(11) EP 3 656 938 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 27.05.2020 Patentblatt 2020/22

(51) Int Cl.: **E04B** 1/00 (2006.01)

E04C 5/07 (2006.01)

(21) Anmeldenummer: 19201063.5

(22) Anmeldetag: 02.10.2019

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 20.11.2018 DE 102018129207

- (71) Anmelder: Schöck Bauteile GmbH 76534 Baden-Baden (DE)
- (72) Erfinder:
 - Der Erfinder hat auf sein Recht verzichtet, als solcher bekannt gemacht zu werden.
- (74) Vertreter: Lemcke, Brommer & Partner Patentanwälte Partnerschaft mbB Siegfried-Kühn-Straße 4 76135 Karlsruhe (DE)

(54) BAUELEMENT ZUR WÄRMEBRÜCKENARMEN ANBINDUNG EINES VORKRAGENDEN AUSSENTEILS AN EINE GEBÄUDEHÜLLE

Vorgeschlagen wird Bauelement (1) zur wärme-(57)brückenarmen Anbindung eines vorkragenden Außenteils (B) an eine Gebäudehülle (A) mit zumindest einem zwischen dem vorkragenden Außenteil (B) und der Gebäudehülle (A) anzuordnenden Isolierkörper (2) und zumindest einem einstückig ausgebildeten Bewehrungselement (3) aus faserverstärktem Kunststoff in Form von zumindest einem Zugbewehrungselement, welches Bewehrungselement (3) den Isolierkörper (2) im Wesentlichen horizontal und guer zu dessen horizontaler Längserstreckung durchquert und an das Außenteil (A) und die Gebäudehülle (B) anschließbar ist, wobei das Bewehrungselement (3) einen sich durch den Isolierkörper (2) erstreckenden Mittelabschnitt (4) aufweist, welcher gegenüber dem Isolierkörper (2) vorsteht und zumindest in diesem vorstehenden Bereich auf seiner radialen Außenfläche entweder im Wesentlichen glattwandig ausgebildet ist oder zumindest teilweise eine Umhüllung (7) aufweist, und in einem Bereich außerhalb des Isolierkörpers (2) zumindest einen ersten Verankerungsabschnitt (5) aufweist, welcher auf seiner radialen Außenfläche eine erste Oberflächenprofilierung aufweist. Bei diesem Bauelement (1) ist es wesentlich, dass das Bewehrungselement (3) zwischen dem Mittelabschnitt (4) und dem ersten Verankerungsabschnitt (5) einen zweiten Verankerungsabschnitt (6) aufweist, welcher eine zweite Oberflächenprofilierung aufweist, wobei sich die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung in ihren geometrischen und/oder Materialeigenschaften unterscheiden.

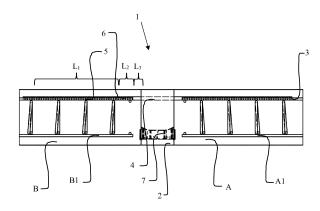


Fig. 1

Beschreibung

[0001] Die Erfindung betrifft ein Bauelement zur wärmebrückenarmen Anbindung eines vorkragenden Außenteils an eine Gebäudehülle gemäß dem Oberbegriff des Anspruchs 1. Dieses Bauelement weist zumindest einen zwischen dem vorkragenden Außenteil und der Gebäudehülle anzuordnenden Isolierkörper und zumindest ein einstückig ausgebildetes Bewehrungselement aus faserverstärktem Kunststoff in Form von zumindest einem Zugbewehrungselement auf. Dieses Bewehrungselement durchquert den Isolierkörper im Wesentlichen horizontal und quer zu dessen horizontaler Längserstreckung und ist an das Außenteil und die Gebäudehülle anschließbar. Das Bewehrungselement umfasst einen sich durch den Isolierkörper erstreckenden Mittelabschnitt, welcher gegenüber dem Isolierkörper vorsteht und zumindest in diesem vorstehenden Bereich auf seiner radialen Außenfläche entweder im Wesentlichen glattwandig ausgebildet ist oder zumindest teilweise eine Umhüllung aufweist, und in einem Bereich außerhalb des Isolierkörpers zumindest einen ersten Verankerungsabschnitt, welcher auf seiner radialen Außenfläche eine erste Oberflächenprofilierung aufweist.

[0002] Derartige Bauelemente sind aus dem Hochbau hinlänglich bekannt. Sie werden beispielsweise zum Anbau eines Balkons an die Gebäudehülle verwendet. Hierbei werden die den Isolierkörper durchquerenden, stabförmigen Bewehrungselemente jeweils an den Balkon sowie an die Gebäudehülle angeschlossen, wodurch der Isolierkörper in einer Fuge zwischen dem Balkon und der Gebäudehülle angeordnet ist. Der Isolierkörper verringert aufgrund seiner isolierenden Eigenschaft Wärmebrücken zwischen dem Balkon und der Gebäudehülle. Sind sowohl die Gebäudehülle im Anschlussbereich als auch der Balkon aus Stahlbeton ausgebildet, so kommt es bei einer Anbindung des Balkons an die Gebäudehülle mittels des Bauelements zu einer Übergreifung zwischen der jeweiligen Anschlussbewehrung und dem Bewehrungselement. Durch diese Übergreifung können die auf das Bauelement wirkenden Kräfte vom Bewehrungselement auf die jeweilige Anschlussbewehrung übertragen werden. Damit das als Zugbewehrungselement ausgebildete Bewehrungselement die zwischen dem vorkragenden Außenteil und der Gebäudehülle wirkenden Zugkräfte aufnehmen und übertragen kann, muss es jeweils in der Gebäudehülle und dem vorkragenden Außenteil verankert werden. Diese Verankerung führt zu einem Verbund zwischen dem Bewehrungselement und dem das Bewehrungselement umgebenden Material der angrenzenden Bauteile. Dabei korreliert das Ausmaß der Kraftübertragung mit der Stärke des Verbundes. Die Stärke des Verbundes ist dabei unter anderem abhängig von der Länge, dem Durchmesser sowie der Oberflächenbeschaffenheit des Bewehrungselements in der Gebäudehülle bzw. dem vorkragenden Außenteil. In der Regel werden im einschlägigen Stand der Technik stabförmige Bewehrungselemente aus Stahl vorgesehen,

welche insbesondere im Bereich des Isolierkörpers aus nichtrostendem Edelstahl und im Bereich weiter außerhalb des Isolierkörpers aus Betonstahl bestehen. Die Oberflächenbeschaffenheit von stabförmigen Bewehrungselementen aus Stahl kann durch ein Aufwalzen einer Oberflächenprofilierung auf die radiale Außenfläche der Bewehrungselemente verändert werden. Dabei kann die Oberflächenprofilierung beispielsweise als radial um die Längsachse der Bewehrungselemente verlaufende Rippen ausgebildet sein. Durch diese aufgewalzte Oberflächenprofilierung wird eine lokale Verzahnung zwischen dem Bewehrungselement und der Gebäudehülle bzw. dem vorkragenden Außenteil erreicht, wodurch eine verbesserte Kraftübertragung bzw. ein stärkerer Verbund erreicht wird.

[0003] Neben Bewehrungselementen aus Stahl sind aus dem Stand der Technik auch Bewehrungselemente für die Verwendung in derartigen Bauelementen bekannt, welche zumindest teilweise aus faserverstärktem Kunststoff bestehen. Diese sind kostengünstig herstellbar und weisen eine geringere Wärmeleitfähigkeit im Vergleich zu Edelstahl oder Betonstahl auf. Derartige Bewehrungselemente aus faserverstärktem Kunststoff können im sogenannten Pultrusionsverfahren hergestellt werden, wobei üblicherweise eine Oberflächenprofilierung nachträglich in die stabförmigen Bewehrungselemente eingefräst oder auf die stabförmigen Bewehrungselemente aufgebracht werden muss. Durch die Verwendung eines Bauelements mit Bewehrungselementen aus faserverstärktem Kunststoff kann die Wärmeübertragung zwischen dem vorkragenden Außenteil und der Gebäudehülle weiter verringert und dadurch eine thermische Trennung erreicht werden. Im Gegensatz zu Bewehrungselementen aus Edelstahl oder Betonstahl weisen Bewehrungselemente aus faserverstärktem Kunststoff einen geringeren Elastizitätsmodul E und damit eine geringere Federsteifigkeit auf. Zur Erreichung einer vergleichbaren Kraftübertragung im Einbauzustand des Bauelements und einer vergleichbaren Gebrauchstauglichkeit müssen daher entweder einstückig ausgebildete Bewehrungselemente aus faserverstärktem Kunststoff mit einem höheren Querschnitt oder mehrteilig ausgebildete Bewehrungselemente, bei denen lediglich ein den Isolierkörper durchquerender Mittelabschnitt aus faserverstärktem Kunststoff ausgebildet ist, während ein Bereich außerhalb des Isolierkörpers weiterhin aus Betonstahl besteht, verwendet werden. Im Fall von mehrteilig ausgebildeten Bewehrungselementen kann der Mittelabschnitt, welcher den Isolierkörper und damit eine verbundfreie Zone durchquert, glattwandig ausgebildet sein. Der im Bereich außerhalb des Isolierkörpers angeordnete, aus Betonstahl ausgebildete Verankerungsabschnitt und der Mittelabschnitt müssen miteinander verbunden werden, was sich letztlich negativ auf die Fertigungskosten und die Fertigungsdauer derartiger mehrteiliger Bewehrungselemente auswirkt. Im Fall von einstückig ausgebildeten Bewehrungselementen aus faserverstärktem Kunststoff mit einem höheren

Durchmesser nimmt die lokale Verbundstärke im Übergangsbereich zwischen der Fuge und den angrenzenden Bauteilen zu, sodass es in diesem Bereich zu einer Überbeanspruchung des Materials kommen kann. Insbesondere im Fall von Beton kann eine derartige Überbeanspruchung zu einer Rissbildung führen. Diese Rissbildung führt letztlich zu einer Instabilität der Anbindung des vorkragenden Außenteils an die Gebäudehülle.

