FIELD
[0001] The present disclosure is related to an LED lighting apparatus, and more particularly
related to a smart LED lighting apparatus with wireless communication capabilities.
BACKGROUND
[0002] With the rapid development of LED technology, LED lighting has gradually become the
one of the favorite choices for environment-friendly lighting apparatuses. It is appreciated
that LED lighting products are superior to traditional lighting products in terms
of lighting principle, energy saving and environmental protection. Nevertheless, most
of the traditional lamps mainly focus on illumination, with no or only very few additional
functions. In particular, the operational mode of the traditional lamps cannot be
easily switched by users. Therefore, it is desired to provide a better integrated
smart LED lighting apparatus.
[0003] US2015327349A1 discloses a lighting device; and
JP3216685U discloses an assembly of a light and a method for using the light.
SUMMARY
[0004] Compared with the conventional technology, one embodiment of the present disclosure
has the communication module and the LED module arranged on a single board, and thus
the components required are simplified. The LED module is configured to provide light,
without being blocked by other metal structure or electronic components. Such configuration
also contributes to the performance of transmitting and receiving signals by the communication
module. Further, the LED lighting apparatus is provided with additional functions,
such as dimming, RGBW color mixing, human body sensing and music playing. Compared
with the traditional lighting apparatus, the LED lighting apparatus of the embodiment
has been integrally designed, and may be easily automatically manufactured so as to
reduce the production cost.
[0005] In an embodiment, the lighting apparatus includes a main body, a bulb body, a head
body, a light emitting diode (LED) module for emitting light, and a communication
module for providing wireless communication. The bulb body is connected to a first
end of the main body. The head body is connected to a second end of the main body
and configured to be connected to an electrical socket for receiving power. The lighting
apparatus further includes a composite printed circuit board having a first sub-board
and a second sub-board physically coupled to the first sub-board. The communication
module is located on the first sub-board and the LED module is located on the second
sub-board. The second sub-board physically surrounds the first sub-board, and the
first sub-board and the second sub-board are physically arranged in a same plane.
[0006] In some embodiments, the communication module further includes an antenna, a radio
frequency circuitry coupled to the antenna for receiving wireless signals, and a radio
frequency power circuitry for providing power to the radio frequency circuitry.
[0007] In some embodiments, the radio frequency circuitry further includes a radio frequency
integrated circuit and an antenna impedance matching circuitry electrically connected
to the antenna.
[0008] In some embodiments, the radio frequency integrated circuit further includes a crystal
oscillator and a flash memory.
[0009] In some embodiments, the radio frequency circuitry further includes a radio frequency
integrated circuit, a crystal oscillator, a flash memory, and an antenna impedance
matching circuitry electrically connected to the antenna.
[0010] In some embodiments, the LED module further includes one or a plurality of light
emitting diodes, and also a driver circuitry electrically connected to the light emitting
diodes to enable the light emitting diodes to emit light.
[0011] In some embodiments, the main body further includes a plastic coated aluminum structure.
[0012] In some embodiments, the first sub-board and the second sub-board includes different
substrates.
[0013] In some embodiments, the first sub-board includes an insulating substrate, and the
second sub-board includes a metal substrate.
[0014] In some embodiments, the first sub-board includes a first layer and a second layer
physically arranged above the first layer, and the first layer of the first sub-board
and the second sub-board are physically arranged in a same plane.
[0015] In some embodiments, the communication module includes an antenna, a radio frequency
circuitry coupled to the antenna for receiving wireless signals, and a radio frequency
power circuitry for providing power to the radio frequency circuitry. Particularly,
the radio frequency power circuitry is arranged on the first layer of the first sub-board,
and the antenna and the radio frequency circuitry are arranged on the second layer
of the first sub-board.
[0016] In some embodiments, the first sub-board includes a first layer, a second layer physically
arranged above the first layer, and a third layer physically arranged above the second
layer. Particularly, the first layer of the first sub-board and the second sub-board
are physically arranged in a same plane.
[0017] In some embodiments, the communication module includes an antenna, a radio frequency
circuitry coupled to the antenna for receiving wireless signals, and a radio frequency
power circuitry for providing power to the radio frequency circuitry. Particularly,
the antenna and the radio frequency circuitry are arranged in a first plane, and the
radio frequency power circuitry is arranged in a second plane different from the first
plane.
