a lift limiter 200, an exhaust valve sheet 300, a valve plate 400, and a suction valve sheet 500. In this way, the cylinder head 100, the lift limiter 200, the exhaust valve sheet 300, the valve plate 400, the suction valve sheet 500, and the cylinder end of the crankcase are sequentially connected and fixed by multiple sets of threaded fasteners, thereby ensuring the normal gas suction and discharge of the compressor and improving the stability of the overall structure of the compressor.

[0034] In some embodiments, the isolation inner cover 3 has a thickness of N, the metal outer cover 1 has a thickness of M, and the total thickness of the cylinder head 100 is H, which satisfy H=M+N, 0<N≤M. That is, the total thickness of the cylinder head 100 is equal to the sum of the thickness of the isolation inner cover 3 and the thickness of the metal outer cover 1, and the thickness of the metal outer cover 1 is not less than that of the isolation inner cover 3. Thus, the metal outer cover 1 of the thickness can ensure the high structural rigidity and strength of the cylinder head 100, and make the overall structure of the cylinder head 100 stable. At the same

time, the isolation inner cover 3 of the corresponding thickness can avoid excessive heat conduction between the discharged gas and the sucked gas in the cylinder head 100, thereby ensuring that the suction temperature of the compressor is relatively low, and with the sound insulation and high damping characteristics of the isolation inner cover 3, the noise reduction and silencing effect can be obtained, upgrading the performance of the compressor.

[0035] In some embodiments, the closed cells of the isolation inner cover 3 have a wall thickness of L, which satisfies $0.2mm \le L \le 0.5mm$. For example, L=0.3mm, and L=0.4mm. It could be understood that the isolation inner cover 3 is made of the closed-cell foamed aluminum material, that is, the isolation inner cover 3 has a plurality of closed cells, and a suitable wall thickness of the closed cells can ensure the rigidity and strength of the overall structure of the isolation inner cover 3, and guarantee that the isolation inner cover 3 has good sound insulation and heat insulation performance. The greater the wall thickness of the closed cells is, the poorer the heat insulation performance of the isolation inner cover 3 is, and materials are wasted. The smaller the wall thickness of the closed cells is, the lower the structural rigidity and strength of the isolation inner cover 3 is, and the isolation inner cover 3 is easily deformed. Thus, the isolation inner cover 3 of a suitable thickness can improve the overall performance efficiently and have excellent practicability and economy.

[0036] The isolation inner cover 3 has an internal aperture of D which satisfies 1mm≤D≤6mm. For example, D=2mm, D=3mm, D=5mm. The internal aperture with suitable thickness can ensure that the isolation inner cover 3 has stable structural rigidity and good sound insulation and sound absorption performance. If the internal aperture is too large, the rigidity of the isolation inner cover 3 is poor and the stability will be reduced. If the internal aperture is too small, the sound insulation performance of the isolation inner cover 3 will become poor. Hence, the internal aperture is set to an appropriate size, which can effectively improve the overall performance.

[0037] The isolation inner cover 3 has an internal porosity of A which satisfies 30%≤A≤75%. For example, A=40%, A=50%, A=60%. By setting a suitable internal porosity, it can be ensured that the isolation inner cover 3 has good sound insulation and heat insulation performance, and stable structural rigidity and strength, so that the isolation inner cover 3 can achieve the heat insulation effect on the gas suction and discharge, and lower the noise inside the cylinder head 100 effectively.

[0038] The isolation inner cover 3 has an elasticity modulus of E which satisfies 1.4GPa≤E≤8.0GPa. For example, E=2.3GPa, E=4.2GPa, E=5.8GPa. By setting a suitable elasticity modulus, it can be ensured that the internal performance of the isolation inner cover 3 is stable, so that the overall structure of the isolation inner cover 3 is stable, avoiding excessive deformation of the isolation inner cover 3 under external forces, and improving

the stability of the overall structure of the cylinder head 100. Moreover, the isolation inner cover 3 with a higher elasticity modulus can have better vibration damping performance, absorb the impact energy of the gas on the cylinder head 100, and reduce noise.

[0039] The isolation inner cover 3 has a silicon carbide additive, and the mass fraction of silicon carbide contained therein is B, which satisfies $0.1\% \le B \le 1.1\%$. For example, B=0.4%, B=0.7%, B=1.0%. By adding silicon carbide to the isolation inner cover 3, the rigidity and strength of the isolation inner cover 3 can be improved to ensure excellent stability of the isolation inner cover 3. **[0040]** The present disclosure further proposes a piston compressor.

