
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
65

7 
31

9
A

1
*EP003657319A1*

(11) EP 3 657 319 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
27.05.2020 Bulletin 2020/22

(21) Application number: 18306551.5

(22) Date of filing: 22.11.2018

(51) Int Cl.:
G06F 8/54 (2018.01) G06F 8/41 (2018.01)

G06F 9/445 (2018.01) G06F 21/57 (2013.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(71) Applicant: Thales Dis France SA
92190 Meudon (FR)

(72) Inventors:  
• BERTONNIER, Damien

92190 MEUDON (FR)
• REGNAULT, Nicolas

92190 MEUDON (FR)
• MARTIN, Valérie

92190 MEUDON (FR)

(74) Representative: Lotaut, Yacine Diaw
Thales Dis France SA 
Intellectual Property Department 
6, rue de la Verrerie
92190 Meudon (FR)

(54) A METHOD FOR GENERATING AN EXECUTABLE FILE FROM A PARENT EXECUTABLE FILE 
TO PRODUCE A DERIVED CUSTOMER ITEM

(57) The invention relates to a method (P1) for gen-
erating an executable file (320), derived from a parent
executable file (310) comprising ranges (311) of physical
addresses referencing:
- a binary code (312) of at least one core feature (CR);
- a binary code (313) of a set of native features (F) ;
- bytecodes (314) of a set of java features (Pkg);
said method (P1) comprising:
- selecting (E11) at least one native feature (F) from said
set of native features to be removed;
- defining (E12) the range (311) of physical addresses
where the binary code (313) of said at least one selected
native feature (F) is stored;
- selecting (E13) at least one java feature (Pkg) from said
set of java features to be relocated;
- relocating (E14) the bytecodes (314) of said at least
one selected java feature (Pkg) in said defined range
(311) of physical addresses.



EP 3 657 319 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present invention relates to a method for
generating an executable file from a parent executable
file.
[0002] Such method may be used in a non-limitative
example within the domain of certified secure elements.

BACKGROUND OF THE INVENTION

[0003] Secure elements may be used for a wide variety
of products and can implement various kinds of technol-
ogy features. As an example, a secure element can im-
plement security features such as biometry, RSA (Rivest,
Shamir, Adleman algorithm) and elliptic curves. An exe-
cutable file comprises the code of said security features.
As an example, a product can be a health card, or a
driving license.
[0004] These executable file is generally stored in non
volatile memory (NVM). Then, different versions of the
secure element can be generated with different subsets
of activated features. These different versions are usually
designated as derived customer items, and the secure
element from which they are derived is designated as a
parent customer item. For example, a secure element
that includes five different features may be used as a
basis to derive several secure elements adapted to dif-
ferent customer requirements by removing one or several
features.
[0005] For some secure elements with specific security
features, it is sometimes mandatory to certify said secure
element, for example using the Common Criteria for In-
formation Technology Security Evaluation standard, ISO
15408. The certification process can be considered as a
constraint during the production phase. It can take up to
a year for a certification process to be concluded.
[0006] One problem of this prior art is that, when a giv-
en parent customer item is certified, the certification proc-
ess should also be performed on the derived customer
items derived from said parent customer item, which im-
plies time and effort required to certify said derived cus-
tomer items.

SUMMARY OF THE INVENTION

[0007] The following summary of the invention is pro-
vided in order to provide a basic understanding of some
aspects and features of the invention. This summary is
not an extensive overview of the invention and as such
it is not intended to particularly identify key or critical el-
ements of the invention or to delineate the scope of the
invention. Its sole purpose is to present some concepts
of the invention in a simplified form as a prelude to the
more detailed description that is presented below.
[0008] It is an object of the invention to provide a meth-
od generating an executable file derived from a parent

executable file, which permits minimizing the time and
effort required by testing and certifying a derived custom-
er item, in which said executable file is embedded.
[0009] To this end, there is provided a method for gen-
erating an executable file, derived from a parent execut-
able file, said parent executable file comprising ranges
of physical addresses referencing:

- a first binary code of at least one core feature;
- a second binary code of a set of native features;
- bytecodes of a set of java features;

said method comprising:

- selecting at least one native feature from said set of
native features to be removed;

- defining the range of physical addresses where the
second binary code of said at least one selected na-
tive feature is stored;

- selecting at least one java feature from said set of
java features to be relocated;

- relocating the bytecodes of said at least one selected
java feature in said defined range of physical ad-
dresses.

