
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
62

7
32

1
A

1
EP003627321A1

(11) EP 3 627 321 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
25.03.2020 Bulletin 2020/13

(21) Application number: 19208216.2

(22) Date of filing: 22.09.2003

(51) Int Cl.:
G06F 9/46 (2006.01) H04L 29/06 (2006.01)

H04W 4/00 (2018.01) H04W 12/08 (2009.01)

H04W 74/00 (2009.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 23.09.2002 US 412844 P
19.09.2003 US 666673

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
16158248.1 / 3 046 027
03750592.2 / 1 573 518

(71) Applicant: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72) Inventors:
• HANSSON, Jonas

222 20 Lund (SE)
• BJÄRE, Björn

226 49 Lund (SE)

(74) Representative: Zacco Sweden AB
P.O. Box 5581
114 85 Stockholm (SE)

Remarks:
This application was filed on 10-11-2019 as a
divisional application to the application mentioned
under INID code 62.

(54) MOBILE TERMINAL WITH MIDDLEWARE SECURITY ACCESS MANAGER

(57) A mobile terminal comprising a mobile terminal
platform assembly with middleware security access man-
ager enabling application domain software installation,
loading and running.

The mobile terminal platform assembly comprises a
software services component, a hardware component
and an interface component. The interface component
has at least one interface for providing access to the soft-
ware services component for enabling application do-
main software to be installed, loaded, and run in the plat-
form. The system also includes an access controller for

controlling access to the software services component
by a requesting application domain software via the at
least one interface. The access controller comprises an
interception module configured for receiving a request
from the requesting application domain software to ac-
cess the software services component and a decision
entity configured for determining if the request should be
granted. The requesting application domain software is
granted access to the software services component via
the at least one interface when the request is granted.

EP 3 627 321 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present invention relates generally to the
field of wireless telecommunications; and, more particu-
larly, to a mobile terminal comprising a mobile terminal
platform assembly enabling application domain software
installation, loading and running.

BACKGROUND

[0002] Since cellular telecommunications systems
were first introduced in the 1980s, mobile terminals (Mo-
bile Stations) utilized in the systems have become in-
creasingly more complex. Initially, mobile terminals were
designed primarily to provide voice telephony services;
i.e., to receive and transmit voice communications. In
later years, mobile terminals were developed that also
included the ability to transfer user data not related to
that of a voice telephone call. Such user data included,
for example, data to be transferred over a dial-up net-
working connection initiated via a personal computer
(PC).
[0003] Currently, so-called "third generation" (3G) sys-
tems are being developed for future mobile telecommu-
nications systems. 3G systems will combine high-speed
Internet access with traditional voice communication,
and will provide a user with access to Internet browsing,
streaming audio/video, positioning, video conferencing
and many other capabilities in addition to voice commu-
nication.
[0004] The Third Generation Partnership Project
(3GPP) was established to ensure compatibility among
the several 3G systems that are being developed around
the world. The Universal Mobile Telephone System
(UMTS) is being developed by 3GPP to provide a 3G
system that includes terrestrial and satellite systems ca-
pable of delivering voice, data and multimedia anywhere
in the world.
[0005] The drastically increased functionality that is
being included in cellular telecommunications systems
via the 3GPP standardization has placed substantial de-
mands on the developers of mobile terminals to be used
in the systems. This demand is exacerbated by the fact
that a mobile terminal is a "resource scarce" environment
that is limited in size, memory and power.
[0006] Traditionally, mobile terminal manufacturers
have designed, fabricated and marketed substantially
complete mobile terminal systems that include all the
hardware and software needed for basic terminal oper-
ation as well as the hardware and software needed to
provide the features and capabilities desired by the man-
ufacturer or a particular user based on their perception
of market needs. Such an approach does not provide the
flexibility to quickly adapt to rapid changes in market de-
mands or to satisfy the diverse requirements of multiple
users.

