FIELD OF THE INVENTION
[0001] The present invention is related to an illumination device and, in particular, to
wavelength conversion of light produced by high radiance light sources, including
semiconductor light emitting devices.
BACKGROUND
[0002] With the development of efficient light emitting diodes (LEDs) that emit blue light
or ultraviolet or near ultraviolet light, commonly referred to herein as UV light,
it has become feasible to produce LEDs that generate light through phosphor conversion
of a portion of the primary emission of the LED (or the entire primary emission) to
longer wavelengths. Conversion of primary emission of the LED to longer wavelengths
is commonly referred to as down-conversion of the primary emission. In some systems,
an unconverted portion of the primary emission of the LED combines with the converted
light of longer wavelengths to produce the desired colored light, e.g., white light.
Alternatively, the entire primary emission is converted to light with longer wavelengths
and then combined to produce the desired light.
[0003] Conventionally, wavelength conversion of the primary emission of the LED is achieved
using a phosphor that is held in a binding medium, such as epoxy, silicone, or other
similar material. The phosphor is generally in the form of a powder that is mixed
into the binding medium prior to curing. The uncured slurry containing the phosphor
powder is deposited onto the LED to encapsulate the LED and subsequently cured.
[0004] It is desirable, however, to use high radiance phosphor-converted LEDs in many illumination
applications, such as in projectors, automobile headlights, fiber optics and theater
lights. One difficulty with phosphor encapsulated LEDs, however, is that the binding
medium turns opaque and turns brown when subjected to high temperatures. This temperature
limitation of the encapsulant, accordingly, limits the current at which the LED can
be driven, which limits the radiance of the phosphor-converted LED.
[0005] JP2004071357A discloses a light source emitting primary light to a light guide, and a wavelength
conversion portion which absorbs the primary light and then emits a secondary light
having a longer peak wavelength than that of the primary light. The wavelength conversion
portion is laminated in order of an optical direction from red, green and blue phosphor.
An optical film that transmits the primary light of the light source and reflects
the secondary light emitted from the wavelength conversion unit is present between
the light guide and the wavelength conversion portion.
SUMMARY
[0006] In accordance with an embodiment of the present invention, an illumination device
uses a wavelength converting element that is physically separated from a light source,
such as a light emitting diode or an array of light emitting diodes, a Xenon lamp
or a Mercury lamp. The wavelength converting element, which may be, e.g., a phosphor
layer, is additionally optically separated from the light source such that converted
light emitted by the wavelength converting element is not incident on the light source.
By physically separating the wavelength converting element from the light source,
the temperature limitations of the wavelength converting element are removed, thereby
permitting the light source to be driven with an increased current to produce a higher
radiance. Moreover, by preventing the converted light from being incident on the light
source, the conversion and recycling efficiency of the device is improved, which also
increases radiance.
[0007] Thus, according to the present invention, an illumination device includes a light
source that emits light having a first wavelength range along a first beam path and
a wavelength converting element in the first beam path. The wavelength converting
element is physically separated from the light source. The wavelength converting element
converts the light having a first wavelength range into light having a second wavelength
range along a second beam path. The device further includes a color separation element
that is disposed between the light source and the wavelength converting element. The
color separation element is configured to prevent substantially all of the light having
the second wavelength range from being incident on the light source. The wavelength
converting element comprises a rotatable element, the rotatable element having at
least a first section being covered with a first phosphor that converts the light
having a first wavelength range to the light having the second wavelength range and
a second section being covered with a second phosphor that converts the light having
a first wavelength range to the light having a third wavelength range, wherein the
color separation element is configured to further prevent substantially all of the
light having the third wavelength range from being incident on the light source.
[0008] In another aspect of the present invention, an illumination device includes a light
source that emits light having a first wavelength range and a first optical element
that is associated with the light source. The first optical element collimates the
light emitted from the light source along a first beam path. The illumination device
also includes a color separation element in the first beam path, where the color separation
element is configured to direct substantially all of the collimated light along the
first beam path toward a second optical element. The second optical element focuses
the collimated light. A wavelength converting element receives the focused light from
the second optical element and is configured to at least partially absorb light of
the first wavelength range and to emit light having a second wavelength range. The
second optical element collimates the light having the second wavelength range emitted
by the wavelength converting element. The color separation element prevents light
having a second wavelength range from being incident on the light source.
[0009] In another aspect, a device includes a light source that emits light having a first
wavelength range and a first color separation element that receives the emitted light.
The first color separation element is configured to direct substantially all of the
light emitted by the light source toward a wavelength converting element. The wavelength
converting element is configured to at least partially absorb the light of the first
wavelength range and to emit light having a second wavelength range. The first color
separation element prevents light having a second wavelength range from being incident
on the light source. Additionally, the device includes a second color separation element
that receives light emitted by the wavelength converting element. The second color
separation element is configured to reflect light in the first wavelength range back
to the wavelength converting element, to transmit light in the second wavelength range
that is incident on the second color separation element in a first range of angles
and to reflect light that is incident on the second color separation element outside
the first range of angles
[0010] The present invention is defined in the appended claims 1-15.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 illustrates an illumination device in accordance with one exemplary embodiment
of the present invention.
Figs. 2A and 2B illustrate the operation of the wavelength converting element with
a radiance enhancement structure.
Figs. 3A and 3B illustrate an illumination device used as a headlight.
Fig. 4 illustrates another e exemplary embodiment of an illumination device that is
similar to the device shown in Fig. 1, but that includes an additional light source
to approximately double the radiance of the device.
Fig. 5 illustrates another exemplary embodiment of an illumination device with a plurality
of light sources and wavelength converting elements to produce, e.g., combined red,
green, and blue light.
Fig. 6 illustrates another exemplary embodiment of an illumination device that is
similar to the shown in Fig. 5.
Fig. 7 illustrates another exemplary embodiment of an illumination device that has
a linear arrangement of the light source and wavelength converting element.
Fig. 8 illustrates another exemplary embodiment of an illumination device that is
similar to the device shown in Fig. 7, but that includes an additional light source
to approximately double the radiance of the device.
Figs. 9A and 9B illustrate another exemplary embodiment of an illumination device
in which the function of the optical elements and the dichroics are combined in a
dichroic sphere.
Fig. 10 illustrates another exemplary embodiment of an illumination device that is
similar to the device shown in Fig. 9A, but that includes an additional light source
to approximately double the radiance of the device.
Figs. 11A and 11B illustrate the embodiment according to the invention of an illumination
device that includes a rotating wavelength converting element.
Fig. 12 illustrates another exemplary embodiment of an illumination device that includes
a wavelength converting element with phosphor dots, which may be used as backlighting
for a liquid crystal display (LCD) panel.
Fig. 13 illustrates an exemplary embodiment of a device that includes a semiconductor
light emitting device, a first color separation element, a wavelength converting element,
an optional polarization recovery element, and a second color separation element.