[0010] Said executable file is designated as derived
executable file.
[0011] As we will see in further details, as the execution
file derived from the parent executable file, is only a mod-
ified parent executable file where one or a plurality of
native features have been removed, the physical ad-
dresses of the first binary code of the at least one core
feature and the second binary code of the remaining na-
tive features of the set of native features have not
changed, and thus the first binary code and the second
binary code have not been modified. Therefore, the cer-
tification of a secure element in which said parent exe-
cutable file is embedded may be automatically applied
to another secure element in which said derived execut-
able file is embedded, without having another certification
process to be performed for said another secure element.
[0012] According to non-limitative embodiments of the
invention, the method in accordance with the invention
further comprises the following characteristics.
[0013] In a non-limitative embodiment, said at least
one core feature and said set of native features comprise
a native code, and said set of java features comprises
the java code of at least one java package.
[0014] In a non-limitative embodiment, said first binary
code, said second binary code and said bytecodes are
generated by compiling a source code comprising said
at least one core feature, said set of native features and
said set of java features.
[0015] In a non-limitative embodiment, said at least
one core feature is not removable.
[0016] In a non-limitative embodiment, the relocating
is performed according to the bytecodes’ size of said at
least one selected java feature and the defined range of

1 2 



EP 3 657 319 A1

3

5

10

15

20

25

30

35

40

45

50

55

physical addresses’ size.
[0017] In a non-limitative embodiment,

- said set of native of features comprises a plurality of
native features;

- said set of java features comprises a plurality of java
features.

[0018] In a non-limitative embodiment, a plurality of na-
tive features is selected to be removed.
[0019] In a non-limitative embodiment, the bytecodes
of a plurality of java features is relocated.
[0020] In a non-limitative embodiment, said method
further comprises compacting the bytecodes of the java
feature(s) which are not relocated.
[0021] In a non-limitative embodiment, the range(s) of
physical addresses freed by the bytecodes compacting
is reserved for user data.
[0022] In a non-limitative embodiment, the parent ex-
ecutable file is embedded in a non-volatile memory of a
secure element designated as a parent customer item.
[0023] In addition, there is provided an executable file,
wherein said executable file is generated according to
the method characterized according to any characteris-
tics above-mentioned.
[0024] In addition, there is provided a method for pro-
ducing a secure element designated as a derived cus-
tomer item, said secure element comprising a non-vola-
tile memory, wherein said method comprises the loading
of an executable file generated according to the method
of any above-mentioned characteristics, in said non-vol-
atile memory of said secure element.
[0025] In a non-limitative embodiment, said non-vola-
tile memory is a flash memory.
[0026] In a non-limitative embodiment, said secure el-
ement is an integrated circuit card.
[0027] In addition, there is provided a secure element
designated as a derived customer item, which is pro-
duced by the method above-mentioned.
[0028] In a non-limitative embodiment, said secure el-
ement is an integrated circuit card.
[0029] To achieve those and other advantages, and in
accordance with the purpose of the invention as embod-
ied and broadly described, the invention proposes a
method for generating an executable file derived from a
parent executable file, said parent executable file com-
prising ranges of physical addresses referencing:

- a second binary code of at least a native feature
which is removable from the parent executable file;

- bytecodes of at least a java feature;

wherein during the generation of the derived executable
file:

- selecting at least one native feature from said set of
native features to be removed;

- defining the range of physical addresses where the

second binary code of said at least one selected na-
tive feature is stored in the parent executable file;

- selecting at least one java feature from said set of
java features to be relocated;

- in the generated derived executable file, relocating
the bytecodes of said at least one selected java fea-
ture in said defined range of physical addresses ac-
cording to a predefined optimization relocation algo-
rithm.

