(11) **EP 3 620 118 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

11.03.2020 Bulletin 2020/11

(51) Int Cl.:

A61B 17/128 (2006.01)

(21) Application number: 19191225.2

(22) Date of filing: 12.08.2019

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 13.08.2018 US 201862717944 P

06.06.2019 US 201916432964

(71) Applicant: Covidien LP Mansfield, MA 02048 (US)

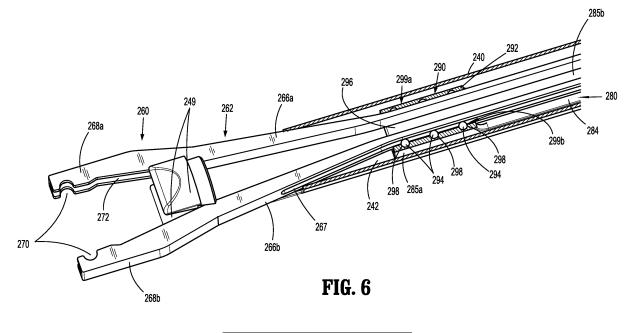
(72) Inventors:

BARIL, Jacob C.
 Norwalk, Connecticut 06851 (US)

PILLETERE, Roy J.
 North Haven, Connecticut 06473 (US)

 THOMAS, Justin New Haven, Connecticut 06512 (US)

DININO, Matthew A.
 Newington, Connecticut 06111 (US)


(74) Representative: Soames, Candida Jane Maschio & Soames IP Limited 30 Carlton Crescent

Southampton SO15 2EW (GB)

(54) ELONGATED ASSEMBLIES FOR SURGICAL CLIP APPLIERS AND SURGICAL CLIP APPLIERS INCORPORATING THE SAME

(57) A surgical clip applier and an elongated assembly thereof. The elongated assembly includes an outer shaft, an end effector assembly extending distally from the outer shaft and including first and second spaced-apart arms having respective first and second jaws disposed at free ends thereof, and an inner drive sleeve disposed within the outer shaft including a bearing assembly slidably disposed about the end effector assembly. The bearing assembly includes first ball bear-

ing(s) and second ball bearing(s) positioned adjacent the first and second spaced-apart arms, respectively. Sliding of the bearing assembly from a proximal position to a distal position rolls the first and second ball bearings about the spaced-apart arms to urge the arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

Description

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/717,944 filed August 13, 2018, the entire disclosure of which is incorporated by reference herein.

BACKGROUND

Technical Field

[0002] The present disclosure relates to surgical instruments. More particularly, the present disclosure relates to elongated assemblies for surgical clip appliers and surgical clip appliers including the same.

Description of Related Art

[0003] Surgical clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures.

[0004] Endoscopic surgical clip appliers having various sizes (e.g., diameters), that are configured to apply a variety of diverse surgical clips, are also known in the art, and are capable of applying a single or multiple surgical clips during an entry to the body cavity. Such surgical clips are typically fabricated from a biocompatible material and are usually compressed over tissue. Once applied to tissue, the compressed surgical clip terminates the flow of fluid therethrough.

SUMMARY

[0005] As detailed herein and shown in the drawing figures, as is traditional when referring to relative positioning on a surgical instrument, the term "proximal" refers to the portion of the apparatus or component thereof which is closer to the user and the term "distal" refers to the portion of the apparatus or component thereof which is further away from the user. Further, to the extent consistent, any or all of the aspects and features detailed herein may be used in conjunction with any or all of the other aspects and features detailed herein.

[0006] Provided in accordance with aspects of the present disclosure is an elongated assembly of a surgical clip applier including an outer shaft, an end effector assembly, and an inner drive sleeve. The end effector assembly is disposed partially within and extends distally from the outer shaft and includes first and second spaced-apart arms and first and second jaws disposed at free ends of the first and second spaced-apart arms,

respectively.

[0007] The inner drive sleeve is disposed within the outer shaft and includes a bearing assembly slidably disposed about the end effector assembly. The bearing assembly includes at least one first ball bearing positioned adjacent the first spaced-apart arm and at least one second ball bearing positioned adjacent the second spaced-apart arm. Sliding of the bearing assembly from a proximal position to a distal position rolls the at least one first ball bearing and the at least one second ball bearing about the first and second spaced-apart arms, respectively, to urge the first and second spaced-apart arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

[0008] In an aspect of the present disclosure, the at least one first ball bearing is positioned to oppose the at least one second ball bearing.

[0009] In another aspect of the present disclosure, the at least one first ball bearing includes a plurality of first ball bearings aligned longitudinally and the at least one second ball bearing includes a plurality of second ball bearings aligned longitudinally and positioned to oppose the plurality of first ball bearings.

[0010] In another aspect of the present disclosure, the first and second spaced-apart arms define respective longitudinally-extending grooves configured to at least partially receive the at least one first ball bearing and the at least one second ball bearing, respectively.

[0011] In still another aspect of the present disclosure, the bearing assembly further includes a ferrule disposed within the inner drive sleeve and defining a longitudinally-extending lumen receiving the first and second spacedapart arms therethrough. The at least one first ball bearing and the at least one second ball bearing are captured by and rotatable relative to the ferrule.

[0012] In yet another aspect of the present disclosure, the first and second spaced-apart arms define inwardly-facing surfaces and outwardly-facing surfaces. In such aspects, the at least one first ball bearing and the at least one second ball bearing are configured to roll along the outwardly-facing surfaces of the first and second spaced-apart arms, respectively.

45 [0013] In still yet another aspect of the present disclosure, the inner drive sleeve defines a rectangular cross-sectional configuration including opposed narrow sides and opposed wide sides, wherein the at least one first ball bearing is disposed adjacent one of the narrow sides,
 50 and wherein the at least one second ball bearing is disposed adjacent the other of the narrow sides.

[0014] In another aspect of the present disclosure, the first and second spaced-apart arms are resiliently flexible from an at-rest position to a flexed position in response to movement of the bearing assembly from the proximal position to the distal position to thereby move the first and second jaws from the spaced-apart position to the approximated position.

[0015] In yet another aspect of the present disclosure, the first and second spaced-apart arms are joined to one another via a proximal base that is fixed relative to the outer shaft.

[0016] In still another aspect of the present disclosure, the elongated assembly further includes a proximal hub disposed at a proximal end of the outer shaft and configured to releasably engage the elongated assembly with a handle assembly.

[0017] Also provided in accordance with aspects of the present disclosure is a surgical clip applier including a handle assembly including a housing and a trigger operably coupled to the housing, and an elongated assembly extending distally from the handle assembly. The elongated assembly may include any of the aspects and features detailed above or otherwise herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Aspects and features of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements and:

FIG. 1 is a front, perspective view of a surgical clip applier provided in accordance with the present disclosure including a handle assembly having an elongated assembly engaged therewith;

FIG. 2 is front, perspective view of the surgical clip applier with the elongated assembly removed from the handle assembly;

FIG. 3A is an enlarged, side view of the handle assembly of the surgical clip applier with portions removed to illustrate the internal components and features therein, wherein the trigger is disposed in an un-actuated position;

FIG. 3B is an enlarged, side view of the handle assembly of the surgical clip applier with portions removed to illustrate the internal components and features therein, wherein the trigger is disposed in an actuated position;

FIG. 4 is a side view of the surgical clip applier with portions removed;

FIG. 5 is a side, perspective view, with portions shown transparent, of a distal portion of the elongated assembly of FIG. 1;

FIG. 6 is a side, perspective, partial longitudinal cross-sectional view of the distal portion of the elongated assembly of FIG. 1;

FIG. 7A is a longitudinal, cross-sectional view of the distal portion of the elongated assembly of FIG. 1; FIG. 7B is an enlarged, longitudinal, cross-sectional view of the area of detail indicated as "7B" in FIG. 7A; FIG. 8 is a perspective, partial cut-away view of the distal portion of another elongated assembly similar to the elongated assembly of FIG. 1 and configured for use with the handle assembly of FIG. 1; and FIG. 9 is a longitudinal, top cross-sectional view of

the distal portion of the elongated assembly of FIG. 8.

