

(11)

EP 3 645 947 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
07.04.2021 Bulletin 2021/14

(51) Int Cl.:

F04D 25/08 (2006.01) **F04D 29/58** (2006.01)
F24F 1/0011 (2019.01) **F24F 1/0029** (2019.01)
F24F 1/005 (2019.01) **F24F 13/068** (2006.01)

(21) Application number: **18749166.7**

(86) International application number:
PCT/IT2018/050120

(22) Date of filing: **29.06.2018**

(87) International publication number:
WO 2019/003257 (03.01.2019 Gazette 2019/01)

(54) FAN

LÜFTER

VENTILATEUR

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
 PL PT RO RS SE SI SK SM TR**

- **RENIER, Maddalena**
31056 Roncade (IT)
- **ZANINI, Giancarlo**
31030 Carbonera (IT)

(30) Priority: **29.06.2017 IT 201700072887**

(74) Representative: **Petraz, Gilberto Luigi et al**
GLP S.r.l.
Viale Europa Unita, 171
33100 Udine (IT)

(43) Date of publication of application:

06.05.2020 Bulletin 2020/19

(56) References cited:
WO-A1-2013/185387 **AU-A1- 2012 200 112**
KR-A- 20120 066 834

(73) Proprietor: **De' Longhi Appliances S.r.l. Con Unico**
Socio
31100 Treviso (IT)

(72) Inventors:

- **DE' LONGHI, Giuseppe**
31100 Treviso (IT)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

FIELD OF THE INVENTION

[0001] The present invention concerns a fan that can be used in closed places, domestic or public, to create a stream of ventilation or conditioning air for the surrounding environment.

[0002] Hereafter, the term fan will mean, in a broader sense, any apparatus whatsoever able to provide ventilation, conditioning, cooling, heating, thermoventilation, dehumidification, or purification of the air.

BACKGROUND OF THE INVENTION

[0003] Fans for rooms are known, substantially configured in a column, having a containing structure which houses the mechanical components that generate the stream of air for ventilation or conditioning, and a zone for the emission of the stream of air comprising one or more outlet apertures through which the stream is emitted toward the room.

[0004] In the most typical and widespread solutions, the outlet aperture is generally located visible on the front part of the structure of the fan, often making the technical components partly visible, for example the ventilation blades and/or the possible heating means.

[0005] This can determine an unpleasant aesthetic impact of the fan, preventing the creation of a visible profile that is clean and unobstructed, and subtracting quality from the fan itself.

[0006] Portable fans are also known, which do not have their internal components visible, or partly visible, or which do not have ventilation blades, and which exploit the Coanda effect to direct a conditioned stream toward a user.

[0007] One disadvantage of known fans is that the stream of air that reaches the user generally has a different temperature than the one desired, and in particular it is generally warmer in the case of a cooling action, and colder in the case of a heating function, resulting in an uncomfortable feeling for the user.

[0008] In particular, one disadvantage of known fans is that, in order to supply the user with the stream of air at the desired temperature, it is necessary to heat it or cool it to a respectively higher or lower temperature, with consequent increase in energy consumption.

[0009] Another disadvantage of fans of the prior art is that the air entering the fan is sucked in from a lower zone, where the motor is present, in substantial correspondence or proximity with the base of the fan itself.

[0010] In this way, in addition to sucking up the air present in the room, the fan also sucks up the dust that is present in greater quantities on the base surface where the fan also rests.

[0011] Moreover, in the event that a room or space is to be heated, this is disadvantageous because the air taken in near the ground is generally at a lower temper-

ature than the average temperature of the room itself, so more energy is needed to heat up the stream of air to guarantee the thermal well-being of the user.

[0012] Examples of known fans are described, for example, in documents KR-A-2012/0066834, WO-A-2013/185387, AU-A-2012 200 112.

[0013] KR-A-2012/0066834 describes a fan comprising a base portion, a main body comprising an impeller, and a blowing device with an annular shape, disposed above the main body, and provided on its internal periphery with an annular nozzle for the air to exit, and defined by a first and a second plate. The air is sucked into the main body below the blowing device, it is heated by means of heating planes disposed in the blowing device, and finally it is emitted through the annular outlet nozzle, in contact with an annular surface of the blowing device, located inside the ring, in the direction facing the front of the fan. In the solution described in KR-A-2012/0066834, the stream of air in contact with the annular surface outside the blowing device has substantially the same temperature as the stream of air inside it.

[0014] In the solution described in KR-A-2012/0066834, the heating planes are located directly in contact with the first and second plate and comprise a heating layer suitable to convert electrical energy into thermal energy, possibly a protective layer against heat radiations located on an internal side, and an insulating layer located on the side in contact with one or the other plate, which has only the function of preventing the heating layer from heating the plate with which it is associated excessively, preventing possible damage to it and safety problems for a user, who could get burned due to the high temperature. In the solution provided in KR-A-2012/0066834, in fact, the stream of air emitted remains adjacent to the annular surface of the blowing device only in correspondence with a short initial segment downstream of the outlet nozzle, in which neither the heating elements nor the insulating material are provided, then separates from the annular surface and is conveyed substantially toward a central common zone.

[0015] Document WO-A-2013/185387 describes a fan comprising a base and an air outlet device, connected to an upper portion of the base, and having an annular shape, inside which heating elements are disposed. The stream of air exiting from the air outlet device has substantially the same temperature as the stream of air inside it. The solution described in WO-A-2013/185387 provides to insert reflecting plates inside the outlet device in correspondence with the heating elements, on the one hand to heat the stream of air in the outlet device more quickly, and on the other hand to prevent the outlet device from being damaged due to high temperatures.

[0016] Document AU-A-20122200112 describes a fan comprising a base and a nozzle having an annular shape, mounted on the base, in which the internal periphery of the ring comprises a Coanda surface located in correspondence with a mouth for the emission of air, onto which the exiting stream of air is directed. In the solution

described, the Coanda surface is defined by plates having a high thermal conductivity, so that the exiting stream of air has substantially the same temperature as the stream of air inside the annular nozzle.

[0017] The solutions described above do not allow either to obtain a stream of air with a single compact and uniform front, or to improve the energy efficiency of the fan to provide a stream of air at the desired temperature. Moreover, in these solutions, since the heating elements are located directly in contact with or in proximity to the external surfaces of the fan, they can present safety problems for the users.

[0018] One purpose of the present invention is to provide an improved fan compared with fans known in the art.

[0019] Another purpose of the present invention is to provide a fan having a high energy efficiency.

[0020] One purpose of the present invention is to provide a fan which returns a distributed stream of air and at a uniform temperature, able to guarantee maximum comfort to the people present in the room in which it is positioned.

[0021] Another purpose is to provide a fan which requires minimal maintenance interventions and with reduced frequency.