[0030] In a various method of the present invention,
the ranges of physical addresses of said parent execut-
able file reference a first binary code of at least one core
feature which is not removable from the parent execut-
able file, and wherein said at least one core feature is
not removable from the derived executable file and
wherein the first binary code is stored in the derived ex-
ecutable file in the same range of physical addresses
than in the parent executable file.
[0031] In a various method of the present invention,
the relocating process is performed according to the size
of the bytecodes to be relocated and the size of the de-
fined range of the physical addresses.
[0032] In a various method of the present invention,
the bytecodes of the java feature(s) which are not relo-
cated is compacted.
[0033] In a various method of the present invention,
the range(s) of physical addresses freed by the compact-
ed bytecodes (314) is reserved for user data.
[0034] In a various method of the present invention,
the parent executable file is loaded in a non-volatile mem-
ory.
[0035] In a various method of the present invention,
the generated derived executable file is loaded in a non-
volatile memory of a secure element designated as a
derived customer item.
[0036] In a various method of the present invention,
the non-volatile memory is a flash memory.
[0037] In a various method of the present invention, a
native feature F is selected to be removed when there is
no dependency between said native feature and another
native feature.
[0038] In a various method of the present invention, a
java feature is selected for relocation when its bytecodes
can be shifted in memory in any range of physical ad-
dresses without considering the other bytecodes of the
other java features.
[0039] In a various method of the present invention,
the native feature to be removed is overwritten by the
relocation of the bytecodes or deleted before the reloca-
tion process.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] Some embodiments of methods and/or appa-
ratus in accordance with embodiments of the present in-
vention are now described, by way of example only, and
with reference to the accompanying drawings, in which:

3 4 



EP 3 657 319 A1

4

5

10

15

20

25

30

35

40

45

50

55

- Fig. 1 is an organizational chart of a method for gen-
erating an executable file derived from a parent ex-
ecutable file, according to a non-limitative embodi-
ment of the invention;

- Fig. 2 illustrates a diagram of a parent executable
file from which an executable file is derived according
to the method of Fig. 1, said parent executable file
comprising a first binary code of a core feature, a
second binary code of a set of native features, and
bytecodes of java features, in a non limitative em-
bodiment;

- Fig. 3 illustrates a diagram of a source code from
which the parent executable file of Fig. 2 is generat-
ed;

- Fig. 4 illustrates a diagram of the parent executable
file of Fig. 2, wherein the binary code corresponding
to two native features has been removed, according
to the method of Fig. 1, in a non-limitative embodi-
ment;

- Fig. 5 illustrates a diagram of the parent executable
file of Fig. 4, wherein the bytecodes of five java fea-
tures have been relocated, according to the method
of Fig. 1, in a non-limitative embodiment;

- Fig. 6 illustrates a diagram of the parent executable
file of Fig. 5, wherein the bytecodes of some java
features which have not been relocated have been
compacted for producing a derived executable file,
according to the method of Fig. 1, in a non-limitative
embodiment;

- Fig. 7 illustrates an architecture of a parent secure
element in which said parent executable file of Fig.
2 is embedded, in a non limitative embodiment;

- Fig. 8 illustrates an architecture of a derived secure
element in which said derived executable file of Fig.
6 is embedded, in a non limitative embodiment;

- Fig. 9a illustrates a non-volatile memory of the parent
secure element of Fig. 7, in a non-limitative embod-
iment;

- Fig. 9b illustrates a non-volatile memory of the parent
secure element of Fig. 8, in a non-limitative embod-
iment; and

- Fig. 10 is an organizational chart of a method for
producing a secure element in which said derived
executable file of Fig. 8 is embedded, according to
a non-limitative embodiment of the invention.

DESCRIPTION OF EMBODIMENTS OF THE INVEN-
TION

[0041] Throughout the figures, the same reference nu-
merals and characters, unless otherwise stated, are used
to denote like features, elements, components or por-
tions of the illustrated embodiments.
[0042] In the following description, numerous specific
details are set forth.
[0043] However, it is understood that well-known cir-
cuits, structures, techniques functions or constructions
by the man skilled in the art are not described in detail

since they would obscure the invention in unnecessary
detail.
[0044] The present invention relates to a method P1
for generating an executable file 320 derived from a par-
ent executable file 310.
[0045] In a non-limitative embodiment, the parent ex-
ecutable file 310 is in the HEX format. As will be described
in the following, one or several portions of the parent
execution file 310 corresponding to some native fea-
ture(s) F to be removed are replaced by bytecodes 324
of java features Pkg.
[0046] As illustrated in Fig. 2, the parent executable
file 310 comprises ranges 311 of physical addresses ref-
erencing:

- a first binary code 312 of at least one core feature CR;
- a second binary code 313 of a set of native features

F;
- bytecodes 314 of a set of java features Pkg.

[0047] In the following, a set of native features or a
native feature will be referenced F. In the following, a set
of java features or a java feature will be referenced Pkg.
[0048] In a non-limitative embodiment, the set of native
features F comprises one or a plurality of native features.
In the non-limitative illustrated example in Fig. 2 and Fig.
3, the parent executable file 310 comprises the second
binary code 313-1 to 313-5 of five native features F1 to
F5.
[0049] In non-limitative examples:

- a first native feature F1 implements RSA algorithm;
- a second native feature F2 implements an error cor-

recting codes EXX algorithm.
- a third native feature F3 implements RSA on-board

key generation OBKG algorithm.