[0041] The piston compressor according to embodiments of the present disclosure is provided with the cylinder head 100 according to any one of the above embodiments. The isolation inner cover 3 has good heat insulation and sound insulation performance, so that the temperature of the gas sucked by the piston compressor during operation will not be too high, thereby ensuring a stable cooling capacity and higher energy efficiency ratio. Moreover, the isolation inner cover 3 can reduce the vibration impact on the cylinder head 100, generated by the gas entering the accommodating chamber 4, weaken the impact noise, and improve the vibration attenuation effect.

[0042] As illustrated in Fig. 6, the piston compressor further includes a cylinder block 101, a piston 102, a connecting rod 103, a crankshaft 104, a housing assembly 105, a motor stator 106, and a motor rotor 107. A driving motor drives the crankshaft 104 to move, the crankshaft 104 drives the connecting rod 103 to move, the connecting rod 103 drives, by a piston pin, the piston 102 to reciprocate, thereby realizing the gas suction and discharge of the compressor. The cylinder block 101, the piston 102, the connecting rod 103, the crankshaft 104, the motor stator 106, and the motor rotor 107 are all mounted in the housing assembly 105 to make various components of the piston compressor relatively fixed, and create a stable working environment.

[0043] It should be noted that the piston compressor according to the embodiments of the present disclosure can be applied to any refrigeration device such as a refrigerator, a freezer, an air conditioner, a dehumidifier and so on, and the piston compressor is connected to an evaporator, a condenser, a throttle device and the like to constitute a complete refrigeration system. The refrigeration system has good cooling performance and low noise in use.

[0044] Reference throughout this specification to "an embodiment," "some embodiments," "an exemplary embodiment," "an example," "a specific example," or "some examples," means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. The appearances of the above phrases throughout this spec-

ification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.

[0045] Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that any changes, modifications, alternatives and variations can be made in the embodiments without departing from the principle and purpose of the present disclosure. The scope of the present disclosure is defined by claims and the like.

¹⁵ Claims

20

25

- A cylinder head for a piston compressor, comprising: a metal outer cover and an isolation inner cover, the metal outer cover covering the isolation inner cover, and the isolation inner cover being made of a heat insulation material.
- 2. The cylinder head according to claim 1, wherein the isolation inner cover is made of a porous material.
- The cylinder head according to claim 1 or 2, wherein the isolation inner cover is made of a closed-cell foamed aluminum material.
- 30 4. The cylinder head according to any one of claims 1 to 3, wherein the metal outer cover has a groove, and the isolation inner cover is disposed to an inner wall surface of the groove to define an accommodating chamber.
 - **5.** The cylinder head according to any one of claims 1 to 4, wherein the metal outer cover is made of a solid aluminum material.
- 40 **6.** The cylinder head according to any one of claims 1 to 5, wherein the metal outer cover has a mounting table configured to mount the cylinder head.
- 7. The cylinder head according to any one of claims 1 to 6, wherein the isolation inner cover has a thickness of N, and the metal outer cover has a thickness of M, which satisfy 0<N≤M.</p>
 - 8. The cylinder head according to claim 3, wherein a closed cell of the isolation inner cover has a wall thickness of L which satisfies 0.2mm≤L≤0.5mm.
 - 9. The cylinder head according to claim 3, wherein the isolation inner cover has an internal aperture of D which satisfies 1mm≤D≤6mm.
 - 10. The cylinder head according to claim 3, wherein the isolation inner cover has an internal porosity of A

50

5

10

which satisfies 30%≤A≤75%.

11. The cylinder head according to claim 7, wherein the isolation inner cover has an elasticity modulus of E which satisfies 1.4GPa≤E≤8.0GPa.

12. The cylinder head according to claim 3, wherein the isolation inner cover has a silicon carbide additive, and the contained silicon carbide has a mass fraction of B which satisfies 0.1%≤ B≤1.1%.