[0022] Another purpose of the present invention is to provide a fan with a high aesthetic value, having a front surface without discontinuities and defining a closed profile without apertures to access the internal zone where the functional components of the fan are present.

[0023] Another purpose of the present invention is to provide a fan which allows to condition the zone where the user is positioned in the best possible way.

[0024] The Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.

SUMMARY OF THE INVENTION

[0025] The present invention is set forth and characterized in the independent claim, while the dependent claims describe other characteristics of the invention or variants to the main inventive idea.

[0026] In accordance with the above purposes, the present invention concerns a fan configured to condition a room by emitting a stream of air at a defined temperature and speed.

[0027] In accordance with the embodiments, the fan is the column type, and comprises a main body with a vertical development with respect to a support base on which it is located in a condition of use, said main body defining an internal housing compartment.

[0028] In accordance with the embodiments, the fan comprises an air suction and distribution unit, disposed inside the main body, which cooperates with apertures made on the main body in order to take in and emit air from/to the outside of the main body itself.

[0029] The fan has at least one longitudinal aperture, having a vertical development during use, for the emission of the stream of air toward the outside, and comprises a channeling element positioned in proximity to the at least one longitudinal aperture and cooperating with it to direct the stream of air exiting from the longitudinal aperture toward the room or zone to be conditioned.

[0030] According to the embodiments, the longitudinal aperture is positioned in the rear part, during use, of the fan, opposite a front part of the fan positioned, during use, toward the zone to be conditioned, and the channeling element is configured to divert the stream of air so that it adheres to the external surface of the main body and is conveyed toward the front of the fan.

[0031] Thanks to the column shape of the main body, having a substantially circular section, or in any case curvilinear, and thanks to the cooperation between the longitudinal aperture and the channeling element, the conditioned stream of air flows substantially in contact with the external surface of the main body for a segment that extends for most of its perimeter extension.

[0032] The conditioned stream of air exiting from the longitudinal aperture, on both sides thereof, remains in fact adherent to the external surface of the main body from a respective lead-in edge, substantially defined by the position of the longitudinal extension itself, to a respective separation edge located in correspondence with a front part of the fan, so that the two streams of air exiting in opposite directions from the longitudinal aperture join together in a common and uniform front directed toward the room to be conditioned.

[0033] According to possible variant embodiments, two longitudinal apertures can be provided disposed on opposite sides of the main body, each cooperating with a respective channeling element configured to convey the stream of air adhering to a portion of the external surface of the main body toward the front of the fan.

[0034] In accordance with the embodiments, the fan also comprises a conditioning device, configured to modify the condition of the stream of air distributed by the air suction and distribution unit, so as to confer characteristics of temperature and/or humidity so as to define a determinate effect in the zone to be conditioned.

[0035] The conditioning device is disposed inside the main body, between the air suction and distribution unit and the at least one longitudinal aperture, so that a conditioned stream of air is emitted to the outside of the main body.

[0036] According to some embodiments, the conditioning device is positioned in a substantially central zone of the main body, distanced from the internal surfaces of the latter.

[0037] According to some embodiments, the conditioning device is connected to the longitudinal aperture by means of a channel configured to separate the stream of sucked-in air from the conditioned stream of air.

[0038] According to one aspect of the present invention, the fan is provided with heat insulation means as-

sociated at least with an internal surface of the main body, opposite the external surface in contact with the conditioned stream of air, and configured to prevent, or at least limit, the onset of a heat exchange between the conditioned stream exiting from the main body through the at least one longitudinal aperture, and adhering to said external surface, and the inside of the main body itself.

[0039] According to the embodiments, the heat insulation means extend from the lead-in edge toward the front part of the fan.

[0040] According to some embodiments, the heat insulation means extend for most of the segment comprised between the lead-in edge and the separation edge.

[0041] In this way it prevents the air sucked in by the suction and distribution unit inside the internal cavity of the main body, not yet conditioned by the conditioning device, from in any way adding to or respectively removing heat from the conditioned stream of air that flows adherent to the external surface of the main body (depending on whether the conditioned stream has a lower or higher temperature than the room temperature).

[0042] In particular, in the fan according to the invention, the heat insulation means advantageously prevent a heat exchange occurring from the outside toward the inside of the main body, or vice versa, so that the conditioned stream emitted by the fan keeps the desired temperature in its path toward the front part of the fan and therefore toward the user, in this way increasing the overall efficiency of the fan.

[0043] In accordance with some embodiments, the heat insulation means can comprise a layer or panel of insulating material disposed in contact with the internal surface of the main body.

[0044] According to other embodiments, the insulation material covers the internal surface of the main body at least in a zone having a longitudinal extension corresponding with that of the one or more longitudinal apertures.

[0045] According to other embodiments, the heat insulation means can also comprise a layer or panel of reflecting material, so as to minimize the absorption of heat radiation of the conditioned stream.

[0046] According to some embodiments, the heat insulation means can be applied to the main body or to the channeling element, by means of mechanical attachment, structural integration, the application of surface finishings, or similar or comparable techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

[0047] These and other characteristics of the present invention will become apparent from the following description of some embodiments, given as a non-restrictive example with reference to the attached drawings wherein:

- fig. 1 is a view in front elevation of a fan according

to one embodiment of the present invention;

- fig. 2 is a longitudinal section view along the line II-II of fig. 1;
- fig. 3 is a cross section of the fan taken along the section line III-III of fig. 1;
- fig. 4 is a cross section of a fan according to a variant embodiment of the present invention, taken along the section line III-III of fig. 1.

[0048] To facilitate comprehension, the same reference numbers have been used, where possible, to identify identical common elements in the drawings. It is understood that elements and characteristics of one embodiment can conveniently be incorporated into other embodiments without further clarifications.

DETAILED DESCRIPTION OF SOME EMBODIMENTS

[0049] With reference to figs. 1-4, the embodiments described here concern a fan 10 that can be used in particular in closed rooms in order to condition a room, that is, for the ventilation of air at ambient temperature, for cooling, heating, thermoventilation, dehumidification, or purification of the air.

[0050] The fan 10 comprises a main body 12, having a preferably vertical development with respect to a support base 18 on which it can be put in a condition of use.

[0051] According to some embodiments, the main body 12 substantially has a column shape, preferably with a cylindrical or curvilinear section, which can be substantially constant, or also variable, along its longitudinal development.

[0052] According to some embodiments, the main body 12 has a substantially hollow column shape.

[0053] The main body 12 defines inside it a housing compartment 13 for the functional components of the fan 10.

[0054] According to some embodiments, the main body 12 has a tubular shape, and is provided with an external surface 22 and with an internal surface 23, opposite the external surface 22, which defines the compartment 13.

[0055] According to some embodiments, the main body 12 is provided with inlet/outlet apertures for the air 16, 27.