[0050] In a non-limitative embodiment, the set of java
features Pkg comprises one or a plurality of java features
Pkg. In the non-limitative illustrated example in Fig. 2 and
Fig. 3, the parent executable file 310 comprises the byte-
codes 314-1 to 314-8 of eight java features Pkg-1 to Pkg-
8.
[0051] The parent executable file 310 is obtained by:

- compiling a source code 300 illustrated in Fig. 3 com-
prising said at least one core feature CR, the set of
native features F and the set of java features Pkg,
said compiling resulting in said first binary code 312,
said second binary code 313 and said bytecodes
314. Hence, the first binary code 312 is the compiled
code of the at least one core feature CR, the second
binary code 313 is the compiled code of the set of
native features F and the bytecodes 314 are the com-
piled code of the set of java features Pkg. In a non-
limitative embodiment, the compiling generates an
object file .obj comprising said first binary code 312
and said second binary code 313, and a .jca file com-

5 6 



EP 3 657 319 A1

5

5

10

15

20

25

30

35

40

45

50

55

prising said bytecodes 314;
- linking the object file .obj and the .jca file with said

ranges 311 of physical addresses resulting in the
parent executable file 310. The parent executable
file 310 comprises the ranges 311 of physical ad-
dresses illustrated in Fig. 2 where the codes (first
binary code 312, second binary code 313, and byte-
codes 314) are positioned. In a non-limitative em-
bodiment, the ranges 311 of physical addresses are
contiguous. Hence, after the linking, different ranges
311 of physical addresses are related to the different
codes.

[0052] It is to be noted that the ranges 311 of physical
addresses are those of the non-volatile memory NVM
described in the following, where the parent executable
file 310 is loaded. It is further to be noted that the first
range 311-1 of physical addresses depends on the loca-
tion where the parent executable file 310 is loaded in the
non-volatile memory NVM.
[0053] In this description, a distinction is made be-
tween core features CR which are mandatory compo-
nents for the source code 300, and non-core features
which are optional components that may be removed
from the parent executable file 310 to obtain a derived
executable file 320 described in the following. Unless ex-
plicitly mentioned, a native feature refers to a non-core
feature.
[0054] The core features CR are implementing the min-
imum functionalities to be embedded in a secure element
11 which is a parent secure element, also designated as
a parent customer item or in a secure element 12 which
is derived from said parent customer item and designated
as a derived secure element or as a derived customer
item.
[0055] In a non-limitative embodiment, said at least
one core feature CR and the set of native features F
comprise a native code, and the set of java features Pkg
comprises the java code of at least one java package. A
java package Pkg is a library.
[0056] Native code refers to programming code that is
configured to run on a specific processor. In a non-limi-
tative example, the native code is in C code or assembly
code.
[0057] Bytecodes of the java code are interpreted by
a Java Virtual Machine into code that will run on computer
hardware.
[0058] The parent executable file 310 is a computer
program product which is embedded in a secure element
11 designated as parent customer item. The parent ex-
ecutable file 310 generated for the parent customer item
11 can be used as a basis to produce executable files,
designated as derived executable files, for derived cus-
tomer items 12.
[0059] In a non-limitative element, said secure element
11 is an integrated circuit card ICC also designated as
ICC card in the following. The ICC card may be contact
or contactless.

[0060] In non-limitative embodiments, the ICC card is
a smart device, a soldered element, a M2M module, an
eSE (embedded secure element), a micro-SD etc.
[0061] In non-limitative examples, the ICC card is a
banking card, such as an EMV card, an Electronic Identity
Card, a health card, a driving license, a passport, a pri-
vacy card, a financial service card, an access card etc.
[0062] It is to be noted that secure elements are able
to control the access to the data they contain and to au-
thorize or not the use of data by other machines. Secure
elements may also provide computation services based
on cryptographic components. In general, secure ele-
ments have limited computing resources and are intend-
ed to be connected to a host machine. Secure elements
may be removable or fixed to a host device.
[0063] Fig. 7 is a non-limitative embodiment of an ar-
chitecture of said secure element 11. It comprises:

- a central processing unit (CPU) 110;
- a non-volatile memory (NVM) 112 ;
- a random access memory (RAM) 113;
- a communication interface (I/O) 115 for receiving in-

put and placing output to a computer network, e.g.,
the Internet, to which the secure element 11 may be
connected, either directly or via intermediary devic-
es, such as a host computer. These various compo-
nents are connected to one another, for example, by
a bus 116 ;

- a Java Virtual Machine (JVM) 117.

