CLAIM OF PRIORITY
TECHNICAL FIELD
[0002] This specification generally relates to combustor assemblies for gas turbine engines
that incorporate auxiliary torch ignition systems to facilitate ignition in a main
combustion chamber.
BACKGROUND
[0003] The gas turbine engine is the preferred class of internal combustion engine for many
high power applications. Fundamentally, the gas turbine engine features an upstream
rotating compressor coupled to, and typically driven by, a downstream turbine, with
a combustion chamber residing in-between the two rotary components. A torch igniter
is a device that may be used to ignite the primary combustor of a gas turbine engine.
In some applications, the torch igniter has advantages over conventional spark igniters,
because it can provide larger amounts of energy release to the main combustor, and
thus, is capable of lighting the engine in a more reliable manner. To achieve this,
the torch igniter requires an auxiliary source of fuel and air, as well as an ignition
source. Auxiliary air flow is typically obtained from the plenum downstream of the
engine's compressor or from an external source of compressed air; and the auxiliary
fuel is obtained from the fuel-metering unit or manifold or from an independent fuel
source. Air flow requirements to operate the torch igniter may vary under different
conditions, but are often significantly less than the air flow requirements of the
primary combustor. On a typical engine, much like a conventional spark igniter, there
can be two or more torch igniters for redundancy.
[0004] US 2016/0047318 describes a gas turbine combustor assembly includes a primary combustion chamber
in fluid communication with a primary fuel injector and a primary air inlet. A torch
igniter is carried by the primary combustion chamber, and includes an auxiliary combustion
chamber housing comprising a mixing chamber and a throat region converging downstream
of the mixing chamber.
[0005] US 2016/0102860 describes a liner element for a gas turbine combustor having a structural wall with
fixing apertures provided therethrough.
[0006] US 8,726,631 describes a combustor for a gas turbine engine that includes a fuel igniter includes
a tip portion configured to ignite an air and fuel mixture in the combustion chamber.
An igniter support assembly positions the fuel igniter relative to the combustion
chamber. The igniter support assembly defines a plurality of holes configured to direct
cooling air toward the tip portion of the fuel igniter.
[0007] US 4,604,104 describes a gasifying oil burner with an oil atomizing device.
[0008] US 4,301,656 describes a combustor assembly for an automotive gas turbine engine includes a continuously
ignited, pilot flame tube.
SUMMARY
[0009] The invention is defined in the claims.
[0010] According to the invention, a gas turbine combustor assembly includes: a primary
combustion chamber in fluid communication with a primary fuel injector and a primary
air inlet; and a torch ignitor coupled to the primary combustion chamber. The torch
igniter includes: an auxiliary fuel injector; an ignition source; and an igniter body
carrying the auxiliary fuel injector and the ignition source. The igniter body includes
an auxiliary combustion chamber having a side wall extending axially from a first
end wall to a second end wall, at least a portion of the side wall including a distributed
pattern of cooling apertures, with each of the cooling apertures extending obliquely
from an outer surface of the side wall to an inner surface of the side wall, so as
to cause fluid entering an interior cavity of the auxiliary combustion chamber through
the cooling apertures to form a fluid film along the inner surface. The second end
wall of the auxiliary combustion chamber defines a fluid outlet leading to an outlet
tube in fluid communication with the primary combustion chamber, at least a portion
of the outlet tube including a distributed pattern of dilution apertures, with each
of the dilution apertures configured to direct fluid in cross-flow with heated gas
exiting the auxiliary combustion chamber through the outlet tube.
[0011] In some examples, the combustor assembly further includes a premixing cup residing
within the interior cavity of the auxiliary combustion chamber. In some examples,
the premixing cup includes a cylindrical wall radially surrounding the auxiliary fuel
injector and an auxiliary air inlet, the cylindrical wall of the premixing cup protruding
axially outward relative to the first end wall of the auxiliary combustion chamber
through a portion of the interior cavity to delineate a premixing zone radially inward
of the cylindrical wall and a recirculation zone radially outward of the cylindrical
wall, with the ignition source residing on the side wall of the auxiliary combustion
chamber at a position proximate the recirculation zone
[0012] In some examples, the auxiliary combustion chamber is substantially cylindrical in
shape, with the side wall having a circular cross-section of constant diameter, and
the first and second end walls being substantially planar.
[0013] In some examples, the second end wall defines a fluid outlet leading to an outlet
tube in fluid communication with the primary combustion chamber. In some examples,
the igniter body further includes an outer shell surrounding at least a portion of
the auxiliary combustion chamber, the outer shell including a fluid inlet coaxially
aligned with the outlet tube. In some examples, the igniter body includes a fluid
annulus formed between an inner surface of the shell and an outer surface of the auxiliary
combustion chamber, the annulus directing fluid from the fluid inlet across the outer
surface of the auxiliary combustion chamber towards the first end wall.
[0014] In some examples, the igniter body further includes a fluid swirler residing at an
entrance to a premixing cup residing within the auxiliary combustion chamber. In some
examples, the fluid swirler includes an axial fluid swirler including a circumferential
pattern of swirl opening surrounding an outlet of the auxiliary fuel injector.