[0004] Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Bauelement zur wärmebrückenarmen Anbindung eines vorkragenden Außenteils an eine Gebäudehülle anzugeben, dessen Verbundeigenschaften im Übergangsbereich zwischen einer verbundfreien Zone zu einem Bereich mit Verbund verbessert ist, um eine Rissbildung im Material der angrenzenden Bauteile zu verringern oder ganz zu verhindern.

[0005] Diese Aufgabe wird erfindungsgemäß durch ein Bauelement mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Ansprüche 2 bis 15, deren Wortlaut hiermit durch ausdrückliche Bezugnahme in die Beschreibung aufgenommen wird, um unnötige Textwiederholungen zu vermeiden

[0006] Ein erfindungsgemäßes Bauelement zur wärmebrückenarmen Anbindung eines vorkragenden Außenteils an eine Gebäudehülle umfasst zumindest einen zwischen dem vorkragenden Außenteil und der Gebäudehülle anzuordnenden Isolierkörper und zumindest ein einstückig ausgebildetes Bewehrungselement aus faserverstärktem Kunststoff in Form von zumindest einem Zugbewehrungselement. Dieses Zugbewehrungselement durchquert den Isolierkörper im Wesentlichen horizontal und quer zu dessen horizontaler Längserstreckung und ist an das Außenteil und die Gebäudehülle anschließbar. Das Zugbewehrungselement umfasst einen sich durch den Isolierkörper erstreckenden Mittelabschnitt, welcher gegenüber dem Isolierkörper vorsteht und zumindest in diesem vorstehenden Bereich auf seiner radialen Außenfläche entweder im Wesentlichen glattwandig ausgebildet ist oder zumindest teilweise eine Umhüllung aufweist, und in einem Bereich außerhalb des Isolierkörpers zumindest einen ersten Verankerungsabschnitt, welcher auf seiner radialen Außenfläche eine erste Oberflächenprofilierung aufweist. Bei dem erfindungsgemäßen Bauelement ist es wesentlich, dass das Zugbewehrungselement zwischen dem Mittelabschnitt und dem ersten Verankerungsabschnitt einen zweiten Verankerungsabschnitt aufweist, welcher eine zweite Oberflächenprofilierung aufweist, wobei sich die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung in ihren geometrischen und/oder Materialeigenschaften unterscheiden.

[0007] Das einstückig ausgebildete Zugbewehrungselement umfasst somit im Wesentlichen ausgehend von dessen Mitte hin zu dessen jeweiligen Enden entlang seiner Längsachse zumindest drei Abschnitte. Der sich durch den Isolierkörper erstreckende Mittelabschnitt des Zugbewehrungselements ist zumindest in diesem vorstehenden Bereich auf seiner radialen Außenfläche entweder im Wesentlichen glattwandig ausgebildet oder weist eine zusätzliche Umhüllung auf. Hiermit verbunden ist daher eine nur geringe oder sogar gar keine Oberflächenrauigkeit zumindest in dem vorstehenden Bereich des Mittelabschnitts des Zugbewehrungselements. Dieser Mittelabschnitt steht gegenüber dem Isolierkörper aus dessen beiden, als Anlageflächen für die Gebäudehülle und das vorkragenden Außenteil ausgebildeten Seitenflächen hervor, sodass der Mittelabschnitt im Einbauzustand des Bauelements jeweils in die angrenzenden Bauteile hineinragt. Aufgrund der fehlenden Oberflächenprofilierung in zumindest dem vorstehenden Bereich des Mittelabschnitts kommt es im Grenzbereich zwischen dem Isolierkörper und den angrenzenden Bauteilen im Wesentlichen zu keiner Verzahnung. Somit wird in diesem Bereich eine im Wesentlichen verbundschwache Zone ausgebildet. Des Weiteren weist das Zugbewehrungselement in einem Bereich außerhalb des Isolierkörpers den ersten Verankerungsabschnitt auf. Aufgrund der Oberflächenprofilierung dieses ersten Verankerungsabschnitts kommt es zu einer Verzahnung und einer daraus resultierenden hohen Verbundstärke zwischen dem Zugbewehrungselement und den angrenzenden Bauteilen im Bereich des ersten Verankerungsabschnitts. Weiterhin weist das Zugbewehrungselement zwischen dem Mittelabschnitt und dem ersten Verankerungsabschnitt den zweiten Verankerungsabschnitt auf. Das bedeutet, dass der den Isolierkörper durchquerende Mittelabschnitt beidseitig an jeweils einen zweiten Verankerungsabschnitt und dieser zweite Verankerungsabschnitt jeweils wiederum an einen ersten Verankerungsabschnitt angeschlossen ist, wobei das aus Mittelabschnitt, erstem Verankerungsabschnitt und zweitem Verankerungsabschnitt bestehende Zugbewehrungselement insgesamt einstückig ausgebildet ist. Der zweite Verankerungsabschnitt besitzt eine zweite Oberflächenprofilierung. Entscheidend hierbei ist, dass sich die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung in ihren geometrischen und/oder Materialeigenschaften unterscheiden.

[0008] Durch die Wahl der jeweiligen geometrischen und/oder Materialeigenschaften kann die Verbundstärke bzw. die Kraftübertragung im jeweiligen Verankerungsabschnitt an die Anforderungen des Bauelements im Einbauzustand angepasst werden. Hierdurch kann im Einbauzustand des Bauelements eine Überbeanspruchung des das Zugbewehrungselement umgebenden Materials im Übergangsbereich zwischen der verbundfreien Zone, d.h. zwischen dem Isolierkörper und einem Bereich mit Verbund, d.h. dem jeweilig angrenzenden Bauteil vermieden werden. Hierdurch lässt sich eine Rissbildung in diesem Übergangsbereich reduzieren oder sogar ganz verhindern. Das Zugbewehrungselement kann vorzugsweise aus carbonfaser-, glasfaser- oder aramidfaserverstärktem Kunststoff hergestellt und/oder stabförmig mit einem im Wesentlichen kreisförmigen Querschnitt ausgebildet sein. Die Erfindung ist jedoch nicht hierauf be-

40

45

schränkt. Weiterhin können die Anzahl an Zugbewehrungselementen im Isolierkörper vorzugsweise an die baulichen Anforderungen des Bauelements im Einbauzustand zwischen der Gebäudehülle und dem Balkon angepasst werden.

[0009] In einer ersten vorteilhaften Ausbildung des erfindungsgemäßen Bauelements sind die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung unabhängig voneinander als im Wesentlichen radial oder schraubengangförmig um die Längsachse des Zugbewehrungselements verlaufende Rippen und/oder als Besandung ausgebildet. Diese Rippen können in Form von sogenannten negativen Rippen durch Einfräsen von Vertiefungen in ein glattwandiges Zugbewehrungselement ausgebildet werden, wobei die negativen Rippen einen radial innenliegenden Rippengrund und einen radial außenliegenden Rippenscheitelbereich aufweisen. Es besteht jedoch auch die Möglichkeit, dass das Zugbewehrungselement positive Rippen auf seiner radialen Außenfläche aufweisen kann, welche zumindest teilweise entlang der Längsachse auf ein glattwandiges Zugbewehrungselement aufgewickelt oder anderweitig additiv aufgebracht wurden. Dadurch stehen diese positiven Rippen von der Außenfläche des Zugbewehrungselements radial oder schraubengangförmig hervor. Derartige positive Rippen weisen ebenfalls einen radial innenliegenden Rippengrund sowie einen radial außenliegenden Rippenscheitelbereich auf. Im Einbauzustand des Bauelements bilden sowohl positive als auch negative Rippen einen Formschluss mit den angrenzenden Bauteilen aus, wodurch es zu einer Verzahnung der Rippen des Zugbewehrungselements mit dem die Rippen umgebenden Material der angrenzenden Bauteile kommt. Durch eine Besandung, d.h. ein Aufbringen von Sand auf die radiale Außenfläche des Zugbewehrungselements im ersten Verankerungsabschnitt und/oder im zweiten Verankerungsabschnitt erhält das Zugbewehrungselement eine raue und strukturierte Oberfläche, wodurch im Einbauzustand des Bauelements der Verbund zwischen dem Zugbewehrungselement und den angrenzenden Bauteilen im Vergleich zu einem glattwandigen Zugbewehrungselement erhöht wird. Dabei können entweder beide Verankerungsabschnitte besandet oder mit Rippen versehen werden. Es besteht jedoch auch die Möglichkeit, dass nur einer der beiden Verankerungsabschnitte eine Besandung als Oberflächenprofilierung aufweist, während der andere Verankerungsabschnitte mit einer Oberflächenprofilierung aus Rippen versehen ist. Hierdurch kann eine optimale Verbundstärke zwischen beiden Verankerungsabschnitten und den angrenzenden Bauteilen erreicht und gleichzeitig eine Rissbildung im die Verankerungsabschnitte umgebenden Material dieser Bauteile verringert werden. Somit wird letztlich die Stabilität der Anbindung des vorkragenden Außenteils an die Gebäudehülle verbessert.