[0064] In a non-limitative embodiment illustrated in Fig.
7, the non-volatile memory NVM is a FLASH memory.
[0065] In a non-limitative embodiment, the parent ex-
ecutable file 310, is embedded in the secure element 11,
designated as parent customer item, and is stored in the
non-volatile memory NVM. In a non-variant of embodi-
ment, it is stored in the FLASH memory. In other non-
variant of embodiment, it is stored in other types of non-
volatile memory.
[0066] A non-limitative example of the non-volatile
memory NVM where the parent executable file 310 is
loaded is illustrated in Fig. 9a. As illustrated, it comprises
the parent executable file 310 within the ranges 311-1 to
311-14 and a memory space for the user data UD in the
range 311-10 of physical addresses.
[0067] In a non-limitative embodiment, the non-volatile
memory NVM comprises the Java Virtual Machine JVM.
[0068] During operation, the CPU 110 executes the
instructions of the different codes (first binary code 312,
second binary code 313) stored in the stored in the non-
volatile memory NVM, and the Java Virtual Machine JVM
interprets the bytecodes 314 stored in the non-volatile
memory NVM.
[0069] The executable file 320, designated as derived
executable file, which is derived from the parent execut-
able file 310, comprises:

- the first binary code 312 of said at least one core

7 8 



EP 3 657 319 A1

6

5

10

15

20

25

30

35

40

45

50

55

feature CR;
- a second binary code 313 of a sub-set of the set of

native features F of the parent executable file 310;
- bytecodes 314 of said set of java features Pkg of the

parent executable file 310.

[0070] Such an executable file 320 is illustrated in Fig.
6, in a non-limitative embodiment. It results from a mod-
ification of the parent executable file 310 where at least
one native feature F has been removed, that is to say
where the corresponding second binary code 313 has
been replaced.
[0071] The method P1 for generating such an execut-
able file 320 derived from the parent executable file 310
is illustrated in Fig. 1. It comprises the following steps:
In step E11), illustrated SELCT(F), at least one native
feature F from the set of native features is selected to be
removed.
[0072] In the non-limitative embodiment, a plurality of
native features F is selected to be removed. In the non-
limitative example illustrated in Fig. 4, the native features
F2 and F4 are selected. In Fig. 4 the native features F2
and F4 are circled to show their selection.
[0073] It is to be noted that the core features CR are
not removable. Therefore, the first binary code 312 will
be stored in the derived executable file 320 in the same
range 321 of physical addresses than in the parent exe-
cutable file 310.
[0074] It is to be noted that if there is a dependency
between a native feature F and another native feature F,
it can’t be selected to be removed.The word "dependen-
cy" should be understood as a functional link between
two native features F. These functional links are intro-
duced by instructions in the source code 300, for example
"call" or "jump" instructions.
[0075] In step E12), illustrated DEF(311, 313(F)), the
range 311 of physical addresses where the second bi-
nary code 313 of said at least one selected native feature
F is stored, is defined.
[0076] In the non-limitative example illustrated in Fig.
2 and Fig. 3, the second binary codes 313-2 and 313-4
of the native features F2 and F4 are stored within the
ranges 311-11 and 311-13 of physical addresses. It is to
be reminded that the storage in said ranges 321-2 and
321-4 has been defined from the linking process.
[0077] In step E13), illustrated SELCT(314, Pkg)), at
least one java feature Pkg from the set of java features
to be relocated is selected.
[0078] In a non-limitative embodiment, the bytecodes
314 of a plurality of java features Pkg is selected to be
relocated. In a non-limitative example, the java features
Pkg-3, Pkg-4, Pkg-6, and Pkg-8 are selected.
[0079] It is to be noted that a java feature Pkg which
can be relocated has no dependency with other java fea-
ture Pkg. The word "dependency" should be understood
as a functional link between two java features Pkg. These
functional links are introduced by calling in the source
code 300, the name of the java feature Pkg.