[0018] In some embodiments, the communication module includes an antenna, a radio frequency
circuitry coupled to the antenna for receiving wireless signals, and a radio frequency
power circuitry for providing power to the radio frequency circuitry. Particularly,
the radio frequency power circuitry is arranged on the first layer of the first sub-board,
the radio frequency circuitry is arranged on the second layer of the first sub-board,
and the antenna is arranged on the third layer of the first sub-board.
- The main body may include an annular holder structure configured to hold the composite
printed circuit board.
BRIEF DESCRIPTION OF DRAWINGS
[0019]
FIG. 1 is an exploded view of the LED lighting apparatus in accordance with one embodiment
of the present disclosure.
FIG. 2 is a sectional view of the LED lighting apparatus in accordance with one embodiment
of the present disclosure.
FIG. 3 is a three-dimensional view of the composite module in accordance with a first
embodiment of the present disclosure.
FIG. 4 is a three-dimensional view of the composite module in accordance with a second
embodiment of the present disclosure.
FIG. 5 is a three-dimensional view of the composite module in accordance with a third
embodiment of the present disclosure.
FIG. 6 is a circuit diagram of one conventional radio frequency chip.
FIG. 7 is a circuit diagram of the radio frequency chip in accordance with one embodiment
of the present disclosure.
FIG. 8 is a block diagram of the LED lighting apparatus in accordance with one embodiment
of the present disclosure.
DETAILED DESCRIPTION
[0020] The present disclosure will be further described in detail below with reference to
the accompanying drawings and embodiments. It is understood that the specific embodiments
described herein are merely illustrative of the claimed invention and are not intended
to limit the claimed invention.
[0021] Refer to FIG. 1 and FIG. 2. In one embodiment, the lighting apparatus includes a
main body 1, a bulb body 3, a head body 2, a light emitting diode (LED) module 5 for
emitting light, and a communication module 6 for providing wireless communication.
[0022] The main body 1 may include a plastic coated aluminum structure. The bulb body 3
is connected to a first end of the main body 1. The head body 2 is connected to a
second end of the main body 1 and configured to be connected to an electrical socket
for receiving power. The lighting apparatus further includes a composite module 100.
The composite module 100 includes a composite printed circuit board 4, an LED module
5, and a communication module 6. The LED module 5 and the communication module 6 are
electrically connected via the composite printed circuit board 4. The composite printed
circuit board 4 having a first sub-board 41 and a second sub-board 42 physically coupled
to the first sub-board 41. The communication module 6 is located on the first sub-board
41 and the LED module 5 is located on the second sub-board 42.
[0023] The LED module 5 includes one or a plurality of light emitting diodes (LEDs) 51,
and also a driver circuitry 52 electrically connected to the light emitting diodes
51 to enable the light emitting diodes 51 to emit light.
[0024] Referring to FIGS. 1-3, the composite printed circuit board 4, the LED module 5,
and the communication module 6 are arranged within the main body 1 and the bulb body
3. The main body 1 is made of plastic coated aluminum structure. That is, the main
body 1 includes a plastic insulating portion 13 and a conductive portion 14 made of
aluminum. The conductive portion 14 is capable of dissipating heat. The bulb body
3 is bulb-shaped to facilitate the LED module 5 emitting light efficiently. In one
embodiment, the bulb body 3 is transparent, and may be made of plastic materials,
such as PVC (Polyvinyl chloride, polyvinyl chloride) or PET (Polyethylene terephthalate).
[0025] The LED lighting apparatus also includes a metal piece 7 and an edge line 8. The
metal piece 7 is pin-shaped and is configured to pass through the head body 2. The
outer wall of the head body 2 is provided with external thread, thus the metal piece
7 may be electrically connected to an external power source so as to supply the current
to the composite printed circuit board 4. The metal piece 7 may directly connect to
terminals on the composite printed circuit board 4 (not shown) when the length of
the metal piece 7 is long enough, such that the metal piece 7 is electrically connected
to the composite printed circuit board 4.
[0026] In one embodiment, the edge line 8 is arranged on the surface of the composite printed
circuit board 4 facing away from the bulb body 3. The edge line 8 electrically connects
to the head body 2 via the main body 1.
[0027] In one embodiment, the bottom of the main body 1 is configured with a protrusion
11 extending from an edge of the bottom toward the edge line 8. The protrusion 11
is provided with a socket 12 for engaging with the edge line 8. That is, the composite
printed circuit board 4 electrically connects to the head body 2 via the metal piece
7 and the edge line 8.