[0007] Recognizing the inadequacies of traditional pro-
cedures for designing and fabricating mobile terminals,
a mobile terminal platform assembly has been developed
that includes a plurality of functionally complementary
units of software and hardware that can be marketed as
a unit to a plurality of users. Each user can then install,
load, and run his own application software into the as-
sembly to provide a tailored platform system for a mobile
terminal that meets the user’s own particular needs.
[0008] A platform system such as described above,
wherein mobile terminal platform assembly software and
application software are developed separately and then
later combined by installing, loading, and running the ap-
plication software in the mobile terminal platform assem-
bly, may require a non-native application such as a Java
midlet to run on a virtual machine. The virtual machine
guarantees that, for example, no illegal memory access
will take place. However, such non-native applications
depend on functionality that is provided by the native
code of the mobile terminal platform assembly. Unre-
stricted access to such native functionality in, for exam-
ple, the platform domain or the application domain, may
jeopardize the integrity of the mobile terminal by, e.g.,
initiating cost incurring events without notifying the end
user.
[0009] Examples of access control architecture are
known from conventional computer systems and asso-
ciated operating systems, e.g., as disclosed in "Integrat-
ing Flexible Support for Security Policies into the Linux
Operating System", LOSCOCCO PETER ET AL, 2 Jan-
uary 2001, XP-002197020.
[0010] In the field of mobile terminals and mobile ter-
minal platform assemblies, certificates of origin are used
on applications to determine the extent of trust therein
and therefore grant access to a subset of the services
made available by the mobile terminal platform assembly
to the non-native execution environment. However, the
situation is further complicated by the fact that the per-
missions granted might be changed in run-time by the
end user of the mobile terminal.
[0011] Therefore, there is a need for a dynamic regis-
tration of the permissions as well as dynamic filtering of
the access to the native code of the mobile terminal plat-
form assembly at any time (e.g., run time).

SUMMARY

[0012] It is an object of the present disclosure to solve
or mitigate, alleviate, or eliminate at least some of the
above mentioned deficiencies, disadvantages, and
draw-backs of the background art solutions.
[0013] According to a first aspect, the object of the dis-
closure is achieved by a mobile terminal for a wireless
communication system, the mobile terminal comprising
a mobile terminal platform assembly. The mobile terminal
platform assembly comprises a software services com-
ponent, a hardware component and an interface compo-
nent. The interface component has at least one interface

1 2

EP 3 627 321 A1

3

5

10

15

20

25

30

35

40

45

50

55

for providing access to the software services component
for enabling application domain software to be installed,
loaded, and run in the platform. The system also includes
an access controller for controlling access to the software
services component by a requesting application domain
software via the at least one interface. The access con-
troller comprises an interception module configured for
receiving a request from the requesting application do-
main software to access the software services compo-
nent and a decision entity configured for determining if
the request should be granted. The requesting applica-
tion domain software is granted access to the software
services component via the at least one interface when
the request is granted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Further objects, features and advantages will
appear from the following detailed description of embod-
iments, with reference being made to the accompanying
drawings. The drawings are not necessarily to scale, em-
phasis instead being placed upon illustrating example
embodiments.

FIGURE 1 is a block diagram that schematically il-
lustrates a mobile terminal comprising a platform
system including a mobile terminal platform assem-
bly;

FIGURE 2 is a block diagram that schematically il-
lustrates a deployment view of the mobile terminal
platform assembly of the platform system of FIGURE
1 to further assist in explaining principles of the
present invention;

FIGURE 3 is a block diagram that schematically il-
lustrates the software architecture of the mobile ter-
minal platform assembly of FIGURES 1 and 2 to fur-
ther assist in explaining principles of the present in-
vention;

FIGURE 4A is a logical block diagram that schemat-
ically illustrates details of the middleware services
layer of FIGURES 1-3 according to an exemplary
embodiment of the present invention;

FIGURE 4B is an implementation view that illustrates
relationships between different parts of the system,
i.e. the Application Domain 500, the Middleware Do-
main 501 and the Platform Domain 502;

FIGURE 5 is a block diagram that schematically il-
lustrates details of the Open Application Framework
API domain of the middleware services layer of FIG-
URE 4 according to another exemplary embodiment
of the present invention;

FIGURE 6A is a block diagram that schematically

illustrates details of the message relating to a per-
mission request and decision in accordance with
principles of the invention;

FIGURE 6B is a block diagram that schematically
illustrates details of the message relating to a per-
mission request and a decision according to another
exemplary embodiment of the invention;

FIGURE 7 is a flow chart that illustrates steps of a
method for requesting access and receiving a per-
mission decision from a SAM 518 in accordance with
principles of the invention;

FIGURE 8A and 8B is a flow chart that illustrates the
steps of a method for requesting access and receiv-
ing a permission decision in a more efficient way
according to another exemplary embodiment of the
invention;

FIGURE 9 is a block diagram illustrating details of
the security access manager in accordance with
principles of the invention; and

FIGURE 10 is a block diagram illustrating details of
the interception module according to another exem-
plary embodiment of the invention.