[0080] Hence, when there are a plurality of java fea-
tures Pkg, the java features Pkg which are relocatable
are independent from each other, which means that their
bytecodes 314 can be shifted in memory in any range
311 of physical addresses without considering the other
bytecodes 314 of the other java features Pkg.
[0081] In step E14), illustrated RELOCT(314(Pkg),
311), the bytecodes 314 of said at least one selected
java feature Pkg are relocated in said defined range 311
of physical addresses.
[0082] In a non-limitative embodiment, the bytecodes
314 of a plurality of java features Pkg are relocated. In
the non-limitative example illustrated in Fig. 5, the byte-
codes 314-3, 314-4, 314-6, and 314-8 respectively of the
java features pkg3, pkg4, pgk6 and Pkg8 are relocated.
[0083] In a non-limitative embodiment, the relocating
is performed according to the bytecodes’ size of said at
least one selected java feature Pkg and the defined range
311 of physical addresses’ size.
[0084] In a non-limitative embodiment, the relocating
is performed according to the Best Fit algorithm well-
known by the man skilled in the art. It permits to optimize
the relocating.
[0085] Hence, in the non-limitative example illustrated
in Fig. 5, according to the size of the range 311-11 of
physical addresses and the range 311-13 of physical ad-
dresses, and to the size of the bytecodes 314-3, 314-4,
314-6, and 314-8, the bytecodes 314-3, 314-4 fit in the
range 311-13 of physical addresses and therefore are
relocated in said range 311-13, and the bytecodes 314-6,
and 314-8 fit in the range 311-11 of physical addresses
and therefore are relocated in said range 311-11.
[0086] It is to be noted that after the relocating, there
may be some part of the second binary code 313 of the
native feature(s) F (which has been selected to be re-
moved), which has not been overwritten by the relocation
of the bytecodes 314 and which is left in the defined range
311 of physical addresses. This part of second binary
code 313 is a dead code because it won’t be called an-
ymore.
[0087] In a non-limitative embodiment, before the re-
locating, the second binary code 313 of said at least one
selected native feature F may be deleted from said parent
executable file 310. In another non-limitative embodi-
ment, after the relocating, the part of the second binary
code 313 which is left may be deleted from said parent
executable file 310, part which has not been overwritten
by the relocating of the bytecodes 314. The deleting may
be performed by filling with bits 0 or 1 the range 311 of
physical addresses corresponding to said part left.
[0088] In step E15) illustrated COMPACT(314(Pkg),
when the bytecodes 314 of the selected java feature(s)
Pkg have been relocated, in a non-limitative embodi-
ment, the method P1 further comprises compacting the
bytecodes 314 of the java features Pkg which are not
relocated. As this step is non mandatory, it is illustrated
in dotted line in Fig. 1.
[0089] It permits to free some memory space.

9 10 



EP 3 657 319 A1

7

5

10

15

20

25

30

35

40

45

50

55

[0090] In a non-limitative embodiment, the range(s)
311 of physical addresses freed by the bytecodes 314
compacting is reserved for user data UD in the non-vol-
atile memory NVM where the derived executable file 320
is loaded, that is to say data which are specific to the
user of the derived customer item 12. In non-limitative
examples, user data UD comprise a picture, a signature,
the name, address, age of the user etc.
[0091] In a non-limitative example illustrated in Fig. 6,
when the bytecodes 314-3, 314-4, 314-6, and 314-8 of
the java features Pkg3, Pkg4, Pkg6, and Pkg8 have been
relocated, it has made:

- some memory space available in the ranges 311-3
and 311-4 of physical addresses between the byte-
codes 314-2 and 314-5 of the remaining java fea-
tures Pkg2 and Pkg5;

- some memory space available in the range 311-6 of
physical addresses;

- some memory space available in the 311-8 of phys-
ical addresses;

[0092] Fig. 6 illustrated the result of the compacting
step which produces the derived executable file 320
which is loaded in a secure element for producing a de-
rived customer item. As illustrated, the derived executa-
ble file 320 is smaller than the parent executable file 310
due to the compacting.
[0093] It is to be noted that if the method P1 comprises
no compacting step, the derived executable file 320 gen-
erated is the one illustrated in Fig. 5, that is to say it results
from the step E14.
[0094] By compacting the bytecodes 314 of the re-
maining java features Pkg, it increases the memory
space available for the user data UD in the non-volatile
memory NVM in which the derived executable file 310 is
loaded.
[0095] A non-limitative example of the non-volatile
memory NVM where the derived executable file 320 is
loaded is illustrated in Fig. 9b. As illustrated, it comprises
the derived executable file 320, some user data UD, and
some added memory space BPU where more user data
UD can be added.
[0096] This memory space brings an added value to
the derived customer item 12 and this can be monetized.
For a predetermined size of non-volatile memory NVM,
removing unnecessary native features F allows to max-
imize the size of the user data memory by adding unused
memory to it and therefore increase the revenue gener-
ated while selling the derived customer item 12.
[0097] A method P2 for producing a secure element
12, designated as derived customer item, said secure
element 12 comprising a non-volatile memory NVM, is
illustrated in Fig. 10. Said method P2 comprises the load-
ing (step E21 illustrated LD(320, NVM)) of said execut-
able file 320 in said non-volatile memory NVM of said
secure element 12. Thus, a derived customer item 12 is
produced from the parent customer item 11 in which the