13. A piston compressor provided with a cylinder head claims 1 to 12.

for a piston compressor according to any one of

15

20

25

30

35

40

45

50

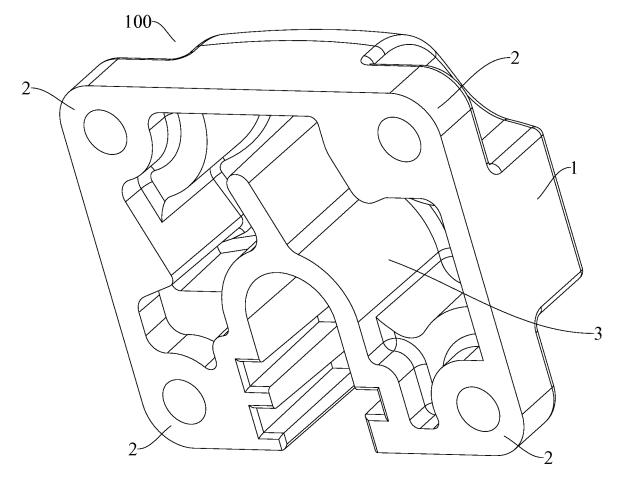


Fig. 1

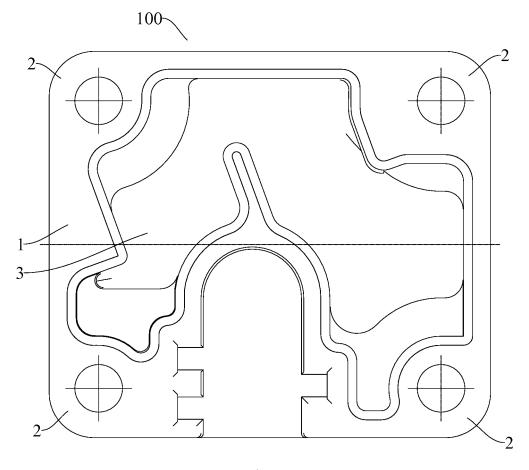



Fig. 2

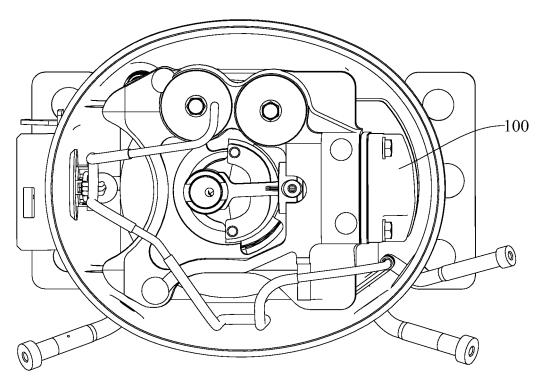


Fig. 4

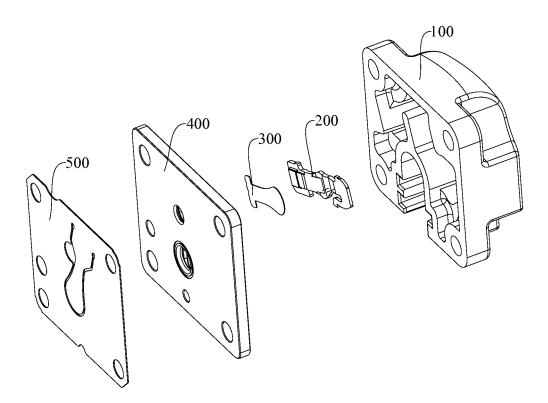


Fig. 5

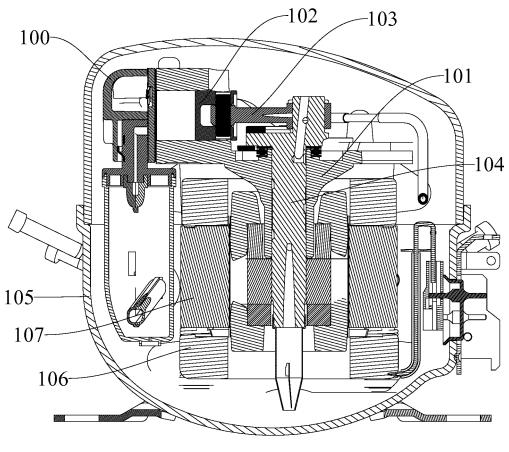


Fig. 6

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2018/098940 CLASSIFICATION OF SUBJECT MATTER F04C 29/06(2006.01)i; F04B 39/12(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) F04B, F04C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) VEN; CNKI; CNABS: 气缸, 发动机, 热, 壳, 噪, 盖, 泡沫铝, 压缩机, 保温, 隔热, 消音, cylinder, engine, heat, housing, noise, cover, foam s aluminum, compresser, heat s preservation, heat s insulation, muffle DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages CN 203301294 U (WANG, QIANG ET AL.) 20 November 2013 (2013-11-20) 1-13 see description, paragraphs 24-31, and figures 1-5 CN 106351843 A (XI'AN JIAOTONG UNIVERSITY) 25 January 2017 (2017-01-25) 1-13 see entire document WO 2008033096 A1 (MATSUSHITA ELECTRIC IND. CO., LTD. ET AL.) 20 March 2008 1-13 (2008-03-20)see entire document CN 203822465 U (WEICHAI POWER CO., LTD.) 10 September 2014 (2014-09-10) 1-13 see entire document CN 105017957 A (HYUNDAI MOTOR COMPANY) 04 November 2015 (2015-11-04) 1-13 see entire document CN 102562298 A (CHEN, MINGHUI) 11 July 2012 (2012-07-11) 1-13 see entire document WO 2013006931 A1 (WHIRLPOOL SA ET AL.) 17 January 2013 (2013-01-17) 1-13 see entire document Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the Special categories of cited documents: t defining the general state of the art which is not considere

-A	to be of particular relevance		principle or theory underlying the invention			
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone			
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination			
"O"	document referring to an oral disclosure, use, exhibition or other		being obvious to a person skilled in the art			
	means	"&"	document member of the same patent family			
"P"	document published prior to the international filing date but later than the priority date claimed					
Date	of the actual completion of the international search	Date	of mailing of the international search report			
	07 March 2019		28 March 2019			
Name	e and mailing address of the ISA/CN	Authorized officer				