[0015] In some examples, the torch igniter further includes a shielding device configured
to at least partially shield the ignition source from fluid flow through the auxiliary
combustion chamber. In some examples, the shielding device is coupled to an inner
surface of the auxiliary combustion chamber proximate the ignition source, and includes
a curved, convex surface.
[0016] According to independent claim 12, a method of operating a gas turbine combustor
assembly includes the steps of: mixing auxiliary fuel and air flows in an auxiliary
combustion chamber to form an auxiliary fuel/air mixture; igniting the auxiliary fuel/air
mixture to form an auxiliary flow of heated fluid; directing the auxiliary flow of
heated fluid through the auxiliary combustion chamber towards a primary combustion
chamber; while directing the auxiliary flow of heated fluid, receiving a flow of cooling
fluid, and directing the cooling fluid so as to form a film of cooling fluid along
an inner surface of the auxiliary combustion chamber and dilute the auxiliary flow
of heated fluid; and igniting a primary air/fuel mixture in a primary combustion chamber
of the gas turbine combustor assembly with the diluted auxiliary flow of heated fluid
from the auxiliary combustion chamber.
[0017] The details of one or more implementations of the subject matter described in this
specification are set forth in the accompanying drawings and the description below.
Other features, aspects, and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
FIG. 1 is a half, side cross-sectional view of an example gas turbine engine.
FIG. 2A is a half, side cross-sectional view of a first example torch igniter, which
does not form part of the invention.
FIG. 2B is an enlarged view of the portion of FIG. 2A marked 2B-2B.
FIG. 3 is a diagram illustrating a velocity flow field achieved by operation of a
second example torch igniter.
FIG. 4 is a half, side cross-sectional view of a torch igniter according to the invention.
DETAILED DESCRIPTION
[0019] In a gas turbine engine, the torch igniter ignites fuel released by combustor nozzles
in a combustor of the engine to produce heated combustion products. The heated combustion
products are, in turn, expanded through a turbine of the engine to produce torque.
Reliable ignition and flame propagation around the primary combustor nozzles in conditions
with relatively low air pressure drop (delta P) may require a heightened minimum level
of ignition energy provided to the operating envelope. This concern is often exacerbated
when the ambient environment is particularly cold. In order to provide sufficient
ignition energy across a broad range of operating conditions in different ambient
environments, high-quality flame stability/operability of the torch igniter system
is desired.
[0020] In certain aspects, the present disclosure relates to torch igniter systems that
supply high ignition energy by incorporating various combinations of design features
in the igniter body. In some implementations, for example, the igniter body includes
an auxiliary combustion chamber with a premixing cup that directs a mixture of fuel
and air into a recirculation zone proximate an ignition source. The entrance to the
premixing cup may include an air swirler to enhance recirculation and mixing of the
auxiliary air and fuel flows in the auxiliary combustion chamber.
[0021] In some implementations, optimization of the turbulence and swirling components is
achieved to sustain the torch igniter flame without having to keep the ignition source
on. In some implementations, a torch igniter in accordance with one or more embodiments
of the present disclosure can improve cold day combustor light off performance, and
provide reliable re-light capability across a wide range of operating conditions by
providing high energy release that is enhanced by swirl stabilized combustion in the
torch combustor.
[0022] Further, certain torch igniter systems of the present disclosure incorporate design
features that extend the operational life of components having high-temperature failure
mechanisms. For instance, in some implementations, a side wall of the auxiliary combustion
chamber includes a pattern of distributed cooling apertures. As discussed in detail
below, the cooling apertures can be configured to enable cooling fluid (e.g., air)
to contact the inner surface of the auxiliary combustion chamber without adversely
affecting the combustion conditions therein (e.g., fuel/air ratio, air/fuel temperatures,
air/fuel flow velocities, etc.). As another example, in some implementations, an outlet
tube receiving the combustion products from the auxiliary combustion chamber includes
a pattern of dilution apertures. The dilution apertures on the outlet tube can be
configured to facilitate mixing of a dilution fluid (e.g., air) with the combustion
products to effect a temperature change.
[0023] FIG. 1 is a half, side cross-sectional view of an example gas turbine engine 10.
The gas turbine engine 10 is turbojet-type gas turbine that could be used, for example,
to power jet aircrafts. However, it is appreciated that the concepts described in
the present disclosure are not so limited, and can be incorporated in the design of
various other types of gas turbine engines (e.g., turbofan, turboprop, turboshaft,
or industrial/marine engines).
[0024] As shown, the gas turbine engine 10 generally facilitates a continuous axial flow
of gas. That is, gas generally flows through the engine 10 in the axially downstream
direction indicated by the arrows in FIG. 1. The gas turbine engine 10 includes an
intake 12 that receives ambient air 14 and directs the ambient air to a compressor
16. The ambient air 14 is drawn through multiple stages of the compressor 16. High-pressure
air 18 exiting the compressor 16 is introduced to a combustor 100. In certain instances,
the combustor 100 is an annular combustor circumscribing the engine's main shaft 20
or a can-type combustor positioned radially outward of the shaft.