parent executable file 310 is embedded.
[0098] The description made for the secure element
11 is applied for the secure element 12.
[0099] In a non-limitative embodiment, as the same
manner than the secure element 11, the secure element
12 is an integrated circuit card ICC.
[0100] Fig. 8 is a non-limitative embodiment of archi-
tecture of said secure element 12. It comprises:

- a central processing unit (CPU) 120;
- a non-volatile memory (NVM) 122 ;
- a random access memory (RAM) 123;
- a communication interface (I/O) 125 for receiving in-

put and placing output to a computer network, e.g.,
the Internet, to which the secure element 11 may be
connected, either directly or via intermediary devic-
es, such as a host computer. These various compo-
nents are connected to one another, for example, by
a bus 126 ;

- a Java Virtual Machine (JVM) 127.

[0101] In a non-limitative embodiment illustrated in Fig.
8, the non-volatile memory NVM is a FLASH memory.
[0102] In a non-limitative embodiment, the derived ex-
ecutable file 320, is embedded in the secure element 12
and is stored in the non-volatile memory NVM. In a non-
variant of embodiment, it is stored in the FLASH memory.
In other non-variant of embodiments, it is stored other
types of non-volatile memory.
[0103] In a non-limitative embodiment, the non-volatile
memory NVM comprises the Java Virtual Machine JVM.
[0104] During operation, the CPU 120 executes the
instructions of the different codes (first binary code 312,
second binary code 313) stored in the stored in the non-
volatile memory NVM, and the Java Virtual Machine JVM
interprets the bytecodes 314 stored in the non-volatile
memory NVM.
[0105] Hence, with the derived executable file 320, a
secure element 12, designated as derived customer item,
is derived from the parent customer item 11.
[0106] Hence, a plurality of derived customer items 12
comprising different combinations of native features F
can be produced in this manner.
[0107] Hence, thank to the generation of the derived
executable file 320 described, the compilation of the
source code 300 and the linking of the object file .obj and
the .jca file is performed only one time and for all the
customer items, whether it is a parent customer item 11
or a derived customer item 12.
[0108] If the parent customer item 11 embedding this
parent executable file 310 is tested and certified, all de-
rived customer items 12 derived from this parent custom-
er item 11 will be considered as already tested and cer-
tified.
[0109] During the certification process, only the fea-
tures (java, native and core) of the derived customer item
12 are checked and compared to the features (native and
core) of the parent customer item 11. Therefore, if some

11 12 



EP 3 657 319 A1

8

5

10

15

20

25

30

35

40

45

50

55

native features F of the parent customer item 11 are re-
moved from the derived customer item 12, there is no
consequence for the certification process.
[0110] For the certification process, the native code (of
the core feature(s) CR and of the native feature(s) F)
checked must be the same, and its related ranges 311
of physical addresses must be the same. It is to be noted
that even if only one related range 311 of physical ad-
dresses is changed, it implies that the native code is mod-
ified, as the call from one native feature F for example
will be modified when it calls another native feature F
which related range 311 of physical addresses (where
its second binary code 313 is positioned) has been mod-
ified.
[0111] For the certification process, the java code (of
the java feature(s) Pkg) checked must also be the same.
But, if it is relocated, there is no consequence regarding
the java code. It is not modified, as the dependency be-
tween different java features Pkg is implemented accord-
ing to the calling of the name of the java feature Pkg. The
Java Virtual Machine JVM interprets the dependency ac-
cording to a table of the ranges 311 of physical addresses
which are related to the different java features Pkg. When
a java feature Pkg is relocated, this table is updated with
the new corresponding ranges 311 of physical address-
es.
[0112] It is to be understood that the present invention
is not limited to the aforementioned embodiments.
[0113] Hence, some embodiments of the invention
may comprise one or a plurality of the following advan-
tages:

- it allows producing different versions of a secure el-
ement, based on the same hardware platform, but
taking into account the needs of different customers
or applications. The production process is fast, as
there is no re-compilation of re-linking required for
the derived customer items 12. Furthermore, it is not
anymore required to re-test and re-certify the derived
customer items 12 if the parent customer item 11 is
already certified;

- it avoids performing re-compilation and re-linking for
derived customer items 12 at product generation
time or on the field for personalizing products;

- it permits to produce some derived customer items
12 when the secure element doesn’t comprise any
memory management unit designated as MMU,
such MMU allowing the linking of virtual addresses
to an object file and the mapping of said virtual ad-
dresses with ranges of physical addresses;

- memory manufacturers are sometimes selling their
product (the non-volatile memory NVM) using pay-
per-use billing (also referred as bill-per-use, BPU).
This means that the selling price of the memory will
depend on the amount of the memory that is really
used by a secure element. Therefore, by removing
unnecessary native features F, the unused memory
space is optimized and the production cost of a de-

rived customer item 12 is reduced.

Claims

1. A method (P1) for generating an executable file (320)
derived from a parent executable file (310), said par-
ent executable file (310) comprising ranges (311) of
physical addresses referencing:

- a second binary code (313) of at least a native
feature (F) which is removable from the parent
executable file;
- bytecodes (314) of at least a java feature (Pkg);

wherein during the generation of the derived execut-
able file:

- selecting (E11) at least one native feature (F)
from said set of native features (F) to be re-
moved;
- defining (E12) the range (311) of physical ad-
dresses where the second binary code (313) of
said at least one selected native feature (F) is
stored in the parent executable file;
- selecting (E13) at least one java feature (Pkg)
from said set of java features to be relocated;
- in the generated derived executable file, relo-
cating (E14) the bytecodes (314) of said at least
one selected java feature (Pkg) in said defined
range (311) of physical addresses according to
a predefined optimization relocation algorithm.

2. A method (P1) according to the previous claim,
wherein ranges (311) of physical addresses of said
parent executable file (310) reference a first binary
code (312) of at least one core feature (CR) which
is not removable from the parent executable file, and
wherein said at least one core feature (CR) is not
removable from the derived executable file and
wherein the first binary code is stored in the derived
executable file in the same range of physical ad-
dresses than in the parent executable file.

3. A method (P1) according to any previous claims,
wherein the relocating process is performed accord-
ing to the size of the bytecodes to be relocated and
the size of the defined range (321) of the physical
addresses.

4. A method (P1) according to any previous claims, fur-
ther comprising the step of compacting (E15) the
bytecodes (314) of the java feature(s) (Pkg) which
are not relocated.

5. A method (P1) according to the previous claim,
wherein the range(s) (311) of physical addresses
freed by the compacted bytecodes (314) is reserved

13 14 



EP 3 657 319 A1

9

5

10

15

20

25

30

35

40

45

50

55

for user data (UD).

6. A method (P1) according to any previous claims,
wherein the parent executable file (310) is loaded in
a non-volatile memory (112).

7. A method (P1) according to any previous claims,
wherein said method comprising the loading of the
derived executable file (320) generated according to
the method of any previous claims 1 to 10, in a non-
volatile memory (122) of a secure element (12) des-
ignated as a derived customer item.

8. A method (P2) according to the previous claim 6 and
7, wherein said non-volatile memory (122) is a flash
memory.

9. A method (P1) according to any previous, wherein
the parent executable file (310) is loaded in a secure
element (11) designated as a parent customer item

10. A method (P1) according to claim 7 or claim 9, where-
in said secure element is an integrated circuit card
(ICC).

11. A method (P1) according to any previous claims,
wherein a native feature is selected to be removed
when there is no dependency between said native
feature and another native feature.

12. A method (P1) according to any previous claims,
wherein a java feature is selected for relocation when
its bytecodes can be shifted in memory in any range
of physical addresses without considering the other
bytecodes of the other java features.

13. A method (P1) according to any previous claims,
wherein the native feature to be removed is overwrit-
ten by the relocation of the bytecodes or deleted be-
fore the relocation process.

14. A method (P1) according to any previous claims,
wherein said core feature (CR) and said native fea-
ture (F) comprise a native code, and said set of java
features (Pkg) comprises the java code of at least
one java package.

15 16 



EP 3 657 319 A1

10



EP 3 657 319 A1

11



EP 3 657 319 A1

12



EP 3 657 319 A1

13



EP 3 657 319 A1

14

5

10

15

20

25

30

35

40

45

50

55



EP 3 657 319 A1

15

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