DETAILED DESCRIPTION

[0015] FIGURE 1 is a block diagram that schematically
illustrates a mobile terminal, generally designated by dot-
ted line 16, comprising a platform system. The platform
system is generally designated by reference number 10
and includes a mobile terminal platform assembly 12 and
one or more applications (i.e., application software) 14
that have been installed, loaded, and run in the mobile
terminal platform assembly 12. Platform system 10 is
adapted to be incorporated in the mobile terminal gen-
erally designated by dotted line 16.
[0016] Mobile terminal platform assembly 12 includes
a software services component 22, a hardware compo-
nent 24, and an interface component 26. Software serv-
ices component 22 includes a plurality of well-structured
functional software units for providing services that are
offered to users via the interface component 26. In the
exemplary system 10 illustrated in FIGURE 1, the plural-
ity of software units include a plurality of vertically-orient-
ed functional software stacks 30-38. The hardware com-
ponent 24 includes a set of hardware units that are as-
sociated with and controlled by their respective functional
software stacks 30-38. In the exemplary system 10 illus-
trated in FIGURE 1, the hardware units are different hard-
ware blocks 40-48 associated with the software stacks
30-38.
[0017] The interface component 26 includes a middle-
ware services layer that includes at least one application
programming interface (API) for installing, loading, and

3 4

EP 3 627 321 A1

4

5

10

15

20

25

30

35

40

45

50

55

running one or more applications 14 in mobile terminal
platform assembly 12, that isolates the mobile terminal
platform assembly 12 from the applications 14 using the
assembly 12 via the interfaces, and that provides various
other services for the applications 14. Specific details of
the middleware services layer will be described herein-
after.
[0018] Mobile terminal platform assembly 12 of plat-
form system 10 is adapted to be designed, implemented,
assembled, and tested as a complete, enclosed unit sep-
arate from the application software 14 (the term "appli-
cation software" as used herein can be any software that
provides the functionality that users (e.g., manufacturers
or end users) may wish to have available in addition to
the platform software functionality). Users can, accord-
ingly, develop or otherwise acquire their own application
software 14 and add that software 14 to the mobile ter-
minal platform assembly 12 at a later time in order to
tailor the platform system 10 to their needs. Mobile ter-
minal platform assembly 12 can, accordingly, be sold or
otherwise transferred to a plurality of different users each
of which can tailor the platform system 10 by installing,
loading, and running their own application software on
the assembly in order to satisfy their own particular re-
quirements for the platform system.
[0019] FIGURE 2 is a block diagram that schematically
illustrates one example of a deployment view of mobile
terminal platform system 12 of FIGURE 1 to further assist
in understanding the present invention. As illustrated in
FIGURE 2, mobile terminal platform assembly 12 is con-
trolled via software executing in a main CPU 50. The
main CPU 50 may include one or more processors such
as microprocessors, micro programmable processors or
DSPs (Digital Signal Processors). The software stacks
30-38 of software component 22 each include hardware
driver software 60-68 to operate the hardware units as-
sociated with each stack. Further details of the mobile
terminal platform assembly 12 and platform system 10
are given in the above-mentioned commonly assigned
U.S. Patent Application No. 10/359,835. The software
incorporated in mobile terminal platform assembly 12 is
preferably arranged in such a manner as to make the
software organization easy to understand so that it can
be more easily designed and more easily upgraded or
otherwise modified.
[0020] FIGURE 3 is a block diagram that schematically
illustrates the software architecture of mobile terminal
platform assembly 12 to further assist in explaining prin-
ciples of the present invention. As shown in FIGURE 3,
software services component 22, in addition to being or-
ganized into a plurality of vertical functional software
stacks 30- 38 as described above, is also arranged to
define a plurality of horizontal layers such that the soft-
ware of the middleware services layer and the software
of the software services component 22 together define
a layered architecture, generally designated by reference
number 70, in which the layers are arranged in descend-
ing order from a higher level service layer to a lower level