[0056] In accordance with some embodiments, the fan 10 comprises a suction and distribution unit 14 disposed in the compartment 13 inside the main body 12 and co-operating with the inlet/outlet apertures for the air 16, 27 in order to suck up and emit air from/to the outside of the main body 12 itself.

[0057] In accordance with some embodiments, the fan 10 also comprises a conditioning device 28, configured to modify the state of the stream of air W_i sucked in by the suction and distribution unit 14, so as to give it the characteristics of temperature and/or humidity such as to define a determinate effect in the zone to be conditioned.

[0058] The conditioning device 28 is disposed inside the main body 12, between the suction and distribution unit 14 and at least one longitudinal aperture 16, so that a stream of air Wo is emitted outside the main body, in particular a conditioned stream of air.

[0059] In general, therefore, with the air conditioning device 28 functioning, the stream of suctioned air Wi inside the main body 12 will have a different temperature from that of the exiting stream of air Wo, for example greater if the fan 10 is used for heating, or less if the fan is used for cooling.

[0060] According to some embodiments, the conditioning device 28 can comprise one or more of either a heating device, a cooling device or a dehumidification device.

[0061] Here and hereafter in the description, the term "conditioned" generally means a stream of air which has a temperature, humidity, or speed different from those of the ambient air, for example a heated or cooled stream of air, a dehumidified stream of air, or even a stream of air to which a certain speed has been imparted.

[0062] According to some embodiments of the present invention, the fan 10 comprises a longitudinal aperture 16, with a vertical development, for the emission of a conditioned stream Wo toward the outside, and a channeling element 20 cooperating with the at least one longitudinal aperture 16 to divert the conditioned stream Wo exiting from the main body 12 toward the front part of the fan 10.

[0063] According to some embodiments, the at least one aperture 16 is disposed, in the condition of use of the fan, in the rear part of the main body 12, that is, on the opposite side with respect to the room to be conditioned.

[0064] In general, the terms "rear part" and "front zone" are intended only to define a functional relationship between these two parts, which are substantially opposite one another, in which the front part is generally facing the user during use.

[0065] According to possible variant embodiments, two longitudinal apertures 16 can be provided, made on opposite sides of the main body 12, each cooperating with a respective channeling element 20 to convey the conditioned stream Wo toward the front part.

[0066] According to some embodiments, the channeling element 20 is configured in such a way as to allow the conditioned stream of air Wo to adhere to the external surface 22 of the main body 12. In other words, the channeling element 20 is able to divert the conditioned stream of air Wo, exiting from the longitudinal aperture 16, so that, thanks to the Coanda effect, it follows at least for a certain segment the profile of the external surface 22 of the main body 12 before it reaches the zone to be conditioned.

[0067] According to some embodiments, the conditioned stream of air Wo remains substantially adherent to the external surface 22 of the main body 12 for most of its perimeter extension.

[0068] In particular, the conditioned stream of air Wo,

5 exiting from opposite sides of the longitudinal aperture 16, remains adherent to the opposite walls of the external surface 22 of the main body 12 starting from a lead-in edge B1, substantially defined by the position of the longitudinal aperture 16, until it reaches a separation edge B2 located in correspondence with a front part of the fan. Downstream of the separation edge B2 the two streams of air, on one side and the other of the main body 12, come together to form a common and uniform air front.

10 **[0069]** According to some embodiments, for example described with reference to figs. 3 and 4, the channeling element 20 comprises an active surface 20a which during use is hit by the conditioned stream Wo exiting from the longitudinal aperture 16 and a non-active surface 20b facing toward the outside of the fan 10.

15 **[0070]** According to other embodiments, in cooperation with the external surface 22, the channeling element 20 is configured to determine a minimum passage section 21 of the conditioned stream of air Wo exiting from the compartment 13.

20 **[0071]** According to some embodiments, the longitudinal aperture or apertures 16 can extend only for a portion of the main body 12, for example in a central zone along the longitudinal extension thereof.

25 **[0072]** According to some embodiments, the air enters inside the main body 12 through through inlet holes 27.

30 **[0073]** According to some embodiments, the through inlet holes 27 can be made at least partly above the longitudinal aperture 16, in the top part and/or on the upper lateral wall of the main body 12.

35 **[0074]** According to possible embodiments, the suction and distribution unit 14 can advantageously be located above the longitudinal aperture 16.

40 **[0075]** According to other embodiments, the suction and distribution unit 14 can comprise an impeller 15 provided with suitably directed blades in order to determine the intake of the air from outside and its entrance into the main body 12, and a drive member 17 connected to the impeller 15.

45 **[0076]** According to some embodiments, the suction and distribution unit 14 can be oriented in such a way that the axis of rotation of the impeller 15 is substantially parallel to the axis of development of the longitudinal aperture 16.

50 **[0077]** According to possible solutions, the main body 12 can have a continuous surface in correspondence with the front part of the fan 10.

55 **[0078]** In this way, the main body 12 has a cross section with a curvilinear profile, that is, without sharp edges and it is advantageously possible to make the stream of air W transit in adherence to the external surface 22 exiting the longitudinal aperture 16, exploiting the principle of the Coanda effect.

[0079] According to a preferred embodiment, the main body 12 can be configured to have a substantially cylindrical shape for the whole of its height.

[0080] According to one embodiment, shown by way of example in fig. 1, the main body 12 can have a tapered

shape in at least part of its vertical development.

[0081] In particular, according to an advantageous formulation, the main body 12 has, on its height, a narrowing of the section substantially in correspondence with the longitudinal aperture 16.

[0082] In one formulation of the invention, the external surface 22 has a rounded geometry substantially free of discontinuities, so that the conditioned stream Wo, exiting from the main body 12, is conveyed toward the front part and then toward the room to be ventilated or conditioned, remaining substantially adherent to the external surface 22 at least as far as the separation edge B2.

[0083] Within the field of the present invention, the rounded geometry can be defined by a substantially circular, regular oval, drop-shaped or flattened section, or such as to obtain a profile of the main body 12 suitable to convey the stream of air W at least for a segment in adherence to the external surface 22 without creating significant variations in the development of the stream, or disturbances, turbulence, discontinuities or other factor that could disturb the development of the stream.

[0084] According to some embodiments, the one or more longitudinal apertures 16 in the main body 12 can be defined by respective edges 25a, 25b of the main body 12 bent toward the inside of the compartment 13.

[0085] According to some embodiments, the edges 25a, 25b extend at least for a segment substantially parallel to each other toward the inside of the compartment 13, defining between them an outlet channel 29 for the conditioned stream Wo toward the longitudinal aperture 16.

[0086] According to some embodiments, the conditioning device 28 is positioned in a central zone of the main body 12, distanced from the internal surfaces 23 of the latter, and is connected to the longitudinal aperture 16 by means of the outlet channel 29, which therefore functions as an element of separation between the stream of suctioned air Wi and the conditioned stream Wo.