N 1	tate Intellectual Property Office of the P. R. China do. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing 00088 China					

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)

Facsimile No. (86-10)62019451

5

10

15

20

25

30

35

40

45

50

55

C.

Category*

X

A

Α

A

Α

Α

Α

International application No.

INTERNATIONAL SEARCH REPORT

PCT/CN2018/098940 DOCUMENTS CONSIDERED TO BE RELEVANT 5 Category* Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages CN 1715674 A (COPELAND CORPORATION) 04 January 2006 (2006-01-04) 1-13 Α see entire document JP 2011196244 A (PANASONIC CORPORATION) 06 October 2011 (2011-10-06) 1-13 10 A see entire document Α CN 107387417 A (GUANGDONG MEIZHI COMPRESSOR CO., LTD.) 24 November 2017 1-13 (2017-11-24) see entire document JP 2012145051 A (DAIKIN INDUSTRIES, LTD.) 02 August 2012 (2012-08-02) 1-13 Α 15 see entire document 20 25 30 35 40 45 50

Form PCT/ISA/210 (second sheet) (January 2015)

cited i	ent document in search report		Publication date (day/month/year)	Patent family member(s)		Publication date (day/month/year)	
CN	203301294	U	20 November 2013		None		
CN	106351843	A	25 January 2017		None		
WO	2008033096	Al	20 March 2008	US	2009155114	A1	18 June 2009
	2000033030	111	20 1/141011 2000	SG	141266		28 April 2008
				JP	2008538231		16 October 2008
				EP	2061969		27 May 2009
				KR	20090054356		29 May 2009
CN	203822465	U	10 September 2014		None		-
CN	105017957	A	04 November 2015	US	9617949	B2	11 April 2017
	100011301		011101011101111011	KR	101558381		07 October 2015
				DE	102014119714		22 October 2015
				US	2015300289		22 October 2015
CN	102562298	Α	11 July 2012		None		
wo	2013006931	A1	17 January 2013	AR	087087	A1	12 February 2014
	2010000001		17 Julium 3 2015	TW	201314047		01 April 2013
				BR	PI1103666		16 July 2013
CN	1715674	A	04 January 2006	KR	20060047887		18 May 2006
	1,150,1	••	0 / January 2000	AU	2005202060		01 December 200
				US	2005274569		15 December 200
				EP	1596067	A1	16 November 200
				BR	PI0503928	A	10 January 2006
				CN	101550939	Α	07 October 2009
				TW	1535935	В	01 June 2016
				CN	101550939	В	09 November 201
				EP	1596067	B1	07 August 2013
				TW	200613645	A	01 May 2006
				TW	201245579	Α	16 November 201
				CN	100513794	C	15 July 2009
				KR	101064160		15 September 201
				TW	I375754		01 November 201
				US	7398855	B2	15 July 2008
JP	2011196244	A	06 October 2011		None		
CN	107387417	A	24 November 2017		None		
JP	2012145051	A	02 August 2012		None		

Form PCT/ISA/210 (patent family annex) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 201810714128 [0001]