[0028] In one embodiment, when the length of the metal piece 7 is not long enough for the
metal piece 7 to reach the composite printed circuit board 4, a resistance line 9
may be configured on one surface of the composite printed circuit board 4 facing toward
the metal piece 7, and the resistance line 9 electrically connects to the metal piece
7. In one embodiment, a central area of the composite printed circuit board 4 is provided
with a through hole 43 or an opening. The resistance line 9 operates as a fire wire
to pass through the through hole 43 or the opening of the head body 2 so as to electrically
connect to the metal piece 7. The composite printed circuit board 4 is subjected to
wave soldering together with the edge line 8 and the resistance line 9. Afterward,
the resistance line 9 and the edge line 8 are connected to the composite printed circuit
board 4 by solder paste.
[0029] Referring to FIGS. 1, 3, 4 and 5, the composite printed circuit board 4 is of single-layer.
The communication module 6 and the LED module 5 are welded on the composite printed
circuit board 4. That is, the communication module 6 and the LED module 5 are welded
on the surface of the composite printed circuit board 4 facing toward the bulb body
3.
[0030] An internal wall of the main body 1 is configured with a ring-shaped stage 131. The
composite printed circuit board 4 engages with the ring-shaped stage 131. The composite
printed circuit board 4 is a composite board made by a metal substrate and an insulating
substrate.
[0031] The composite printed circuit board 4 includes a first sub-board 41 and a second
sub-board 42. The communication module 6 is arranged on the first sub-board 41, and
the LED module 5 is arranged on the second sub-board 42. The first sub-board and the
second sub-board are different substrates. For instance, the first sub-board 41 is
an insulating substrate, and the second sub-board 42 is a metal substrate.
[0032] At least one surface of the first sub-board 41 and the second sub-board 42 includes
an insulating layer (not shown) and a conductive layer (not shown). That is, both
of the first sub-board 41 and the second sub-board 42 includes the insulating layer
and the conductive layer. The conductive layer electrically connects the first sub-board
41 with the second sub-board 42. The insulating layer is configured for insulating
the composite printed circuit board 4 and the conductive layer.
[0033] Referring to FIG. 3, the first sub-board 41 is embedded within the second sub-board
42 so as to form the composite substrate. As the first sub-board 41 and the second
sub-board 42 are on the same plane, the communication module 6 and the LED module
5 are also on the same plane. As all components of the communication module 6 and
the LED module 5 are on the same plane, such configuration may save space.
[0034] The first sub-board 41 and the second sub-board 42 both include the conductive layer.
The resistance line 9 is arranged in the central area of the composite printed circuit
board 4, that is, the resistance line 9 is arranged on the first sub-board 41 for
providing power supply to the communication module 6. On the other hand, the LED module
5 may operate in accordance with the signals from the communication module 6. With
such configuration, the feedback route of the signals from the communication module
6 to the LED module 5 may be easily configured.
[0035] Referring to FIGS. 4 and 5, in an example arrangement not forming part of the claimed
invention, the communication module 6 and the LED module 5 may not be on the same
plane- -The communication module 6 further includes an antenna 61, a radio frequency
circuitry 62 coupled to the antenna 61 for receiving wireless signals, and a radio
frequency power circuitry 63 for providing power to the radio frequency circuitry
62.
[0036] Referring to FIG. 4, the radio frequency circuitry 62 and the antenna 61 may be integrated
as a module to be welded on the composite printed circuit board 4. Specifically, the
first sub-board 41 includes a first layer 411 and a second layer 412 stacked together.
The first layer 411 and the second layer 412 are on the same plane. The radio frequency
power circuitry 63 is arranged on the first layer 411, and the antenna 61 and the
radio frequency circuitry 62 are arranged on the second layer 412. That is, the radio
frequency power circuitry 63 and the LED module 5 are on the same plane. To avoid
signal interference, the second layer 412 is disposed away from the radio frequency
power circuitry 63.
[0037] Referring to FIG. 5, - the antenna 61 may be configured externally, and the radio
frequency circuitry 62 and the radio frequency power circuitry 63 may be separately
arranged. Specifically, the first sub-board 41 includes the first layer 411, the second
layer 412, and a third layer 413. The first layer 411 and the second sub-board 42
are on the same plane, and the radio frequency power circuitry 63 is arranged on the
first layer 411. The radio frequency circuitry 62 is arranged on the second layer
412, and the antenna 61 is arranged on the third layer 413. The second layer 412 is
disposed away from the radio frequency power circuitry 63, and the third layer 413
is disposed away from the radio frequency circuitry 62 and the radio frequency power
circuitry 63 so as to avoid the signals interference.