service layer.
[0021] The software architecture differs from the
standard ISO/OSI (ISO Open Systems Interconnection)
model in that it includes a plurality of horizontally parti-
tioned functional software units that complement a plu-
rality of vertically partitioned software layers. The hori-
zontal partitioning contributes significantly to the creation
of independent modular components.
[0022] The highest layer of the layered architecture is
the middleware services layer. The layers of the software
services component 22 include an application server lay-
er 80 to provide application services, a platform services
layer 82 to provide platform specific services for applica-
tions, a platform protocol layer 84 to provide session pro-
tocols and application specific protocols, a transport layer
86 to provide audio access/control, datacom transport
protocols, messaging transport protocols and the like, a
data access layer 88 to provide external data JF access,
structured storage services and other low level platform
support services, a logical drivers layer 90 and a physical
drivers layer 92 encapsulating hardware dependencies.
In addition, software services component 22 includes ba-
sic system services layers 94 that provide general serv-
ices that are needed by the platform assembly.
[0023] The bottom two layers 90 and 92 constitute
Hardware Abstraction Layers (HAL) which isolate the de-
pendencies between the software and the hardware. On-
ly the physical drivers layer is concerned with the details
of the hardware (e.g., which registers in the ASIC hard-
ware are addressed). The logical drivers layer 90 pro-
vides a logical mapping to the hardware, i.e., this layer
provides a bridge between the hardware and software
parts of the mobile terminal platform assembly.
[0024] The software itself is organized into a plurality
of software modules, modules 102, 104, 106 being spe-
cifically shown in FIG. 3. In software services component
22, a single module can reside in only one vertical func-
tional stack and in only one horizontal layer within that
stack. Each layer can contain from one to many modules,
and all the modules in a particular layer in a particular
stack have the same level of abstraction.
[0025] Communication among the various modules is
accomplished via a Software Back Plane (SwBP) 112
subject to a set of basic rules for software module-to-
module access. These rules can be summarized as fol-
lows:

- A software module may invoke functionality in all lay-
er interfaces below its own layer.

- There are no limitations for the direction of serialized
data flows. They may go in any direction.

- A software module may never invoke functionality in
layer interfaces (in the SwBP 112) above its own
layer, independent of which module the layers be-
long.

5 6

EP 3 627 321 A1

5

5

10

15

20

25

30

35

40

45

50

55

- A software module may invoke functionality in the
layer interface in its own layer in the same vertical
stack.

- A software module may invoke functionality in a soft-
ware module in the same layer in another vertical
stack. (This capability is permitted to limit the number
of layers in the vertical stacks.)

[0026] There is no hard coupling between the various
modules and the interfaces in the SwBP 112. As a result,
the modules and/or the implementation of the interfaces
can be freely changed without any impact on clients to
the interfaces. A client is, for example, an application,
utility, plug-in, or any other consumer of platform servic-
es. This absence of hard coupling is an important capa-
bility as it permits individual modules to be added, re-
moved or changed without affecting other modules in the
platform assembly.
[0027] Further details of the layered architecture, in-
cluding the SwBP software structure that enables the in-
ternal communication between modules within the mo-
bile terminal platform assembly are described in the
above-mentioned commonly assigned, U.S. Patent Ap-
plication No. 10/359,911. The middleware services layer
functions to provide a well-defined interface between the
software in the mobile terminal platform assembly 12 and
the application software 14 to be installed, loaded, and
run in the platform assembly, and encapsulates the mo-
bile terminal platform assembly 12 and isolates the as-
sembly 12 from applications via the middleware services
layer, and provides various other services for the appli-
cations.
[0028] FIGURE 4A is a block diagram that schemati-
cally illustrates details of the middleware services layer
of the interface component 26 in accordance with princi-
ples of the invention. As shown in FIGURE 4A, the mid-
dleware services layer includes a plurality of API do-
mains, including a non-native environment (e.g., a Java
Execution (Java ExE) Environment) API domain 202, an
Open Application Framework (OAF) API domain 204, an
Open Platform API (OP A) domain 206, and a UI Tool-
kit API domain 208.
[0029] Through the APIs 202-208 in the middleware
services layer, the mobile terminal platform assembly 12
supports a plurality of application environments. In the
exemplary embodiment of FIGURE 4A, the middleware
services layer supports environments for native applica-
tions (i.e., applications that are compiled to run with a
particular processor and its set of instructions) and for
non-native applications (e.g., Java J2ME CLDC MJJDP
(Java 2 Micro Edition Connected Limited Device Config-
uration/Mobile Information Device Profile)). Each appli-
cation environment has its own characteristics and in
terms of:

- The way applications are developed (programming
language support, compilation and linkage).