DETAILED DESCRIPTION

[0019] Turning to FIGS. 1-4, a surgical clip applier embodying the aspects and features of the present disclosure is shown generally identified by reference numeral 10. Surgical clip applier 10 generally includes a handle assembly 100 and an elongated assembly 200 selectively connectable to handle assembly 100. Handle assembly 100 is configured to operate elongated assembly 200 upon connection thereto, and may be configured as a sterilizable, reusable component such that handle assembly 100 may be repeatedly used with different and/or additional elongated assemblies 200 during the course of one or more surgical procedures. Elongated assembly 200 may be configured as single-use disposable component, limited-use disposable component, or reusable component, depending upon a particular purpose.

[0020] Handle assembly 100 generally includes a housing 110, an actuation mechanism 120 operably associated with housing 110, a latch assembly 160 operably associated with housing 110, and a rotating receiver assembly 180 operably coupled to a distal portion of housing 110. Housing 110 of handle assembly 100 supports and/or encloses the operating components of handle assembly 100 and defines a body portion 111 and a fixed handle portion 112 depending from body portion 111. Body portion 111 of housing 110 includes an internal pivot post 114 extending transversely within body portion 111 and a distal opening 118 through which a proximal end portion of elongated assembly 200 extends when elongated assembly 200 is engaged with handle assembly 100.

[0021] Actuation mechanism 120 is operably supported by housing 110 and includes a trigger 122, a drive bar 130, and a linkage assembly 140. Trigger 122 includes a grasping portion 123, an intermediate pivot portion 124, and a proximal extension 125. Grasping portion 123 of trigger 122 extends downwardly from body portion 111 of housing 110 in opposed relation relative to fixed handle portion 112 of housing 110. Grasping portion 123 is configured to facilitate grasping and manipulation of trigger 122. Intermediate pivot portion 124 of trigger 122 is at least partially disposed within housing 110 and defines a pivot aperture 126 that is configured to receive pivot post 114 of housing 110 so as to enable pivoting of trigger 122 about pivot post 114 and relative to housing 110, e.g., between an un-actuated position, wherein grasping portion 123 of trigger 122 is spaced-apart relative to fixed handle portion 112, and an actuated position, wherein grasping portion 123 of trigger 122 is approximated relative to fixed handle portion 112.

[0022] Proximal extension 125 of trigger 122 is disposed on an opposite side of intermediate pivot portion 124 and, thus, pivot post 114, as compared to grasping portion 123 of trigger 122. As such, pivoting of grasping portion 123 to rotate in one direction, e.g., proximally to-

wards fixed handle portion 112, pivots proximal extension 125 to rotate in the opposite direction, e.g., distally.

[0023] Linkage assembly 140 includes a first linkage 142, a second linkage 144, and a third linkage 146. First linkage 142 is pivotably coupled to proximal extension 125 of trigger 122 towards a first end 143a of first linkage 142. Second and third linkages 144, 146, respectively, are each pivotably coupled to a second end 143b of first linkage 142 at respective first ends 145a, 147a of second and third linkages 144, 146. A second end 145b of second linkage 144 is pivotably coupled to drive bar 130, while a second end 147b of third linkage 146 is pivotably coupled to body portion 111 of housing 110. Thus, the pivot point between first linkage 142 and proximal extension 125 of trigger 122, the pivot point between first linkage 142 and second and third linkages 144, 146, respectively, and the pivot point between second linkage 144 and drive bar 130 are movable pivot points (e.g., movable relative to housing 110), while the pivot point between third linkage 146 and housing 110 is a fixed pivot point (e.g., fixed relative to housing 110).

[0024] Upon actuation of trigger 122, e.g., proximal pivoting of grasping portion 123 of trigger 122, proximal extension 125 is moved in a counter-clockwise direction (from the orientation illustrated in FIG. 3A), thereby urging first linkage 142 towards drive bar 130. This movement of first linkage 142 towards drive bar 130, in turn, urges first ends 145a, 147a of second and third linkages 144, 146, respectively, towards drive bar 130 to, in turn, urge second end 145b of second linkage 144 distally such that drive bar 130 is translated distally through body portion 111 of housing 110. A biasing spring (not shown) may be provided to bias trigger 122 towards an un-actuated positon, thereby biasing drive bar 130 proximally. [0025] Drive bar 130 is slidably disposed within body portion 111 of housing 110 in longitudinal alignment with proximal portion 282 of inner drive sleeve 280 of elongated assembly 200 (see FIG. 4) when elongated assembly 200 is engaged with handle assembly 100 such that distal sliding of drive bar 130 through body portion 111 of housing urges drive bar 130 into contact with proximal portion 282 of inner drive sleeve 280 to thereby translate inner drive sleeve 280 distally, e.g., to apply, form or close a surgical clip supported at end effector assembly 260 of elongated assembly 200, as detailed below.

[0026] Latch assembly 160 is configured to facilitate releasable locking engagement of elongated assembly 200 with handle assembly 100. Latch assembly 160, more specifically, includes a pivoting lever arm 162 operably disposed on and extending into body portion 111 of housing 110. Lever arm 162 includes an engagement finger 164 disposed towards one end thereof and a manipulatable portion 166 disposed towards the other end thereof with a pivot portion 168 disposed therebetween. Thus, upon depression of manipulatable portion 166 into housing 110 from a locked position to an unlocked position, engagement finger 164 is withdrawn upwardly and,

upon release of manipulatable portion 166 and return thereof to the locked position, engagement finger 164 is returned downwardly. A torsion spring (not shown) disposed about pivot portion 168, or other suitable biasing spring in any suitable position, may be provided to bias lever arm 162 towards the locked position, although other configurations are also contemplated.

[0027] Rotating receiver assembly 180 is configured to receive a proximal end portion of elongated assembly 200 and to enable selective rotation thereof relative to housing 110. Rotating receiver assembly 180 includes a rotation knob 182 rotatably coupled to body portion 111 of housing 110 and extending distally therefrom. Rotation knob 182 defines a lumen 184 extending therethrough in communication with distal opening 118 of body portion 111 of housing 110 to enable insertion of a proximal portion of elongated assembly 200 therethrough and into operable engagement within housing 110. Rotation knob 184 defines channels 186 disposed on an interior surface thereof and arranged annularly about lumen 184 to enable rotatable coupling of elongated assembly 200 therewith, as detailed below.

[0028] With reference to FIGS. 4-7B, elongated assembly 200 generally includes a proximal hub 220 (FIG. 4), an elongated shaft 240 extending distally from proximal hub 220, an end effector assembly 260 disposed towards a distal end portion of elongated shaft 240, and an inner drive sleeve 280 slidably disposed through proximal hub 220 and elongated shaft 240 and configured for operable coupling between handle assembly 100 and end effector assembly 260 when elongated assembly 200 is engaged with handle assembly 100 to enable firing of a surgical clip (not shown) about tissue. Elongated assembly 200 further includes a bearing assembly 290 (FIGS. 6-7B) configured to facilitate movement of inner drive sleeve 280 about end effector assembly 260 to thereby facilitate firing a surgical clip (not shown) about tissue, as detailed below.

[0029] Proximal hub 220 is configured for insertion through lumen 184 of rotation knob 182 and into body portion 111 of housing 110. Proximal hub 220 defines an annular recess 222 towards the proximal end thereof and a chamfered proximal edge 224. Thus, upon insertion of proximal hub 220 through lumen 184 of rotation knob 182 and into body portion 111 of housing 110, chamfered proximal edge 224 cams engagement finger 164 of latch assembly 160 over the outer surface of proximal hub 220 until engagement finger 164 is disposed in alignment with annular recess 222, wherein engagement finger 164 falls into engagement within annular recess 222 to engage proximal hub 220 and, thus, elongated assembly 200, with handle assembly 100. As can be appreciated, in order to disengage and remove elongated assembly 200 from handle assembly 100, manipulatable portion 166 of latch assembly 160 is depressed into housing 110 to withdraw engagement finger 164 from annular recess 222 and enable elongated assembly 200 to be pulled distally and removed from handle assembly 100. Proximal hub

220 may further include a lock tab 226 extending along a portion of the length thereof and configured for receipt within one of the channels 186 defined within rotation knob 182 to rotationally fix elongated assembly 200 relative to rotation knob 182 upon insertion therein.