[0038] Referring to FIG. 7, in some embodiments, the radio frequency circuitry 62 further
includes a radio frequency integrated circuit 621 and an antenna impedance matching
circuitry 6214 electrically connected to the antenna 61. The radio frequency integrated
circuit 621 further includes a filter circuitry 6211, a crystal oscillator 6212 and
a flash memory 6213.
[0039] Referring to FIG. 6, in one embodiment, the filter circuitry 6211, the crystal oscillator
6212 and the flash memory 6213 may be located outside the radio frequency integrated
circuit 621.
[0040] In some embodiments, the antenna 61 is a unipolar antenna disposed on the first sub-board
41. The unipolar antenna may be a single wire only occupying very small space. In
another example, the antenna 61 may be configured to be strip-shaped or at least one
of a zigzag shape, a spiral shape, a stage shape or a ring shape according to the
shape of the first sub-substrate 41. As such, the length of the antenna 61 can be
flexibly adjusted to match different operating frequencies. The material of the antenna
61 may be at least one of gold, silver, copper, palladium, platinum, nickel, and stainless
steel. In a specific application, different materials and different shapes of the
antenna 61 may be configured according to different scenarios.
[0041] Referring to FIGS. 1-5, the LED module 5 includes at least one first LED 51 and a
driver circuitry 52. The driver circuitry 52 electrically connects to the LED 51 so
as to drive the LED 51. The driver circuitry 52 is arranged on the composite printed
circuit board 4, that is, the driver circuitry 52 and the LED 51 are circuit-fused
together. Such configuration is feasible for Driver on Board (DOB) lamp, which is
usually referred to as "de-energizing," that is, the conventional AC/DC (AC to DC)
rectifier is removed. The LED driving circuit and the LED string circuit are combined.
The DOB uses high-voltage LEDs plus a streamlined high-voltage driving circuit, which
can be directly driven by the main voltage, without the need of additional components
such as inductors, electrolytic capacitors, and transformers. As such, the size and
cost of the lamp may be reduced. In one embodiment, when there are many LEDs 51, the
LEDs 51 may be configured to surround the second sub-board 42 so as to provide uniform
light.
[0042] Referring to FIG. 8, in one embodiment, the power may be supplied to the LED 51 by
the path described below. The alternating current of the external power source reaches
the first sub-board 41 through the metal piece 7 and the resistance line 9 of the
head body 2. The alternating current is then transmitted to the second sub-board 42
through the wires on the first sub-board 41, and then supplied to the LED 51 through
the driver circuitry 52. Afterward, the alternating current is transmitted to the
main body 1 through the edge line 8, and back to the head body 2 to form a complete
circuit.
[0043] The power may be supplied to the antenna 61 by the path described below. The alternating
current of the external power source is transmitted to the first sub-board 41 via
the metal piece 7 and the resistance line 9 of the head body 2 so as to provide the
power to the radio frequency power circuitry 63. The alternating current is then supplied
to the radio frequency circuitry 62 through the radio frequency power circuitry 63.
The radio frequency circuit 62 then supplies the power to the antenna 61.
[0044] The signals may be provided to the radio frequency circuitry 62 by the path described
below. The antenna 61 receives the signals and transforms the signals into electronic
signals. The electronic signals are then transmitted to the radio frequency circuitry
62 via the wires on the first sub-board 41.
[0045] The LED module 5 may be driven by the communication module 6. In one example, the
radio frequency circuitry 62 controls the driver circuitry 52 in accordance with the
control signals so as to drive the LED 51.
[0046] The assembly process of the lamp will be described in detail below. First, the assembled
composite printed circuit board 4, the resistance line 9, and the edge line 8 are
applied with the wave soldering process. After the wave soldering process, the resistance
line 9, the edge line 8, and the composite printed circuit board 4 are fixed together
with solder paste.
[0047] Next, the resistance line 9 of the composite printed circuit board 4 is aligned with
the middle of the main body 1, and the edge line 8 is aligned with the socket 12 at
the bottom of the main body 1. The composite printed circuit board 4 is placed on
the ring-shaped stage 131 inside the main body 1, and the composite printed circuit
board 4 is riveted and connected together via the jig. The interference fit between
the two is between 0 and 0.1 mm. In a specific application, the interference gap may
be 0, 0.05 mm or 0.1 mm. After the head body 2 and the metal piece 7 are assembled,
the head body 2 is riveted to meet the requirements of the torsion and bending moment.