[0025] The combustor 100 includes a combustion shield 102, multiple fuel injectors 104,
a combustor dome 106, and a torch igniter system 108. At the combustor 100, the high-pressure
air 18 is mixed with liquid or gaseous fuel (not shown) and ignited by the torch igniter
system 108 to produce heated combustion products 22. The combustion products 22 are
passed through multiple stages of a turbine 24. The turbine 24 extracts energy from
the high-pressure, high-temperature combustion products 22. Energy extracted from
the combustion products 22 by the turbine 24 drives the compressor 16, which is coupled
to the turbine by the main shaft 20. Exhaust gas 26 leaving the turbine 24 is accelerated
into the atmosphere through an exhaust nozzle 28 to provide thrust or propulsion power
or energy for electrical power generation.
[0026] FIGS. 2A-2B show an example torch igniter 200 that can be used in the torch igniter
system 108 of FIG. 1. In certain instances, the torch igniter system 108 includes
multiple, spaced apart torch igniters 200. In this example, the torch igniter 200
includes an igniter body 202, an auxiliary fuel injector 204, and an ignition source
206. The igniter body 202 includes a main housing 208 outlining a hollow, substantially
cylindrical interior cavity but could be different shape based on physical envelope
requirement. The interior cavity of the main housing 208 receives an auxiliary combustion
chamber 210. An annular gap between the outer surface of the auxiliary combustion
chamber 210 and the inner surface of the housing 208 defines a fluid passage 212.
The fuel injector 204 and ignition source 206 are supported by the housing 208. The
ignition source 206, for example, is mounted directly to the housing 208, extending
through an opening in the housing's side wall. A temperature sensor 213 (e.g., a thermocouple)
is similarly mounted to the housing 208. The auxiliary fuel injector 204 is coupled
to the housing 208 via a mounting bracket 214. That is, the mounting bracket 214 carries
the fuel injector 204 and is directly attached (bolted, in this example) to the front
end of the main housing 208.
[0027] In this example, the auxiliary fuel injector 204 includes a nozzle orifice 216, a
fuel inlet line 218 and a fuel bypass line 220. The fuel inlet 218 is placed in fluid
communication with a pressurized source of fuel (not shown). During use, pressurized
fuel from the source flows toward the nozzle orifice 216 via the fuel inlet line 218.
At least a portion of this fuel flow bypasses the nozzle orifice 216 and is returned
to the main engine fuel manifold by the fuel bypass line 220. In some examples, the
fuel injector incorporates additional design features for enhancing fuel atomization
and increasing fuel turn down ratio to meet fuel flow requirement at all operating
conditions without changing the size of the nozzle orifice 216, which may otherwise
induce coking.
[0028] The auxiliary combustion chamber 210 received within the interior of the main housing
208 features a cylindrical body including a curved side wall 226 extending between
substantially planar front and rear end walls 228,230. The cylindrical body of the
auxiliary combustion chamber 210 defines an axial length "L" and a radial diameter
"D". In some examples, the volume and/or the L/D ratio of the auxiliary combustion
chamber 210 may affect flame stabilization. For example, flame stabilization can be
improved by providing the auxiliary combustion chamber 210 with a volume and/or an
L/D ratio that reduces the reference velocity of the fluid (i.e., the theoretical
flow velocity of air through an area equal to the maximum cross section of the combustor
casing). Improved flame stabilization may enable the torch igniter 200 to sustain
the flame at higher pressure drop conditions, which increases the operating envelope
of the primary combustor.
[0029] The igniter body 202 further includes an end cap provided in the form of a bulkhead
232 bolted to the rear end of the main housing 208. The bulkhead 232 generally closes
off the interior cavity of the housing 208 with the exception of a central through-bore
234. As shown, the bore 234 of the bulkhead 232 receives an outlet tube 236 extending
from a fluid outlet 237 at the rear end wall 230 of the auxiliary combustion chamber
210. The outlet tube 236 conveys heated fluid from the auxiliary combustion chamber
210 to the primary combustor. Notably, the inner diameter of the bulkhead's bore 234
is slightly larger than the outer diameter of the outlet tube 236, such that a narrow
annular gap providing a fluid inlet 238 is formed therebetween (see FIG. 2B). The
fluid inlet 238 is in fluid communication with the annular fluid passage 212 between
the housing 208 and auxiliary combustion chamber 210. This configuration places the
fluid inlet 238 and fluid outlet 237 of the igniter body 202 in a coaxial arrangement.
Thus, a single opening in the outer shell (the main housing 208 and bulkhead 232)
of the igniter body 202 is used to route fluid both to and from the auxiliary combustion
chamber 210. The design of the bulkhead 232 is modular and application specific. This
coaxial design effectively simplifies the manufacturing and assembly process, provides
a compact form factor, and also facilitates crossflow between the two fluid flows.
As explained in detail below in connection with FIG. 4, the cross flowing fluid enables
incoming auxiliary air flow to be used for cooling and/or dilution purposes.