DETAILED DESCRIPTION
[0012] In accordance with an embodiment of the present invention, the wavelength converting
element is physically separated from the light source, which increases the permissible
temperatures and, thus, current at which a semiconductor light emitting device can
be driven (if used as the light source). Accordingly, the temperature limitations
of the wavelength converting medium will no longer place a limitation on the radiance
of the light source. The light source may be, e.g., a semiconductor light emitting
device, or other sources of short wavelength radiation, such as a Xenon lamp or mercury
lamp. Additionally, the beam path of the wavelength converted light is separated from
the light source, i.e., the converted light is prevented from being incident on the
light source. Accordingly, absorption losses that may occur in the light source are
advantageously reduced thereby providing large efficiency gain in conversion and recycling,
which increases radiance.
[0013] Fig. 1 illustrates an illumination device 100 in accordance with one exemplary embodiment
of the present invention. Fig. 1 includes a light source 102 that for the sake of
simplicity is sometimes referred to herein as a light emitting device (LED) 102. The
light source may be a semiconductor light emitting device, such as a light emitting
diode or array of light emitting diodes, or other types of light sources that can
produce short wavelength light, such as a Xenon lamp or Mercury lamp. By way of example,
the LED 102 may be a high radiance device, such as the type described in
US-A1-2005045901, entitled "
Package for a Semiconductor Light Emitting Device", by Frank Wall et al., filed August
29, 2003, having the same assignee as the present disclosure. The LED 102 is shown on an optional
submount 104, which is mounted on a heatsink 106.
[0014] As shown in Fig. 1, illumination device 100 includes a wavelength converting element
112 that is physically separated from the LED 102. The LED 102 and the wavelength
converting element 112 may be separated along the beam path by, e.g., air, gas or
a vacuum. The length of the physical separation of the LED 102 and the wavelength
converting element 112 may vary, but in one embodiment is greater than 1mm. The physical
separation between the LED 102 and the wavelength converting element 112 is sufficient
to prevent substantial conductive heating (ideally the separation is sufficient to
prevent any conductive heating) of the wavelength converting element 112 by the LED
102.
[0015] Wavelength converting element 112 may be, e.g., a conventionally produced layer of
phosphor or other wavelength converting material in a binding medium, such as epoxy
or silicone. The type and amount of phosphor used in wavelength converting element
112 is dependent on the factors such as the primary emission wavelength range of the
LED 102 and the desired wavelengths of the converted light. It should be understood
that LED 102 generally produces a primary emission that has a range of wavelengths.
The range of wavelengths is generally narrow and, thus, LEDs are sometimes characterized
by a single wavelength, which is the dominant or peak wavelength in the spectrum produced.
In one embodiment, where the LED 102 produces wavelengths in the blue, UV or near
UV spectrum, wavelength converting element 112 may use phosphors such as: Thiogallate
(TG), SrSiON:Eu, or SrBaSiO:Eu to produce converted light in the green spectrum; BaSrSiN:Eu
to produce converted light in the amber spectrum; CaS:Eu, (Sr0.5,Ca0.5)S:Eu, SrS:Eu,
and SrSiN:Eu to produce converted light in the red spectrum; and YAG to produce white
converted light. For ease of reference, the wavelength converting element is sometimes
referred to herein as a phosphor element, but it should be understood that other wavelength
converting materials, such as dyes, may be used.
[0016] The phosphor element 112 is shown mounted on a highly reflective substrate 115, such
as an ESR specular reflecting film manufactured by 3M or E60L white diffuse reflecting
film manufactured by Toray, and thermally coupled to a heatsink 116. It should be
understood that, if desired, the LED 102 and phosphor element 112 may share the same
heatsink if the heatsink is large enough to prevent significant conductive heating
of the phosphor element 112. Because the phosphor element 112 is physically separated
from the LED 102, the heat produced by LED 102 will have little or no affect on the
operation of the phosphor element 112. Accordingly, the LED 102 can be driven with
a high current to produce a high radiance. Moreover, with the use of a heatsink 116,
heat from the phosphor element 112 caused by phosphor light conversion can be dissipated.
Because heating of phosphor can degrade performance by approximately 20 to 30 percent,
the use of a heatsink 116 can dramatically increase performance of the phosphor element
112.
[0017] In addition, at least a portion of the beam path 103 of the light emitted from LED
102 is separate from the beam path 113 of the converted light from phosphor element
112. Device 100 uses a color separation element 110 that reflects wavelengths in the
primary light emitted by LED 102 and transmits wavelengths in the converted light
emitted by phosphor element 112. In one embodiment, the color separation element 110
may be, e.g., a dichroic mirror, and for ease of reference, the color separation element
will sometimes be referred to herein as a dichroic mirror. Nevertheless, it should
be understood that other color separation elements may be used with the present invention,
such as a dichroic cube, a diffractive optical element or a hologram. An adequate
dichroic mirror may be purchased from, e.g., Unaxis Balzers Ltd. located in Liechtenstein
or Optical Coating Laboratory, Inc. located in Santa Rosa, California.
[0018] The color separation element 110 is used to prevent a substantial amount of the converted
light emitted by phosphor element 112 from being incident on the LED 102. Ideally
no converted light would be incident on the LED 102, however, color separation elements,
such as dichroic mirrors are not ideal and may leak between 0 and 30 percent of the
converted light. Accordingly, absorption of the converted light by LED 102 is reduced,
thereby improving efficiency in conversion and recycling, and thus in the radiance
of the illumination device 100.
[0019] Optical elements are used to collimate the primary light and converted light prior
to being incident on the dichroic mirror 110. For example, a collimator 108 between
the LED 102 and the dichroic mirror 110 is used to collimate the light emitted by
LED 102. Another collimator 114 between the phosphor element 112 and the dichroic
mirror 110 is used to collimate the converted light emitted by the phosphor element
112, and to focus the primary light reflected by the dichroic mirror 110 onto the
phosphor element 112. It should be understood that the optical elements need not be
collimators, but may be other optical elements, such as a reflective compound parabolic
concentrator element, a total internal reflecting optical element, a rectangular reflective
angle transformer, a condenser lens, a lens assembly, or a combination of such elements.
Because color separation elements, such as dichroic mirrors, are angle dependent,
the optical elements preferably produce a narrow light cone. The optical elements
may have, e.g., a circular or rectangular geometry and may be conventionally formed
of materials such as molded plastic or metal, such as aluminum, or metal alloys. If
the LED 102 is driven at a high temperature, the use of a temperature insensitive
material, such as metal or glass is particularly advantageous.
[0020] In operation, the phosphor element 112 receives the primary light from the LED 102
and converts the primary light to another wavelength range by absorbing the primary
light and emitting the converted light. Light from the LED 102 that is not absorbed
by the phosphor element 112 is reflected by the reflective substrate 115 and reflected
back to the LED 102 by the dichroic mirror 110, where the light is reflected back
to the phosphor element 112. Thus, the non-absorbed primary light is at least partially
recycled in illumination device 100. Additionally, because the phosphor element 112
emits light in all directions, the reflective substrate 115 is used to reflect a portion
of the converted light towards the dichroic mirror 110. The converted light is then
transmitted by the dichroic mirror 110.