- The way applications are executed (e.g., interpreta-
tion or native code execution)

- The functional services that are offered.
- Potential restrictions in use.

[0030] By providing multiple application environment
alternatives, a wide range of products with varying de-
mands such as cost, ease of use, time to market, func-
tionality set, size, portability, etc. is facilitated.
[0031] FIGURE 4B illustrates relationships between
different parts of the system via an implementation view.
The main domains are the Application Domain 500, the
Middleware Domain 501, and the Platform Domain 502.
Modules on a higher level are considered to have de-
pendencies on lower-level modules in FIGURE 4B. The
Application Domain 500 may hold non-native applica-
tions 506(1)-(N) encapsulated in a non-native environ-
ment 504 (e.g., a Java virtual machine) as well as native
applications 516. However, the Application Domain 500
need not necessarily hold any non-native applications.
Service requests from the applications 506 and 516 are
subject to access control via an Interception Module 508
before they are passed on to lower-level services.
[0032] Such lower-level services may include Plug-Ins
(e.g., a UI Toolkit 510) holding high-level graphical sup-
port as well as more fundamental services represented
by an Open Platform API (OPA) 512 in the Middleware
Domain 501. Via OP A 512, applications may communi-
cate with an Application Manager (AM) 514 in order to
request updates of access permissions. In an exemplary
embodiment, the AM 514 informs a security access man-
ager (SAM) 518 of any such requests. Further details of
the middleware service layer component 26 are de-
scribed in commonly assigned U.S. Patent Application
No. 10/359,772.
[0033] FIGURE 5 is a block diagram that schematically
illustrates major software modules in the Open Applica-
tion Framework (OAF) API domain 204 according to an
exemplary embodiment of the present invention. As
shown, the modules include the SAM 518 and an access
interception module (IM) 223. The SAM 518 is responsi-
ble for granting access by applications to the Open Plat-
form API domain 206 made by non-native applications,
such as Java applications, in order to monitor such ap-
plications according to their credentials. In other words,
the SAM 518 has the responsibility to decide whether or
not a call from a non-native environment should be per-
mitted. The SAM 518 holds and maintains the security
policies related to the access of the platform services. In
this regard, access to the native platform services by the
Java Exe Environment 504 may be more restrictive than
for the native application environment 516. The IM 223
is responsible for monitoring service requests from the
applications running in the non-native (e.g., Java) envi-
ronment 504, monitoring that in some cases might also
be considered for native execution environments.
[0034] In general, the AM 514 handles the registration,
installation, start, stop, uninstall, and removal of all ap-

7 8

EP 3 627 321 A1

6

5

10

15

20

25

30

35

40

45

50

55

plications. The JJVI 223 intercepts non-native application
service requests from the EXE environment to the native
platform services (interception takes place at the border
of the Java support layer in the case of a Java application)
and calls on the SAM 518 to grant access. If access is
granted, the non-native application service request is for-
warded to the Open Platform API (OPA) 206 and treated
the same as a native application. A permission request
is traffic between the IM 223 and the SAM 518. A service
request is traffic between an application 250 (See, e.g.,
FIGS. 6A-B), or any software in the application domain
500, and the platform domain 502. A service request rep-
resents a client accessing the services of the platform
domain 502.
[0035] The SAM 518 may grant access to the native
platform services in a variety of ways, one example of
which is illustrated in FIGURES 6A and 7. In particular,
FIGURE 6A is a block diagram of the components and
messages involved in granting or denying a service re-
quest, and FIGURE 7 is a flow chart that illustrates a
method associated therewith according to exemplary
embodiments of the present invention.
[0036] With reference to FIGURES 6A and 7, a non-
native application 250 requests a service that requires
access to the native platform services at step 280. At
step 282, the IM 223 intercepts the service request, which
includes an ID tag of the requesting non-native applica-
tion 250. At step 284, a permission request is sent from
the Bvl 223 to the SAM 518 along with the JO tag included
with the service request. The IM 223 may also send the
SAM 518 additional access information and an identifi-
cation of the native platform service that the non-native
application 250 desires to access. The SAM 518 reviews
the security policies of the native platform services to
determine if access may be granted to the non-native
application 250. At step 286, the SAM 518 forms a per-
mission decision and forwards the decision to the JJVI
223. If the permission request is granted, then, at step
288, the service request is forwarded to the native plat-
form service or services requested by the non-native ap-
plication 250. The requested service is then executed at
step 290. If the permission request is denied, then, at
step 296, a reject response is sent to the non-native ap-
plication 250.
[0037] If the ID tag 320 does not match one of the ID
tags 320 included in the located access record 318, the
request is rejected at step 292 and the request is aborted
and returned to the requesting non-native application 250
at step 296 as shown in FIGURES 7 and 8A.
[0038] In a further option, the permission decision may
require an approval procedure. For example, the user
may be asked to approve access to the native platform
service as shown at step 294. If the user approves the
access at step 294, then the request is forwarded to the
native platform service as in step 288. However, if access
is denied at step 294, then the request is rejected at step
292 and the request is aborted and returned to the client
that issued the request at step 296.