[0030] Elongated shaft 240 extends distally from proximal hub 220 and defines a longitudinal lumen 242 extending therethrough. Elongated shaft 240 further includes a body 244 and a bifurcated distal portion 246 including a pair of radially-opposed flanges 248 extending distally from body 244. Opposed flanges 248 define tissue stops 249 configured to inhibit passage of tissue into the space defined therebetween.

[0031] Continuing with reference to FIGS. 4-7B, end effector assembly 260 of elongated assembly 200 is formed as a monolithic component of a single piece of material (see FIG. 7A), e.g., via stamping or other suitable manufacturing process (although multi-part configurations and/or other manufacturing techniques are also contemplated), and includes a jaws component 262 having a proximal base 264, a pair of spaced-apart arms 266a, 266b extending distally from proximal base 264, and a jaw 268a, 268b disposed at the free distal end of each arm 266a, 266b, respectively.

[0032] Proximal base 264 of jaws component 262 defines pair of apertures 265 extending transversely therethrough and in longitudinal alignment with one another, although greater or fewer apertures or otherwise arranged apertures are also contemplated. Apertures 265 are configured for receipt of pins 250, 252 which extend transversely through elongated shaft 240 and at least partially into opposed pairs of apertures 254, 256, respectively, defined transversely through elongated shaft 240. The portions of pins 250, 252 extending into or through apertures 254, 256 may be welded to elongated shaft 240 or otherwise engaged thereto to fix pins 250, 252 and, thus, proximal base 264 of jaws component 262 relative to elongated shaft 240.

[0033] Spaced-apart arms 266a, 266b of jaws component 262 extend distally from proximal base 264 to jaws 268a, 268b, respectively, and are resiliently flexible (or otherwise movable) from an at-rest position, wherein spaced-apart arms 266a, 266b are angled apart from one another to define an increasing distance therebetween in the proximal-to-distal direction, to a flexed position, wherein spaced-apart arms 266a, 266b are closer to one another and disposed in a more-parallel orientation or angled towards one another. Spaced-apart arms 266a, 266b are oriented 90 degrees offset from flanges 248 of elongated shaft 240 to enable the portions of spacedapart arms 266a, 266b disposed between flanges 248 to extend outwardly beyond the outer dimension of elongated shaft 240 in the at-rest position thereof without interference from flanges 248. This configuration also positions tissue stops 249 on the lateral sides of spacedapart arms 266a, 266 to inhibit tissue ingress into the space defined between spaced-apart arms 266a, 266b. In embodiments, arms 266a, 266b may define longitudinally-extending grooves 267 on the opposed exterior surfaces thereof along at least a portion of the longitudinal length thereof. As detailed below, each groove 267 is configured to receive one or more ball bearings 294 and serves as a guide track for ball bearings 294 along arms 266a, 266b as inner drive sleeve 280 and bearing assembly 290 thereof move about jaws component 262.

[0034] Jaws 268a, 268b, as noted above, are disposed at the free distal ends of spaced-apart arms 266a, 266b, respectively. Jaws 268a, 268b may define transverse notches 270, longitudinal slots 272, and/or other suitable features to facilitate retention of legs of a surgical clip (not shown) therein. Jaws 268a, 268b are moved from a spaced-apart position to an approximated position upon movement of spaced-apart arms 266a, 266b from the atrest position to the flexed position to thereby form a surgical clip held between jaws 268a, 268b about tissue disposed between jaws 268a, 268b. End effector assembly 260, in embodiments, may be configured to form surgical clips similar to those shown and described in U.S. Patent No. 4,834,096, the entire contents of which is hereby incorporated herein by reference.

[0035] Inner drive sleeve 280 defines a proximal portion 282 (FIG. 4) and a distal portion 284. Proximal portion 282 of inner drive sleeve 280 is configured for positioning adjacent a distal end of drive bar 130 of handle assembly 100 when elongated assembly 200 is engaged with handle assembly 100 (see FIG. 4) such that, as noted above, distal translation of drive bar 130 through housing 110 (e.g., in response to actuation of trigger 122), urges drive bar 130 into contact with proximal portion 2828 of inner drive sleeve 280 to translate inner drive sleeve 280 distally through elongated shaft 240 of elongated assembly 200. In embodiments, proximal portion 282 of inner drive sleeve 280 may be configured to releasably engage the distal end of drive bar 130.

[0036] Referring still to FIGS. 4-7B, distal portion 284 of inner drive sleeve 280 includes bearing assembly 290 disposed therein towards the distal end thereof, is slidably disposed about at least a proximal portion of jaws component 262 of end effector assembly 260, and defines a rectangular transverse cross-sectional configuration having a pair of narrow sides 285a and a pair of wide sides 285b. Opposed longitudinally-extending slots 286 are defined through wide sides 285b of distal portion 284 of inner drive sleeve 280 in alignment with one another. Slots 286 enable passage of pins 250, 252 therethrough while still enabling sliding of distal portion 284 of inner drive sleeve 280 through elongated shaft 240 and about end effector assembly 260. Distal portion 284 of inner drive sleeve 280 is oriented such that spaced-apart arms 266a, 266b of jaws component 262 are disposed adjacent opposed narrow sides 285a of distal portion 284 with, in embodiments, the width of opposed narrow sides 285a generally approximating the width of spaced-apart arms 266a, 266b to inhibit relative lateral motion between spaced-apart arms 266a, 266b, thereby inhibiting splay between jaws 268a, 268b.

40

40

45

[0037] Wide sides 285b of distal portion 284 of inner drive sleeve 280 define heights greater than the minimum distance between spaced-apart arms 266a, 266b but less than the maximum distance between spaced-apart arms 266a, 266b such that distal sliding of distal portion 284 of inner drive sleeve 280 about jaws component 262, e.g., in response to actuation of trigger 122 (FIGS. 1-4), moves bearing assembly 290 about the exterior surfaces of spaced-apart arms 266a, 266b to urge spaced-apart arms 266a, 266b towards one another from the at-rest position towards the flexed position, thereby moving jaws 268a, 268b from the spaced-apart position towards the approximated position to form or close a surgical clip positioned therebetween about tissue disposed between jaws 268a, 268b. Upon release or return of trigger 122 (FIG. 1), inner drive sleeve 280 is returned proximally, allowing spaced-apart arms 266a, 266b to resiliently return towards the at-rest position, thereby returning jaws 268a, 268b towards the spaced-apart position to enable loading of a subsequent surgical clip for formation or closing about tissue. A biasing spring (not shown) associated with elongated assembly 200 may be provided to bias inner drive sleeve 280 proximally such that, upon release of trigger 122 (FIGS. 1-4), inner drive sleeve 280 is returned proximally. Other suitable biasing configurations are also contemplated.

[0038] Bearing assembly 290, as noted above, is disposed within distal portion 284 of inner drive sleeve 280 and is configured to move about the exterior surfaces of spaced-apart arms 266a, 266b to urge spaced-apart arms 266a, 266b from the at-rest position towards the flexed position. Bearing assembly 290 includes a ferrule 292 and a plurality of ball bearings 294. Ferrule 292 is engaged with, formed as part of, or otherwise disposed within distal portion 284 of inner drive sleeve 280 towards the distal end thereof. Ferrule 292 defines a longitudinal lumen 296 extending therethrough that receives spaced-apart arms 266a, 266b of jaws component 262 and, similarly as with distal portion 284 of inner drive sleeve 280, defines a rectangular cross-sectional configuration of like orientation.