[0030] A premixing cup 240 resides within the interior of the auxiliary combustion chamber
210 proximate the chamber's planar front end wall 228. The premixing cup 240 includes
an air inlet 242 and a cylindrical wall 244. The air inlet 242 radially surrounds
the auxiliary fuel injector 204. The cylindrical wall 244 circumscribes the air inlet
242, and therefore also surrounds the fuel injector 204 radially. An air swirler 246
is positioned within the air inlet 242. In this example, the air swirler 246 has a
disk-shaped body including a plurality of swirl openings arranged in a circumferential
pattern. The swirl openings radially surround the outlet of the auxiliary fuel injector
204 and are oriented generally axially, at a canted, non-zero angle relative to the
longitudinal axis of the auxiliary combustion chamber 210. Thus, the swirl openings
are arranged to form a flow vortex along the longitudinal axis of the auxiliary combustion
chamber 210.
U.S. Patent Publication No. 2016/0047318, the entirety of which is incorporated herein by reference, describes an axial air
swirler suitable for use in conjunction with embodiments of the present disclosure.
[0031] The cylindrical wall 244 of the premixing cup 240 protrudes axially outward relative
to the front end wall 228 of the auxiliary combustion chamber 210 to extend through
a frontal portion of the auxiliary combustion chamber's interior cavity. The cylindrical
wall 244 delineates two discrete zones within the frontal portion in the auxiliary
combustion chamber 210 - a premixing zone 248 that is radially inward of the cylindrical
wall and a recirculation zone 250 that is radially outward of the cylindrical wall.
The premixing zone 248 provides a compact area for introducing the auxiliary flow
of air to atomized fuel from the fuel injector 204, which enhances the degree of fuel/air
mixing. When the mixed flow of air and fuel is expelled from the premixing cup 440
it immediately enters a downstream portion of the auxiliary combustion chamber 210.
The empty space in the recirculation zone 250 draws a portion of the fuel/air mixture
backwards in the auxiliary combustion chamber towards the chamber's front wall 228,
creating a turbulent, toroidal flow pattern (see Fig. 3). This recirculating flow
sustains combustion without having to maintain the ignition source 206 in an "on"
condition, because a portion of the ignited air/fuel flow is recirculated back into
the incoming fuel flow from the premixing zone 248. Even further, the turbulence and
recirculation tends to mix the combusting air/fuel with uncombusted air/fuel, which
more evenly ignites the air/fuel mixture throughout the auxiliary combustion chamber
210. This produces stronger, higher energy combustion.
[0032] The diagram of FIG. 3 illustrates how fluid flows through a torch ignitor 300, which
is similar in construction to the torch igniter 200 of FIGS. 2A and 2B. As shown in
FIG. 3, an auxiliary flow of air enters an igniter body 302 of the torch igniter 300
via a fluid inlet 338. The auxiliary air flows from the fluid inlet 338 into an annular
fluid passage 312. The fluid passage 312 directs the auxiliary airflow towards the
air inlet of a premixing cup 340 where it is introduced to an axial air swirler 346.
[0033] The auxiliary air traverses the air swirler 346 and flows into a mixing zone 348
defined by a cylindrical wall 344 of the premixing cup 340. In the mixing zone 348,
the swirling auxiliary airflow meets and mixes with atomized fuel discharged from
the auxiliary fuel injector 314. The fuel/air mixture flows from the mixing zone 348
into the remaining area of the auxiliary combustion chamber's interior cavity, including
a recirculation zone 350 radially separated from the premixing zone 348 by the cylindrical
wall 344. The fuel/air mixture is energized (e.g., ignited) by the ignition source,
which is positioned in the auxiliary combustion chamber 310 proximate the recirculation
zone 350. Heated fluid then flows through the auxiliary combustion chamber 310 towards
the fluid outlet 337 and into the outlet tube 336, which leads to the primary combustion
chamber.
[0034] FIG. 4 shows a torch igniter 400 according to the invention. Like the previous examples,
torch igniter 400 includes an igniter body 402, an auxiliary fuel injector 404, and
an ignition source 406. The igniter body 402 includes a main housing 408 and a bulkhead
432 enclosing a hollow interior cavity containing an auxiliary combustion chamber
410. The bulkhead 432 includes a central bore 434 that receives an outlet tube 436
leading from the auxiliary combustion chamber 410. The respective annular gaps between
the auxiliary combustion chamber 420 and the bulkhead 432 and main housing 408 define
a fluid inlet 438 leading to a fluid passage 412. The interior of the auxiliary combustion
chamber 410 includes a premixing cup 440 having an air inlet 442 receiving an air
swirler 446. The premixing cup 440 further includes an axially protruding cylindrical
wall 444 delineating a frontal portion of the auxiliary combustion chamber into a
mixing zone 448 and a recirculation zone 450.
[0035] In this example, the auxiliary fuel injector 404 incorporates additional design features
and control scheme for enhancing fuel atomization and increasing fuel turn down ratio
to meet fuel flow requirement at all operating conditions without changing the size
of the nozzle orifice, which may otherwise induce coking.