[0010] Um im Einbauzustand des Bauelements zwischen der Gebäudehülle und dem vorkragenden Außenteil jeweils eine voneinander abweichende Verbundstär-

ke des jeweils ersten Verankerungsabschnitts und des zweiten Verankerungsabschnitts mit dem die Verankerungsabschnitte umgebenden Material der Gebäudehülle und dem vorkragenden Außenteil zu bewirken, unterscheiden sich die Rippen der ersten Oberflächenprofilierung und die Rippen der zweiten Oberflächenprofilierung in einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements in ihrer Rippenhöhe h, Rippenabstand b, Rippenteilung T, Neigungswinkel der Rippenflanken α und/oder Rippenform. Durch diese Unterschiede zwischen der ersten und der zweiten Oberflächenprofilierung kann die Verbundstärke zwischen dem jeweiligen Verankerungsabschnitt und dem den Verankerungsabschnitt umgebenden Material derart angepasst werden, dass eine Überbeanspruchung des das Zugbewehrungselement umgebenden Materials im Übergangsbereich zwischen der verbundfreien Zone im Bereich des Isolierkörpers und dem Bereich mit Verbund vermieden wird. Hierdurch kann eine Rissbildung in diesem Übergangsbereich reduziert oder sogar ganz verhindert werden. Die auf der radialen Außenfläche des Zugbewehrungselements ausgebildeten Rippen können schon bei relativ geringen axialen Zugbelastungen abscheren, da sie meist nicht stabil genug sind, um die bei axialen Zugbelastungen wirksamen Kräfte von dem das Zugbewehrungselement umgebenden Material in das Zugbewehrungselement bzw. umgekehrt zu übertragen. Um gerippten Zugbewehrungselementen aus faserverstärktem Kunststoff ausreichend Verbundeigenschaften zu verleihen, ist es daher vorteilhaft, die Rippen mit einem Neigungswinkel ihrer Rippenflanken kleiner 90 Grad auszubilden, wobei die Rippenflanken den Übergangsbereich zwischen dem radial innenliegenden Rippengrund und dem radial außenliegenden Rippenscheitelbereich bilden. Auf der anderen Seite besteht bei zu flachen Rippen, welche nicht abscheren, die Gefahr, dass diese ein sogenanntes Spaltzugversagen des Materials der angrenzenden Bauteile verursachen, indem sie ähnlich einem Keil das formschlüssig das Zugbewehrungselement umgebende Material bei Zugbelastungen einem immer größer werdenden Durchmesser des Zugbewehrungselements aussetzen und ihn schließlich aufsprengen. Indem die Rippen sich im Neigungswinkel der Rippenflanken α des ersten Verankerungsabschnitts und des zweiten Verankerungsabschnitts unterscheiden, kann nicht nur eine Rissbildung im Material der angrenzenden Bauteile vermindert oder sogar ganz verhindert werden, sondern auch eine ausreichende Verbundstärke gewährleistet werden. Des Weiteren kann durch eine große Rippenhöhe h bei gleichzeitigem geringem Rippenabstand b eine hohe Verzahnung des jeweiligen Verankerungsabschnitts mit dem den jeweiligen Verankerungsabschnitt umgebenden Beton der Gebäudehülle und dem vorkragenden Außenteil erreicht werden. Die Rippenhöhe h stellt hierbei den Abstand zwischen dem radial innenliegenden Rippengrund und dem radial außenliegenden Rippenscheitelbereich dar. Im Fall einer nur geringen Rippenhöhe h bei gleichzeitigem großen

Rippenabstand b kann eine geringere Verzahnung erzielt werden. Da das Maß der Verzahnung mit der Stärke des Verbunds zwischen dem Zugbewehrungselement und dem das Zugbewehrungselement umgebenden Beton korreliert, können durch die vorgenannten Unterschiede der Rippen der ersten Oberflächenprofilierung und der Rippen der zweiten Oberflächenprofilierung gezielt ein optimierter Verbund bei gleichzeitiger Verringerung der Rissbildung im Beton erreicht werden. Bevorzugt werden die Rippenhöhe h, der Rippenabstand b, die Rippenteilung T, der Neigungswinkel der Rippenflan $ken \alpha und/oder die Rippenform im ersten Verankerungs$ abschnitt und im zweiten Verankerungsabschnitt solcherart gewählt, dass das Zugbewehrungselement des Bauelements optimale Verbundeigenschaften aufweist. [0011] Um eine Rissbildung im Übergangsbereich zwischen der verbundfreien Zone und einem Bereich mit Verbund weiter zu verringern, sieht eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Bauelements vor, dass die Rippenhöhe h und/oder der Rippenabstand b im ersten Verankerungsabschnitt größer als im zweiten Verankerungsabschnitt sind. Daraus ergibt sich, dass im Bereich des ersten Verankerungsabschnitts, welcher im Einbauzustand des Bauelements tiefer in den angrenzenden Bauteilen angeordnet ist, ein stärkerer Verbund zwischen dem Zugbewehrungselement und dem das Zugbewehrungselement umgebenden Material ausgebildet wird. Im Bereich des zweiten Verankerungsabschnitts ist der Verbund zwischen dem Zugbewehrungselement und dem das Zugbewehrungselement umgebenden Beton im Vergleich zum ersten Verankerungsabschnitt geringer. Aufgrund dessen steigt die Verbundstärke zwischen dem Zugbewehrungselement und dem das Zugbewehrungselement umgebenden Material vom in die angrenzenden Bauteile hineinragenden Bereich des Mittelabschnitts des Zugbewehrungselements, welcher im Wesentlichen glattwandig ausgebildet ist oder eine Umhüllung aufweist, zum in den angrenzenden Bauteilen tiefliegendsten ersten Verankerungsabschnitt, dessen Rippenhöhe h und/oder Rippenabstand b größer als im zweiten Verankerungsabschnitt ist, im Wesentlichen stufenartig an. Hierdurch wird ein gegenüber den aus dem Stand der Technik bekannten Bauelementen verbesserter Verbund bei gleichzeitiger Verringerung der Rissbildung im Material der angrenzenden Bauteile erreicht.

[0012] In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements ist der Neigungswinkel der Rippenflanken α im ersten Verankerungsabschnitt kleiner als im zweiten Verankerungsabschnitt. Hierdurch kann die Verbundstärke im Bereich des Übergangs zwischen der verbundfreien Zone und dem Bereich mit Verbund weiter verbessert werden, um eine Rissbildung im Material der angrenzenden Bauteile zu verringern oder sogar ganz zu verhindern.

[0013] Um den zuvor beschriebenen Effekt weiter zu verbessern, sieht eine weitere vorteilhafte Ausbildung des erfindungsgemäßen Bauelements vor, dass der Mit-

telabschnitt und die Rippen des ersten Verankerungsabschnitts und/oder des zweiten Verankerungsabschnitts einen im Wesentlichen identischen Durchmesser aufweisen. Wie bereits zuvor erwähnt, weisen die Rippen einen radial innenliegenden Rippengrund und einen radial außenliegenden Rippenscheitelbereich auf. Als Durchmesser d des Zugbewehrungselements im ersten und/oder zweiten Verankerungsabschnitt ist hierbei der Durchmesser des Rippenscheitelbereichs d_s anzusehen. Das bedeutet, dass der Durchmesser des Mittelabschnitts d_{M} und der Durchmesser des Rippenscheitelbereichs im ersten und/oder zweiten Verankerungsabschnitt im Wesentlichen identisch ausgebildet sind. Hieraus ergibt sich auch, dass der Durchmesser des radial innenliegenden Rippengrunds d_G geringer als der Durchmesser d_M des Mittelabschnitt des Zugbewehrungselements ist.

[0014] Sofern der erste und der zweite Verankerungsabschnitt eine Besandung aufweisen, sieht eine weitere vorteilhafte Weiterentwicklung des erfindungsgemäßen Bauelements vor, dass sich die Besandung der ersten Oberflächenprofilierung und die Besandung der zweiten Oberflächenprofilierung in ihrer Sandzusammensetzung, Korngröße und/oder Kornform unterscheiden, um im Einbauzustand des Bauelements jeweils eine voneinander abweichende Verbundstärke des jeweils ersten Verankerungsabschnitts und des zweiten Verankerungsabschnitts mit dem die Verankerungsabschnitte umgebenden Material der Gebäudehülle und/oder des vorkragenden Außenteils zu bewirken. Beispielsweise kann durch eine hohe Korngröße der Besandung die Oberflächenrauigkeit des Zugbewehrungselements in einem der beiden Verankerungsabschnitte erhöht werden. Hierdurch steigt die Verbundstärke und damit die Kraftübertragung zwischen diesem Verankerungsabschnitt und dem den Verankerungsabschnitt umgebenden Material an. Somit kann die Verbundstärke am jeweiligen Verankerungsabschnitt an die jeweiligen Anforderungen des Bauelements im Einbauzustand angepasst werden und eine Rissbildung im Material der angrenzenden Bauteile verringert oder sogar ganz verhindert werden. Ein derart ausgebildetes Bauelement zeichnet sich somit durch eine gegenüber den aus dem Stand der Technik bekannten Bauelementen verbesserte Verbundeigenschaft aus.

[0015] Es hat sich hierbei als besonders vorteilhaft erwiesen, wenn die Verbundstärke im tiefliegendsten ersten Verankerungsabschnitt höher als im zweiten Verankerungsabschnitt ist. Daher sieht eine weitere vorteilhafte Ausbildung des erfindungsgemäßen Bauelements vor, dass die Korngröße der Besandung im ersten Verankerungsabschnitt größer als im zweiten Verankerungsabschnitt ist. Hierdurch weist der erste Verankerungsabschnitt eine größere Oberflächenrauigkeit als der zweite Verankerungsabschnitt auf, wodurch es im Einbauzustand des Bauelements in diesem Bereich zu einem stärkeren Verbund mit dem das Zugbewehrungselement umgegeben Material kommt. Hierdurch werden die Verbundeigenschaften des erfindungsgemäßen

Bauelements weiter verbessert.