[0039] Ball bearings 294 are captured by ferrule 292 but remain free to rotate relative to ferrule 292 and, thus inner drive sleeve 280. A portion of each ball bearing 294 protrudes inwardly through a respective opening 298 defined on the interior surface (surrounding longitudinal lumen 296) of ferrule 292 and into longitudinal lumen 296. Alternatively, ball bearings 294 may be captured by ferrule 292 in any other suitable manner such that ball bearings 294 remain rotatable relative to ferrule 292 and a portion of each ball bearing 294 extends into longitudinal lumen 296. In other embodiments, ball bearings are captured cooperatively between ferrule 292 and jaws component 262.

[0040] Ball bearings 294 may be arranged in any suitable manner such as, for example, in two groups wherein a first group 299a of ball bearings 294 (including one or more ball bearings 294) is aligned longitudinally along a

first side of bearing assembly 290 and a second group 299b of ball bearings 294 (including one or more other ball bearings 294) is aligned longitudinally along a second, opposite side of bearing assembly 290 such that ball bearings 294 protrude into longitudinal lumen 296 from opposing sides thereof. More specifically, first group 299a of ball bearings 294 may be arranged along one of the narrow sides 285a of inner drive sleeve 280 while second group 299b of ball bearings 294 is arranged along the opposite narrow side 285a of inner drive sleeve 280. In embodiments, first and second groups 299a, 299b each include a plurality of ball bearings 294 aligned longitudinally or otherwise arranged. In embodiment where spaced-apart arms 266a, 266b of jaws component 262 define longitudinally-extending grooves 267, the first group 299a of ball bearings 294 may be received within the groove 267 of one of the spaced-apart arms 266a while the second group 299b of ball bearings 294 is received within the groove 267 of the other spaced-apart arm 266b.

[0041] As noted above, in use, distal sliding of distal portion 284 of inner drive sleeve 280 about jaws component 262, e.g., in response to actuation of trigger 122 (FIG. 1), moves bearing assembly 290 about the exterior surfaces of spaced-apart arms 266a, 266b to urge spaced-apart arms 266a, 266b towards one another from the at-rest position towards the flexed position to form or close a surgical clip positioned between jaws 268a, 268b about tissue. More specifically, as distal portion 284 of inner drive sleeve 280 is moved distally about spacedapart arms 266a, 266b, ball bearings 294 roll along the exterior surface of spaced-apart arms 266a, 266b and relative to ferrule 292 (and, thus, inner drive sleeve 280) to urge spaced-apart arms 266a, 266b towards one another. Ball bearings 294, by rolling along spaced-apart arms 266a, 266b and relative to ferrule 292, help reduce friction during actuation, thereby enabling a smoother actuation, reducing the actuation force, enabling greater tactile feedback at trigger 122 (FIG. 1) during actuation, and increasing longevity. In addition, the receipt of first and second groups 299a, 299b of ball bearings 294 within grooves 267 of spaced-apart arms 266a, 266b, respectively, establishes a guide track to help maintain alignment of arms 266a, 266b and, thus, jaws 268a, 268b during actuation.

[0042] Turning to FIGS. 8 and 9, another embodiment of an elongated assembly provided in accordance with the present disclosure and configured for use with handle assembly 100 (FIGS. 1-3B) as part of a surgical clip applier 10 (FIG. 1) is shown generally identified by reference numeral 300. Elongated assembly 300 may be similar to or include any of the features of elongated assembly 200 (FIGS. 1-7B), except as specifically contradicted below. [0043] Elongated assembly 300 generally includes a proximal hub (not shown, similar to proximal hub 220 of elongated assembly 200 (FIGS. 4-5)), an elongated shaft 340 extending distally from the proximal hub, an end effector assembly 360 disposed towards a distal end por-

tion of elongated shaft 340 and extending distally therefrom, and an inner drive sleeve 380 slidably disposed through the proximal hub and elongated shaft 340 and configured for operable coupling between handle assembly 100 (FIG. 1) and end effector assembly 360 when elongated assembly 300 is engaged with handle assembly 100 (FIG. 1) to enable firing of a surgical clip (not shown) about tissue. Elongated assembly 300 further includes a bearing assembly 390 configured to facilitate movement of inner drive sleeve 380 about end effector assembly 360 to thereby facilitate firing a surgical clip (not shown) about tissue, as detailed below.

[0044] Elongated shaft 340 extends distally from the proximal hub and defines a longitudinal lumen 342 extending therethrough. Elongated shaft 340 further includes a bifurcated distal portion 346 including a pair of tissue stops 349 similarly as detailed above with respect to elongated assembly 200 (FIGS. 4-5).

[0045] End effector assembly 360 of elongated assembly 300 is similar to end effector assembly 260 of elongated assembly 200 (FIGS. 4-7B) and generally includes a jaws component 362 having a proximal base (not shown), a pair of spaced-apart arms 366a, 366b extending distally from the proximal base, and a jaw 368a, 368b disposed at the free distal end of each arm 366a, 366b, respectively. Spaced-apart arms 366a, 366b define generally smooth and flat (within manufacturing, material, and use tolerances) opposed exterior surfaces 367a, 367b.

[0046] Inner drive sleeve 380 defines a proximal portion (not shown, similar to proximal portion 282 of inner drive sleeve 280 (FIG. 4)) and a distal portion 384 and is similar to inner drive sleeve 280 (FIG. 4) except for the configuration of the respective bearing assemblies 290 (FIGS. 7A-7B), 390 thereof, as detailed below. Distal portion 384 of inner drive sleeve 380 includes bearing assembly 390 disposed towards and, in embodiments, at the distal end thereof. Distal portion 384 of inner drive assembly 380 is slidably disposed about at least a proximal portion of jaws component 362 of end effector assembly 360, and defines a rectangular transverse crosssectional configuration having a pair of narrow sides 385a and a pair of wide sides 385b. Distal portion 384 of inner drive sleeve 380 is oriented such that spaced-apart arms 366a, 366b of jaws component 362 are disposed adjacent opposed narrow sides 385a of distal portion 384.

[0047] Bearing assembly 390, as noted above, is disposed towards and, in embodiments, at the distal end of distal portion 384 of inner drive sleeve 380. Bearing assembly 390 includes a pair of spaced-apart posts 392a, 392b and a pair of bearing rollers 394a, 394b, with each bearing roller 394a, 394b disposed about and rotatable relative to one of the posts 392a, 392b, respectively. Posts 392a, 392b are mounted adjacent and extend along narrow sides 385a of distal portion 384 of inner drive sleeve 380 and extend between wide sides 385b of distal portion 384 of inner drive sleeve 380 in generally parallel and spaced-apart relation relative to one another.

Bearing rollers 394a, 394b are rotatably disposed about posts 392a, 392b and similarly extend along narrow sides 385a of distal portion 384 of inner drive sleeve 380 and between wide sides 385b of distal portion 384 of inner drive sleeve 380 in generally parallel and spaced-apart relation relative to one another. Jaws component 362 extends between the bearing rollers 394a, 394b.

[0048] As a result of the above-detailed position and orientation of bearing rollers 394a, 394b, spaced-apart arms 366a, 366b of jaws component 362 of end effector assembly 360 extend between bearing rollers 394a, 394b with opposed exterior surfaces 367a, 367b of spacedapart arms 366a, 366b abutting or, in some positions, in close proximity to bearing rollers 394a, 394b, respectively. In use, distal sliding of distal portion 384 of inner drive sleeve 380 about jaws component 362, e.g., in response to actuation of trigger 122 (FIG. 1), moves bearing assembly 390 about the exterior surfaces 367a, 367b of spaced-apart arms 366a, 366b to urge spaced-apart arms 366a, 366b towards one another from the at-rest position towards the flexed position, thereby moving jaws 368a, 368b from the spaced-apart position towards the approximated position to form or close a surgical clip positioned therebetween about tissue disposed between jaws 368a, 368b. More specifically, as distal portion 384 of inner drive sleeve 380 is slid distally, bearing rollers 394a, 394b contact and roll along opposed exterior surfaces 367a, 367b of spaced-apart arms 366a, 366b (while rotating about posts 392a, 392b relative to inner drive sleeve 380) to urge spaced-apart arms 366a, 366b towards one another. Bearing rollers 394a, 394b, by rolling along spaced-apart arms 366a, 366b, help reduce friction during actuation, thereby enabling a smoother actuation, reducing the actuation force, enabling greater tactile feedback at trigger 122 (FIG. 1) during actuation, and increasing longevity.