[0021] As illustrated in Fig. 1, additional optical elements may be located after the dichroic
mirror 110. By way of example, the device 100 may include a radiance enhancement film
118. A radiance enhancement film may be, e.g., a diffractive optical element, such
as that manufactured by Heptagon located in Zurich, Switzerland, or a micro refractive
element or Brightness Enhancement Film, such as that manufactured by 3M. Additionally,
device 100 may include a polarization recovery component 120, sometimes referred to
as a non-absorbing polarizer, such as that manufactured by Moxtek, Inc. located in
Orem Utah, or by 3M known as a Dual Brightness Enhancement Film. In some embodiments,
the relative positions of the radiance enhancement film 118 and polarization recovery
component 120 maybe reversed.
[0022] The radiance enhancement film 118 and polarization recovery component 120 restrict
the angular distribution and polarization state of the light produced by illumination
device 100, by transmitting the desired light and reflecting the undesired light back
towards the phosphor element 112. Because the phosphor element 112 has very little
absorption of the light generated, the recycling efficiency is very high.
[0023] It should be understood that while Fig. 1 illustrates the LED 102 and phosphor element
112 oriented at 90 degrees with respect to each other, other angles may be used. For
example, because the color separation and efficiency of dichroic mirrors is angle
dependent, it may be desirable for the LED 102 and phosphor element 112 to be oriented
at less than 45 degrees with respect to each other.
[0024] In one exemplary embodiment, a radiance enhancement structure 122 (and/or polarization
recovery component) may be mounted over the phosphor element 112. Figs. 2A and 2B
illustrate closer views of the operation of the phosphor element 112 with a radiance
enhancement structure 122. The radiance enhancement structure 122 may be separated
from the phosphor element 112 or may be in physical contact with the phosphor element
112. The radiance enhancement structure 122 is, e.g., a dichroic mirror or diffractive
optical element. If a dichroic mirror is used, the dichroic mirror is designed such
that the primary light emitted by the LED 102 is transmitted over a large range of
incident angles, but that converted light emitted by the phosphor element 112 is transmitted
over a limited range of incident angles, e.g., 30 degrees or less from the surface
normal, as illustrated in Figs. 2A and 2B. By transmitting converted light at a narrow
angle, the radiance enhancement structure 122 ensures that a large percentage of the
light will be utilized downstream.
[0025] Fig. 2B illustrates that converted light emitted by the phosphor element 112 at large
angles will be reflected by the radiance enhancement structure 122 to be reabsorbed
and reemitted by the phosphor element 112. Thus, part of the light will be emitted
during a second pass, thereby increasing the radiance of the illumination device 100.
[0026] Figs. 3A and 3B illustrate an illumination device 150 that is similar to device 100,
like designated elements being the same. As illustrated, device 150 is adapted for
use as an automobile headlight and includes an enclosure 152 for the components and
a projection lens 154 that produces the resulting beam 156. A similar configuration
may be used as a spotlight if desired.
[0027] As illustrated in Fig. 3B, the phosphor element 112' may be patterned with different
types or amounts of phosphor to form, e.g., a standardized headlight beam pattern.
By way of example, as shown in Fig. 3B, a first portion 112'a of the phosphor element
112' may include a blend of yellow and blue phosphor, in which case the LED 102 emits
a lower wavelength range, e.g., UV light. Alternatively, the first portion 112'a may
use a yellow phosphor while the LED 102 emits blue light and the dichroic mirror 110
is partially transparent to blue light. The second portion 112'b of the phosphor element
112' may have less or no phosphor or a different blend of phosphor. The portion 112'b
with little or no phosphor will convert less light than the portion 112'a. The dichroic
mirror 110 will transmit the light converted by portion 112'a and will reflect most
of the unconverted blue light from portion 112'b back towards the LED 102. Thus, the
standardized beam pattern formed by portions 112'a and 112'b will be projected by
the projection lens 154.
[0028] It should be understood that other patterns may be produced by illumination device
150 in a similar manner. For example, with proper patterning of the phosphor element
112', messages and/or symbols may be projected by the device 150.
[0029] Fig. 4 illustrates another exemplary embodiment of an illumination device 200, which
is similar to device 100, like designated elements being the same. Illumination device
200 approximately doubles the radiance with respect to device 100 by using two LEDs
102 and 202. The second LED 202 is held on an optional submount 204 and may share
a heatsink 206 with LED 102. The second LED 202 emits light that is collimated by
collimator 208 and that is reflected towards the phosphor element 112 by a second
color separation element, i.e., dichroic mirror 210. In this exemplary embodiment,
the light emitted by the second LED 202 has a different wavelength range than the
light emitted by LED 102. By way of example, the LEDs 102 and 202 may emit light with
peak wavelengths that differ by approximately 20nm, e.g., approximately 430nm and
450nm or 400nm and 435nm. The phosphor element 112 should have a large absorption
spectrum or a mixture of phosphors so that the primary light from LEDs 102 and 202
is converted. With the use of the two LEDs 102 and 202, the device 200 has approximately
twice the radiance of device 100.
[0030] Fig. 5 illustrates another exemplary embodiment of an illumination device 300 that
includes a plurality of light sources and a plurality of remote wavelength converting
elements. Device 300 may be used to produce combined red, green and blue light, which
may be used in e.g., a color sequential projector, such as a Digital Light Processing
(DLP) projector or a Liquid Crystal on Silicon (LCoS) projector. If desired, additional
colors may be produced by device 300, such as cyan and amber.
[0031] Device 300 is similar in operation to device 100, like designated elements being
the same. Device 300, however, includes additional LEDs 302 and 322 that are held
on respective optional submounts 304 and 324. All the LEDs 102, 302, and 322 may share
the same heatsink 306.
[0032] Device 300 generates red and green light using remote phosphor elements 112 and 312,
respectively, in the same manner as described above in reference to Fig. 1. Thus,
optical elements, such as collimator 308, collimate the primary light, which may be
blue or UV light, from LED 302 and dichroic mirror 310 reflects the light towards
a second phosphor element 312. Collimator 314 focus the light on the phosphor element
312, which is held on a reflective mirror 315 and heatsink 316. Converted green light
from phosphor element 312 is transmitted through dichroic mirror 310 and transmitted
through (or reflected for recycling by) a radiance enhancement film 318 and polarization
recovery component 320.
[0033] Device 300 may directly produce blue light, e.g., using an LED 322 with a primary
emission in the blue spectrum. As illustrated in Fig. 5, optical elements, such as
collimator 328, collimate the blue emitted light, which is transmitted through (or
reflected for recycling by) a radiance enhancement film 338 and polarization recovery
component 340. The use of radiance enhancement films and polarization recovery components
increase the radiance and polarization and makes the illumination of the device 300
more uniform.
[0034] If desired, radiance enhancement films, such as that described in reference to Fig.
2A and 2B may be located before the phosphor elements 112 and 312.