[0036] According to the invention, the curved side wall 426 of the auxiliary combustion
chamber 410 includes a distributed pattern of cooling apertures 452. The cooling apertures
452 project through the side wall 426 of the auxiliary combustion chamber 410, enabling
a portion of the auxiliary air flow traversing the annular fluid passage 412 to enter
the auxiliary combustion chamber 410. Each of the cooling apertures 452 is obliquely
canted relative to the inner surface of the chamber's curved side wall 426. The angled
orientation of the cooling apertures 452 causes air entering the auxiliary combustion
chamber 410 therethrough to form a fluid film along the chamber's inner surface. The
film of auxiliary air adheres to the inner surface of the auxiliary combustion chamber
410, and therefore is inhibited from comingling with the air/fuel mixture flowing
from the premixing cup 440. This allows the auxiliary airflow to cool the auxiliary
combustion chamber 410 without affecting the stoichiometry of the combustion process.
The distribution of cooling apertures may vary between different implementations.
For example, different implementations may employ more or less cooling apertures without
departing from the scope of the present disclosure. Moreover, in some implementations,
the distribution of cooling apertures may vary across the length of the auxiliary
combustion chamber. For instance, in this example, the density of cooling apertures
increases from the front end of the auxiliary combustion chamber 410 towards the rear
end.
[0037] In addition to the cooling apertures 452, torch igniter 400 further includes a plurality
of dilution apertures 454. In this example, the dilution apertures 454 are located
along the outlet tube 436 that conveys heated fluid from the auxiliary combustion
chamber 410 to the primary combustor. The dilution apertures 454 are configured to
divert a portion of the auxiliary air flow from the annular fluid inlet 438. Unlike
the cooling apertures 452, the dilution apertures 454 are designed to direct the incoming
air into the flowpath of heated fluid exiting the auxiliary combustion chamber through
the outlet tube 436. For example, the dilution apertures 454 may be substantially
perpendicular to the curved surface of the outlet tube 436, as opposed to obliquely
canted. The auxiliary air flow mixes with the heated fluid and dilutes the composition,
which results in a relatively swift drop in temperature.
[0038] The torch igniter 400 still further includes a shielding device 456 residing within
the interior cavity of the auxiliary combustion chamber 410. The shielding device
456 is designed to at least partially shield the ignition source 406 from direct contact
with the air/fuel mixture flowing from the premixing cup 440. In this example, the
shielding device 456 includes curved body having a convex outer surface facing the
premixing cup 440. As shown, the shielding device 456 further includes multiple apertures
458 distributed along the body that permit a limited portion of the fuel/air mixture
to flow passed the tip of the ignition source 406. In some implementations, shielding
the ignition source 406 in this way inhibits quenching that tends to occur at relatively
cold fuel and air conditions and/or high pressure drop conditions.
1. A gas turbine combustor assembly, comprising:
a primary combustion chamber in fluid communication with a primary fuel injector and
a primary air inlet; and
a torch ignitor (400) coupled to the primary combustion chamber, the torch igniter
comprising:
an auxiliary fuel injector (404);
an ignition source (406); and
an igniter body (402) carrying the auxiliary fuel injector and the ignition source,
the igniter body comprising an auxiliary combustion chamber (410) having a side wall
extending axially from a first end wall to a second end wall,
wherein at least a portion of the side wall comprises a distributed pattern of cooling
apertures, with each of the cooling apertures extending obliquely from an outer surface
of the side wall to an inner surface of the side wall, so as to cause fluid entering
an interior cavity of the auxiliary combustion chamber through the cooling apertures
to form a fluid film along the inner surface, and
wherein the second end wall of the auxiliary combustion chamber defines a fluid outlet
leading to an outlet tube in fluid communication with the primary combustion chamber,
at least a portion of the outlet tube comprises a distributed pattern of dilution
apertures, with each of the dilution apertures configured to direct fluid in cross-flow
with heated gas exiting the auxiliary combustion chamber through the outlet tube.
2. The combustor assembly of claim 1, further comprising:
a premixing cup (440) residing within the interior cavity of the auxiliary combustion
chamber, the premixing cup comprising a cylindrical wall (444) radially surrounding
the auxiliary fuel injector and an auxiliary air inlet (442), the cylindrical wall
of the premixing cup protruding axially outward relative to the first end wall of
the auxiliary combustion chamber through a portion of the interior cavity to delineate
a premixing zone (448) radially inward of the cylindrical wall and a recirculation
zone (450) radially outward of the cylindrical wall, with the ignition source residing
on the side wall of the auxiliary combustion chamber at a position proximate the recirculation
zone.
3. The combustor assembly of claim 1 or claim 2, wherein the auxiliary combustion chamber
is substantially cylindrical in shape, with the side wall having a circular cross-section
of constant diameter, and the first and second end walls being substantially planar.
4. The combustor assembly of any one of claims 1-3, wherein the second end wall defines
a fluid outlet leading to an outlet tube in fluid communication with the primary combustion
chamber; and
wherein the igniter body further comprises an outer shell surrounding at least a portion
of the auxiliary combustion chamber, the outer shell comprising a fluid inlet (438)
coaxially aligned with the outlet tube.
5. The combustor assembly of claim 4, wherein the igniter body comprises a fluid annulus
(412) formed between an inner surface of the shell and an outer surface of the auxiliary
combustion chamber, the annulus directing fluid from the fluid inlet across the outer
surface of the auxiliary combustion chamber towards the first end wall.
6. The combustor assembly of any one of claims 1-5, wherein the igniter body further
comprises a fluid swirler residing at an entrance to a premixing cup (440) residing
within the auxiliary combustion chamber.
