CROSS REFERENCE OF RELATED APPLICATIONS
[0001] The application claims priority of the Chinese patent application No.
201710594785.3, filed on July 20, 2017, the entire disclosure of which is incorporated herein by reference as part of the
present application.
TECHNICAL FIELD
[0002] At least one embodiment of the present disclosure relates to a heat dissipation structure
for a chip-on-film, a manufacturing method thereof, and a display device.
BACKGROUND
[0003] Chip-On-Film (COF) refers to a flexible add-on circuit board that does not package
a chip, and a chip for the COF refers to a source driver IC etc.. In semiconductor
display panels with large-size and large-resolution, the chip for the COF has a high
degree of integration. Upon the temperature of the chip for the COF being too high
and exceeding the rated operating temperature of the chip in operation, the chip may
be unstable or even may be damaged.
SUMMARY
[0004] At least one embodiment of the present disclosure provides a heat dissipation structure
for a chip-on-film and a manufacturing method thereof, and a display device. The heat
dissipation structure applies a two-phase flow heat dissipation technology and a micro-channel
heat dissipation technology, and the heat dissipation structure can be applied to
a large-size display device to provide a good heat dissipation effect.
[0005] At least one embodiment of the disclosure provides a heat dissipation structure for
a chip-on-film, including: a heat dissipation plate body, including an evaporation
part and a condensation part; a plurality of micro-cavity structures, disposed in
the heat dissipation plate body. Two ports of each of the plurality of micro-cavity
structures are sealed, and the plurality of micro-cavity structures are filled with
liquid. Each of the plurality of micro-cavity structures extends from the evaporation
part to the condensation part, and after the liquid absorbs heat at the evaporation
part to change into vapor, the vapor moves toward the condensation part, and the vapor
moved to the condensation part is condensed and liquefied and moves toward the evaporation
part to achieve heat dissipation.
[0006] For example, in some examples, the heat dissipation structure has a U-shaped or L-shaped
cross section along an extending direction of the plurality of micro-cavity structures.
[0007] For example, in some examples, a maximum size of a cross section of each of the plurality
of micro-cavity structures in a plane perpendicular to an extending direction of the
plurality of micro-cavity structures is 10µm-2mm.
[0008] For example, in some examples, the plurality of micro-cavity structures are arranged
in parallel to each other.
[0009] For example, in some examples, a surface of the evaporation part is provided with
a concave part.
[0010] For example, in some examples, a thermal conductivity of the condensation part is
higher than that of the evaporation part.
[0011] For example, in some examples, the heat dissipation plate body includes a first substrate
and a second substrate, and the first substrate and the second substrate are attached
and sealed to each other, so that the plurality of micro-cavity structures are formed
between the first substrate and the second substrate.
[0012] For example, in some examples, the plurality of micro-cavity structures are in communication
with each other.
[0013] For example, in some examples, a region of the plurality of micro-cavity structures
which is not filled with the liquid includes a negative pressure region.
[0014] For example, in some examples, the liquid includes one of or a mixture of more than
one selected from the group consisting of water, ethanol, acetone, and a solvent containing
nano-particles.
[0015] At least one embodiment of the present disclosure provides a display device including:
a chip-on-film, including a chip; and the heat dissipation structure provided by any
one embodiment of the disclosure. The heat dissipation structure is attached to the
chip-on-film, and an orthographic projection of the chip on the heat dissipation structure
falls into the evaporation part.
[0016] For example, in some examples, the heat dissipation structure is attached to a side
of the chip-on-film facing away from the chip.
[0017] For example, in some examples, one side of the heat dissipation structure is provided
with a concave part, and the side of the heat dissipation structure provided with
the concave part is attached to the side of the chip-on-film provided with the chip,
and the chip is in the concave part.
[0018] For example, in some examples, a thermal silicone grease is provided between the
heat dissipation structure and the chip-on-film.
[0019] At least one embodiment of the present disclosure provides a method of manufacturing
the above mentioned heat dissipation structure, including: forming the heat dissipation
plate body having the plurality of micro-cavity structures; filling the plurality
of micro-cavity structures with the liquid. The heat dissipation plate body includes
the evaporation part and the condensation part, each of the plurality of micro-cavity
structures extends from the evaporation part to the condensation part, and after the
liquid absorbs heat at the evaporation part to change into vapor, the vapor moves
toward the condensation part, and the vapor moved to the condensation part is condensed
and liquefied and moves toward the evaporation part to achieve heat dissipation.
[0020] For example, in some examples, the heat dissipation plate body includes a first substrate
and a second substrate, and forming the heat dissipation plate body having the plurality
of micro-cavity structures includes: forming a plurality of first grooves in the first
substrate; forming a plurality of second grooves in the second substrate; attaching
a side of the first substrate provided with the first grooves to a side of the second
substrate provided with the second grooves to form the heat dissipation plate body
having the plurality of micro-cavity structures. An orthographic projection of the
plurality of first grooves on the second substrate completely coincides with an orthographic
projection of the plurality of second grooves on the second substrate, so that the
plurality of first grooves are bonded to the plurality of second grooves in one-to-one
correspondence to form the plurality of micro-cavity structures.