[0039] FIGURES 6B, 8A, and 8B illustrate another ex-
ample where the interception module locally takes the
decision to grant or deny requests and where the SAM
518 updates credentials stored in the JJVI. According to
FIGURE 6B, a non-native application 250 requests a
service. The service request is intercepted by the JJVI
223. The LM 223 grants or denies the request locally. In
parallel, the SAM 518 issues update requests to the IM
223, on a per need basis or at intervals, of the records
kept by the IM 223 and upon which the JJVI 223 bases
a grant.
[0040] FIGURE 8A is a flow chart that further illustrates
a process of granting or denying of a service request
according to the example shown in FIG. 6B. As shown
at steps 280 and 282, the non-native application 250 in-
vokes a service request and the service request is inter-
cepted, along with an ID tag, at the JJVI 223. Instead of
sending a permission request with the JJD tag from the
B I 223 to the SAM 518, the JJVI 223 makes a decision
locally. In this embodiment, the JJVI 223 maintains ac-
cess records for the native platform services. Each ac-
cess record includes the ID tags of specific applications
that have permission to access the requested native plat-
form service. At step 301, the IM 223 searches the access
record of the requested native platform service to deter-
mine, at step 303, if the ID tag of the requesting non-
native application 250 is associated therewith and the
request should thus be granted. If the ID tag of the re-
questing non-native application 250 is found in the ac-
cess record, then at step 303, permission is granted for
the non-native application 250 to access the requested
native platform service. Similarly to step 288 of FIGURE
7, the service request is forwarded to the requested na-
tive platform service and the service is executed at step
290. If the ID tag of the requesting non-native application
250 is not found in the access record for the requested
native platform service, the request is rejected at step
292, aborted and returned to the client that issued the
request at step 296.
[0041] In a further option, the permission decision may
require an approval procedure. For example, the user
may be asked to approve access to the native platform
service as shown at step 294. If the user approves the
access at step 294, then the request is forwarded to the
native platform service as in step 288. However, if access
is denied at step 294, then the request is rejected at step
292 and the request is aborted and returned to the client
that issued the request at step 296.
[0042] The SAM 518 may distribute permission update
requests to at least one IM 223 as required or at prede-
termined intervals. As presented by FIGURE 8B, there
are different scenarios for when such an update might
take place. The user may alter the permissions for a par-
ticular non-native application 250 during run-time via the
AM 514, indicated by step 412, thereby requiring an up-
date of the access records maintained by the SAM 518
as indicated by step 414. The updated permissions will
then be forwarded by the SAM to the IM, as indicated by