[0035] Alternatively, device 300 may produce blue light in the same manner as described
above in reference to Fig. 1, i.e., using an LED with a primary emission in the UV
spectrum and using a physically separated phosphor element that converts the primary
emission into blue light. In an embodiment in which converted blue light is used,
the necessary components, i.e., color separation element, optical elements and phosphor
element may extend into or out of the plane of Fig. 5.
[0036] The device 300 includes an X-plate 342, e.g., two dichroic mirrors in a crossed geometry,
and a condenser lens 344 to combine the red, green and blue light. If desired, a single
radiance enhancement film and polarization recovery component pair may be located
between the X-plate 342 and the condenser lens 344 thereby obviating the need for
three pairs of radiance enhancement films and polarization recovery components.
[0037] If desired, device 300 may produce additional colors, e.g., amber and cyan, using
additional LEDs and phosphor elements in the same manner as described in reference
to Fig. 1. The additional LEDs, phosphor elements, and associated optical elements
and dichroic mirrors may extend into or out of the plane of the page.
[0038] Fig. 6 illustrates an illumination device 400 that is similar to device 300, like
designated elements being the same. Device 400, however, is configured for a three
panel LCD projection device, such as the type made by Epson (Japan). Device 400 includes
an X-cube 402 in front of a projection lens 403. The X-cube 402 combines the red,
green and blue images generated by microdisplays 404, 406, and 408, respectively,
which are, e.g., High Temperature Poly Silicon (HTPS) LCD displays.
[0039] Fig. 7 illustrates another exemplary embodiment of an illumination device 500. Device
500 has a linear arrangement of the light source and remote, i.e., physically separate,
wavelength converting element, which is particularly advantageous for illumination
devices with space limitations, such as a flashlight. As shown in Fig. 7, device 500
includes an LED 502 on an optional submount 504 and heat sink 506. A collimator 508,
or other optical element, collimates the primary light emitted from LED 502, which
is transmitted through dichroic mirror 510 towards phosphor element 512. A second
collimator 514 focuses the primary light that is transmitted through the dichroic
mirror 510 to the phosphor element 512.
[0040] The phosphor element 512 absorbs the primary light emitted by LED 502 and emits light
having longer wavelengths in both directions, i.e., towards and away from the dichroic
mirror 510. The dichroic mirror 510 reflects converted light emitted by the phosphor
element 512 back towards phosphor element 512. Thus, dichroic mirror 510 prevents
converted light from being incident on the LED 502 thereby improving efficiency of
the device 500.
[0041] A portion of the converted light emitted from phosphor element 512 is collimated
by collimator 516, or other appropriate optical element. A second dichroic mirror
518 transmits the converted light and reflects any unconverted light back towards
the phosphor element 512. A radiance enhancement film 520 and polarization recovery
component 522 may be located after the dichroic mirror 518 to recycle light that cannot
be used downstream of the device 500. If desired, an additional radiance enhancement
film 524 or polarization recovery component may be located on the phosphor element
512, e.g., as described in reference to Figs. 2A and 2B.
[0042] Fig. 8 is another exemplary embodiment of an illumination device 550, which is similar
to device 500, like designated elements being the same. Device 550, however, uses
an additional light source so that the phosphor element 512 is illuminated from the
front and back, thereby approximately doubling the radiance of the device. As shown
in Fig. 8, device 550 uses a second LED 552 (on an optional submount 554 and heatsink
556) and a collimator 558 as a second light source. A dichroic cube 560, or other
appropriate device, such as a dichroic mirror, reflects light emitted by LED 552 towards
the phosphor element 512 and transmits converted light from the phosphor element 512.
The two LEDs 502 and 552 may emit primary light having the same wavelength ranges.
[0043] Fig. 9A is another exemplary embodiment of an illumination device 600. Illumination
device 600 advantageously combines the function of the optical elements and the dichroics
using a dichroic sphere 610. As illustrated in Fig. 9A, device 600 includes an LED
602 held on an optional submount 604 and heatsink 606. A condenser lens 608, which
is held close to or in contact with the LED 602, may be used in conjunction with a
dichroic sphere 610 to image the LED 602 onto the phosphor element 612. The dichroic
sphere 610 may be, e.g., a glass or plastic sphere with a dichroic film deposited
in the center, similar to a dichroic cube.
[0044] A condenser lens 614 may be held close to or in contact with the phosphor element
612, which is mounted on a reflective submount 616 and heatsink 618. The phosphor
element 612 converts the light emitted from the LED 602 to light with longer wavelengths,
which is transmitted through the dichroic sphere 610 to lens 620. The converted light
is collimated or otherwise focused by lens 620. If desired, a radiance enhancement
film 622 and polarization recovery component 624 may be disposed after or before the
lens 620.
[0045] Fig. 9B is another illustration of illumination device 600 with the dichroic sphere
610 operating at a more efficient angle. As discussed above, dichroics operate with
better color separation and efficiency at smaller angles of incidence. Thus, Fig.
9B illustrates the LED 602 and phosphor element 612 are at an angle of approximately
45 degrees with respect to each other and, thus, the dichroic sphere 610 is at an
angle of approximately 22.5 degrees with respect to each of the LED 602 and phosphor
element 612. Of course, other angles may be used, e.g., less than approximately 22.5
degrees.
[0046] Fig. 10 is another exemplary embodiment of an illumination device 650 that is similar
to device 600 like designated elements being the same. Device 650, however, includes
a second LED 652 on an optional submount 654 and heatsink 656, which is optically
coupled to the dichroic sphere 660 through, e.g., a condenser lens 658. The LEDs 602
and 652 may emit light with different wavelengths. The dichroic sphere 660 includes
two dichroic mirrors that are responsive to wavelengths emitted by LEDs 602 and 652.
The phosphor element 612 may include a combination of phosphors for the different
wavelengths of light.
[0047] If desired, as described in Fig. 9B, the phosphor element 612 may be at other angles,
e.g., approximately 45 degrees or less, with respect to both LED 602 and LED 652 and,
thus, the color separation element in dichroic sphere 610 may be at other angles,
e.g., approximately 22.5 degrees or less, with respect to each of the LEDs 602 and
652 and the phosphor element 612.
[0048] Fig. 11A illustrates the embodiment according to the invention of an illumination
device 700 that may be used, e.g., as a color sequential projector or a studio or
theater light. Device 700 is similar to device 100 shown in Fig. 1, like designated
elements being the same. Device 700, however, uses a dichroic cube 710 instead of
a dichroic mirror 110. Moreover, the wavelength converting element in device 700 is
phosphor covered disk 712, which has a highly reflective substrate. The disk 712 may
have multiple colored sections, each having different types and/or amounts of phosphor.
Fig. 11B illustrates a plan view of the disk 712, which three different sections of
the disk 712 with different types of phosphors.
[0049] The disk 712 is rotated by motor 714. As the disk 712 spins, the different sections
of the disk 712, and thus, different phosphors, are illuminated thereby producing
different colors. Spinning the disk 712, additionally, may be used to cool the phosphor
and can be used to generate air flow for cooling the heatsink 106.