[0049] It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

[0050] The invention may be described by reference to the following numbered paragraphs:-

1. An elongated assembly of a surgical clip applier, comprising:

an outer shaft;

an end effector assembly disposed partially within and extending distally from the outer

15

shaft, the end effector assembly including first and second spaced-apart arms and first and second jaws disposed at free ends of the first and second spaced-apart arms, respectively; and

an inner drive sleeve disposed within the outer shaft including a bearing assembly slidably disposed about the end effector assembly, the bearing assembly including at least one first ball bearing positioned adjacent the first spacedapart arm and at least one second ball bearing positioned adjacent the second spaced-apart arm, wherein sliding of the bearing assembly from a proximal position to a distal position rolls the at least one first ball bearing and the at least one second ball bearing about the first and second spaced-apart arms, respectively, to urge the first and second spaced-apart arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

- 2. The elongated assembly according to paragraph 1, wherein the at least one first ball bearing is positioned to oppose the at least one second ball bearing.

 3. The elongated assembly according to paragraph 1, wherein the at least one first ball bearing includes a plurality of first ball bearings aligned longitudinally and wherein the at least one second ball bearing includes a plurality of second ball bearings aligned longitudinally and positioned to oppose the plurality
- 4. The elongated assembly according to paragraph 1, wherein the first and second spaced-apart arms define respective longitudinally-extending grooves configured to at least partially receive the at least one first ball bearing and the at least one second ball bearing, respectively.

of first ball bearings.

- 5. The elongated assembly according to paragraph 1, wherein the bearing assembly further includes a ferrule disposed within the inner drive sleeve and defining a longitudinally-extending lumen receiving the first and second spaced-apart arms therethrough, wherein the at least one first ball bearing and the at least one second ball bearing are captured by and rotatable relative to the ferrule.
- 6. The elongated assembly according to paragraph 1, wherein the first and second spaced-apart arms define inwardly-facing surfaces and outwardly-facing surfaces, the at least one first ball bearing and the at least one second ball bearing configured to roll along the outwardly-facing surfaces of the first and second spaced-apart arms, respectively.
- 7. The elongated assembly according to paragraph 1, wherein the inner drive sleeve defines a rectangular cross-sectional configuration including opposed narrow sides and opposed wide sides, where-

in the at least one first ball bearing is disposed adjacent one of the narrow sides, and wherein the at least one second ball bearing is disposed adjacent the other of the narrow sides.

- 8. The elongated assembly according to paragraph 1, wherein the first and second spaced-apart arms are resiliently flexible from an at-rest position to a flexed position in response to movement of the bearing assembly from the proximal position to the distal position to thereby move the first and second jaws from the spaced-apart position to the approximated position.
- 9. The elongated assembly according to paragraph 1, wherein the first and second spaced-apart arms are joined to one another via a proximal base, the proximal base fixed relative to the outer shaft.
- 10. The elongated assembly according to paragraph 1, further comprising a proximal hub disposed at a proximal end of the outer shaft, the proximal hub configured to releasably engage the elongated assembly with a handle assembly.
- 11. A surgical clip applier, comprising:

a handle assembly including a housing and a trigger operably coupled to the housing; an elongated assembly extending distally from the handle assembly, the elongated assembly including:

an outer shaft;

an end effector assembly disposed partially within and extending distally from the outer shaft, the end effector assembly including first and second spaced-apart arms and first and second jaws disposed at free ends of the first and second spaced-apart arms, respectively; and

an inner drive sleeve disposed within the outer shaft including a bearing assembly slidably disposed about the end effector assembly, the bearing assembly including at least one first ball bearing positioned adjacent the first spaced-apart arm and at least one second ball bearing positioned adjacent the second spaced-apart arm, wherein actuation of the trigger slides the bearing assembly from a proximal position to a distal position rolling the at least one first ball bearing and the at least one second ball bearing about the first and second spaced-apart arms, respectively, to urge the first and second spaced-apart arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

20

25

35

40

45

50

55

12. The surgical clip applier according to paragraph 11, wherein the at least one first ball bearing is positioned to oppose the at least one second ball bearing

13. The surgical clip applier according to paragraph 11, wherein the at least one first ball bearing includes a plurality of first ball bearings aligned longitudinally and wherein the at least one second ball bearing includes a plurality of second ball bearings aligned longitudinally and positioned to oppose the plurality of first ball bearings.

14. The surgical clip applier according to paragraph 11, wherein the first and second spaced-apart arms define respective longitudinally-extending grooves configured to at least partially receive the at least one first ball bearing and the at least one second ball bearing, respectively.

15. The surgical clip applier according to paragraph 11, wherein the bearing assembly further includes a ferrule disposed within the inner drive sleeve and defining a longitudinally-extending lumen receiving the first and second spaced-apart arms therethrough, wherein the at least one first ball bearing and the at least one second ball bearing are captured by and rotatable relative to the ferrule.

16. The surgical clip applier according to paragraph 11, wherein the first and second spaced-apart arms define inwardly-facing surfaces and outwardly-facing surfaces, the at least one first ball bearing and the at least one second ball bearing configured to roll along the outwardly-facing surfaces of the first and second spaced-apart arms, respectively.

17. The surgical clip applier according to paragraph 11, wherein the inner drive sleeve defines a rectangular cross-sectional configuration including opposed narrow sides and opposed wide sides, wherein the at least one first ball bearing is disposed adjacent one of the narrow sides, and wherein the at least one second ball bearing is disposed adjacent the other of the narrow sides.

18. The surgical clip applier according to paragraph 11, wherein the first and second spaced-apart arms are resiliently flexible from an at-rest position to a flexed position in response to movement of the bearing assembly from the proximal position to the distal position to thereby move the first and second jaws from the spaced-apart position to the approximated position.

19. The surgical clip applier according to paragraph 11, wherein the first and second spaced-apart arms are joined to one another via a proximal base, the proximal base fixed relative to the outer shaft.

20. The surgical clip applier according to paragraph 11, wherein the elongated assembly further includes a proximal hub disposed at a proximal end of the outer shaft, the proximal hub configured to releasably engage the elongated assembly with the handle assembly.

Claims

 An elongated assembly of a surgical clip applier, comprising:

an outer shaft;

an end effector assembly disposed partially within and extending distally from the outer shaft, the end effector assembly including first and second spaced-apart arms and first and second jaws disposed at free ends of the first and second spaced-apart arms, respectively; and

an inner drive sleeve disposed within the outer shaft including a bearing assembly slidably disposed about the end effector assembly, the bearing assembly including at least one first ball bearing positioned adjacent the first spacedapart arm and at least one second ball bearing positioned adjacent the second spaced-apart arm, wherein sliding of the bearing assembly from a proximal position to a distal position rolls the at least one first ball bearing and the at least one second ball bearing about the first and second spaced-apart arms, respectively, to urge the first and second spaced-apart arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

- 2. The elongated assembly according to claim 1, wherein the at least one first ball bearing is positioned to oppose the at least one second ball bearing.
- 3. The elongated assembly according to claim 1 or claim 2, wherein the at least one first ball bearing includes a plurality of first ball bearings aligned longitudinally and wherein the at least one second ball bearing includes a plurality of second ball bearings aligned longitudinally and positioned to oppose the plurality of first ball bearings.
- 4. The elongated assembly according to any preceding claim, wherein the first and second spaced-apart arms define respective longitudinally-extending grooves configured to at least partially receive the at least one first ball bearing and the at least one second ball bearing, respectively.
- 5. The elongated assembly according to any preceding cliaim, wherein the bearing assembly further includes a ferrule disposed within the inner drive sleeve and defining a longitudinally-extending lumen receiving the first and second spaced-apart arms therethrough, wherein the at least one first ball bearing and the at least one second ball bearing are captured by and rotatable relative to the ferrule.