9 10

EP 3 627 321 A1

7

5

10

15

20

25

30

35

40

45

50

55

step 416. Additional cases where updates of the SAM
and IM records are necessary include when a new ap-
plication is added to the system, as indicated by steps
404 and 406, as well as when an existing application is
removed from the system, indicated by steps 408 and
410. To further expedite the peπnission decision, a de-
cision cache may be utilized in accordance with an em-
bodiment of the EVI 223 as described below.
[0043] Referring now to FIGURE 9, details of the SAM
518 according to an exemplary embodiment of the
present invention are illustrated. As shown, the SAM 518
includes a decision cache 310 for logging the most fre-
quent and/or the most recent service requests to find the
permission decision associated with a particular service
request. A given non-native application 250 may submit
the same service request numerous times. Therefore,
the decision cache 310 keeps a record of frequent service
requests and may search through the earlier requests to
find the permission decision associated with the partic-
ular service request. For example, a Java application
may request a particular native platform service a number
of times. The received permission request includes the
JJD tag of the requesting non-native application 250.
[0044] The first time the non-native application 250
makes a service request, the SAM 518 accesses an Ac-
cess Control List (ACL) 312 to determine if permission
should be granted to the requested native platform serv-
ice. The ACL 312 stores a number of access records,
which are derived from, for example, application certifi-
cates of origin. These records 314 are associated with
each registered and installed non-native application,
such as a specific Java application.. The SAM 518
searches through the possible records of requesting ap-
plications 314 to find a match with the particular request-
ing application. If the particular requesting application is
found among the set of records, then the permissions
316 are searched to determine whether access should
be granted to the requested native platform service.
Based on the associated and stored permissions 316, a
permission decision is generated. The permission deci-
sion is sent to the IM 223 and may also be logged, along
with the permission request in the decision cache 310.
The next time the service request from the same non-
native application 250 is intercepted by the JJVI 223 and
forwarded to the SAM 518, the decision cache 310 is
searched for the permission request. When the permis-
sion request is located, the permission decision associ-
ated with the permission request is forwarded to the LM
223. By utilizing the decision cache 310, the SAM 518
becomes more efficient in making permission decisions.
[0045] FIGURE 10 illustrates details of JJVI 223 ac-
cording to another exemplary embodiment of the present
invention. Note that although the ACL and decision cache
are located in the JJVI 223 in this example, the same
principle is applicable if they were located in the SAM
518. In FIGURE 10, ACL 312 stores access records of
a different format from that illustrated in FIGURE 9. Jn
particular, in FIGURE 10, ACL 312 stores access records

318 for the native platform services of the mobile terminal.
An access record 318 exists for each native platform
service (or group of services) of the mobile terminal. Each
access record 318 includes the JJD tags 320 of the non-
native applications 250 that are allowed access to the
particular native platform service (or group of services)
associated with the access record 318. The SAM 518
sends requests to the IM 223 when updates to the access
lists and records are needed. The update requests in-
clude the ID tag 320 of the non-native application 250
associated with the update and an identification of the
requested native platform service or services where the
permissions must be changed. The LM 223 searches the
ACL 312 for the access record 318 of the requested na-
tive platform service. Once located, the LM 223 deter-
mines whether the JJD tag 320 of the requesting non-
native application 250 is included in the located access
record 318. If the ID tag 320 of the requesting non-native
application 250 matches one of the LD tags 320 included
in the located access record 318, then permission is
granted to the requesting non-native application 250 and
the service request is forwarded to the native platform
service handler. The permission decision may also be
stored in the decision cache 310 in a manner similar to
that described with reference to FIGURE 9.
[0046] If the ID tag 320 does not match one of the ED
tags 320 included in the located access record 318, the
request is rejected at step 292 and the request is aborted
and returned to the requesting non-native application 250
at step 296 as shown in FIGURES 7 and 8A.
[0047] On-demand as well as periodic permission up-
date requests may be distributed from SAM 518 to a reg-
istered LVI 223, even during run time. The user may up-
date the permissions granted to a particular non-native
application 250 and thereby cause outdated and incor-
rect information to exist in the SAM 518. Therefore, the
SAM 518, whenever necessary or at periodic intervals,
issues permission update requests to the LM 223 in order
to update the access records 318 of the ACL 312 to main-
tain the correct permissions and/or JJD tags. The ID tag
320 of a particular non-native application 250 may need
to be added to or removed from certain access records
318 depending on the alterations made to the permis-
sions of particular non-native applications 250 by the us-
er.
[0048] To further simplify the permission decision pro-
cedure, types such as the JJD tags 320, permissions
316, etc., may be grouped into categories to promote
efficiency in the searching of the ACL 312 of the JJVI 223
(or the SAM 518 in case this module holds the ACLs).
For instance, each native platform service may be as-
signed to a specific security category and each security
category is associated with specific permissions. The
permission decision is then based on the security cate-
gory rather than an individual native platform service. Un-
der normal circumstances, the number of security cate-
gories would be significantly lower than the number of
native platform services and therefore search time relat-

11 12

EP 3 627 321 A1

8

5

10

15

20

25

30

35

40

45

50

55

ed to determining the permission decision is reduced.
[0049] While what has been described constitute ex-
emplary embodiments of the invention, it should be un-
derstood that the invention can be varied in many ways
without departing from the scope thereof. For example,
although the present invention has been described pri-
marily in connection with a platform for a mobile terminal
for a wireless telecommunications system, the invention
can also be used in connection with platforms for other
products. Because the invention can be varied in many
ways, it should be recognized that the invention should
be limited only insofar as is required by the scope of the
following claims.