[0016] Wie bereits zuvor erwähnt, korreliert die Verbundstärke des Zugbewehrungselements in den angrenzenden Bauteilen u.a. auch mit dem Durchmesser des Zugbewehrungselements im Verbundbereich. Um zu vermeiden, dass der Verbund insbesondere im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund zu stark ist und es dadurch zu einer unerwünschten Rissbildung im Material der angrenzenden Bauteile kommt, weisen der Mittelabschnitt und/oder der erste Verankerungsabschnitt und/oder der zweite Verankerungsabschnitt in einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements einen voneinander abweichenden Durchmesser aufweisen. Weisen der erste und der zweite Verankerungsabschnitt eine Besandung auf, so kann der erste Verankerungsabschnitt vorzugsweise einen gegenüber dem zweiten Verankerungsabschnitt und dem Mittelabschnitt des Zugbewehrungselements größeren Durchmesser aufweisen. Dies kann beispielsweise durch die Menge an auf den jeweiligen Verankerungsabschnitt aufgebrachten Sand erreicht werden. In diesem bevorzugten Fall ist die Verbundstärke im Bereich des zweiten Verankerungsabschnitts geringer im Vergleich zum ersten Verankerungsabschnitt. Weisen der erste und der zweite Verankerungsabschnitt auf ihrer radialen Außenfläche Rippen auf, so kann der Durchmesser d_G des radial innenliegenden Rippengrundes des ersten Verankerungsabschnittes vorzugsweise geringer sein als der Durchmesser d_G des radial innenliegenden Rippengrundes des zweiten Verankerungsabschnittes. Gleichzeitig können der Durchmesser des Mittelabschnitts d_M und die Durchmesser d_s der jeweiligen Rippenscheitelbereiche des ersten und des zweiten Verankerungsabschnitts entweder im Wesentlichen identisch oder verschieden vom Durchmesser d_M des Mittelabschnitts des Zugbewehrungselements sein. Folglich kann die Rippenhöhe h im ersten Verankerungsabschnitt größer oder gleich der Rippenhöhe h im zweiten Verankerungsabschnitt sein. Letztlich werden in beiden Fällen die Verbundeigenschaften des Bauelements solcherart verbessert, dass eine Rissbildung im Material im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund vermindert oder sogar ganz verhindert wird.

[0017] In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements steht der Mittelabschnitt des Zugbewehrungselements gegenüber dem Isolierkörper um eine Länge L_3 in im Wesentlichen horizontaler Richtung vor, welche zweimal bis zehnmal so groß wie ein Durchmesser d_M des Mittelabschnitts des Zugbewehrungselements ist. Das bedeutet, dass der Mittelabschnitt des Zugbewehrungselements im Einbauzustand des Bauelements um im Wesentlichen diese Länge L_3 in beide angrenzende Bauteile hineinragt. Diese Länge L_3 , welche zweimal bis zehnmal so groß wie der Durchmesser d_M des Mittelabschnitts des Zugbewehrungselements, verringert eine Rissbildung im Material der angrenzenden Bauteile im Übergangsbereich

zwischen der verbundfreien Zone und dem Bereich mit Verbund weiter.

[0018] Wie bereits zuvor erwähnt, schließt sich in Längsrichtung des Mittelabschnitts beidseitig jeweils der zweite Verankerungsabschnitt des einstückig ausgebildeten Zugbewehrungselements an. Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Bauelements sieht hierbei vor, dass eine Länge L2 des zweiten Verankerungsabschnitts zweimal bis zehnmal, bevorzugt fünfmal bis siebenmal so groß wie der Durchmesser dM des Mittelabschnitts des Zugbewehrungselements ist. Ein derartige Länge L2 verringert eine Rissbildung im Material der angrenzenden Bauteile im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund weiter. Hierdurch wird die Stabilität der Anbindung des vorkragenden Außenteils an die Gebäudehülle weiter erhöht.

[0019] Um eine optimale Verankerung des Zugbewehrungselements des Bauelements in den angrenzenden Bauteilen gewährleisten zu können, ist die Länge L₁ des ersten Verankerungsabschnitts in einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauelements zehnmal bis fünfzigmal, bevorzugt zehnmal bis vierzigmal so groß wie der Durchmesser d_M des Mittelabschnitts des Zugbewehrungselements. Das bedeutet, dass sich der erste Verankerungsabschnitt im Einbauzustand des Bauelements in horizontaler Richtung der angrenzenden Bauteile über die Länge L3 erstreckt. Dadurch ist gewährleistet, dass die Zugbewehrungselemente des Bauelements ohne zusätzliche Endverankerungen wie beispielsweise Querplatten, Schlaufen oder dergleichen verwendet werden können. Dies vereinfacht den Einbau des Bauelements zwischen dem vorkragenden Außenteil und der Gebäudehülle.

[0020] Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Bauelements sieht vor, dass die Umhüllung als im Wesentlichen dünnwandige, rohrförmige Manschette ausgebildet ist, welche auf zumindest den vorstehenden Bereich des Mittelabschnitts aufsteckbar ist. Diese Manschette ragt im Einbauzustand des Bauelements ebenfalls in beide angrenzende Bauteile hinein und verhindert dadurch einen Verbund zwischen Mittelabschnitt und dem Material der angrenzenden Bauteile und somit eine Überbeanspruchung des Materials der angrenzenden Bauteile. Somit kann eine Rissbildung im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund ebenfalls verringert oder sogar ganz verhindert werden. Durch die Verwendung einer solchen Umhüllung kann das Zugbewehrungselement im Bereich des Mittelabschnitts ebenfalls eine Oberflächenprofilierung aufweisen. Da diese Oberflächenprofilierung zumindest teilweise von der Umhüllung überdeckt ist, hat diese im Wesentlichen keinen Einfluss auf den Verbund zwischen dem Zugbewehrungselement im vorstehenden Bereich des Mittelabschnitts und dem das Zugbewehrungselement umgebenden Materials.

[0021] Diese Umhüllung ist ein einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Bauele-

25

35

40

45

ments als Beschichtung ausgebildet, welche durch Sprühen oder Streichen auf zumindest den vorstehenden Bereich des Mittelabschnitts auftragbar ist. Hierdurch können beispielsweise polymere Materialien in flüssiger oder pastöser Form auf zumindest den vorstehenden Bereich des Mittelabschnitts aufgebracht werden, welche nach dem Auftragen aushärten und so eine im Wesentlichen glattwandige Oberfläche auf der radialen Außenfläche des Mittelabschnitts ausbilden. Dies ermöglicht eine optimale Anpassung des Bauelements an die Anforderungen im Einbauzustand zwischen dem vorkragenden Außenteil und der Gebäudehülle.

[0022] Das erfindungsgemäße Bauelement weist in einer weiteren vorteilhaften Ausgestaltung zusätzlich zu den Zugbewehrungselementen - wie es aus dem einschlägigen Stand der Technik bekannt und wie es bei derartigen Bauelemente üblich ist - Druckkraftelemente und/oder Querkraftelemente auf, welche zur Übertragung von auf das Bauelement wirkenden Druckund/oder Querkräften dienen.

[0023] Soweit vorliegend bezüglich des Materials der angrenzenden Bauteile, also insbesondere der Gebäudehülle und des vorkragenden Außenteils von Beton die Rede ist, so soll hierunter auch jegliche Form eines aushärtenden und/oder abbindfähigen Baustoffs verstanden werden, insbesondere ein zementhaltiger, faserbewehrter Baustoff wie Beton, wie hochfester oder ultra-hochfester Beton oder wie hochfester oder ultra-hochfester Mörtel, ein Kunstharzgemisch oder ein Reaktionsharzgemisch.

[0024] Weitere Merkmale oder Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung; hierbei zeigen

- Figur 1 ein Ausführungsbeispiel eines erfindungsgemäßen Bauelements im Einbauzustand zwischen einer Gebäudehülle und einem vorkragenden Außenteil in Schnittdarstellung;
- Figur 2 ein Detail des Ausführungsbeispiels des Bauelements 1 aus Figur 1;
- Figur 3 eine Teildarstellung einer ersten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1;
- Figur 4 eine Teildarstellung einer zweiten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1;
- Figur 5 eine Teildarstellung einer dritten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1;

Figur 6 eine Teildarstellung einer vierten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1;

Figur 7 eine Teildarstellung einer fünften Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1;

Figur 8 eine Teildarstellung einer sechsten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1; sowie

Figur 9 eine Teildarstellung einer siebten Variante eines Zugbewehrungselements zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1.

[0025] Figur 1 zeigt eine Schnittdarstellung eines Ausführungsbeispiels eines erfindungsgemäßen Bauelements 1 im Einbauzustand zwischen einer Gebäudehülle A und einem vorkragenden Außenteil B, wobei das Bauelement 1 gebäudeseitig im Bereich einer tragenden Decke angeschlossen ist. Das Bauelement 1 weist einen zwischen der Gebäudehülle A und dem vorkragenden Außenteil B angeordneten Isolierkörper 2 und ein einstückig ausgebildetes Bewehrungselement 3 in Form eines Zugbewehrungselements auf. Dieses Zugbewehrungselement 3 ist im vorliegenden Ausführungsbeispiel stabförmig und mit einem kreisförmigen Querschnitt ausgebildet und durchquert den Isolierkörper 2 horizontal und quer zu dessen horizontaler Längserstreckung. Des Weiteren ist das Zugbewehrungselement 3 jeweils an die Gebäudehülle A und das vorkragenden Außenteil B angeschlossen. Das Zugbewehrungselement 3 ist im vorliegenden Ausführungsbeispiel aus glasfaserverstärktem Kunststoff (GFK) ausgebildet. Des Isolierkörper 2 ist aus einem Formkörper aus expandiertem Polystyrol ausgebildet.