20

35

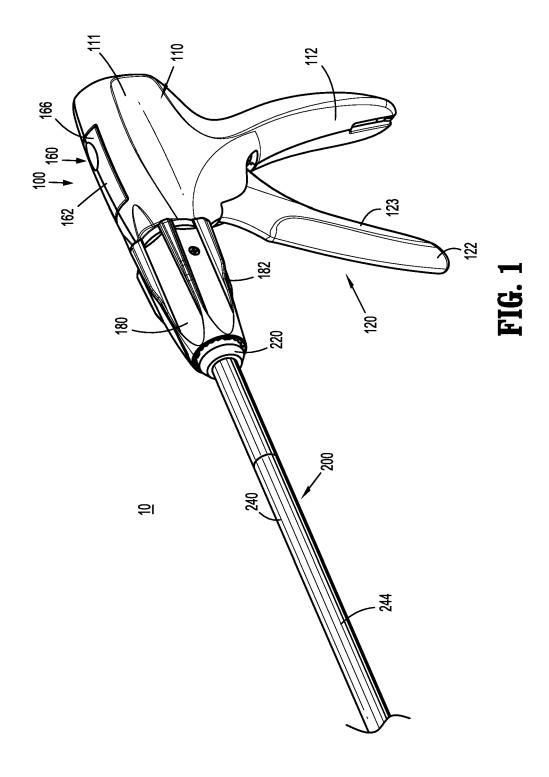
45

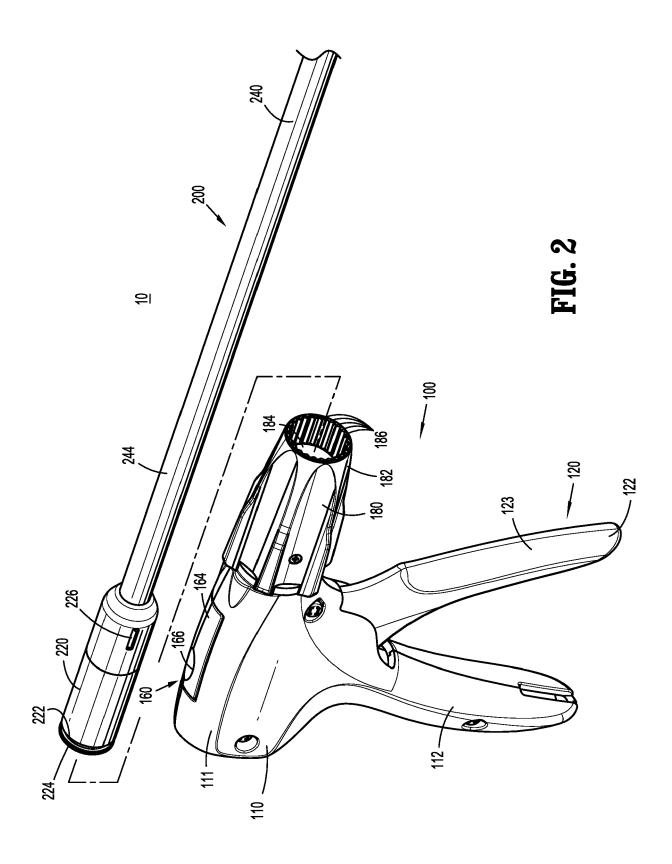
50

- 6. The elongated assembly according to any preceding claim, wherein the first and second spaced-apart arms define inwardly-facing surfaces and outwardlyfacing surfaces, the at least one first ball bearing and the at least one second ball bearing configured to roll along the outwardly-facing surfaces of the first and second spaced-apart arms, respectively.
- 7. The elongated assembly according to any preceding claim, wherein the inner drive sleeve defines a rectangular cross-sectional configuration including opposed narrow sides and opposed wide sides, wherein the at least one first ball bearing is disposed adjacent one of the narrow sides, and wherein the at least one second ball bearing is disposed adjacent the other of the narrow sides.
- 8. The elongated assembly according to any preceding claim, wherein the first and second spaced-apart arms are resiliently flexible from an at-rest position to a flexed position in response to movement of the bearing assembly from the proximal position to the distal position to thereby move the first and second jaws from the spaced-apart position to the approximated position; and/or wherein the first and second spaced-apart arms are joined to one another via a proximal base, the proximal base fixed relative to the outer shaft.
- 9. The elongated assembly according to any preceding claim, further comprising a proximal hub disposed at a proximal end of the outer shaft, the proximal hub configured to releasably engage the elongated assembly with a handle assembly.
- **10.** A surgical clip applier, comprising:

a handle assembly including a housing and a trigger operably coupled to the housing; an elongated assembly extending distally from the handle assembly, the elongated assembly including:

an outer shaft;


an end effector assembly disposed partially within and extending distally from the outer shaft, the end effector assembly including first and second spaced-apart arms and first and second jaws disposed at free ends of the first and second spaced-apart arms, respectively; and


an inner drive sleeve disposed within the outer shaft including a bearing assembly slidably disposed about the end effector assembly, the bearing assembly including at least one first ball bearing positioned adjacent the first spaced-apart arm and at least one second ball bearing positioned adja-

cent the second spaced-apart arm, wherein actuation of the trigger slides the bearing assembly from a proximal position to a distal position rolling the at least one first ball bearing and the at least one second ball bearing about the first and second spaced-apart arms, respectively, to urge the first and second spaced-apart arms towards one another, thereby moving the first and second jaws from a spaced-apart position to an approximated position to apply a surgical clip about tissue disposed between the first and second jaws.

- 11. The surgical clip applier according to claim 10, wherein the at least one first ball bearing is positioned to oppose the at least one second ball bearing; preferably wherein the at least one first ball bearing includes a plurality of first ball bearings aligned longitudinally and wherein the at least one second ball bearing includes a plurality of second ball bearings aligned longitudinally and positioned to oppose the plurality of first ball bearings.
- 25 12. The surgical clip applier according to claim 10 or claim 11, wherein the first and second spaced-apart arms define respective longitudinally-extending grooves configured to at least partially receive the at least one first ball bearing and the at least one second ball bearing, respectively.
 - 13. The surgical clip applier according to any of claims 10 to 12, wherein the bearing assembly further includes a ferrule disposed within the inner drive sleeve and defining a longitudinally-extending lumen receiving the first and second spaced-apart arms therethrough, wherein the at least one first ball bearing and the at least one second ball bearing are captured by and rotatable relative to the ferrule; and/or wherein the first and second spaced-apart arms define inwardly-facing surfaces and outwardly-facing surfaces, the at least one first ball bearing and the at least one second ball bearing configured to roll along the outwardly-facing surfaces of the first and second spaced-apart arms, respectively.
 - 14. The surgical clip applier according to any of claims 10 to 13, wherein the inner drive sleeve defines a rectangular cross-sectional configuration including opposed narrow sides and opposed wide sides, wherein the at least one first ball bearing is disposed adjacent one of the narrow sides, and wherein the at least one second ball bearing is disposed adjacent the other of the narrow sides.
 - **15.** The surgical clip applier according to any of claims 10 to 14, wherein the first and second spaced-apart arms are resiliently flexible from an at-rest position

to a flexed position in response to movement of the bearing assembly from the proximal position to the distal position to thereby move the first and second jaws from the spaced-apart position to the approximated position; and/or wherein the first and second spaced-apart arms are joined to one another via a proximal base, the proximal base fixed relative to the outer shaft.; and/or wherein the elongated assembly further includes a proximal hub disposed at a proximal end of the outer shaft, the proximal hub configured to releasably engage the elongated assembly with the handle assembly.