Claims

1. A mobile terminal (16) for a wireless telecommuni-
cations system, the mobile terminal (16) comprising
a mobile terminal platform assembly (12), the mobile
terminal platform assembly (12) comprising:

a software services component (22), a hardware
component (24), and an interface component
(26), the interface component (26) having at
least one interface for providing access to the
software services component (22) for enabling
application domain software (14) to be installed,
loaded, and run in the mobile terminal platform
assembly (12); and
an access controller (223, 518) configured for
controlling access to the software services com-
ponent (22) by a requesting application domain
software (250) via the at least one interface, the
access controller (223, 518) comprising:

an interception module (223) configured for
receiving a request from the requesting ap-
plication domain software to access the
software services component; and
a decision entity (223, 518) configured for
determining if the request should be grant-
ed; and

wherein the requesting application domain soft-
ware is granted access to the software services
component (22) via the at least one interface
when the request is granted

2. The mobile terminal according to claim 1, wherein
the decision entity (223, 518) is a security access
manager (518), the security access manager (518)
holding access and permission policies.

3. The mobile terminal according to claim 2, wherein:

the request includes an identification of the re-
questing application domain software (250); and

the security access manager includes a collec-
tion of records (314) of approved requesting ap-
plication domain software for use in determining
if the request should be granted to the request-
ing application domain software based on the
identification.

4. The mobile terminal according to claim 3, wherein:

the collection of records comprises an access
control collection;
the security access manager contains an asso-
ciated permission collection; and
the associated permission collection is used to
determine if the request should be granted for a
requesting application domain software includ-
ed in the access control collection.

5. The mobile terminal according to claim 2, wherein
the security access manager 5 comprises a decision
cache (310) for maintaining a record of requests by
application domain software for determining if a per-
mission decision has previously been granted to the
requesting application domain software.

6. The mobile terminal according to claim 2, wherein:

the security access manager has a record of re-
questing application domain software; and
the security access manager determines if the
request should be granted based on an identifi-
cation stored in the record.

7. The mobile terminal according to claim 2, wherein,
if the request is denied, a reject message is sent to
the requesting application domain software by the
interception module (223).

8. The mobile terminal according to claim 2, wherein
the application domain software comprises non-na-
tive application domain software (506).

9. The mobile terminal according to claim 8, wherein
the non-native application domain software compris-
es Java application software.

10. The mobile terminal according to claim 1, wherein
the application domain software comprises native
application software (516).

11. The mobile terminal according to claim 1, wherein
the decision entity is the interception module (223).

12. The mobile terminal according to claim 11, wherein:

the request includes an identification of the re-
questing application domain software; and
the interception module (223) includes a collec-

13 14

EP 3 627 321 A1

9

5

10

15

20

25

30

35

40

45

50

55

tion of records (318) of approved requesting ap-
plication domain software for use in determining
if the permission request should be granted to
the requesting application domain software
(250) based on the identification.

13. The mobile terminal according to claim 12, wherein
the interception module (223) comprises a decision
cache (310) for maintaining a record of application-
software identifiers grouped by native platform serv-
ice for determining if a permission decision has pre-
viously been granted to the requesting application
domain software (250).

14. The mobile terminal according to claim 11, wherein:

the interception module (223) has a record for
each platform service of the platform (12); and
the interception module (223) determines if the
request should be granted based on an identifi-
cation (320) stored in the record.

15. The mobile terminal according to claim 1, further
comprising:
a system access module (518); and wherein the sys-
tem access module is adapted to update the inter-
ception module (223) with information for use by the
interception module to determine whether to grant
or deny the request.

15 16

EP 3 627 321 A1

10

EP 3 627 321 A1

11

EP 3 627 321 A1

12

EP 3 627 321 A1

13

EP 3 627 321 A1

14

EP 3 627 321 A1

15

EP 3 627 321 A1

16

EP 3 627 321 A1

17

EP 3 627 321 A1

18

EP 3 627 321 A1

19

5

10

15

20

25

30

35

40

45

50

55

EP 3 627 321 A1

20

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 359835 [0019]
• US 359911 [0027]

• US 359772 [0032]

Non-patent literature cited in the description

• LOSCOCCO PETER et al. Integrating Flexible Sup-
port for Security Policies into the Linux Operating Sys-
tem, 02 January 2001 [0009]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