[0026] Das Zugbewehrungselement 3 weist einen den Isolierkörper 2 durchquerenden Mittelabschnitt 4 mit einem Durchmesser d_M auf, welcher sowohl in Richtung der Gebäudehülle A als auch in Richtung des vorkragenden Außenteils B horizontal gegenüber dem Isolierkörper 2 um eine Länge L3 vorsteht. Das bedeutet, dass der Mittelabschnitt 4 eine gegenüber der Querschnittslänge zur Längsachse des Isolierkörpers 2 größere Länge aufweist. Im vorliegenden Ausführungsbeispiel ist die Länge L₃ dreimal so groß wie der Durchmesser d_M des Mittelabschnitts 4. Im vorliegenden Ausführungsbeispiels ist der Mittelabschnitt 4 auf seiner radialen Außenfläche im Wesentlichen glattwandig, d.h. ohne jegliche Oberflächenprofilierung ausgebildet. In einem Bereich außerhalb des Isolierkörpers 2 weist das Zugbewehrungselement 3 einen ersten Verankerungsabschnitt 5 mit einer Länge L₁ auf. Zur Verankerung dieses ersten Verankerungsabschnitts 5 in den beiden angrenzenden Bauteilen A, B ist dieser erste Verankerungsabschnitt 5 auf seiner radialen Außenfläche mit einer ersten Oberflächenprofilierung versehen, welche im vorliegenden Ausführungsbeispiel in Form von zueinander parallelen Rippen ausgebildet ist. Im vorliegenden Ausführungsbeispiel ist die Länge L_1 fünfzigmal so groß wie der Durchmesser d_M des Mittelabschnitts 4.

[0027] Zwischen dem Mittelabschnitt 4 und dem ersten Verankerungsabschnitt 5 weist das Zugbewehrungselement 3 weiterhin einen zweiten Verankerungsabschnitt 6 der Länge L₂ auf. Auch dieser zweite Verankerungsabschnitt 6 des Zugbewehrungselements 3 ist auf seiner radialen Außenfläche mit einer zweiten Oberflächenprofilierung in Form von zueinander parallelen Rippen versehen. Wesentlich hierbei ist, dass sich die erste Oberflächenprofilierung des ersten Verankerungsabschnitts 5 und die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6, wie anhand der nachfolgenden Figuren 2 bis 10 ebenfalls erläutert wird, in ihren geometrischen und/oder Materialeigenschaften unterscheiden. Durch diese Oberflächenprofilierung des ersten Verankerungsabschnitts 5 und des zweiten Verankerungsabschnitts 6 kommt es im Einbauzustand des Bauelements 1 zu einer Verzahnung der Oberflächenprofilierung der Verankerungsabschnitte 5, 6 mit dem die Verankerungsabschnitte 5, 6 umgebenden Material der angrenzenden Bauteile A, B. Die Stärke dieser Verzahnung und damit die Stärke des hieraus resultierenden Verbundes ist dabei abhängig von den geometrischen und/oder den Materialeigenschaften der jeweiligen Oberflächenprofilierung der beiden Verankerungsabschnitte 5, 6. Im vorliegenden Ausführungsbeispiel ist die Länge L2 des zweiten Verankerungsabschnitts 6 sieben- $\operatorname{mal}\operatorname{so}\operatorname{groß}\operatorname{wie}\operatorname{der}\operatorname{Durchmesser}\operatorname{d}_{\operatorname{M}}\operatorname{des}\operatorname{Mittelabschnitts}$

[0028] Wie bereits zuvor erwähnt steht der den Isolierkörper 2 durchguerende Mittelabschnitt 4 des Zugbewehrungselements 3 gegenüber dem Isolierkörper 2 in horizontaler Richtung um die Länge L₃ hervor. Aufgrund dessen ragt dieser Mittelabschnitt 4 im Einbauzustand des Bauelements 1 im Wesentlichen um diese Länge L3 in die beiden angrenzenden Bauteil A, B hinein. Aufgrund der fehlenden Oberflächenprofilierung und der damit verbundenen geringen Oberflächenrauigkeit des Mittelabschnitts 4 kommt es im Übergangsbereich zwischen dem Isolierkörper 2 und den angrenzenden Bauteilen A, B zu einem nur schwachen Verbund zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Material. Somit bildet sich im Übergangsbereich zwischen dem Isolierkörper 2 und den angrenzenden Bauteilen A, B eine sogenannte verbundschwache Zone aus. Im vorliegenden Ausführungsbeispiel sind sowohl die Gebäudehülle A als auch das vorkragenden Außenteil B aus Stahlbeton ausgebildet, weswegen es sich bei dem das Zugbewehrungselement 3 umgebende Material im Einbauzustand des Bauelements 1 um Beton handelt. In der verbundschwachen

Zone kommt es zu einer nur geringen Kraftübertragung zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Beton.

[0029] Entlang der Längsachse des Zugbewehrungselements 3 schließt sich - wie bereits zuvor beschrieben - auf einer dem Mittelabschnitt 4 gegenüberliegenden Seite zunächst der zweite Verankerungsabschnitt 6 und dann der erste Verankerungsabschnitt 5 des Zugbewehrungselement 3 an. Wie anhand der nachfolgenden Figuren 2 bis 8 beschrieben ist, unterschieden sich diese beiden Verankerungsabschnitte 5, 6 in den geometrischen und/oder Materialeigenschaften ihrer Oberflächenprofilierung. Diese Unterschiede in der Oberflächenprofilierung führen zu einem stufenartigen Anstieg der Verbundstärke von der verbundfreien Zone im Bereich des Isolierkörpers 2 bis hin zum ersten Verankerungsabschnitt 5. Somit wird im Bereich des ersten Verankerungsabschnitt 5 der stärkste Verbund zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Beton ausgebildet. Aufgrund dieser verbundstarken Zone im Bereich des ersten Verankerungsabschnitts 5 kann auf eine zusätzliche Endverankerung des Zugbewehrungselements 3 in den angrenzenden Bauteilen A, B verzichtet werden. Dies erleichtert die Anbindung des vorkragenden Außenteils B an der Gebäudehülle A. Weiterhin werden die Verbundeigenschaften des Bauelements 1 solcherart verbessert, dass zum einen eine stabile und langlebige Anbindung des vorkragenden Außenteils B an die Gebäudehülle A erfolgen kann und zum anderen eine Überbeanspruchung des Betons im Übergangsbereich zwischen der verbundfreien Zone im Bereich des Isolierkörper 2 zu einer Zone mit Verbund in den angrenzenden Bauteilen A, B vermieden werden kann. Hierdurch wird eine Rissbildung des Betons aufgrund einer Materialüberbeanspruchung verringert oder sogar minimiert werden.

[0030] Beide angrenzenden Bauteile A, B sind - wie bereits zuvor erwähnt - aus Stahlbeton ausgebildet und weisen daher jeweils eine entsprechende Anschlussbewehrung A1, B1 auf, mit welcher das Zugbewehrungselement 3 entsprechend überlappt. Des Weiteren weist das Bauelement 1 zur Aufnahme und Übertragung von auf das Bauelement wirkenden Druckkräften ein Druckkraftelement 7 auf. Somit können durch das Bauelement 1 nicht nur Zugkräfte, sondern auch Druckkräfte übertragen werden und es entsteht eine stabile und dauerhafte Anbindung des vorkragenden Außenteils B an die Gebäudehülle A.

[0031] Figur 2 zeigt ein Detail des Ausführungsbeispiels aus Figur 1 im Einbauzustand. Anhand dieser Figur 2 wird nochmals deutlich, dass der Mittelabschnitt 4 des Zugbewehrungselement 3, welcher auf seiner radialen Außenfläche glattwandig ausgebildet ist, um die Länge L₃ in horizontaler Richtung am Übergangsbereich zwischen dem Isolierkörper 2 und der Gebäudehülle A in diese Gebäudehülle A hineinragt. Hierdurch kommt es in diesem Übergangsbereich zur Ausbildung einer ver-

bundschwachen Zone.

[0032] Figur 3 zeigt eine Teildarstellung einer ersten Variante des Zugbewehrungselements 3 zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1. Sowohl die erste Oberflächenprofilierung des ersten Verankerungsabschnitts 5 als auch die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6 sind in der vorliegenden Variante des Zugbewehrungselements 3 als entlang der Längsachse der Verankerungsabschnitte 5, 6 verlaufende Rippen ausgebildet, welche auf der radialen Außenfläche der beiden Verankerungsabschnitte 5, 6 zueinander parallel ausgebildet sind. Dieses Zugbewehrungselement 3 weist hierbei sogenannte negative Rippen auf, welche dadurch hergestellt sind, dass eine ungerippte radiale Außenfläche des Zugbewehrungselements 3 im Bereich der beiden Verankerungsabschnitte 5, 6 mit lokalen radialen Vertiefungen 51, 52, 61, 62 versehen sind. Hierdurch entstehen radial umlaufende Rippen 53, 54, 63, 64, welche im Bereich der Vertiefung 51, 52, 61, 62 einen radial innenliegenden Rippengrund 511, 521, 611, 621 und zwischen den Vertiefung 51, 52, 61, 62 einen radial außenliegenden Rippenscheitelbereich 531, 541, 631, 641 aufweisen.