In this way, the head body 2 is prevented from falling off. Lastly, a ring of silicone
adhesive or the like is applied to the other end of the main body 1, and the bulb
body 3 is assembled. After the silicone glue dries, the bulb body 3 may be fixed on
the main body 1.
[0048] The foregoing description, for purpose of explanation, has been described with reference
to specific embodiments. However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications
and variations are possible in view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the techniques and their
practical applications. Others skilled in the art are thereby enabled to best utilize
the techniques and various embodiments with various modifications as are suited to
the particular use contemplated.
[0049] Although the disclosure and examples have been fully described with reference to
the accompanying drawings, it is to be noted that various changes and modifications
will become apparent to those skilled in the art. Such changes and modifications are
to be understood as being included within the scope of the disclosure and examples
as defined by the claims.
1. A lighting apparatus comprising:
a main body (1);
a bulb body (3) connected to a first end of the main body (1);
a head body (2) connected to a second end of the main body (1), and is configured
to be connected to an electrical socket for receiving power;
a light emitting diode - hereafter abbreviated LED - module (5) configured for emitting
light;
a communication module (6) configured for providing wireless communication; and
a composite printed circuit board (4) comprising a first sub-board (41) and a second
sub-board (42) physically coupled to the first sub-board (41), wherein the communication
module (6) is located on the first sub-board (41) and the LED module is located on
the second sub-board (42),
characterized in that the second sub-board (42) physically surrounds the first sub-board (41), and the
first sub-board (41) and the second sub-board (42) are physically arranged in a same
plane.
2. The lighting apparatus of claim 1, wherein the communication module (6) comprises
an antenna (61), a radio frequency circuitry (62) coupled to the antenna (61) configured
for receiving wireless signals, and a radio frequency power circuitry (63) configured
for providing power to the radio frequency circuitry (62).
3. The lighting apparatus of claim 2, wherein the radio frequency circuitry (62) comprises
a radio frequency integrated circuit (621) and an antenna impedance matching circuitry
(6214) electrically connected to the antenna (61).
4. The lighting apparatus of claim 3, wherein the radio frequency integrated circuit
(621) further comprises a crystal oscillator (6212) and a flash memory (6213).
5. The lighting apparatus of claim 2, wherein the radio frequency circuitry (621) comprises
a radio frequency integrated circuit (621), a crystal oscillator (6212), a flash memory
(6213), and an antenna impedance matching circuitry (6214) electrically connected
to the antenna (61).
6. The lighting apparatus of any one of claims 1-5, wherein the LED module (5) comprises
at least one light emitting diode (51) and a driver circuitry (52) electrically connected
to the at least one light emitting diode (51) to enable the at least one light emitting
diode (51) to emit light.
7. The lighting apparatus of any one of claims 1-6, wherein the main body (1) further
comprises a plastic coated aluminum structure.
8. The lighting apparatus of any one of claims 1-7, wherein the first sub-board (41)
and the second sub-board (42) are different substrates,
preferably, the first sub-board (41) includes an insulating substrate, and the second
sub-board (42) includes a metal substrate.
9. The lighting apparatus of any one of claims 1-8, wherein the first sub-board (41)
includes a first layer (411) and a second layer (412) physically arranged above the
first layer (411), and the first layer (411) of the first sub-board (41) and the second
sub-board (42) are physically arranged in a same plane.
10. The lighting apparatus of claim 9, wherein the communication module (6) includes an
antenna (61), a radio frequency circuitry (62) coupled to the antenna (61) for receiving
wireless signals, and a radio frequency power circuitry (63) configured for providing
power to the radio frequency circuitry (62), wherein the radio frequency power circuitry
(63) is arranged on the first layer (411) of the first sub-board (41), and the antenna
(61) and the radio frequency circuitry (62) are arranged on the second layer (412)
of the first sub-board (41).
11. The lighting apparatus of claim 1, wherein the first sub-board (41) includes a first
layer (411), a second layer (412) physically arranged above the first layer (411),
and a third layer (413) physically arranged above the second layer (412), wherein
the first layer (411) of the first sub-board (41) and the second sub-board (42) are
physically arranged in a same plane.
12. The lighting apparatus of claim 11, wherein the communication module (6) includes
an antenna (61), a radio frequency circuitry (62) coupled to the antenna (61) for
receiving wireless signals, and a radio frequency power circuitry (63) configured
for providing power to the radio frequency circuitry (62), wherein the antenna (61)
and the radio frequency circuitry (62) are arranged in a first plane, and the radio
frequency power circuitry (63) is arranged in a second plane different from the first
plane.