[0087] The compartment 13 allows to channel inside the fan 10 the stream of air Wi sucked in by the suction and distribution unit 14 from the inlet holes 27 to the conditioning device 28 and then to emit the conditioned stream Wo through the longitudinal aperture 16.

[0088] According to one aspect of the present invention, the fan 10 is provided with heat insulation means 40 associated with the main body 12, and configured to prevent, or at least to limit, the onset of a heat exchange between the conditioned stream Wo which transits adjacent to the channeling element 20 and the external surface 22 of the main body 12 and the inside of the main body 12 itself.

[0089] In particular, the heat insulation means 40 have the function of preventing the stream of suctioned air Wi inside the main body 12 from influencing the temperature of the conditioned stream Wo in transit toward the front part of the fan 10.

[0090] By way of example, the main body 12 can be made of plastic material, for example having a thermal

conductivity of about 0.15 W/mK and, during use, it can be positioned inside a room to be conditioned having an average temperature Ta.

[0091] Inside the compartment 13, the inlet stream of air Wi upstream of the conditioning device 28 is characterized by a first temperature T1 and the conditioned stream Wo downstream of the conditioning device 28 is characterized by a second temperature T2.

[0092] Outside the main body 12, in the front part of the fan 10, the conditioned stream Wo maintained in adherence with the external surface 22 has a third temperature T3.

[0093] In particular, in correspondence with the lead-in edge B1 the conditioned stream Wo has the second temperature T2, while downstream of the separation edge B2 it has the third temperature T3.

[0094] If the conditioning device 28 is not active or is absent, and the fan 10 is in the ventilation operating mode, in general the first temperature T1, the second temperature T2 and the third temperature T3 are substantially equal to the ambient temperature Ta:

- $T1 \approx Ta$;
- $T2 \approx T1$;
- $T2 \approx T3$.

[0095] If the conditioning device 28 is a heating element and the fan 10 is therefore a fan heater in heating mode, the relationship between the temperatures changes as follows:

- $T1 \geq Ta$;
- $T2 > T1$;
- $T2 \geq T3$.

[0096] Since the second temperature T2 is higher than the ambient temperature Ta, a first thermal stream Qc is established from the channelizer toward the outside of the main body 12, in particular through the channeling element 20.

[0097] The entity of the first thermal stream Qc can vary as a function of the physical properties of the channeling element 20 itself, as well as its geometrical characteristics and the difference between the second temperature T2 of the conditioned stream Wo at exit and the ambient temperature Ta.

[0098] Similarly, since $T2 > T1$, the conditioned stream Wo in the outlet channel 29 will exchange a second thermal stream of the edges Qb toward the internal compartment 13, that is through the edges 25a, 25b, whose characteristics depend on the physical properties of the material of which the outlet channel 29 itself is made, in this case the material of the main body 12.

[0099] In the same way, the conditioned stream Wo in adherence to the external surface 22 will exchange a third wall thermal stream Qp with the internal compartment 13 through the wall of the main body 12, depending on the physical properties of the material of the main

body 12.

[0100] In short, the three thermal streams Q_c , Q_b , Q_p can be understood as heat loss, since they contribute to removing heat from the conditioned stream W_o toward the area to be conditioned, thus reducing the temperature T_3 of the latter in proximity to the front part of the fan 10.

[0101] The fan 10 according to the present invention, thanks to the presence of the heat insulation means 40, allows to minimize, if not eliminate, the thermal streams Q_c , Q_b , Q_p , so as to obtain the following relation between the temperatures:

- $T_1 \approx T_a$;
- $T_2 \gg T_1$;
- $T_2 \approx T_3$.

[0102] It is understood that, even if the example has been made considering a heating conditioning device 28, it is clear that in the case of a cooling conditioning device 28 the relationship between the temperatures T_a , T_1 , T_2 , T_3 and the direction of the thermal streams Q_c , Q_b , Q_p will be substantially specular.

[0103] According to some embodiments, the heat insulation means 40 comprise at least one layer, or a panel, or a film, of insulating material 41, 42, 43 associated with the main body 12 and/or with the channeling element 20 in correspondence with the transit zones of the conditioned stream W_o .

[0104] According to possible solutions, a first layer or panel of insulating material 41 can be disposed inside the compartment 13, in contact with the internal surface 23 of the main body 12.

[0105] According to some embodiments, the first layer or panel of insulating material 41 can extend at least for a portion having a longitudinal extension corresponding to that of one or more longitudinal apertures 16.

[0106] According to other embodiments, the first layer or panel of insulating material 41 can extend at least from the lead-in edge B1 toward the front of the fan 10.

[0107] According to other variant embodiments, the first layer or panel of insulating material 41 can extend at least in part from the lead-in edge B1.

[0108] According to other variants, the first layer or panel of insulating material 41 can extend at least for most of the segment comprised between the lead-in edge B1 and the separation edge B2.

[0109] According to variant embodiments, the first layer or panel of insulating material 41 extends for at least the entire segment comprised between the lead-in edge B1 and the separation edge B2 on each side of the main body 12.

[0110] According to other embodiments, the first layer or panel of insulating material 41 can extend for the entire internal surface 23 of the main body 12.

[0111] In this way, the aesthetic value of the fan 10 itself is maintained and at the same time the onset of the wall thermal stream Q_p is prevented, or at least limited, or vice versa, so that the conditioned stream W_o emitted

by the fan 10 maintains the desired temperature in its path toward the front part of the fan 10 and hence toward the user.

[0112] The first layer or panel of insulating material 41 allows to maintain $T_3 \approx T_2$, that is, the temperature of the conditioned stream W_o downstream of the separation point B2 is approximately equal to the temperature of the conditioned stream W_o in correspondence with the longitudinal aperture 16 and the lead-in edge B1.

[0113] According to some embodiments, the insulating material 41 of the first layer or panel can have a low thermal conductivity, for example lower than 0.15 W/mK.

[0114] According to possible solutions, the insulating material 41 of the first layer or panel can have a thermal conductivity lower than 0.10 W/mK.

[0115] According to other embodiments, the insulating material 41 of the first layer or panel can have a thermal conductivity lower than 0.05 W/mK.

[0116] According to other embodiments, a second layer or panel of insulating material 42 can be applied to the non-active surface 20b of the channeling element 20, so as to prevent the channelizer thermal stream Q_c from being generated through the latter.

[0117] In this way the conditioned stream of air W_o inside the main body 12 is not influenced by the ambient temperature.

[0118] According to other embodiments, a third layer or panel of insulating material 43 can be applied on the edges 25a, 25b which define the outlet channel 29, so as to prevent an edge thermal stream Q_b from generating through them.

[0119] According to some embodiments, the third layer or panel of insulating material 43 can be disposed on the edges 25a, 25b of the outlet channel 29 facing toward the inside of the outlet channel 29 itself, so as to prevent possible heat exchanges between the conditioned stream of air W_o and the stream of air sucked in W_i .