[0033] Figur 4 zeigt ein Detail der zweiten Variante des Zugbewehrungselements 3 am Übergangsbereich zwischen dem ersten Verankerungsabschnitt 5 und dem zweiten Verankerungsabschnitt 6. Die erste Oberflächenprofilierung des ersten Verankerungsabschnitts 5 und die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6 unterscheiden sich in der jeweiligen Rippenhöhe h_{v1}, h_{v2} sowie in der jeweiligen Rippenbreite b_{v1}, b_{v2}, wobei die Rippen 53, 54 des ersten Verankerungsabschnitts 5 eine größere Rippenhöhe hv1 sowie eine geringere Rippenbreite \mathbf{b}_{v1} im Vergleich zu den Rippen 63, 64 des zweiten Verankerungsabschnitts 6. Die jeweilige Rippenhöhe h_{v1} , h_{v2} entspricht hierbei dem Abstand zwischen dem radial innenliegenden Rippengrund 511, 521, 611, 621 und dem radial außenliegenden Rippenscheitelbereich 531, 541, 631, 641. Eine Rippenteilung T ist bei beiden Verankerungsabschnitten 5, 6 im Wesentlichen identisch. Hierdurch erfolgt im Einbauzustand des Bauelements 1 eine stärkere Verzahnung des Zugbewehrungselements 3 mit dem das Zugbewehrungselement 3 umgebenden Beton im Bereich des ersten Verankerungsabschnitts 5 im Vergleich zum zweiten Verankerungsabschnitt 6 unter Ausbildung einer verbundstarken Zone. Wie bereits zuvor erwähnt, kann aufgrund dieser verbundstarken Zone im Bereich des ersten Verankerungsabschnitts 5 auf eine zusätzliche Endverankerung des Zugbewehrungselements 3 in den angrenzenden Bauteilen A, B verzichtet werden, wodurch die Anbindung des vorkragenden Außenteils B an die Gebäudehülle A erleichtert wird.

[0034] Figur 5 zeigt eine dritte Variante des Zugbewehrungselements 3 in Detaildarstellung am Übergangsbereich zwischen dem ersten Verankerungsabschnitt 5 und dem zweiten Verankerungsabschnitt 6. Die erste Oberflächenprofilierung des ersten Verankerungsabschnitts

5 und die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6 unterscheiden sich bei dieser zweiten Variante des Zugbewehrungselements 3 in der jeweiligen Rippenhöhe h_{v1} , hv_2 sowie im Neigungswinkel α_{v1} , α_{v2} der Rippenflanken. Die Rippen 53, 54 des ersten Verankerungsabschnitts 5 weisen hierbei eine größere Rippenhöhe h_{v1} sowie einen kleineren Neigungswinkel α_{v1} im Vergleich zu den Rippen 63, 64 des zweiten Verankerungsabschnitts 6 auf. Auch hierdurch erfolgt im Einbauzustand des Bauelements 1 eine stärkere Verzahnung des Zugbewehrungselements 3 mit dem das Zugbewehrungselement 3 umgebenden Beton im Bereich des ersten Verankerungsabschnitts 5 im Vergleich zum zweiten Verankerungsabschnitt 6 unter Ausbildung der verbundstarken Zone. Wie bereits zuvor erwähnt, kann aufgrund dieser verbundstarken Zone im Bereich des ersten Verankerungsabschnitts 5 auf eine zusätzliche Endverankerung des Zugbewehrungselements 3 in den angrenzenden Bauteilen A, B verzichtet werden, wodurch die Anbindung des vorkragenden Außenteils B an die Gebäudehülle A erleichtert wird.

[0035] Figur 6 zeigt eine Teildarstellung einer vierten Variante des Zugbewehrungselements 3 zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1. Bei dieser vierten Variante weisen beide Verankerungsabschnitte 5, 6 ebenfalls negative Rippen 53, 54, 63, 64 auf, welche jedoch nicht zueinander parallel, sondern schraubengangförmig um die Längsachse der beiden Verankerungsabschnitte 5, 6 verlaufen. Da die Einfräsung dieser schraubengangförmig verlaufenden Rippen 53, 54, 63, 64 kontinuierlich erfolgen kann, weist diese zweite Variante eine gegenüber der ersten Variante des Zugbewehrungselements 3 vereinfachte Herstellbarkeit auf. Dies verringert die Produktionsdauer sowie Produktionskosten des Bauelements 1. Die erste Oberflächenprofilierung des ersten Verankerungsabschnitts 5 und die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6 unterscheiden sich in der jeweiligen Rippenhöhe h_{v1} , h_{v2} , wobei die Rippenbreite b_{v1} , b_{v2} und die Rippenteilung T_{v1} , T_{v2} im Wesentlichen identisch sind. Die Rippen 53, 54 des ersten Verankerungsabschnitts 5 weisen eine größere Rippenhöhe h_{v1} im Vergleich zu den Rippen 63, 64 des zweiten Verankerungsabschnitts 6 auf. Wie auch bei den zuvor beschriebenen Varianten des Zugbewehrungselements 3 führt dieser Unterschied zwischen dem ersten Verankerungsabschnitt 5 und dem zweiten Verankerungsabschnitt 6 zu einem stufenweisen Anstieg der Verbundstärke vom Mittelabschnitt 4, über den zweiten Verankerungsabschnitt 6 bis hin zum ersten Verankerungsabschnitt 5. Hierdurch wird im Einbauzustand des Bauelements 1 eine Überbeanspruchung des Betons im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund vermieden und folglich eine Rissbildung in diesem Bereich verringert oder sogar verhindert. Dies verbessert letztlich die Stabilität und Langlebigkeit der Anbindung des vorkragenden Außenteils B an die Gebäudehülle A. [0036] Figur 7 zeigt eine Teildarstellung einer fünften

Variante des Zugbewehrungselements 3 zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1. Im Gegensatz zu den zuvor beschriebenen Varianten des Zugbewehrungselements 3 weist diese fünfte Variante positive Rippen 53, 54, 63, 64 auf, welche schraubengangförmig um die Längsachse der beiden Verankerungsabschnitte 5, 6 verlaufen. Diese positiven Rippen 53, 54, 63, 64 wurden additiv auf das Zugbewehrungselement 3 aufgebracht. Sie unterscheiden sich von den zuvor beschriebenen negativen Rippen dadurch, dass der radial außenliegende Rippenscheitelbereich 531, 541, 631, 641 einen im Vergleich zum Durchmesser des Mittelabschnitts d_M größeren Durchmesser aufweist, während der Durchmesser des Rippengrundes 511, 521, 611, 621 im Wesentlichen identisch zum Durchmesser des Mittelabschnitts d_M ist. Die erste Oberflächenprofilierung des ersten Verankerungsabschnitts 5 und die zweite Oberflächenprofilierung des zweiten Verankerungsabschnitts 6 unterscheiden sich in der Rippenteilung T_{v1} , T_{v2} , wobei die Rippenbreite b_{v1} , b_{v2} und die Rippenhöhe h_{v1} , h_{v2} im Wesentlichen identisch sind. Die Rippen 53, 54 des ersten Verankerungsabschnitts 5 weisen eine kleinere Rippenteilung T_{v1} im Vergleich zu den Rippen 63, 64 des zweiten Verankerungsabschnitts 6 auf. Wie auch bei den zuvor beschriebenen Varianten des Zugbewehrungselements 3 führt dieser Unterschied zwischen dem ersten Verankerungsabschnitt 5 und dem zweiten Verankerungsabschnitt 6 zu einem stufenweisen Anstieg der Verbundstärke vom Mittelabschnitt 4, über den zweiten Verankerungsabschnitt 6 bis hin zum ersten Verankerungsabschnitt 5. Hierdurch wird im Einbauzustand des Bauelements 1 eine Überbeanspruchung des Betons im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund vermieden und folglich eine Rissbildung in diesem Bereich verringert oder sogar verhindert. Dies verbessert letztlich die Stabilität und Langlebigkeit der Anbindung des vorkragenden Außenteils B an die Gebäudehülle A.

[0037] Figur 8 zeigt eine Teildarstellung einer sechsten Variante des Zugbewehrungselements 3 zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1. In dieser sechsten Variante des Zugbewehrungselements 3 weisen sowohl der erste Verankerungsabschnitt 5 als auch der zweite Verankerungsabschnitt 6 eine Besandung auf. Diese Besandung wurde dabei solcherart auf das Zugbewehrungselement 3 aufgebracht, dass der Durchmesser des Zugbewehrungselements 3 vom Mittelabschnitt 4, über den zweiten Verankerungsabschnitt 6 bis hin zum ersten Verankerungsabschnitt 5 stufenweise ansteigt. Das bedeutet, dass der Durchmesser dv1 des ersten Verankerungsabschnitts 5 größer als der der Durchmesser d_{v2} des zweiten Verankerungsabschnitts 6, wobei beide Verankerungsabschnitte 5, 6 einen größeren Durchmesser als der Mittelabschnitt 4 aufweisen. Ein weiterer Unterschied zwischen dem ersten Verankerungsabschnitt 5 und dem zweiten Verankerungsabschnitt 6 besteht in der Korngröße des für die Besandung des Zugbewehrungselements 3 verwendeten Sandes.