[0050] The color emitted by the device 700 may be controlled by synchronizing the duty cycle
of the LED 102 and the spinning of the disk. Alternatively, the disk 712 may be held
rotated and stopped to illuminate a different portion of the disk 712 when a different
color is desired. In another application, the disk 712 may include multi-color phosphors
or may contain sections with different messages or symbols, such as logos. The device
700 would thus project the message or symbol, which can then be changed by rotating
the disk 712 to illuminate another phosphor message or symbol on the disk 712.
[0051] Fig. 12 illustrates another exemplary embodiment of an illumination device 800 that
may be used e.g., as backlighting for a liquid crystal display (LCD) panel. In this
embodiment, an LED is used to produce a blue backlight that is used in combination
with a phosphor dot pattern consisting of red and green phosphor dots, which are aligned
with LCD pixels representing the red and green image pixels, respectively, while the
blue pixels are left blank or applied with a non-phosphor scattering material. If
desired, the LED may produce UV light or near UV light wherein blue phosphor dots
are used in conjunction with the red and green phosphor dots.
[0052] As illustrated in Fig. 12, an LED 802, on an optional submount 804 and heatsink 806,
is used with a collimator 808 or other appropriate optical element. The LED 802 produces,
e.g., blue or UV light. A wavelength converting element 812, which includes, e.g.,
red and green phosphor dots (and blue phosphor dots if the LED 802 produces UV light),
is located at end of the collimator 808 opposite the LED 802. A dichroic mirror 810
is disposed between the LED 802 and the wavelength converting element 812, e.g., on
the LED 802. The dichroic mirror 810 transmits the blue or UV light emitted by the
LED 802 but reflects long wavelengths. Thus, substantially all light emitted by the
wavelength converting element 812 towards the LED 802 will be reflected by the dichroic
mirror 810 and will not be incident on the LED 802.
[0053] A second dichroic mirror 814, or radiance enhancing film, is disposed between the
wavelength converting element 812 and an LCD panel 816 and lens 818. The second dichroic
mirror 814 may be configured with a plurality of dichroic elements, each dichroic
element being aligned with a corresponding phosphor dot, e.g., red, green and blue
dichroic elements are aligned with red, green and blue emitting phosphor dots, respectively.
As discussed in reference to Figs. 2A and 2B, the second dichroic mirror 814 is configured
to transmit light over a narrow range of angles and reflects light outside the range
of angles back towards the wavelength converting element 812 and dichroic mirror 810.
For example, light emitted by the phosphor dots at an angle of less than approximately
30 degrees from normal will be transmitted through the second dichroic mirror 814,
while light outside that range is reflected. Accordingly, the pixels in the LCD panel
816 advantageously receive light at a narrow range of angles, thereby improving performance
of the device.
[0054] Fig. 13 illustrates an exemplary embodiment of a device 850 that includes a semiconductor
light emitting device 852, a first dichroic element 854, a wavelength converting element
856, a polarizing element 858, and a second dichroic element 860. Some or all of the
various elements shown in Fig. 13 may be separated, e.g., by an air gap. For example,
in one embodiment, the various elements 852, 854, 856, 858, and 860 are separated
from each other by 1mm or more. Alternatively, some or all of the elements shown in
Fig. 13 may be in physical contact, i.e., with one element on top and physically contacting
the next.
[0055] In this exemplary embodiment, the semiconductor light emitting device 852 emits light
in the blue or UV wavelengths. The wavelength converting element 856 converts the
light from the semiconductor light emitting device 852 to other wavelengths, e.g.,
red, green or blue. As illustrated by the arrows in Fig. 13, the first dichroic element
854 transmits light that is emitted by the semiconductor light emitting device 852
and reflects light emitted by the wavelength converting element 856. The polarizing
element 858, which may be omitted if desired, serves a as a polarization recovery
component and transmits one polarization state and reflects the other polarization
states back to the wavelength converting element 856. The second dichroic element
860 serves as a radiance enhancement film by transmitting light emitted by the wavelength
converting element 856 over a narrow range of angles, e.g., within 25 degrees from
normal, and reflecting light that is outside the range of angles back towards the
wavelength converting element 856. The second dichroic element 860 also reflects unconverted
light from the semiconductor light emitting device 852 that leaked through the wavelength
converting element 856 back to the wavelength converting element 856. Thus, the second
dichroic element 860 separates light based on both color and angle of incidence. The
light that exits the dichroic element 860 is, thus, converted light that is polarized
and is within a narrow range of angles.
[0056] Although the present invention is illustrated in connection with specific embodiments
for instructional purposes, the present invention is not limited thereto. Various
adaptations and modifications may be made without departing from the scope of the
invention as defined in the appended claims 1 to 15.
1. An illumination device (100, 150, 200, 300, 400, 500, 550,600, 650, 800, 850) comprising:
a light source (102, 202, 302, 322, 502, 522, 602, 652, 802, 852) that emits light
having a first wavelength range along a first beam path;
a wavelength converting element (112, 112', 512, 612, 812, 856) in the first beam
path, the wavelength converting element being physically separated from the light
source, the wavelength converting element converting the light having a first wavelength
range into light having a second wavelength range along a second beam path; and
a color separation element (110, 210, 310, 510, 610, 810, 854) disposed between the
light source and the wavelength converting element, the color separation element being
configured to prevent substantially all of the light having the second wavelength
range from being incident on the light source, characterized in that
the wavelength converting element comprises a rotatable element (712), the rotatable
element having at least a first section being covered with a first phosphor that converts
the light having a first wavelength range to the light having the second wavelength
range and a second section being covered with a second phosphor that converts the
light having a first wavelength range to the light having a third wavelength range,
wherein the color separation element is configured to further prevent substantially
all of the light having the third wavelength range from being incident on the light
source.
2. The illumination device of claim 1, wherein the light source is a semiconductor light
emitting device.
3. The illumination device of claim 1, further comprising a second color separation element
disposed over the wavelength converting element, the second color separation element
configured to transmit light having the first wavelength range over a first range
of angles and to transmit light having the second wavelength range over a second range
of angles, the second range of angles is smaller than the first range of angles, wherein
the second color separation element reflects light having the second wavelength range
outside the second range of angles back to the wavelength converting element.
4. The illumination device of claim 1, further comprising at least one of a radiance
enhancement film (118, 318, 520, 622, 814) and a polarization recovery component (120,
320, 522, 624, 858) coupled to receive the light emitted from the wavelength converting
element.
5. The illumination device of claim 4, wherein the radiance enhancement film comprises
at least one of a diffractive optical element and a micro refractive element and wherein
the polarization recovery component comprises a non-absorbing polarizer.
6. The illumination device of claim 1, wherein the color separation element is selected
from the group consisting of a dichroic mirror, a dichroic cube, a dichroic sphere,
a diffractive optical element and a hologram.