[0120] According to some embodiments, the second 42 and/or the third layer or panel of insulating material 43 can have characteristics of thermal conductivity similar to those of the first layer or panel of insulating material 41.

[0121] According to other embodiments, the heat insulation means 40 can also comprise at least one layer or panel of reflecting material 45, disposed along the passage of the conditioned stream W_o and configured to minimize the absorption of heat radiation emitted by the latter.

[0122] According to possible solutions, a layer or panel of reflecting material 45 applied on the active surface 20a of the channeling element 20 can be provided, so as to reflect the heat radiation of the conditioned stream W_o exiting from the longitudinal aperture 16. In this way, in the case of heating, the layer or panel of reflecting material 45 contributes to increasing the temperature T_2 of the conditioned stream W_o , and hence the efficiency of the fan 10.

[0123] According to possible embodiments, the layer

or panel of reflecting material 45 has a thermal reflection coefficient greater than 0.7.

[0124] According to possible variant embodiments, the layer or panel of reflecting material 45 has a coefficient of thermal reflection higher than 0.8.

[0125] According to other variant embodiments, the layer or panel of reflecting material 45 has a coefficient of thermal reflection higher than 0.95, or possibly close to 1, that is, it almost completely reflects the incident heat radiation of the conditioned stream Wo that flows on the external surface 22 of the main body 12.

[0126] By reflection coefficient we mean the dimensionless index which indicates the ratio between the intensity of the radiation reflected by a surface and the intensity of the radiation incident on the same surface.

[0127] Possible non-limiting examples of insulating materials 41, 42, 43 can be, for example, foamed plastics, air gel, and suchlike.

[0128] As is known from the state of the art, air gel is a mixture similar to a gel, consisting of a solid-state substance and a gas, which result in a solid foam having particular properties, including high insulating capacities. In addition, air gel is a very resistant material, and can be easily produced in the form of thin and flexible films.

[0129] Possible non-limiting examples of reflecting materials 45 can be, for example, metal materials, such as aluminum, or steel, or their alloys.

[0130] According to other embodiments, thanks to the characteristics of conductivity and reflection of these materials, it is possible to make very thin layers or panels, which can be easily inserted into the compartment 13 without interfering with the components of the fan 10.

[0131] According to some embodiments, for example, the overall thickness of the insulating materials 41, 42, 43 can be comprised between about 1 and 10 mm for foamed plastics or air gels.

[0132] According to possible variants, the overall thickness of the reflecting materials 45 can be comprised between about 0.1 and 1 mm, in the case of metal materials.

[0133] These thicknesses are negligible with respect to the thickness of the wall of the main body 12 and the channeling element 20, so that the heat insulation means 40 can be easily applied to one or the other without affecting the geometry and structural resistance of the fan 10.

[0134] Moreover, since the heat insulation means 40 can be applied only in the zones affected by the flow and transit of the conditioned stream Wo, and with extremely reduced thicknesses, the increase in the cost of production of the fan 10 is negligible.

[0135] According to some embodiments, the layers or panels of insulating material 41, 42, 43, or reflecting material 45 can be applied by mechanical attachment, for example using grids, glues, adhesives, or other attachment elements, such as screws or pins.

[0136] According to other embodiments, the layers or panels of insulating material 41, 42, 43, or of reflecting material 45 can be applied by structural integration, for

example during the production step of the fan 10.

[0137] According to other embodiments, the layers or panels of insulating material 41, 42, 43, or of reflecting material 45 can be applied by applying surface finishes, such as sprays, varnishes or paints.

[0138] It is clear that modifications and/or additions of parts can be made to the fan 10 as described heretofore, without departing from the field and scope of the present invention.

[0139] For example, the layers or panels of insulating material 41, 42, 43 can be applied on one or more of either the main body 12, the channeling element 20 or the outlet channel 29, with thicknesses and materials equal to or different from one another, combining them in the most appropriate way according to specific requirements and the overall shape of the fan 10 itself.

[0140] It is also clear that, although the present invention has been described with reference to some specific examples, a person of skill in the art shall certainly be able to achieve many other equivalent forms of fan 10.

Claims

1. Fan, comprising a main body (12) having a hollow column shape with a vertical development with respect to a support base (18) on which it is positioned in a condition of use, and defining an internal housing compartment (13), said fan comprising an air suction and distribution unit (14), disposed inside said compartment (13), cooperating with apertures (27) made on the main body (12) in order to remove the air from outside the main body (12), a conditioning device (28) configured to thermally modify the condition of the stream of air distributed by said suction and distribution unit (14), **characterized in that** it comprises at least one longitudinal aperture (16), with a vertical development, for the emission of a conditioned stream of air (Wo) toward the outside, disposed in a rear zone, during use, of the hollow column-type_main body (12), and a channeling element (20) positioned in proximity to the at least one longitudinal aperture (16) and cooperating with it to determine the exit of said conditioned stream of air (Wo) through said at least one longitudinal aperture (16), and divert the conditioned stream of air (Wo) exiting from the main body (12)_so that said conditioned stream of air (Wo) adheres to an external surface (22) of said main body (12) and is conveyed toward the front of the fan, remaining substantially in contact with said external surface (22) between a lead-in edge (B1),_where the conditioned stream of air (Wo) adheres to the external surface (22), defined by the position of said longitudinal aperture (16) and a separation edge (B2) disposed in a front zone of the fan, opposite the rear zone, said fan being provided with heat insulation means (40) configured to prevent, or at least limit, the onset of a heat exchange between

said conditioned stream of air (Wo) exiting from said main body (12) through said at least one longitudinal aperture (16), and the stream of suctioned air (Wi) inside said main body (12), said heat insulation means (40) being associated at least with an internal surface (23) of said main body (12), opposite said external surface (22) in contact with said stream (Wo), and extending from said lead-in edge (B1) toward the front part of the fan.

2. Fan as in claim 1, **characterized in that** said heat insulation means (40) extend at least for most of the area comprised between said lead-in edge (B1) and said separation edge (B2).
3. Fan as in claim 1 or 2, **characterized in that** said heat insulation means (40) extend for a zone having a longitudinal extension substantially corresponding with that of said longitudinal aperture (16).
4. Fan as in any claim hereinbefore, **characterized in that** said heat insulation means (40) comprise a layer or a panel of insulating material (41) disposed in contact with said internal surface (23) of said main body (12).
5. Fan as in any claim hereinbefore, **characterized in that** said heat insulation means (40) comprise a layer or a panel of insulating material (42) disposed in contact with an inactive surface (20b) of said channeling element (20) facing toward the outside of the fan, and opposite an active surface (20a) in contact with said stream of air (Wo).
6. Fan as in any claim hereinbefore, **characterized in that** said conditioning device (28) is positioned in a substantially central zone of said main body (12) and is connected to said longitudinal aperture (16) by means of an exit channel (29), **and in that** said heat insulation means (40) comprise a layer or a panel of insulating material (43) disposed along the edges (25a, 25b) of said exit channel (29) of said conditioned stream of air (Wo) between said conditioning device (28) and said longitudinal aperture (16).
7. Fan as in any claim hereinbefore, **characterized in that** said heat insulation means (40) also comprise a layer or panel of reflecting material (45), configured to minimize the absorption of the heat radiation of said conditioned stream (Wo).
8. Fan as in claim 7, **characterized in that** said layer or panel of reflecting material (45) is disposed on an active surface (20a) of said channeling element (20) facing toward said longitudinal aperture (16).
9. Fan as in any claim hereinbefore, **characterized in that** said heat insulation means (40) comprise layers

or panels of insulating material (41, 42, 43) with thermal conductivity less than 0.10 W/mK.