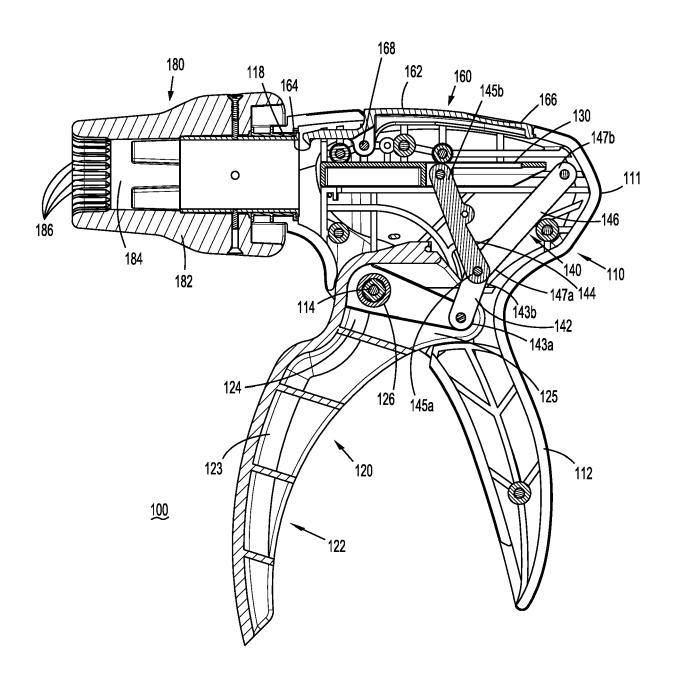


FIG. 3A

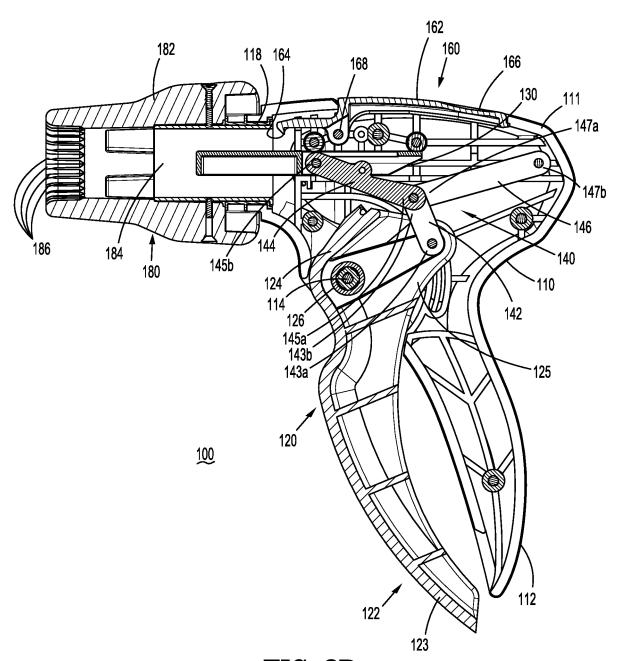
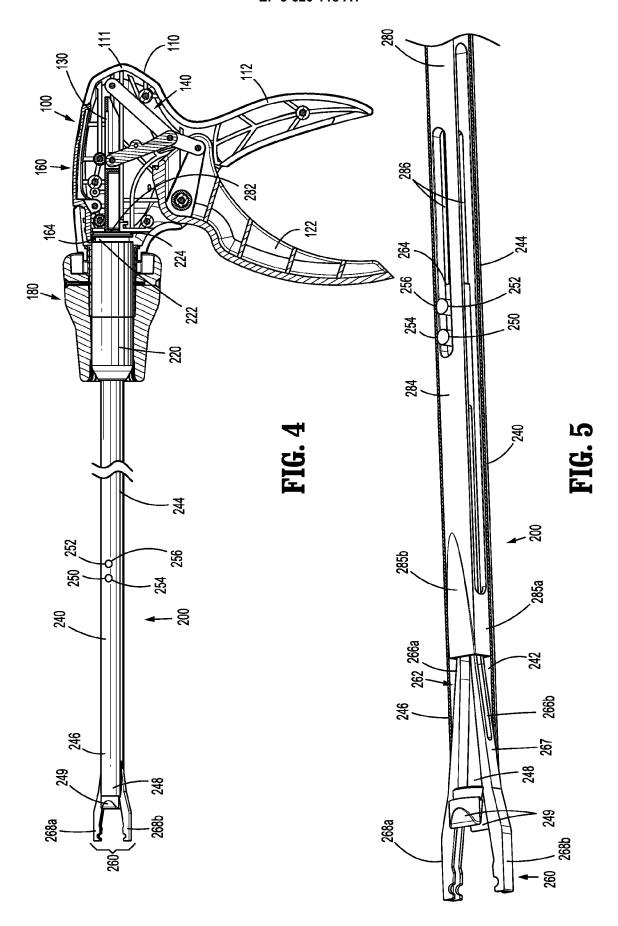
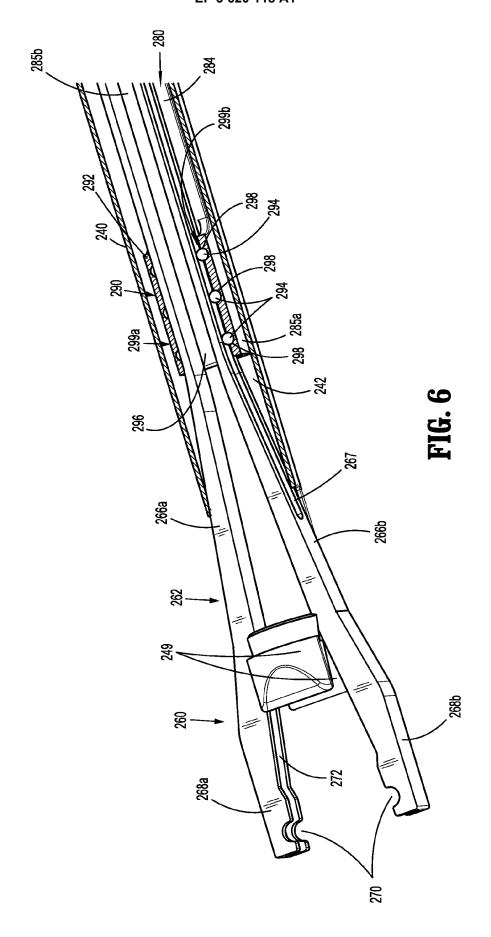
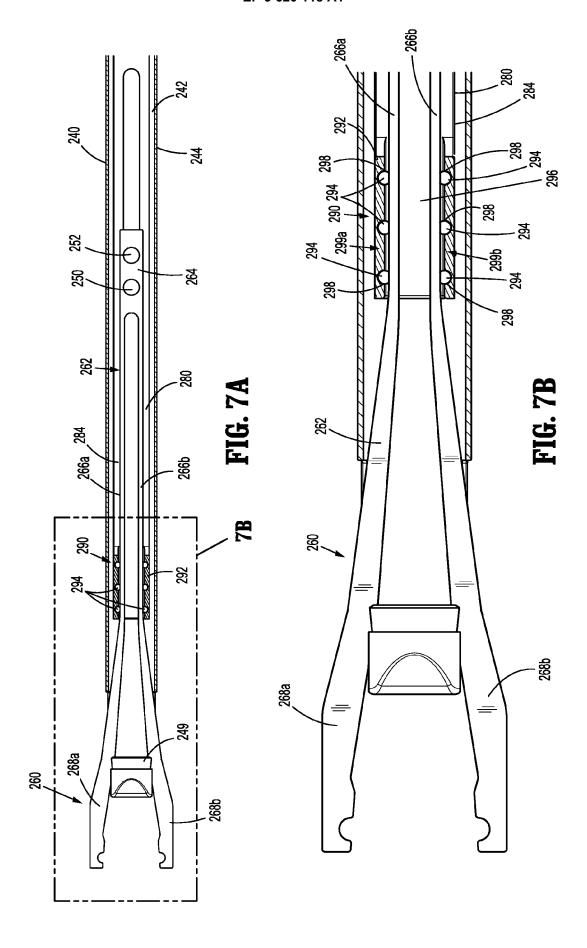
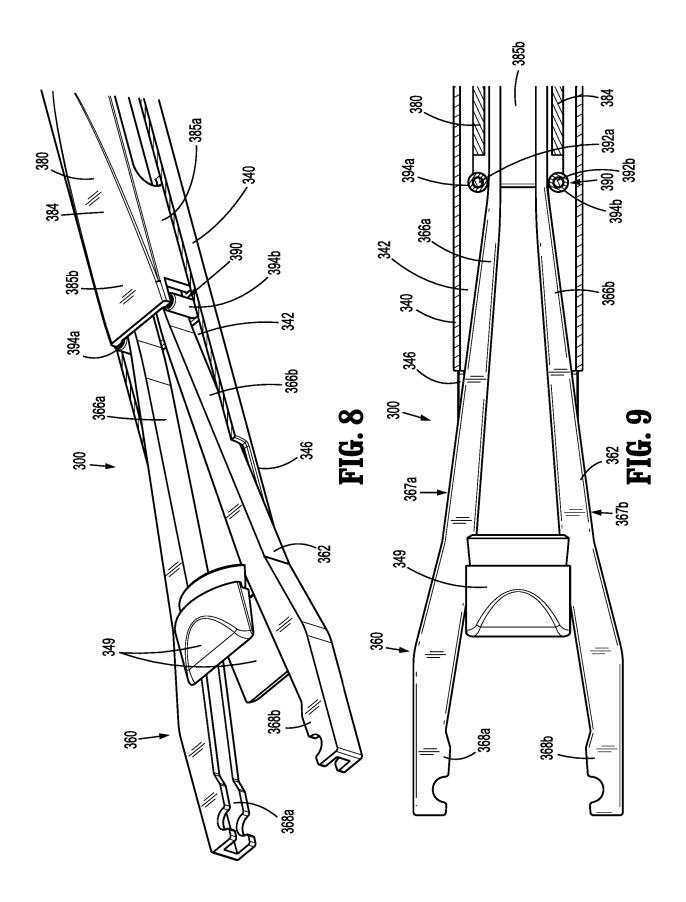