7. The illumination device of claim 1, wherein the wavelength converting element is mounted
on a reflective submount.
8. The illumination device of claim 1, further comprising a lens, wherein the color separation
element reflects the light having a first wavelength range from the light source to
the wavelength converting element and transmits the light having the second wavelength
range from the wavelength converting element to the lens.
9. The illumination device of claim 1, further comprising:
a first optical element disposed between the light source and the color separation
element, the first optical element collimates the light emitted from the light source;
and
a second optical element disposed between the wavelength converting element and the
color separation element, the second optical element focuses the collimated light
from the light source on the wavelength converting element and collimates the converted
light having a second wavelength range.
10. The illumination device of claim 9, wherein the first optical element and the second
optical element each include at least one of a collimator, reflective compound parabolic
concentrator element, total internal reflecting optical element, a rectangular reflective
angle transformer, a condenser lens, and a lens assembly.
11. The illumination device of claim 9, further comprising:
a second light source (202) that emits light having a third wavelength range along
a third beam path;
wherein the color separation element is a first color separation element (110) that
is further disposed between the second light source and the wavelength converting
element, the first color separation element configured to transmit substantially all
of the light having the second wavelength range and the light having the third wavelength
range and to reflect substantially all of the light having a first wavelength range;
and
a second color separation element (210) disposed between the second light source and
the first color separation element (110), the second color separation element being
configured to transmit substantially all of the light having the second wavelength
range and to reflect substantially all of the light having the third wavelength range;
wherein the wavelength converting element is in the first beam path and the third
beam path, the wavelength converting element converting both the light having the
first wavelength range and the light having the third wavelength range into light
having the second wavelength range.
12. The illumination device of claim 11, further comprising:
a third optical element (208) disposed between the second light source and the second
color separation element, the third optical element collimates the light emitted from
the second light source.
13. The illumination device of claim 9, further comprising:
a second light source (302) that emits light having a third wavelength range along
a third beam path;
a second wavelength converting element (312) in the third beam path, the second wavelength
converting element being physically separated from the second light source, the second
wavelength converting element converting the light having the third wavelength range
to light having a fourth wavelength range along a fourth beam path; and
a second color separation element (310) disposed between the second light source and
the second wavelength converting element, the second color separation element being
configured to prevent substantially all of the light having the fourth wavelength
range from the second wavelength converting element from being incident on the second
light source; and
a third color separation element (342) disposed between the wavelength converting
element and the second wavelength converting element, the third color separation element
being configured to combine the light having the second wavelength range and the light
having the fourth wavelength range.
14. The illumination device of claim 13, further comprising a lens (344) disposed after
the third color separation element.
15. The illumination device of claim 13, further comprising a third light source (322)
that emits a light having a fifth wavelength range, wherein the third color separation
element is further configured to combine the light having the second wavelength range,
the light having the fourth wavelength range, and the light having the fifth wavelength
range.
1. Beleuchtungsvorrichtung (100, 150, 200, 300, 400, 500, 550, 600, 650, 800, 850), umfassend:
eine Lichtquelle (102, 202, 302, 322, 502, 522, 602, 652, 802, 852), die Licht mit
einem ersten Wellenlängenbereich entlang einem ersten Strahlengang emittiert;
ein Wellenlängenumwandlungselement (112, 112', 512, 612, 812, 856) in dem ersten Strahlengang,
wobei das Wellenlängenumwandlungselement von der Lichtquelle physisch getrennt ist,
wobei das Wellenlängenumwandlungselement das Licht mit einem ersten Wellenlängenbereich
in Licht mit einem zweiten Wellenlängenbereich entlang einem zweiten Strahlengang
umwandelt; sowie
ein Farbseparationselement (110, 210, 310, 510, 610, 810, 854), das zwischen der Lichtquelle
und dem Wellenlängenumwandlungselement angeordnet ist, wobei das Farbseparationselement
so konfiguriert ist, dass es verhindert, dass im Wesentlichen das gesamte Licht mit
dem zweiten Wellenlängenbereich auf die Lichtquelle auffällt, dadurch gekennzeichnet, dass
das Wellenlängenumwandlungselement ein drehbares Element (712) umfasst, wobei das
drehbare Element zumindest einen ersten Abschnitt, welcher mit einem ersten Leuchtstoff
bedeckt ist, der das Licht mit einem ersten Wellenlängenbereich in das Licht mit dem
zweiten Wellenlängenbereich umwandelt, sowie einen zweiten Abschnitt, welcher mit
einem zweiten Leuchtstoff bedeckt ist, der das Licht mit einem ersten Wellenlängenbereich
in das Licht mit einem dritten Wellenlängenbereich umwandelt, aufweist, wobei das
Farbseparationselement so konfiguriert ist, dass es weiterhin verhindert, dass im
Wesentlichen das gesamte Licht mit dem dritten Wellenlängenbereich auf die Lichtquelle
auffällt.
2. Beleuchtungsvorrichtung nach Anspruch 1, wobei die Lichtquelle ein lichtemittierendes
Halbleiterbauelement ist.
3. Beleuchtungsvorrichtung nach Anspruch 1, die weiterhin ein zweites Farbseparationselement
umfasst, das über dem Wellenlängenumwandlungselement angeordnet ist, wobei das zweite
Farbseparationselement so konfiguriert ist, dass es Licht mit dem ersten Wellenlängenbereich
über einen ersten Winkelbereich überträgt und Licht mit dem zweiten Wellenlängenbereich
über einen zweiten Winkelbereich überträgt, wobei der zweite Winkelbereich kleiner
als der erste Winkelbereich ist, wobei das zweite Farbseparationselement Licht mit
dem zweiten Wellenlängenbereich außerhalb des zweiten Winkelbereichs zu dem Wellenlängenumwandlungselement
zurück reflektiert.
4. Beleuchtungsvorrichtung nach Anspruch 1, die weiterhin zumindest einen Strahldichteerhöhungsfilm
(118, 318, 520, 622, 814) oder eine Polarisationswiederherstellungskomponente (120,
320, 522, 624, 858) umfasst, die so gekoppelt sind, dass sie das von dem Wellenlängenumwandlungselement
emittierte Licht empfangen.
5. Beleuchtungsvorrichtung nach Anspruch 4, wobei der Strahldichteerhöhungsfilm zumindest
ein diffraktives, optisches Element oder ein mikrorefraktives Element umfasst, und
wobei die Polarisationswiederherstellungskomponente einen nicht absorbierenden Polarisator
umfasst.
6. Beleuchtungsvorrichtung nach Anspruch 1, wobei das Farbseparationselement aus der
Gruppe, bestehend aus einem dichroitischen Spiegel, einem dichroitischen Würfel, einer
dichroitischen Kugel, einem diffraktiven, optischen Element sowie einem Hologramm,
ausgewählt wird.
7. Beleuchtungsvorrichtung nach Anspruch 1, wobei das Wellenlängenumwandlungselement
auf einem reflektierenden Submount montiert ist.