- 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

Außenfläche (22) anhaftet, und einer in einem dem rückseitigen Bereich gegenüberliegenden vorderen Bereich des Lüfters angeordneten Trennungskante (B2) mit der Außenfläche (22) in Kontakt bleibt, wobei der Lüfter mit Wärmeisolationsmitteln (40) ausgestattet ist, die so konfiguriert sind, dass sie das Einsetzen eines Wärmeaustausches zwischen dem konditionierten Luftstrom (Wo), der aus dem Hauptgehäuse (12) durch die mindestens eine Längsöffnung (16) austritt, und dem eingesaugten Luftstrom (Wi) im Inneren des Hauptgehäuses (12) verhindert oder zumindest begrenzt, wobei die Wärmeisolationsmittel (40) zumindest mit einer Innenfläche (23) des Hauptgehäuses (12), die der Außenfläche (22) in Kontakt mit dem Strom (Wo) gegenüberliegt, verbunden sind und sich von der Einführkante (B1) zum vorderen Teil des Lüfters erstrecken.

2. Lüfter gemäß Anspruch 1, **dadurch gekennzeichnet, dass** sich die Wärmeisolationsmittel (40) zumindest über den größten Teil des zwischen der Einführkante (B1) und der Trennungskante (B2) gelegenen Bereichs erstrecken.

3. Lüfter gemäß Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** sich die Wärmeisolationsmittel (40) über einen Bereich mit länglicher Ausdehnung, der im Wesentlichen der der Längsöffnung (16) entspricht, erstrecken.

4. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) eine Schicht oder eine Platte aus einem isolierenden Material (41) umfassen, die in Kontakt mit der Innenfläche (23) des Hauptgehäuses (12) angeordnet ist.

5. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) eine Schicht oder eine Platte aus einem isolierenden Material (42) umfassen, die in Kontakt mit einer inaktiven Oberfläche (20b) des Kanalisierungselements (20) angeordnet ist, die der Außenseite des Lüfters zugewandt ist und einer aktiven Oberfläche (20a) in Kontakt mit dem Luftstrom (Wo) gegenüberliegt.

6. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Konditionierungsvorrichtung (28) in einem im Wesentlichen zentralen Bereich des Hauptgehäuses (12) positioniert und mit der Längsöffnung (16) durch einen Austrittskanal (29) verbunden ist, und dass die Wärmeisolationsmittel (40) eine Schicht oder eine Platte aus einem isolierenden Material (43) umfassen, die entlang der Kanten (25a, 25b) des Austrittskanals (29) des konditionierten Luftstroms (Wo) zwischen der Konditionierungsvorrichtung (28) und der Längsöffnung (16) angeordnet ist.

7. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) außerdem eine Schicht oder eine Platte aus einem reflektierenden Material (45) umfassen, die so konfiguriert ist, dass sie die Absorption der Wärmestrahlung des konditionierten Stroms (Wo) minimiert.

8. Lüfter gemäß Anspruch 7, **dadurch gekennzeichnet, dass** die Schicht oder die Platte aus reflektierendem Material (45) auf einer aktiven Oberfläche (20a) des Kanalisierungselements (20) der Längsöffnung (16) zugewandt angeordnet ist.

9. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) Schichten oder Platten aus einem isolierenden Material (41, 42, 43) mit einer Wärmeleitfähigkeit von weniger als 0,10 W/mK umfassen.

10. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) Schichten oder Platten aus einem isolierenden Material (41, 42, 43) mit einer Wärmeleitfähigkeit von weniger als 0,5 W/mK umfassen.

11. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) Schichten oder Platten aus einem reflektierenden Material (45) mit einem Reflexionskoeffizienten von über 0,8 umfassen.

12. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) Schichten oder Platten aus einem reflektierenden Material (45) mit einem Reflexionskoeffizienten von über 0,95 umfassen.

13. Lüfter gemäß irgendeinem vorhergehenden Anspruch, **dadurch gekennzeichnet, dass** die Wärmeisolationsmittel (40) durch mechanische Befestigung, strukturelle Integration oder Anwendung von Oberflächenbehandlungen aufgebracht werden.

50 **Revendications**

1. Ventilateur, comprenant un corps principal (12) ayant une forme de colonne creuse avec un développement vertical par rapport à une base de support (18) sur laquelle il est positionné dans un état d'utilisation, et définissant un compartiment de logement interne (13), ledit ventilateur comprenant une unité d'aspiration et de distribution d'air (14), disposée à

l'intérieur dudit compartiment (13), coopérant avec des ouvertures (27) réalisées sur le corps principal (12) afin d'éliminer l'air de l'extérieur du corps principal (12), un dispositif de conditionnement (28) configuré pour modifier thermiquement l'état du flux d'air distribué par ladite unité d'aspiration et de distribution (14), **caractérisé en ce que** il comprend au moins une ouverture longitudinale (16), avec un développement vertical, pour l'émission d'un flux d'air conditionné (Wo) vers l'extérieur, disposée dans une zone arrière, pendant l'utilisation, du corps principal de type colonne creuse (12), et un élément de canalisation (20) positionné à proximité de l'au moins une ouverture longitudinale (16) et coopérant avec elle pour déterminer la sortie dudit flux d'air conditionné (Wo) à travers ladite au moins une ouverture longitudinale (16), et dévier le flux d'air conditionné (Wo) sortant du corps principal (12) de sorte que ledit flux d'air conditionné (Wo) adhère à une surface externe (22) dudit corps principal (12) et est transporté vers l'avant du ventilateur, restant sensiblement en contact avec ladite surface externe (22) entre un bord d'entrée (B1), où le flux d'air conditionné (Wo) adhère à la surface externe (22), défini par la position de ladite ouverture longitudinale (16) et un bord de séparation (B2) disposé dans une zone avant du ventilateur, opposée à la zone arrière, ledit ventilateur étant pourvu de moyens d'isolation thermique (40) configurés pour empêcher, ou au moins limiter, l'apparition d'un échange thermique entre ledit flux d'air conditionné (Wo) sortant dudit corps principal (12) à travers ladite au moins une ouverture longitudinale (16), et le flux d'air aspiré (Wi) à l'intérieur dudit corps principal (12), lesdits moyens d'isolation thermique (40) étant associés à au moins une surface interne (23) dudit corps principal (12), opposée à ladite surface externe (22) en contact avec ledit flux (Wo), et s'étendant depuis ledit bord d'entrée (B1) vers la partie avant du ventilateur.