Die Korngröße des ersten Verankerungsabschnitts 5 ist hierbei größer als die Korngröße des zweiten Verankerungsabschnitts 5. Aufgrund dessen weist der ersten Verankerungsabschnitt 5 eine im Vergleich zum zweiten Verankerungsabschnitt 6 größere Oberflächenrauigkeit auf. Durch eine derartige Besandung wird ein vergleichbarer Effekt wie bei den zuvor beschriebenen gerippten Varianten des Zugbewehrungselements 3 erreicht. Im Einbauzustand des Bauelements 1 steigt der Verbund zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Beton stufenweise vom Übergangsbereich zwischen dem Isolierkörper 2 und den beiden angrenzenden Bauteilen A, B zum ersten Verankerungsabschnitt 5 an. Hierdurch wird im Einbauzustand des Bauelements 1 eine Überbeanspruchung des Betons im Übergangsbereich zwischen der verbundfreien Zone und dem Bereich mit Verbund vermieden und folglich eine Rissbildung in diesem Bereich verringert oder sogar verhindert. Dies verbessert letztlich die Stabilität und Langlebigkeit der Anbindung des vorkragenden Außenteils B an die Gebäudehülle A.

[0038] Figur 9 zeigt eine Teildarstellung einer siebten Variante des Zugbewehrungselements 3 zur Verwendung in dem Ausführungsbeispiel gemäß Figur 1. Diese siebte Variante des Zugbewehrungselements 3 weist im Bereich des Mittelabschnitts 4 eine Umhüllung 8 auf, welche als dünnwandige, rohrförmige Manschette ausgebildet und auf den Mittelabschnitt 4 aufgesteckt ist. Im Einbauzustand des Bauelements 1 zwischen dem vorkragenden Außenteil B und der Gebäudehülle A ragt der Mittelabschnitt 4 sowie die den Mittelabschnitt 4 umhüllende Manschette 8 in die angrenzenden Bauteile A, B in horizontaler Richtung um die Länge L3 hinein, wodurch in diesem Bereich ein nur schwacher Verbund zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Beton besteht. Wie bereits in der sechsten Variante des Zugbewehrungselements weisen sowohl der erste Verankerungsabschnitt 5 als auch der zweite Verankerungsabschnitt 6 eine Besandung mit vergleichbaren Eigenschaften wie die beiden Verankerungsabschnitte 5, 6 auf, welche in Figur 7 beschrieben sind. Aufgrund dessen unterscheiden sich der erste Verankerungsabschnitt 5 und der zweite Verankerungsabschnitt 6 in der Korngröße des für die Besandung des Zugbewehrungselements 3 verwendeten Sandes. Die Korngröße des ersten Verankerungsabschnitts 5 ist hierbei größer als die Korngröße des zweiten Verankerungsabschnitts 5. Hierdurch weist der ersten Verankerungsabschnitt 5 eine im Vergleich zum zweiten Verankerungsabschnitt 6 größere Oberflächenrauigkeit auf. Im Einbauzustand des Bauelements 1 steigt auch in diesem Fall der Verbund zwischen dem Zugbewehrungselement 3 und dem das Zugbewehrungselement 3 umgebenden Beton stufenweise vom Übergangsbereich zwischen dem Isolierkörper 2 und den beiden angrenzenden Bauteilen A, B zum ersten Verankerungsabschnitt 5 an. Hierdurch wird im Einbauzustand des Bauelements 1 eine Überbeanspruchung des Betons im Übergangsbereich

40

15

20

25

35

40

45

50

55

zwischen der verbundfreien Zone und dem Bereich mit Verbund vermieden und folglich eine Rissbildung in diesem Bereich verringert oder sogar verhindert. Dies verbessert letztlich die Stabilität und Langlebigkeit der Anbindung des vorkragenden Außenteils B an die Gebäudehülle A.

Patentansprüche

1. Bauelement (1) zur wärmebrückenarmen Anbindung eines vorkragenden Außenteils (B) an eine Gebäudehülle (A) mit zumindest einem zwischen dem vorkragenden Außenteil (B) und der Gebäudehülle (A) anzuordnenden Isolierkörper (2) und zumindest einem einstückig ausgebildeten Bewehrungselement (3) aus faserverstärktem Kunststoff in Form von zumindest einem Zugbewehrungselement, welches Bewehrungselement (3) den Isolierkörper (2) im Wesentlichen horizontal und quer zu dessen horizontaler Längserstreckung durchquert und an das Außenteil (A) und die Gebäudehülle anschließbar ist, wobei das Bewehrungselement (3) einen sich durch den Isolierkörper (2) erstreckenden Mittelabschnitt (4) aufweist, welcher gegenüber dem Isolierkörper (2) vorsteht und zumindest in diesem vorstehenden Bereich auf seiner radialen Außenfläche entweder im Wesentlichen glattwandig ausgebildet ist oder zumindest teilweise eine Umhüllung (7) aufweist, und in einem Bereich außerhalb des Isolierkörpers (2) zumindest einen ersten Verankerungsabschnitt (5) aufweist, welcher auf seiner radialen Außenfläche eine erste Oberflächenprofilierung aufweist, dadurch gekennzeichnet,

dass das Bewehrungselement (3) zwischen dem Mittelabschnitt (4) und dem ersten Verankerungsabschnitt (5) einen zweiten Verankerungsabschnitt (6) aufweist, welcher eine zweite Oberflächenprofilierung aufweist, wobei sich die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung in ihren geometrischen und/oder Materialeigenschaften unterscheiden.

2. Bauelement (1) nach Anspruch 1,

dadurch gekennzeichnet,

dass die erste Oberflächenprofilierung und die zweite Oberflächenprofilierung unabhängig voneinander als im Wesentlichen radial oder schraubengangförmig um die Längsachse des Bewehrungselements verlaufende Rippen (53, 54, 63, 64) und/oder als Besandung ausgebildet sind.

3. Bauelement (1) nach Anspruch 2,

dadurch gekennzeichnet,

dass sich die Rippen (53, 54) der ersten Oberflächenprofilierung und die Rippen (63, 64) der zweiten Oberflächenprofilierung in ihrer Rippenhöhe (h), Rippenabstand (b), Rippenteilung (T), Neigungswin-

kel der Rippenflanken (α) und/oder Rippenform unterscheiden, um im Einbauzustand des Bauelements (1) zwischen der Gebäudehülle (A) und dem vorkragenden Außenteil (B) jeweils eine voneinander abweichende Verbundstärke des jeweils ersten Verankerungsabschnitts (5) und des zweiten Verankerungsabschnitts (6) mit dem die Verankerungsabschnitte (5, 6) umgebenden Material der Gebäudehülle und dem vorkragenden Außenteil zu bewirken.

4. Bauelement (1) nach Anspruch 3,

dadurch gekennzeichnet,

dass die Rippenhöhe (h) und/oder der Rippenabstand (b) im ersten Verankerungsabschnitt (5) größer als im zweiten Verankerungsabschnitt (6) sind.

Bauelement (1) nach zumindest einem der Ansprüche 3 oder 4,

dadurch gekennzeichnet,

dass der Neigungswinkel der Rippenflanken (α) im ersten Verankerungsabschnitt (5) kleiner als im zweiten Verankerungsabschnitt (6) ist.

Bauelement (1) nach zumindest einem der Ansprüche 2 bis 5.

dadurch gekennzeichnet,

dass der Mittelabschnitt (4) und die Rippen (53, 54, 63, 64) des ersten Verankerungsabschnitts (5) und/oder des zweiten Verankerungsabschnitts (6) einen im Wesentlichen identischen Durchmesser aufweisen.

7. Bauelement (1) nach Anspruch 2,

dadurch gekennzeichnet,

dass sich die Besandung der ersten Oberflächenprofilierung und die Besandung der zweiten Oberflächenprofilierung in ihrer Sandzusammensetzung, Korngröße und/oder Kornform unterscheiden, um im Einbauzustand des Bauelements (1) jeweils eine voneinander abweichende Verbundstärke des jeweils ersten Verankerungsabschnitts (5) und des zweiten Verankerungsabschnitts (6) mit dem die Verankerungsabschnitte (5, 6) umgebenden Material der Gebäudehülle und dem vorkragenden Außenteil zu bewirken.

8. Bauelement (1) nach Anspruch 6,

dadurch gekennzeichnet,

dass die Korngröße der Besandung im ersten Verankerungsabschnitt (5) größer als im zweiten Verankerungsabschnitt (6) ist.

9. Bauelement (1) nach zumindest einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

dass der Mittelabschnitt (4) und/oder der erste Verankerungsabschnitt (5) und/oder der zweite Verankerungsabschnitt (6) einen voneinander abweichen-

25

30

35

den Durchmesser aufweisen.

Bauelement (1) nach zumindest einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

dass der Mittelabschnitt (4) gegenüber dem Isolierkörper (2) um eine Länge L_3 in im Wesentlichen horizontaler Richtung vorsteht, welche zweimal bis zehnmal so groß wie ein Durchmesser d_M des Mittelabschnitts (4) des Bewehrungselements (3) ist.

Bauelement (1) nach zumindest einem der Ansprüche 1 bis 9.

dadurch gekennzeichnet,

dass eine Länge L_2 des zweiten Verankerungsabschnitts (6) zweimal bis zehnmal, bevorzugt fünfmal bis siebenmal so groß wie der Durchmesser d_M des Mittelabschnitts (4) des Bewehrungselements (3) ist.

12. Bauelement (1) nach zumindest einem der Ansprüche 1 bis 10,

dadurch gekennzeichnet,

dass eine Länge L_1 des ersten Verankerungsabschnitts (5) zehnmal bis fünfzigmal, bevorzugt zehnmal bis vierzigmal so groß wie der Durchmesser d_M des Mittelabschnitts (4) des Bewehrungselements (3) ist.

13. Bauelement (1) nach zumindest einem der Ansprüche 1 bis 12,

dadurch gekennzeichnet,

dass die Umhüllung (8) als im Wesentlichen dünnwandige, rohrförmige Manschette ausgebildet ist, welche zumindest auf den vorstehenden Bereich des Mittelabschnitts (4) aufsteckbar ist.