8. Beleuchtungsvorrichtung nach Anspruch 1, die weiterhin eine Linse umfasst, wobei das
Farbseparationselement das Licht mit einem ersten Wellenlängenbereich von der Lichtquelle
zu dem Wellenlängenumwandlungselement reflektiert und das Licht mit dem zweiten Wellenlängenbereich
von dem Wellenlängenumwandlungselement zu der Linse überträgt.
9. Beleuchtungsvorrichtung nach Anspruch 1, die weiterhin umfasst:
ein erstes optisches Element, das zwischen der Lichtquelle und dem Farbseparationselement
angeordnet ist, wobei das erste optische Element das von der Lichtquelle emittierte
Licht kollimiert;
sowie
ein zweites optisches Element, das zwischen dem Wellenlängenumwandlungselement und
dem Farbseparationselement angeordnet ist, wobei das zweite optische Element das kollimierte
Licht von der Lichtquelle auf das Wellenlängenumwandlungselement fokussiert und das
umgewandelte Licht mit einem zweiten Wellenlängenbereich kollimiert.
10. Beleuchtungsvorrichtung nach Anspruch 9, wobei das erste optische Element und das
zweite optische Element jeweils zumindest einen Kollimator, ein reflektierendes Compound-Parabolic-Concentrator-Element,
ein optisches Totalreflexionselement, einen rechteckigen, reflektierenden Winkeltransformator,
eine Kondensorlinse oder eine Linsenanordnung enthält.
11. Beleuchtungsvorrichtung nach Anspruch 9, die weiterhin umfasst:
eine zweite Lichtquelle (202), die Licht mit einem dritten Wellenlängenbereich entlang
einem dritten Strahlengang emittiert;
wobei das Farbseparationselement ein erstes Farbseparationselement (110) ist, das
weiterhin zwischen der zweiten Lichtquelle und dem Wellenlängenumwandlungselement
angeordnet ist, wobei das erste Farbseparationselement so konfiguriert ist, dass es
im Wesentlichen das gesamte Licht mit dem zweiten Wellenlängenbereich und das Licht
mit dem dritten Wellenlängenbereich überträgt und im Wesentlichen das gesamte Licht
mit einem ersten Wellenlängenbereich reflektiert; sowie
ein zweites Farbseparationselement (210), das zwischen der zweiten Lichtquelle und
dem ersten Farbseparationselement (110) angeordnet ist, wobei das zweite Farbseparationselement
so konfiguriert ist, dass es im Wesentlichen das gesamte Licht mit dem zweiten Wellenlängenbereich
überträgt und im Wesentlichen das gesamte Licht mit dem dritten Wellenlängenbereich
reflektiert;
wobei sich das Wellenlängenumwandlungselement in dem ersten Strahlengang und dem dritten
Strahlengang befindet, wobei das Wellenlängenumwandlungselement sowohl das Licht mit
dem ersten Wellenlängenbereich als auch das Licht mit dem dritten Wellenlängenbereich
in Licht mit dem zweiten Wellenlängenbereich umwandelt.
12. Beleuchtungsvorrichtung nach Anspruch 11, die weiterhin umfasst:
ein drittes optisches Element (208), das zwischen der zweiten Lichtquelle und dem
zweiten Farbseparationselement angeordnet ist, wobei das dritte optische Element das
von der zweiten Lichtquelle emittierte Licht kollimiert.
13. Beleuchtungsvorrichtung nach Anspruch 9, die weiterhin umfasst:
eine zweite Lichtquelle (302), die Licht mit einem dritten Wellenlängenbereich entlang
einem dritten Strahlengang emittiert;
ein zweites Wellenlängenumwandlungselement (312) in dem dritten Strahlengang, wobei
das zweite Wellenlängenumwandlungselement von der zweiten Lichtquelle physisch getrennt
ist, wobei das zweite Wellenlängenumwandlungselement das Licht mit dem dritten Wellenlängenbereich
in Licht mit einem vierten Wellenlängenbereich entlang einem vierten Strahlengang
umwandelt; und
ein zweites Farbseparationselement (310), das zwischen der zweiten Lichtquelle und
dem zweiten Wellenlängenumwandlungselement angeordnet ist, wobei das zweite Farbseparationselement
so konfiguriert ist, dass es verhindert, dass im Wesentlichen das gesamte Licht mit
dem vierten Wellenlängenbereich von dem zweiten Wellenlängenumwandlungselement auf
die zweite Lichtquelle auffällt; sowie
ein drittes Farbseparationselement (342), das zwischen dem Wellenlängenumwandlungselement
und dem zweiten Wellenlängenumwandlungselement angeordnet ist, wobei das dritte Farbseparationselement
so konfiguriert ist, dass es das Licht mit dem zweiten Wellenlängenbereich und das
Licht mit dem vierten Wellenlängenbereich kombiniert.
14. Beleuchtungsvorrichtung nach Anspruch 13, die weiterhin eine Linse (344) umfasst,
die nach dem dritten Farbseparationselement angeordnet ist.
15. Beleuchtungsvorrichtung nach Anspruch 13, die weiterhin eine dritte Lichtquelle (322)
umfasst, die ein Licht mit einem fünften Wellenlängenbereich emittiert, wobei das
dritte Farbseparationselement weiterhin so konfiguriert ist, dass es das Licht mit
dem zweiten Wellenlängenbereich, das Licht mit dem vierten Wellenlängenbereich und
das Licht mit dem fünften Wellenlängenbereich kombiniert.
1. Dispositif d'éclairage (100, 150, 200, 300, 400, 500, 550, 600, 650, 800, 850) comprenant
:
une source de lumière (102, 202, 302, 322, 502, 522, 602, 652, 802, 852) qui émet
une lumière ayant une première plage de longueurs d'onde le long d'une première trajectoire
de faisceau ;
un élément de conversion de longueur d'onde (112, 112', 512, 612, 812, 856) dans la
première trajectoire de faisceau, l'élément de conversion de longueur d'onde étant
physiquement séparé de la source de lumière, l'élément de conversion de longueur d'onde
convertissant la lumière ayant une première plage de longueurs d'onde en une lumière
ayant une deuxième plage de longueurs d'onde le long d'une deuxième trajectoire de
faisceau ; et
un élément de séparation de couleur (110, 210, 310, 510, 610, 810, 854) disposé entre
la source de lumière et l'élément de conversion de longueur d'onde, l'élément de séparation
de couleur étant configuré pour empêcher sensiblement toute la lumière ayant la deuxième
plage de longueurs d'onde d'être incidente sur la source de lumière, caractérisé en ce que
l'élément de conversion de longueur d'onde comprend un élément rotatif (712), l'élément
rotatif ayant au moins une première section étant couverte par un premier phosphore
qui convertit la lumière ayant une première plage de longueurs d'onde en la lumière
ayant la deuxième plage de longueurs d'onde et une seconde section étant couverte
par un second phosphore qui convertit la lumière ayant une première plage de longueurs
d'onde en la lumière ayant une troisième plage de longueurs d'onde, dans lequel l'élément
de séparation de couleur est configuré pour empêcher en outre sensiblement toute la
lumière ayant la troisième plage de longueurs d'onde d'être incidente sur la source
de lumière.