2. Ventilateur selon la revendication 1, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) s'étendent au moins sur la majeure partie de la zone comprise entre ledit bord d'entrée (B1) et ledit bord de séparation (B2).

3. Ventilateur selon la revendication 1 ou 2, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) s'étendent sur une zone ayant une extension longitudinale correspondant sensiblement à celle de ladite ouverture longitudinale (16).

4. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent une couche ou un panneau de matériau isolant (41) disposé en contact avec ladite surface interne (23) dudit corps principal (12).

5. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent une couche ou un panneau de matériau isolant (42) disposé en contact avec une surface inactive (20b) dudit élément de canalisation (20) faisant face vers l'extérieur du ventilateur, et opposé à une surface active (20a) en contact avec ledit flux d'air (Wo).

10. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** ledit dispositif de conditionnement (28) est positionné dans une zone sensiblement centrale dudit corps principal (12) et est relié à ladite ouverture longitudinale (16) au moyen d'un canal de sortie (29), **et en ce que** lesdits moyens d'isolation thermique (40) comprennent une couche ou un panneau de matériau isolant (43) disposé le long des bords (25a, 25b) dudit canal de sortie (29) dudit flux d'air conditionné (Wo) entre ledit dispositif de conditionnement (28) et ladite ouverture longitudinale (16).

15. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** ledit dispositif de conditionnement (28) est positionné dans une zone sensiblement centrale dudit corps principal (12) et est relié à ladite ouverture longitudinale (16) au moyen d'un canal de sortie (29), **et en ce que** lesdits moyens d'isolation thermique (40) comprennent une couche ou un panneau de matériau isolant (43) disposé le long des bords (25a, 25b) dudit canal de sortie (29) dudit flux d'air conditionné (Wo) entre ledit dispositif de conditionnement (28) et ladite ouverture longitudinale (16).

20. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** ledit dispositif de conditionnement (28) est positionné dans une zone sensiblement centrale dudit corps principal (12) et est relié à ladite ouverture longitudinale (16) au moyen d'un canal de sortie (29), **et en ce que** lesdits moyens d'isolation thermique (40) comprennent une couche ou un panneau de matériau isolant (43) disposé le long des bords (25a, 25b) dudit canal de sortie (29) dudit flux d'air conditionné (Wo) entre ledit dispositif de conditionnement (28) et ladite ouverture longitudinale (16).

25. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent également une couche ou un panneau de matériau réfléchissant (45), configuré pour minimiser l'absorption du rayonnement thermique dudit flux conditionné (Wo).

30. Ventilateur selon la revendication 7, **caractérisé en ce que** ladite couche ou ledit panneau de matériau réfléchissant (45) est disposé sur une surface active (20a) dudit élément de canalisation (20) faisant face à ladite ouverture longitudinale (16).

35. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau isolant (41, 42, 43) ayant une conductivité thermique inférieure à 0,10 W/mK.

40. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau isolant (41, 42, 43) ayant une conductivité thermique inférieure à 0,10 W/mK.

45. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau isolant (41, 42, 43) ayant une conductivité thermique inférieure à 0,5 W/mK.

50. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau réfléchissant (45) avec un coefficient de réflexion supérieur à 0,8.

55. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau réfléchissant (45) avec un coefficient de réflexion supérieur à 0,8.

moyens d'isolation thermique (40) comprennent des couches ou des panneaux de matériau réfléchissant (45) avec un coefficient de réflexion supérieur à 0,95.

13. Ventilateur selon l'une quelconque des revendications précédentes, **caractérisé en ce que** lesdits moyens d'isolation thermique (40) peuvent être appliqués au moyen d'une fixation mécanique, d'une intégration structurelle ou d'une application de finitions de surface. 5
10

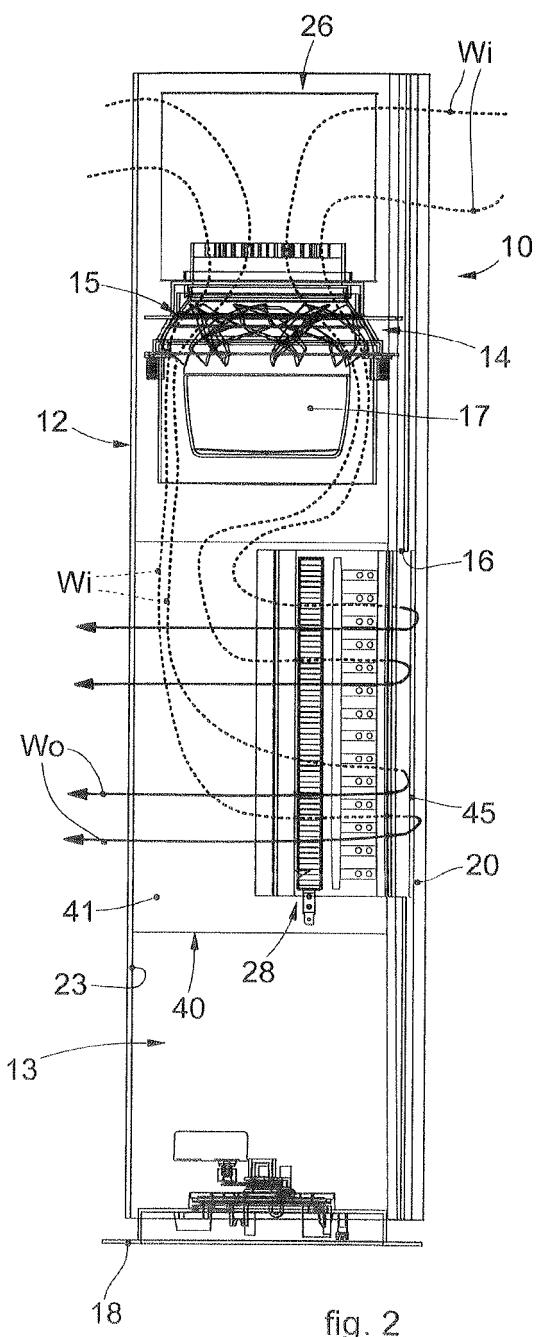
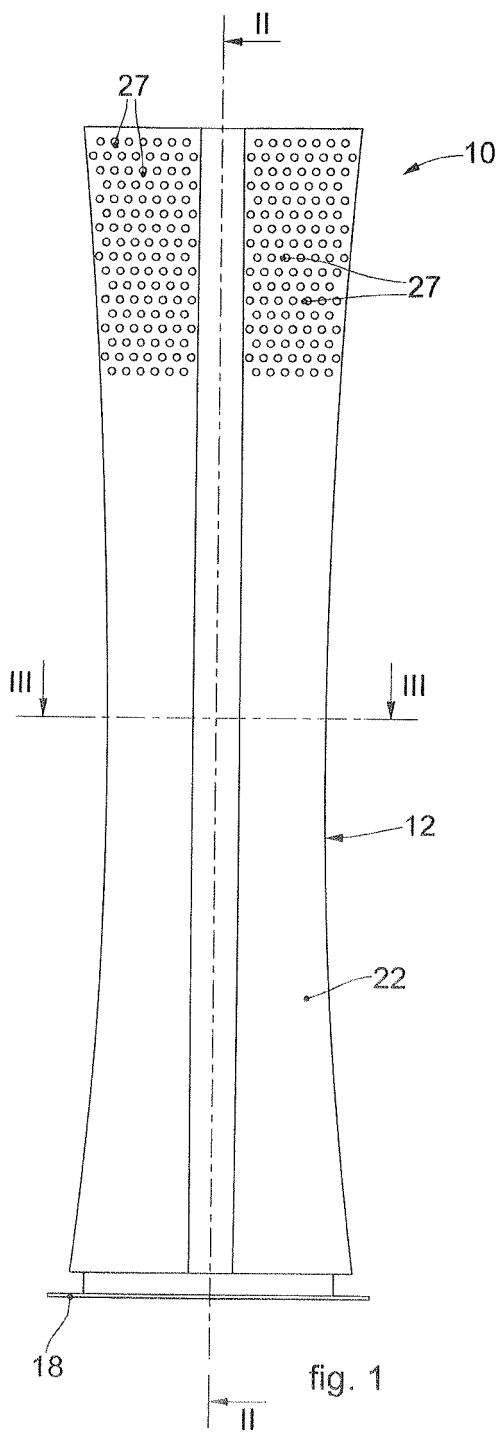
15