14. Bauelement (1) nach zumindest einem der Ansprüche 1 bis 13.

dadurch gekennzeichnet,

dass die Umhüllung (8) als Beschichtung ausgebildet ist, welche durch Sprühen oder Streichen auf zumindest den vorstehenden Bereich des Mittelabschnitts (4) auftragbar ist.

15. Bauelement (1) nach zumindest einem der Ansprüche 1 bis 14,

dadurch gekennzeichnet,

dass das Bauelement (1) zusätzlich zu den Zugbewehrungselementen Druckkraftelemente (7) und/oder Querkraftelemente aufweist.

55

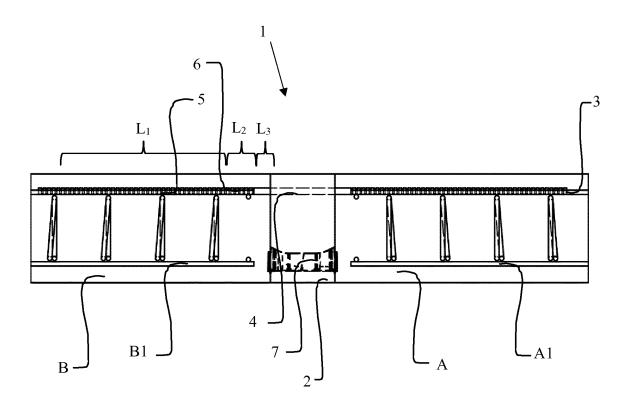


Fig. 1

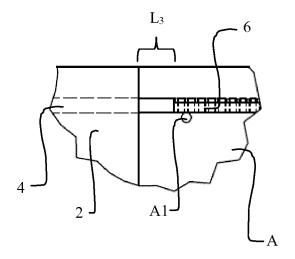


Fig. 2

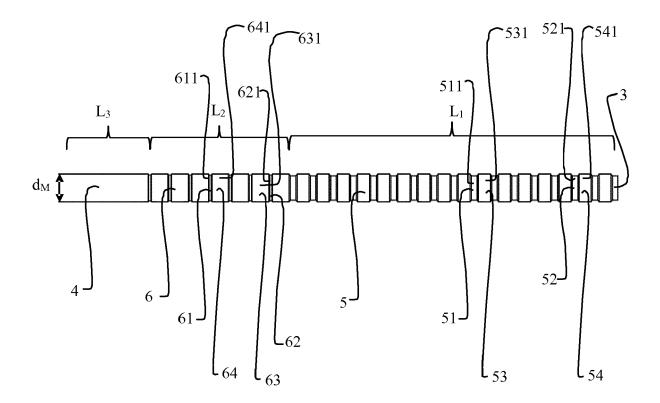


Fig. 3

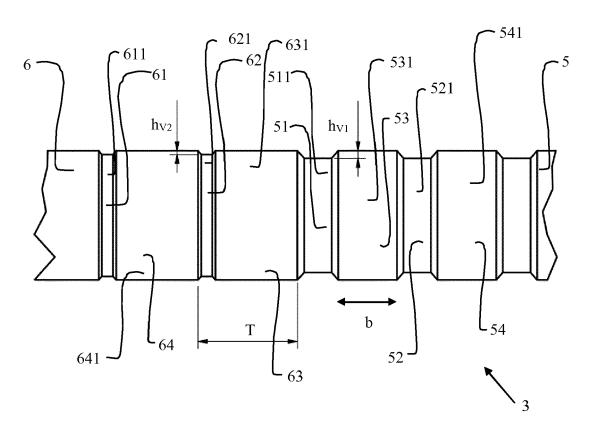


Fig. 4

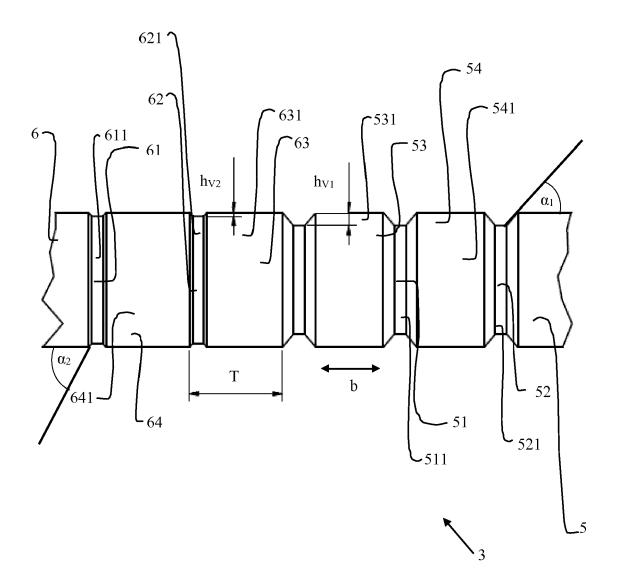


Fig. 5

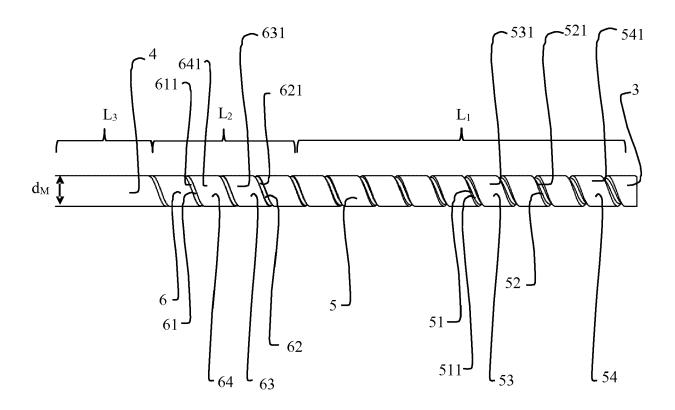


Fig. 6

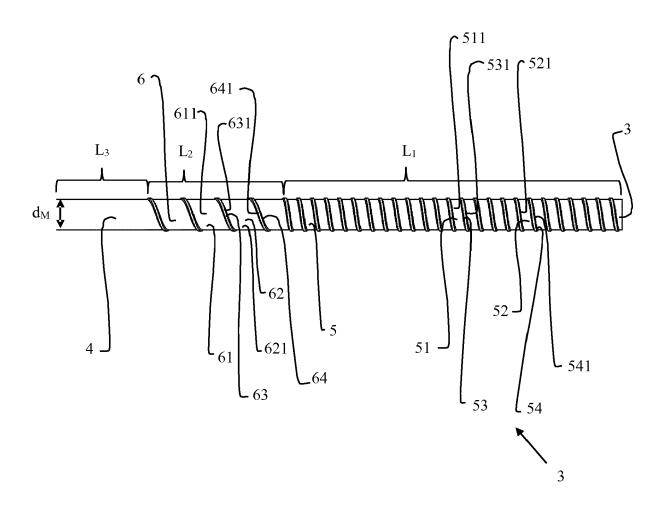
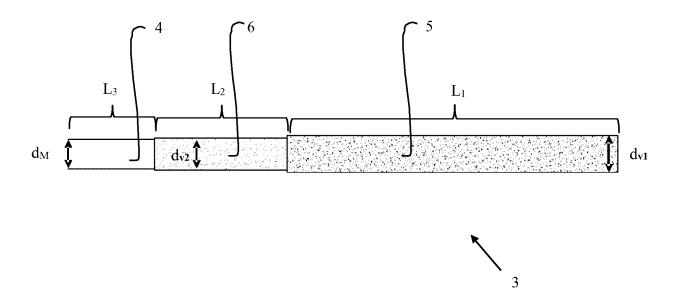



Fig. 7

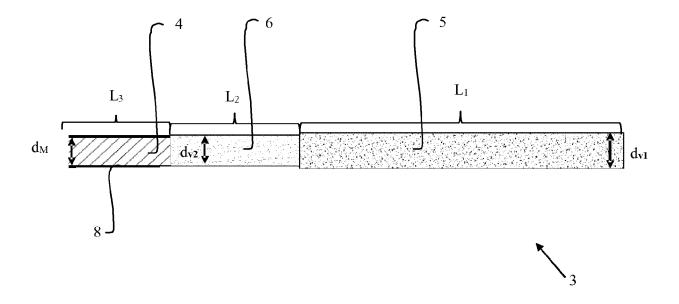


Fig. 9

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 19 20 1063

	EINSCHLÄGIGE		T _			
ategorie	Kennzeichnung des Dokum der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)		
A	DE 10 2016 113559 A [DE]) 25. Januar 20 * Absatz [0001] - A Abbildungen 3,3a *	1 (SCHÖCK BAUTEILE GMBH 118 (2018-01-25) .bsatz [0073];	1-15	INV. E04B1/00 E04C5/07		
•	[DE]) 30. Oktober 2	CHOECK ENTWICKLUNGSGMBH 1002 (2002-10-30) Absatz [0023]; Abbildung	1-15			
				RECHERCHIERTE		
				SACHGEBIETE (IPC)		
				E04B E04C		
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt				
	Recherchenort	Abschlußdatum der Recherche	•	Prüfer		
	Den Haag	17. März 2020	17. März 2020 Die			
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKI besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung schenliteratur	E : älteres Patentdol tet nach dem Anmel mit einer D : in der Anmeldun torie L : aus anderen Grü	T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

EP 3 656 938 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 19 20 1063

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

17-03-2020

		Recherchenbericht ortes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	DE	102016113559	A1	25-01-2018	1-2018 KEINE			
	EP	1253259	A2	30-10-2002	DE EP JP PL	10121021 A 1253259 A 2002371668 A 353631 A	2	31-10-2002 30-10-2002 26-12-2002 04-11-2002
EPO FORM P0461								
EP(

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82