FIG. 3B

Category

Α

Α

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

US 2017/049446 A1 (SCHOLTEN THOMAS [DE] ET 1,10 AL) 23 February 2017 (2017-02-23) * abstract; figures 4,5,6A *

Citation of document with indication, where appropriate,

of relevant passages

US 9 468 440 B2 (AESCULAP AG [DE]) 18 October 2016 (2016-10-18)

* column 6; figures 1,6A-6B'*

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone
Y : particularly relevant if combined with another
document of the same category

A: technological background
O: non-written disclosure
P: intermediate document

Application Number

EP 19 19 1225

CLASSIFICATION OF THE APPLICATION (IPC)

INV. A61B17/128

Relevant

1,10

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application

& : member of the same patent family, corresponding

L: document cited for other reasons

document

0		

5

15

20

25

30

35

40

45

50

55

1503 03.82

EPO FORM

04C01)		Munich	30 January 2		Ass	ion, Jean-(Charles
1		The present search report has Place of search	earch		Examiner		
-		The propert agerals report has	boon draws up for all alcies				
	Α	EP 1 908 414 A2 (TY 9 April 2008 (2008 * paragraph [0081];		,10			
	Α	US 2005/006429 A1 (AL) 13 January 2005 * paragraph [0088]	 (WALES KENNETH S [US 5 (2005-01-13) ; figure 24 *	S] ET 1	,10	A61B	
	Α	21 November 2012 (2	/CO HEALTHCARE [US]) 2012-11-21) , [0035]; figures		,10	TECHNICAL FII SEARCHED	ELDS (IPC)
	Α	EP 2 606 835 A2 (C0 26 June 2013 (2013- * abstract; figures	-06-26)	1	,10		
	Α	[CN]) 11 May 2017 (DEVICES TECH CO LTD		,10		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 19 1225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

30-01-2020

С	Patent document cited in search report		Publication date	Patent family member(s)			Publication date
US	S 2017049446	A1	23-02-2017	CN DE EP US WO	102014207971 3136991	A1 A1	22-02-2017 29-10-2015 08-03-2017 23-02-2017 05-11-2015
Ü	S 9468440	В2	18-10-2016	AU DE EP JP JP US WO	5963782 2014514001	A1 A1 B2 A	12-09-2013 04-10-2012 05-02-2014 03-08-2016 19-06-2014 02-01-2014 04-10-2012
W	2017075752	A1	11-05-2017	AU CA CN EP JP US WO	3370625 6626197	A1 A A1 B2 A	05-04-2018 11-05-2017 31-07-2018 12-09-2018 25-12-2019 22-11-2018 23-08-2018 11-05-2017
Ei	P 2606835	A2	26-06-2013	AU CA CN CN EP JP US	2606835	A1 A A A2 A1	04-07-2013 19-06-2013 19-06-2013 25-07-2017 26-06-2013 27-06-2013 21-11-2013 01-09-2016
Ei	P 2524660	A1	21-11-2012	AU CA EP JP JP US US	2012202874 2776755 2524660 5404849 2012239901 2012296356 2013231664	A1 A1 B2 A A1	06-12-2012 16-11-2012 21-11-2012 05-02-2014 10-12-2012 22-11-2012 05-09-2013
Section 1	S 2005006429	A1	13-01-2005	AU BR CA CN EP JP	2004203120 PI0402657 2473612 1636525 1520520 4606796	A A1 A A1	27-01-2005 29-03-2005 09-01-2005 13-07-2005 06-04-2005 05-01-2011

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 1 of 3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 19 1225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

30-01-2020

	Patent document ted in search report	Publication date	Patent family member(s)			Publication date	
				JP	2005028150	A	03-02-2005
				MX	PA04006763		27-05-2005
				US	2005006429	A1 	13-01-2005
EF	1908414	A2	09-04-2008	AT	532466		15-11-2011
				AU	2007219291		24-04-2008
				AU	2007219293		24-04-2008
				AU	2007219314		24-04-2008
				AU	2007219316		24-04-2008
				CA	2604749		06-04-2008
				CA	2604982		06-04-2008
				CA	2605105		06-04-2008
				CA CN	2605109 101156792		06-04-2008 09-04-2008
				CN	101156793		09-04-2008
				CN		A A	20-11-2013
				EP	1908412		09-04-2008
				EP	1908413		09-04-2008
				ĒΡ	1908414		09-04-2008
				ĒΡ	1915953		30-04-2008
				ĒΡ	2073718		01-07-2009
				ΕP	2281513		09-02-2011
				EP	2281514		09-02-2011
				EP	2292154		09-03-2011
				EP	2335606		22-06-2011
				EP	2807982		03-12-2014
				ES	2366386		19-10-2011
				ES	2367590		04-11-2011
				ES	2376036		08-03-2012
				ES ES	2392797 2474597		13-12-2012 09-07-2014
				ES	2507505		15-10-2014
				ES	2637800		17-10-2017
				ES	2639463		26-10-2017
				JP	5236240		17-07-2013
				ĴΡ	5527930		25-06-2014
				JΡ	5940638		29-06-2016
				JP	6100232		22-03-2017
				JΡ	6408621		17-10-2018
				JP	2008093430	Α	24-04-2008
				JP	2008093432	Α	24-04-2008
				JP	2008093434		24-04-2008
				JP	2008093435		24-04-2008
				JP	2013039384		28-02-2013
				JP	2013048929		14-03-2013
: 1				JР	2015083166	Α	30-04-2015

 $\stackrel{ ext{O}}{ ext{L}}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 2 of 3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 19 1225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

30-01-2020

 $\stackrel{ ext{O}}{ ext{L}}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 3 of 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 62717944 A [0001]

US 4834096 A [0034]