7. The combustor assembly of claim 6, wherein the fluid swirler comprises an axial fluid
swirler comprising a circumferential pattern of swirl opening surrounding an outlet
of the auxiliary fuel injector.
8. The combustor assembly of any one of claims 1-7, wherein the torch igniter further
comprises a shielding device (456) configured to at least partially shield the ignition
source from fluid flow through the auxiliary combustion chamber.
9. The combustor assembly of claim 8, wherein the shielding device is coupled to an inner
surface of the auxiliary combustion chamber proximate the ignition source, and comprises
a curved, convex surface.
10. The combustor assembly of any one of claims 1-9, wherein the shielding device further
includes multiple apertures (458) that permit a limited portion of a fuel/air mixture
to flow past a tip of the ignition source.
11. The combustor assembly of any one of claims 1-10, wherein:
the first end wall is a front end wall of the auxiliary combustion chamber;
the second end wall is a rear end wall of the auxiliary combustion chamber; and
a density of the cooling apertures increases from the front end of the auxiliary combustion
chamber towards the rear end.
12. A method of operating a gas turbine combustor assembly according to claim 1, the method
comprising:
mixing auxiliary fuel and air flows in an auxiliary combustion chamber to form an
auxiliary fuel/air mixture;
igniting the auxiliary fuel/air mixture to form an auxiliary flow of heated fluid;
directing the auxiliary flow of heated fluid through the auxiliary combustion chamber
towards a primary combustion chamber;
while directing the auxiliary flow of heated fluid, receiving a flow of cooling fluid,
and directing the cooling fluid so as to:
form a film of cooling fluid along an inner surface of the auxiliary combustion chamber;
and
dilute the auxiliary flow of heated fluid; and
igniting a primary air/fuel mixture in a primary combustion chamber of the gas turbine
combustor assembly with the diluted auxiliary flow of heated fluid from the auxiliary
combustion chamber.
1. Brennkammeranordnung einer Gasturbine, umfassend:
eine primäre Brennkammer in Fluidverbindung mit einer primären Brennstoffeinspritzdüse
und einem primären Lufteinlass; und
einen mit der primären Brennkammer gekoppelten Fackelzünder (400), wobei der Fackelzünder
Folgendes umfasst:
eine Hilfs-Brennstoffeinspritzdüse (404);
eine Zündquelle (406); und
einen Zünderkörper (402), der die Hilfs-Brennstoffeinspritzdüse und die Zündquelle
trägt, wobei der Zünderkörper eine Hilfs-Brennkammer (410) umfasst, die eine Seitenwand
aufweist, die sich axial von einer ersten Endwand zu einer zweiten Endwand erstreckt,
wobei zumindest ein Teil der Seitenwand ein verteiltes Muster von Kühlöffnungen umfasst,
wobei sich jede der Kühlöffnungen schräg von einer Außenfläche der Seitenwand zu einer
Innenfläche der Seitenwand erstreckt,
um zu bewirken, dass durch die Kühlöffnungen in einen inneren Hohlraum der Hilfs-Brennkammer
eintretendes Fluid einen Fluidfilm entlang der Innenfläche bildet, und
wobei die zweite Endwand der Hilfs-Brennkammer einen Fluidauslass definiert, der zu
einem Auslassrohr in Fluidverbindung mit der primären Brennkammer führt, wobei zumindest
ein Teil des Auslassrohrs ein verteiltes Muster von Verdünnungsöffnungen umfasst,
wobei jede der Verdünnungsöffnungen dazu ausgelegt ist, Fluid in einem Querstrom mit
aus der Hilfs-Brennkammer austretendem erwärmtem Gas durch das Auslassrohr zu leiten.
2. Brennkammeranordnung nach Anspruch 1, ferner umfassend:
einen Vormischbecher (440), der sich in dem inneren Hohlraum der Hilfs-Brennkammer
befindet, wobei der Vormischbecher eine zylindrische Wand (444), die die Hilfs-Brennstoffeinspritzdüse
radial umgibt, und einen Hilfs-Lufteinlass (442) umfasst, wobei die zylindrische Wand
des Vormischbechers relativ zu der ersten Endwand der Hilfs-Brennkammer durch einen
Teil des inneren Hohlraums axial nach außen ragt, um eine Vormischzone (448) von der
zylindrischen Wand radial nach innen und eine Rezirkulationszone (450) von der zylindrischen
Wand radial nach außen zu beschreiben, wobei sich die Zündquelle an der Seitenwand
der Hilfs-Brennkammer an einer Position nahe der Rezirkulationszone befindet.
3. Brennkammeranordnung nach Anspruch 1 oder Anspruch 2, wobei die Hilfs-Brennkammer
eine im Wesentlichen zylindrische Form aufweist, wobei die Seitenwand einen kreisförmigen
Querschnitt mit konstantem Durchmesser aufweist und wobei die erste und die zweite
Endwand im Wesentlichen ebenflächig sind.