20

25

30

35



40

45

50

55

12

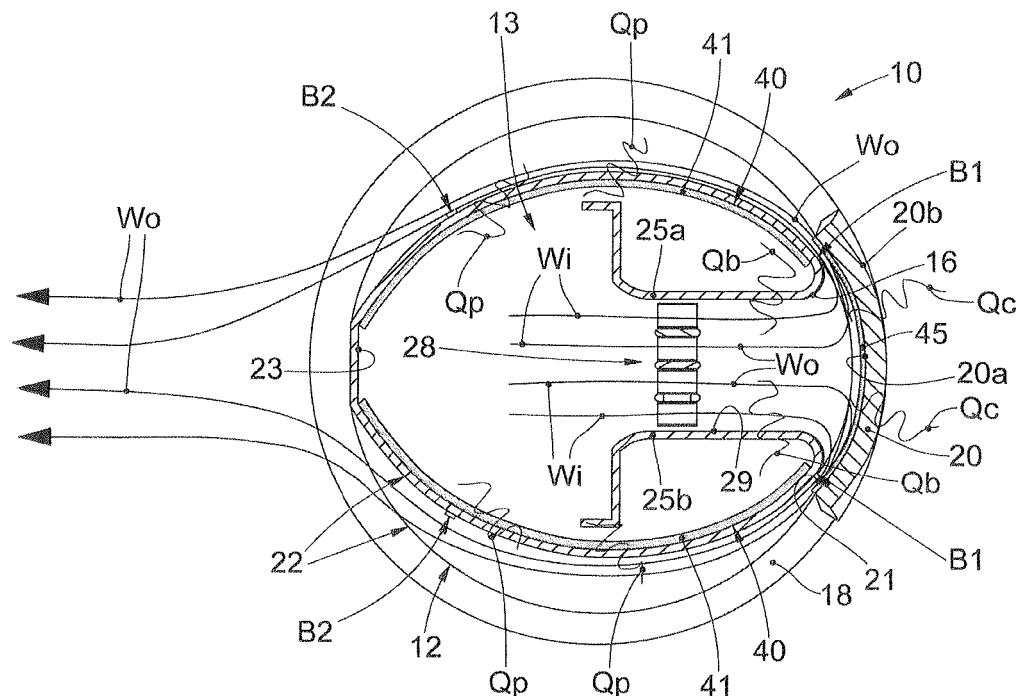


fig. 3

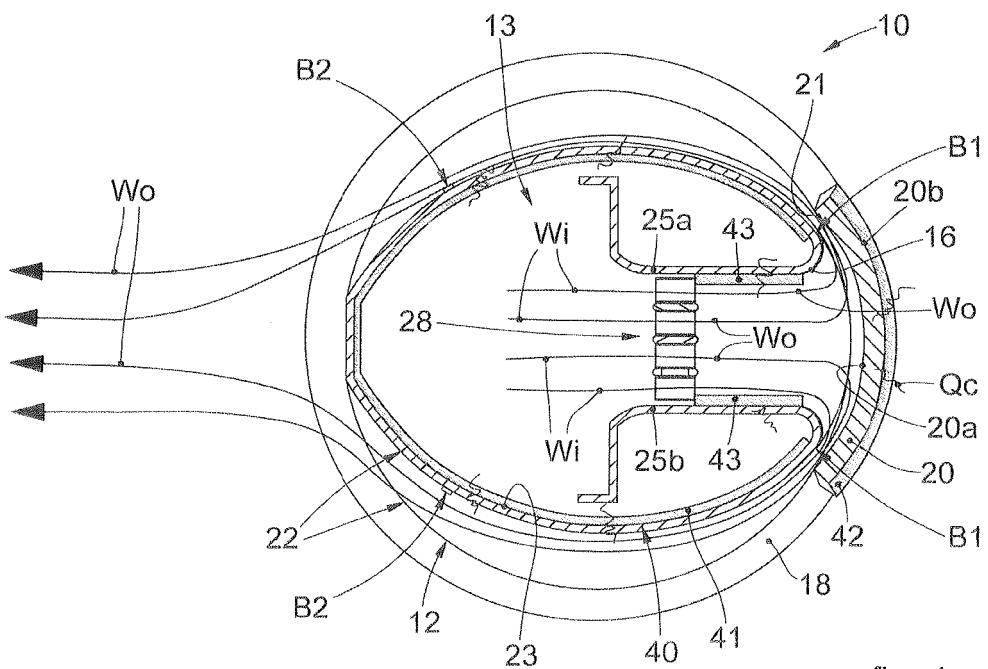


fig. 4

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 20120066834 A [0012] [0013] [0014]
- WO 2013185387 A [0012] [0015]
- AU 2012200112 A [0012]
- AU 20122200112 A [0016]