2. Dispositif d'éclairage selon la revendication 1, dans lequel la source de lumière
est un dispositif électroluminescent semiconducteur.
3. Dispositif d'éclairage selon la revendication 1, comprenant en outre un deuxième élément
de séparation de couleur disposé sur l'élément de conversion de longueur d'onde, le
deuxième élément de séparation de couleur étant configuré pour transmettre de la lumière
ayant la première plage de longueurs d'onde sur une première plage d'angles et pour
transmettre de la lumière ayant la deuxième plage de longueurs d'onde sur une seconde
plage d'angles, la seconde plage d'angles étant plus petite que la première plage
d'angles, dans lequel le deuxième élément de séparation de couleur renvoie la lumière
ayant la deuxième plage de longueurs d'onde à l'extérieur de la seconde plage d'angles
vers l'élément de conversion de longueur d'onde.
4. Dispositif d'éclairage selon la revendication 1, comprenant en outre au moins un d'un
film d'amélioration de radiance (118, 318, 520, 622, 814) et un composant de récupération
de polarisation (120, 320, 522, 624, 858) accouplés pour recevoir la lumière émise
depuis l'élément de conversion de longueur d'onde.
5. Dispositif d'éclairage selon la revendication 4, dans lequel le film d'amélioration
de radiance comprend au moins un d'un élément optique de diffraction et d'un micro-élément
de réfraction et dans lequel le composant de récupération de polarisation comprend
un polariseur non absorbant.
6. Dispositif d'éclairage selon la revendication 1, dans lequel l'élément de séparation
de couleur est choisi dans le groupe constitué d'un miroir dichroïque, d'un cube dichroïque,
d'une sphère dichroïque, d'un élément optique de diffraction et d'un hologramme.
7. Dispositif d'éclairage selon la revendication 1, dans lequel l'élément de conversion
de longueur d'onde est monté sur un sous-support réfléchissant.
8. Dispositif d'éclairage selon la revendication 1, comprenant en outre une lentille,
dans lequel l'élément de séparation de couleur reflète la lumière ayant une première
plage de longueurs d'onde entre la source de lumière et l'élément de conversion de
longueur d'onde et transmet la lumière ayant la deuxième plage de longueurs d'onde
entre l'élément de conversion de longueur d'onde et la lentille.
9. Dispositif d'éclairage selon la revendication 1, comprenant en outre :
un premier élément optique disposé entre la source de lumière et l'élément de séparation
de couleur, le premier élément optique collimatant la lumière émise par la source
de lumière ; et
un deuxième élément optique disposé entre l'élément de conversion de longueur d'onde
et l'élément de séparation de couleur, le deuxième élément optique focalisant la lumière
collimatée depuis la source de lumière sur l'élément de conversion de longueur d'onde
et collimatant la lumière convertie ayant une deuxième plage de longueurs d'onde.
10. Dispositif d'éclairage selon la revendication 9, dans lequel le premier élément optique
et le deuxième élément optique comprennent chacun au moins un d'un collimateur, d'un
élément concentrateur parabolique composé réfléchissant, d'un élément optique réfléchissant
interne total, d'un transformateur d'angle de réflexion rectangulaire, d'une lentille
de condensateur et d'un ensemble lentille.
11. Dispositif d'éclairage selon la revendication 9, comprenant en outre :
une deuxième source de lumière (202) qui émet de la lumière ayant une troisième plage
de longueurs d'onde le long d'une troisième trajectoire de faisceau ;
dans lequel l'élément de séparation de couleur est un premier élément de séparation
de couleur (110) qui est en outre disposé entre la deuxième source de lumière et l'élément
de conversion de longueur d'onde, le premier élément de séparation de couleur étant
configuré pour transmettre sensiblement toute la lumière ayant la deuxième plage de
longueurs d'onde et pour réfléchir sensiblement toute la lumière ayant la première
plage de longueurs d'onde ; et
un second élément de séparation de couleur (210) disposé entre la deuxième source
de lumière et le premier élément de séparation de couleur (110), le second élément
de séparation de couleur étant configuré pour transmettre sensiblement toute la lumière
ayant la deuxième plage de longueurs d'ondes et pour réfléchir sensiblement toute
la lumière ayant la troisième plage de longueurs d'onde ;
dans lequel l'élément de conversion de longueur d'onde est dans la première trajectoire
de faisceau et la troisième trajectoire de faisceau, l'élément de conversion de longueur
d'onde convertissant à la fois la lumière ayant la première plage de longueurs d'onde
et la lumière ayant la troisième plage de longueurs d'onde en une lumière ayant la
deuxième plage de longueurs d'onde.
12. Dispositif d'éclairage selon la revendication 11, comprenant en outre :
un troisième élément optique (208) disposé entre la deuxième source de lumière et
le deuxième élément de séparation de couleur, le troisième élément optique collimatant
la lumière émise par la deuxième source de lumière.
13. Dispositif d'éclairage selon la revendication 9, comprenant en outre :
une deuxième source de lumière (302) qui émet une lumière ayant une troisième plage
de longueurs d'onde le long d'une troisième trajectoire de faisceau ;
un second élément de conversion de longueur d'onde (312) dans la troisième trajectoire
de faisceau, le second élément de conversion de longueur d'onde étant physiquement
séparé de la deuxième source de lumière, le second élément de conversion de longueur
d'onde convertissant la lumière ayant la troisième plage de longueurs d'onde en une
lumière ayant une quatrième plage de longueurs d'onde le long d'une quatrième trajectoire
de faisceau ; et
un deuxième élément de séparation de couleur (310) disposé entre la deuxième source
de lumière et le second élément de conversion de longueur d'onde, le deuxième élément
de séparation de couleur étant configuré pour empêcher sensiblement toute la lumière
ayant la quatrième plage de longueurs d'onde provenant du second élément de conversion
de longueur d'onde d'être incidente sur la deuxième source de lumière ; et
un troisième élément de séparation de couleur (342) disposé entre l'élément de conversion
de longueur d'onde et le second élément de conversion de longueur d'onde, le troisième
élément de séparation de couleur étant configuré pour combiner la lumière ayant la
deuxième plage de longueurs d'onde et la lumière ayant la quatrième plage de longueurs
d'onde.
14. Dispositif d'éclairage selon la revendication 13, comprenant en outre une lentille
(344) disposée après le troisième élément de séparation de couleur.
15. Dispositif d'éclairage selon la revendication 13, comprenant en outre une troisième
source de lumière (322) qui émet une lumière ayant une cinquième plage de longueurs
d'onde, dans lequel le troisième élément de séparation de couleur est en outre configuré
pour combiner la lumière ayant la deuxième plage de longueurs d'onde, la lumière ayant
la quatrième plage de longueurs d'onde et la lumière ayant la cinquième plage de longueurs
d'onde.