4. Brennkammeranordnung nach einem der Ansprüche 1-3, wobei die zweite Endwand einen
Fluidauslass definiert, der zu einem Auslassrohr in Fluidverbindung mit der primären
Brennkammer führt; und
wobei der Zünderkörper ferner eine Außenschale umfasst, die zumindest einen Teil der
Hilfs-Brennkammer umgibt, wobei die Außenschale einen Fluideinlass (438) umfasst,
der mit dem Auslassrohr koaxial ausgerichtet ist.
5. Brennkammeranordnung nach Anspruch 4, wobei der Zünderkörper einen Fluidring (412)
umfasst, der zwischen einer Innenfläche der Schale und einer Außenfläche der Hilfs-Brennkammer
ausgebildet ist, wobei der Ring Fluid von dem Fluideinlass über die Außenfläche der
Hilfs-Brennkammer hin zu der ersten Endwand leitet.
6. Brennkammeranordnung nach einem der Ansprüche 1-5, wobei der Zünderkörper ferner einen
Fluidverwirbler umfasst, der sich an einem Eingang zu einem Vormischbecher (440) befindet,
der sich in der Hilfs-Brennkammer befindet.
7. Brennkammeranordnung nach Anspruch 6, wobei der Fluidverwirbler einen axialen Fluidverwirbler
umfasst, der ein umlaufendes Muster einer Verwirbelungsöffnung umfasst, das einen
Auslass der Hilfs-Brennstoffeinspritzdüse umgibt.
8. Brennkammeranordnung nach einem der Ansprüche 1-7, wobei der Fackelzünder ferner eine
Abschirmvorrichtung (456) umfasst, die dazu ausgelegt ist, die Zündquelle zumindest
teilweise von einem Fluidstrom durch die Hilfs-Brennkammer abzuschirmen.
9. Brennkammeranordnung nach Anspruch 8, wobei die Abschirmvorrichtung mit einer Innenfläche
der Hilfs-Brennkammer nahe der Zündquelle gekoppelt ist und eine gebogene, konvexe
Fläche umfasst.
10. Brennkammeranordnung nach einem der Ansprüche 1-9, wobei die Abschirmvorrichtung ferner
mehrere Öffnungen (458) umfasst, die einem begrenzten Teil eines Brennstoff-/Luft-Gemischs
erlauben, an einer Spitze der Zündquelle vorbei zu strömen.
11. Brennkammeranordnung nach einem der Ansprüche 1-10, wobei:
die erste Endwand eine vordere Endwand der Hilfs-Brennkammer ist;
die zweite Endwand eine hintere Endwand der Hilfs-Brennkammer ist; und
eine Dichte der Kühlöffnungen von dem vorderen Ende der Hilfs-Brennkammer hin zu dem
hinteren Ende zunimmt.
12. Verfahren zum Betreiben einer Brennkammeranordnung einer Gasturbine nach Anspruch
1, wobei das Verfahren Folgendes umfasst:
Mischen von Hilfsbrennstoff- und Luftströmen in einer Hilfs-Brennkammer, um ein Hilfsbrennstoff-/Luft-Gemisch
auszubilden;
Zünden des Hilfsbrennstoff-/Luft-Gemischs, um einen Hilfsstrom von erwärmtem Fluid
auszubilden;
Leiten des Hilfsstroms von erwärmtem Fluid durch die Hilfs-Brennkammer hin zu einer
primären Brennkammer;
während des Leitens des Hilfsstroms von erwärmtem Fluid, Aufnehmen eines Stroms von
Kühlfluid und Leiten des Kühlfluids zum:
Ausbilden eines Films von Kühlfluid entlang einer Innenfläche der Hilfs-Brennkammer;
und
Verdünnen des Hilfsstroms von erwärmtem Fluid; und
Zünden eines primären Luft-/Brennstoff-Gemischs in einer primären Brennkammer der
Brennkammeranordnung der Gasturbine mit dem verdünnten Hilfsstrom von erwärmtem Fluid
von der Hilfs-Brennkammer.
1. Ensemble brûleur de turbine à gaz, comportant :
une chambre de combustion principale en communication fluidique avec un injecteur
principal de carburant et une entrée d'air principale ; et
un allumeur (400) de torche couplé à la chambre de combustion principale, l'allumeur
de torche comportant :
un injecteur auxiliaire (404) de carburant ;
une source (406) d'allumage ; et
un corps (402) d'allumeur portant l'injecteur auxiliaire de carburant et la source
d'allumage, le corps d'allumeur comportant une chambre (410) de combustion auxiliaire
possédant une paroi latérale s'étendant axialement d'une première paroi d'extrémité
à une seconde paroi d'extrémité,
au moins une partie de la paroi latérale comportant un motif réparti d'orifices de
refroidissement, chacun des orifices de refroidissement s'étendant obliquement d'une
surface extérieure de la paroi latérale à une surface intérieure de la paroi latérale,
de façon à faire en sorte que du fluide entrant dans une cavité intérieure de la chambre
de combustion auxiliaire par les orifices de refroidissement forme un film fluide
la long de la surface intérieure, et
la seconde paroi d'extrémité de la chambre de combustion auxiliaire définissant une
sortie de fluide conduisant à un tube de sortie en communication fluidique avec la
chambre de combustion principale, au moins une partie du tube de sortie comportant
un motif réparti d'orifices de dilution, chacun des orifices de dilution étant configuré
pour diriger du fluide en écoulement transverse avec du gaz chauffé quittant la chambre
de combustion auxiliaire par le tube de sortie.