13. The lighting apparatus of claim 11, wherein the communication module (6) includes
an antenna (61), a radio frequency circuitry (62) coupled to the antenna (61) for
receiving wireless signals, and a radio frequency power circuitry (63) configured
for providing power to the radio frequency circuitry (61), wherein the radio frequency
power circuitry (63) is arranged on the first layer (411) of the first sub-board (41),
the radio frequency circuitry (62) is arranged on the second layer (412) of the first
sub-board (41), and the antenna (61) is arranged on the third layer (413) of the first
sub-board (41).
14. The lighting apparatus of any one of claims 1-5, wherein the main body (1) includes
an annular holder structure configured to hold the composite printed circuit board
(4).
1. Beleuchtungsgerät, umfassend:
einen Hauptkörper (1);
einen Glühlampenkörper (3), der mit einem ersten Ende des Hauptkörpers (1) verbunden
ist;
einen Kopfkörper (2), der mit einem zweiten Ende des Hauptkörpers (1) verbunden ist
und konfiguriert ist, um mit einer Steckdose zum Empfangen von Strom verbunden zu
sein;
ein Leuchtdioden - im Folgenden LED abgekürzt- -Modul (5), das zum Emittieren von
Licht konfiguriert ist;
ein Kommunikationsmodul (6), das zum Bereitstellen von drahtloser Kommunikation konfiguriert
ist; und
eine Verbundleiterplatine (4), umfassend eine erste Unterplatine (41) und eine zweite
Unterplatine (42), die physikalisch mit der ersten Unterplatine (41) gekoppelt ist,
wobei das Kommunikationsmodul (6) auf der ersten Unterplatine (41) lokalisiert ist
und das LED-Modul auf der zweiten Unterplatine (42) lokalisiert ist,
dadurch gekennzeichnet, dass die zweite Unterplatine (42) physikalisch die erste Unterplatine (41) umgibt und
die erste Unterplatine (41) und die zweite Unterplatine (42) physikalisch in einer
gleichen Ebene angeordnet sind.
2. Beleuchtungsgerät nach Anspruch 1, wobei das Kommunikationsmodul (6) eine Antenne
(61), eine Hochfrequenzschaltung (62), die mit der Antenne (61) gekoppelt ist, die
zum Empfangen von Funksignalen konfiguriert ist, und eine Hochfrequenzleistungsschaltung
(63), die zum Bereitstellen von Strom an die Hochfrequenzschaltung (62) konfiguriert
ist, umfasst.
3. Beleuchtungsgerät nach Anspruch 2, wobei die Hochfrequenzschaltung (62) eine integrierte
Hochfrequenzschaltung (621) und eine Schaltung zur Anpassung der Antennenimpedanz
(6214), die elektrisch mit der Antenne (61) verbunden ist, umfasst.
4. Beleuchtungsgerät nach Anspruch 3, wobei die integrierte Hochfrequenzschaltung (621)
weiterhin einen Quarzoszillator (6212) und einen Flash-Speicher (6213) umfasst.
5. Beleuchtungsgerät nach Anspruch 2, wobei die Hochfrequenzschaltung (621) eine integrierte
Hochfrequenzschaltung (621), einen Quarzoszillator (6212), einen Flash-Speicher (6213)
und eine Schaltung zur Anpassung der Antennenimpedanz (6214), die mit der Antenne
(61) elektrisch verbunden ist, umfasst.
6. Beleuchtungsgerät nach einem der Ansprüche 1 - 5, wobei das LED-Modul (5) mindestens
eine Leuchtdiode (51) und eine Treiberschaltung (52) umfasst, die elektrisch mit der
mindestens eine Leuchtdiode (51) verbunden ist, um der mindestens einen Leuchtdiode
(51) zu ermöglichen, Licht zu emittieren.
7. Beleuchtungsgerät nach einem der Ansprüche 1 - 6, wobei der Hauptkörper (1) weiterhin
eine kunststoffbeschichtete Aluminiumstruktur umfasst.
8. Beleuchtungsgerät nach einem der Ansprüche 1 - 7, wobei die erste Unterplatine (41)
und die zweite Unterplatine (42) unterschiedliche Substrate sind,
vorzugsweise schließt die erste Unterplatine (41) ein isolierendes Substrat ein und
die zweite Unterplatine (42) schließt ein Metallsubstrat ein.
9. Beleuchtungsgerät nach einem der Ansprüche 1 - 8, wobei die erste Unterplatine (41)
eine erste Schicht (411) und eine zweite Schicht (412), die physikalisch über der
ersten Schicht (411) angeordnet ist, einschließt und wobei die erste Schicht (411)
der ersten Unterplatine (41) und die zweite Unterplatine (42) physikalisch in einer
gleichen Ebene angeordnet sind.