2. Ensemble brûleur selon la revendication 1, comportant en outre :
une cuvette (440) de prémélange se situant à l'intérieur de la cavité intérieure de
la chambre de combustion auxiliaire, la cuvette de prémélange comportant une paroi
cylindrique (444) entourant radialement l'injecteur auxiliaire de carburant et une
entrée d'air auxiliaire (442), la paroi cylindrique de la cuvette de prémélange dépassant
axialement vers l'extérieur par rapport à la première paroi d'extrémité de la chambre
de combustion auxiliaire à travers une partie de la cavité intérieure pour délimiter
une zone (448) de prémélange radialement vers l'intérieur par rapport à la paroi cylindrique
et une zone (450) de recirculation radialement vers l'extérieur par rapport à la paroi
cylindrique, la source d'allumage se situant sur la paroi latérale de la chambre de
combustion auxiliaire dans une position proche de la zone de recirculation.
3. Ensemble brûleur selon la revendication 1 ou la revendication 2, la chambre de combustion
auxiliaire étant de forme sensiblement cylindrique, la paroi latérale présentant une
section droite circulaire de diamètre constant, et les première et seconde parois
d'extrémités étant sensiblement planes.
4. Ensemble brûleur selon l'une quelconque des revendications 1 à 3, la seconde paroi
d'extrémité définissant une sortie de fluide conduisant à un tube de sortie en communication
fluidique avec la chambre de combustion principale ; et
le corps d'allumeur comportant en outre une coque extérieure entourant au moins une
partie de la chambre de combustion auxiliaire, la coque extérieure comportant une
entrée (438) de fluide alignée coaxialement avec le tube de sortie.
5. Ensemble brûleur selon la revendication 4, le corps d'allumeur comportant un espace
annulaire (412) pour fluide formé entre une surface intérieure de la coque et une
surface extérieure de la chambre de combustion auxiliaire, l'espace annulaire dirigeant
du fluide provenant de l'entrée de fluide à travers la surface extérieure de la chambre
de combustion auxiliaire vers la première paroi d'extrémité.
6. Ensemble brûleur selon l'une quelconque des revendications 1 à 5, le corps d'allumeur
comportant en outre un moyen de tourbillonnement de fluide se situant à une entrée
d'une cuvette (440) de prémélange se situant à l'intérieur de la chambre de combustion
auxiliaire.
7. Ensemble brûleur selon la revendication 6, le moyen de tourbillonnement de fluide
comportant un moyen de tourbillonnement axial de fluide comportant un motif circonférentiel
d'ouvertures de tourbillonnement entourant une sortie de l'injecteur auxiliaire de
carburant.
8. Ensemble brûleur selon l'une quelconque des revendications 1 à 7, l'allumeur de torche
comportant en outre un dispositif (456) de protection configuré pour abriter au moins
partiellement la source d'allumage d'un écoulement de fluide à travers la chambre
de combustion auxiliaire.
9. Ensemble brûleur selon la revendication 8, le dispositif de protection étant couplé
à une surface intérieure de la chambre de combustion auxiliaire proche de la source
d'allumage, et comportant une surface incurvée convexe.
10. Ensemble brûleur selon l'une quelconque des revendications 1 à 9, le dispositif de
protection comprenant en outre de multiples orifices (458) qui permettent à une partie
limitée d'un mélange air/carburant de s'écouler devant un bout de la source d'allumage.
11. Ensemble brûleur selon l'une quelconque des revendications 1 à 10 :
la première paroi d'extrémité étant une paroi d'extrémité avant de la chambre de combustion
auxiliaire ;
la seconde paroi d'extrémité étant une paroi d'extrémité arrière de la chambre de
combustion auxiliaire ; et
une densité des orifices de refroidissement augmentant de l'extrémité avant de la
chambre de combustion auxiliaire vers l'extrémité arrière.
12. Procédé d'exploitation d'un ensemble brûleur de turbine à gaz selon la revendication
1, le procédé comportant les étapes consistant à :
mélanger des écoulements auxiliaires de carburant et d'air dans une chambre de combustion
auxiliaire pour former un mélange air/carburant auxiliaire ;
allumer le mélange air/carburant auxiliaire pour former un écoulement auxiliaire de
fluide chauffé ;
diriger l'écoulement auxiliaire de fluide chauffé à travers la chambre de combustion
auxiliaire vers une chambre de combustion principale ;
tout en dirigeant l'écoulement auxiliaire de fluide chauffé, recevoir un écoulement
de fluide de refroidissement, et diriger le fluide de refroidissement de façon à :
former un film de fluide de refroidissement le long d'une surface intérieure de la
chambre de combustion auxiliaire ; et
diluer l'écoulement auxiliaire de fluide chauffé ; et
allumer un mélange air/carburant principal dans une chambre de combustion principale
de l'ensemble brûleur de turbine à gaz avec l'écoulement auxiliaire dilué de fluide
chauffé provenant de la chambre de combustion auxiliaire.