10. Beleuchtungsgerät nach Anspruch 9, wobei das Kommunikationsmodul (6) eine Antenne
(61), eine Hochfrequenzschaltung (62), die mit der Antenne (61) zum Empfangen von
Funksignalen gekoppelt ist, und eine Hochfrequenzleistungsschaltung (63), die zum
Bereitstellen von Strom an die Hochfrequenzschaltung (62) konfiguriert ist, einschließt,
wobei die Hochfrequenzleistungsschaltung (63) auf der ersten Schicht (411) der ersten
Unterplatine (41) angeordnet ist und die Antenne (61) und die Hochfrequenzschaltung
(62) auf der zweiten Schicht (412) der ersten Unterplatine (41) angeordnet sind.
11. Beleuchtungsgerät nach Anspruch 1, wobei die erste Unterplatine (41) eine erste Schicht
(411), eine zweite Schicht (412), die physikalisch über der ersten Schicht (411) angeordnet
ist, und eine dritte Schicht (413), die physikalisch über der zweiten Schicht (412)
angeordnet ist, einschließt, wobei die erste Schicht (411) der ersten Unterplatine
(41) und die zweite Unterplatine (42) physikalisch in einer gleichen Ebene angeordnet
sind.
12. Beleuchtungsgerät nach Anspruch 11, wobei das Kommunikationsmodul (6) eine Antenne
(61), eine Hochfrequenzschaltung (62), die mit der Antenne (61) zum Empfangen von
Funksignalen gekoppelt ist und eine Hochfrequenzleistungsschaltung (63), die zum Bereitstellen
von Strom an die Hochfrequenzschaltung (62) konfiguriert ist, einschließt, wobei die
Antenne (61) und die Hochfrequenzschaltung (62) in einer ersten Ebene angeordnet sind
und die Hochfrequenzleistungsschaltung (63) in einer zweiten Ebene angeordnet ist,
die sich von der ersten Ebene unterscheidet.
13. Beleuchtungsgerät nach Anspruch 11, wobei das Kommunikationsmodul (6) eine Antenne
(61), eine Hochfrequenzschaltung (62), die mit der Antenne (61) zum Empfangen von
Funksignalen gekoppelt ist und eine Hochfrequenzleistungsschaltung (63), die zum Bereitstellen
von Strom an die Hochfrequenzschaltung (61) konfiguriert ist, einschließt, wobei die
Hochfrequenzleistungsschaltung (63) auf der ersten Schicht (411) der ersten Unterplatine
(41) angeordnet ist, die Hochfrequenzschaltung (62) auf der zweiten Schicht (412)
der ersten Unterplatine (41) angeordnet ist und die Antenne (61) auf der dritten Schicht
(413) der ersten Unterplatine (41) angeordnet ist.
14. Beleuchtungsgerät nach einem der Ansprüche 1 - 5, wobei der Hauptkörper (1) eine ringförmige
Halterstruktur aufweist, die konfiguriert ist, die Verbundleiterplatte (4) zu halten.
1. Appareil d'éclairage comprenant :
un corps principal (1) ;
un corps d'ampoule (3) connecté à une première extrémité du corps principal (1) ;
une douille (2) connectée à une seconde extrémité du corps principal (1), et configuré
pour être connecté à une douille afin de recevoir de la puissance ;
un module de diode électroluminescente(5) - ci-après abrégée DEL -, configuré pour
émettre de la lumière ;
un module de communication (6) configuré pour assurer une communication sans fil ;
et
une carte de circuit imprimé composite (4) comprenant une première sous-carte (41)
et une seconde sous-carte (42) couplée physiquement à la première sous-carte (41),
dans lequel le module de communication (6) est situé sur la première sous-carte (41)
et le module DEL est situé sur la seconde sous-carte (42),
caractérisé en ce que la seconde sous-carte (42) entoure physiquement la première sous-carte (41), et la
première sous-carte (41) et la seconde sous-carte (42) sont agencées physiquement
dans un même plan.
2. Appareil d'éclairage selon la revendication 1, dans lequel le module de communication
(6) comprend une antenne (61), une circuiterie radiofréquence (62) couplée à l'antenne
(61) configurée pour recevoir des signaux sans fil, et une circuiterie de puissance
radiofréquence (63) configurée pour fournir de la puissance à la circuiterie radiofréquence
(62).
3. Appareil d'éclairage selon la revendication 2, dans lequel la circuiterie radiofréquence
(62) comprend un circuit intégré radiofréquence (621) et une circuiterie d'adaptation
d'impédance d'antenne (6214) connectée électriquement à l'antenne (61).
4. Appareil d'éclairage selon la revendication 3, dans lequel le circuit intégré radiofréquence
(621) comprend en outre un oscillateur à quartz (6212) et une mémoire Flash (6213).
5. Appareil d'éclairage selon la revendication 2, dans lequel la circuiterie radiofréquence
(621) comprend un circuit intégré radiofréquence (621), un oscillateur à quartz (6212),
une mémoire Flash (6213), et une circuiterie d'adaptation d'impédance d'antenne (6214)
connectée électriquement à l'antenne (61).
6. Appareil d'éclairage selon l'une quelconque des revendications 1 à 5, dans lequel
le module (5) DEL comprend au moins une diode électroluminescente (51) et une circuiterie
de pilotage (52) connectée électriquement à l'au moins une diode électroluminescente
(51) pour permettre à l'au moins une diode électroluminescente (51) d'émettre de la
lumière.
7. Appareil d'éclairage selon l'une quelconque des revendications 1 à 6, dans lequel
le corps principal (1) comprend en outre une structure en aluminium revêtue de plastique.
8. Appareil d'éclairage selon l'une quelconque des revendications 1 à 7, dans lequel
la première sous-carte (41) et la seconde sous-carte (42) sont des substrats différents,
de préférence, la première sous-carte (41) comporte un substrat isolant, et la seconde
sous-carte (42) comporte un substrat en métal.
9. Appareil d'éclairage selon l'une quelconque des revendications 1 à 8, dans lequel
la première sous-carte (41) comporte une première couche (411) et une deuxième couche
(412) agencée physiquement au-dessus de la première couche (411), et la première couche
(411) de la première sous-carte (41) et la seconde sous-carte (42) sont agencées physiquement
dans un même plan.
10. Appareil d'éclairage selon la revendication 9, dans lequel le module de communication
(6) comporte une antenne (61), une circuiterie radiofréquence (62) couplée à l'antenne
(61) afin de recevoir des signaux sans fil, et une circuiterie de puissance radiofréquence
(63) configurée pour fournir de la puissance à la circuiterie radiofréquence (62),
dans lequel la circuiterie de puissance radiofréquence (63) est agencée sur la première
couche (411) de la première sous-carte (41), et l'antenne (61) et la circuiterie radiofréquence
(62) sont agencées sur la deuxième couche (412) de la première sous-carte (41).
11. Appareil d'éclairage selon la revendication 1, dans lequel la première sous-carte
(41) comporte une première couche (411), une deuxième couche (412) agencée physiquement
au-dessus de la première couche (411), et une troisième couche (413) agencée physiquement
au-dessus de la deuxième couche (412), dans lequel la première couche (411) de la
première sous-carte (41) et la seconde sous-carte (42) sont agencées physiquement
dans un même plan.
12. Appareil d'éclairage selon la revendication 11, dans lequel le module de communication
(6) comporte une antenne (61), une circuiterie radiofréquence (62) couplée à l'antenne
(61) afin de recevoir des signaux sans fil, et une circuiterie de puissance radiofréquence
(63) configurée pour fournir de la puissance à la circuiterie radiofréquence (62),
dans lequel l'antenne (61) et la circuiterie radiofréquence (62) sont agencées dans
un premier plan, et la circuiterie de puissance radiofréquence (63) est agencée dans
un second plan différent du premier plan.
13. Appareil d'éclairage selon la revendication 11, dans lequel le module de communication
(6) comporte une antenne (61), une circuiterie radiofréquence (62) couplée à l'antenne
(61) afin de recevoir des signaux sans fil, et une circuiterie de puissance radiofréquence
(63) configurée pour fournir de la puissance à la circuiterie radiofréquence (61),
dans lequel la circuiterie de puissance radiofréquence (63) est agencée sur la première
couche (411) de la première sous-carte (41), la circuiterie radiofréquence (62) est
agencée sur la deuxième couche (412) de la première sous-carte (41), et l'antenne
(61) est agencée sur la troisième couche (413) de la première sous-carte (41).
14. Appareil d'éclairage selon l'une quelconque des revendications 1 à 5, dans lequel
le corps principal (1) comporte une structure de maintien annulaire configurée pour
maintenir la carte de circuit imprimé composite (4).