[0021] For example, in some examples, forming the heat dissipation plate body having the
plurality of micro-cavity structures includes: providing a substrate; presetting a
center line on the substrate, and symmetrically processing both sides of the center
line to form a plurality of grooves symmetrically distributed on the both sides of
the center line; folding the substrate along the center line to form the heat dissipation
plate body having the plurality of micro-cavity structures. The substrate is folded
along the center line to bond the plurality of grooves completely to form the plurality
of micro-cavity structures.
[0022] For example, in some examples, the method of manufacturing the heat dissipation structure
further includes: processing the heat dissipating structure so that the heat dissipation
structure has a U-shaped or L-shaped cross section along an extending direction of
the plurality of micro-cavity structures.
[0023] For example, in some examples, the heat dissipation plate body having the plurality
of micro-cavity structures is formed by using a 3D printing technique.
[0024] For example, in some examples, after forming the plurality of micro-cavity structures,
sealing periphery edges of the heat dissipation plate body, and in the sealing, at
least one unsealed region is retained at an edge where the plurality of micro-cavity
structures extend to the heat dissipation plate body so as to fill the plurality of
micro-cavity structures with the liquid, and sealing the unsealed region after filling
the liquid.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] In order to clearly illustrate the technical solution of the embodiments of the disclosure,
the drawings of the embodiments will be briefly described in the following. It is
obvious that the described drawings are only related to some embodiments of the disclosure
and thus are not limitative of the disclosure.
FIG. 1A is a partial cutting view of a heat dissipation structure according to an
example of an embodiment of the present disclosure;
FIG. 1B is a cross-sectional view of the heat dissipation structure shown in FIG.
1A along line AB;
FIG. 1C is a cross-sectional view of a heat dissipation structure according to an
example of an embodiment of the present disclosure;
FIG. 1D is a cross-sectional view of a heat dissipation structure according to an
example of an embodiment of the present disclosure;
FIG. 2 is a partial schematic view of an internal structure of the heat dissipation
structure shown in FIG. 1A;
FIG. 3 is a schematic structural diagram of a heat dissipation structure according
to another example of an embodiment of the present disclosure;
FIG. 4A is a partial structural diagram of a display device according to an example
of an embodiment of the present disclosure;
FIG. 4B is a partial structural diagram of a display device according to another example
of an embodiment of the present disclosure;
FIG. 5 is a schematic flow chart of a method of manufacturing a heat dissipation structure
according to an embodiment of the present disclosure;
FIG. 6A is a schematic diagram of a heat dissipation structure in a manufacturing
process according to an example of an embodiment of the present disclosure;
FIG. 6B is a schematic diagram of a heat dissipation structure in a manufacturing
process according to another example of an embodiment of the present disclosure.
DETAILED DESCRIPTION
[0026] In order to make objects, technical details and advantages of the embodiments of
the disclosure apparent, the technical solutions of the embodiments will be described
in a clearly and fully understandable way in connection with the drawings related
to the embodiments of the disclosure. Apparently, the described embodiments are just
a part but not all of the embodiments of the disclosure. Based on the described embodiments
herein, those skilled in the art can obtain other embodiment(s), without any inventive
work, which should be within the scope of the disclosure.
[0027] Unless otherwise defined, all the technical and scientific terms used herein have
the same meanings as commonly understood by one of ordinary skill in the art to which
the present invention belongs. The terms "first," "second," etc., which are used in
the description and the claims of the present application for invention, are not intended
to indicate any sequence, amount or importance, but distinguish various components.
The terms "comprise," "comprising," "include," "including," etc., are intended to
specify that the elements or the objects stated before these terms encompass the elements
or the objects and equivalents thereof listed after these terms, but do not preclude
the other elements or objects. "On," "under," "right," "left" and the like are only
used to indicate relative position relationship, and when the position of the object
which is described is changed, the relative position relationship may be changed accordingly.
[0028] In the study, the inventors of the present application found that, after the semiconductor
display panel starts to operate, the chip for the chip-on-film (COF) in the display
device starts to generate heat, and the temperature of the chip for the COF gradually
rises. Upon the temperature of the chip for the COF rising to a certain level, a problem
that the operating performance of the COF circuit substrate is unstable may occur.
In a large-size semiconductor display panel, as the screen size and resolution increase,
the amount of data processed and transmitted by the chip for the COF is further increased,
which further increases the temperature of the chip for the COF. In addition, the
form of the COF of the display device is generally U-shape, so that the heat dissipation
of the chip for the COF has a crucial problem to solve.
[0029] The heat dissipation plate generally used for the heat dissipation of the chip for
the COF mostly has a solid structure, so it is difficult to effectively dissipate
the heat of the chip for the COF in large-size display devices.
[0030] In addition to using the heat dissipation plate to dissipate the heat of the chip
for the COF, a water cooling method can also be used, that is, a micro water pump
is used to make liquid flow in a closed circulating water pipe, and the heat is taken
away upon the liquid passing near the chip, so that the temperature of the chip can
be greatly reduced. The water cooling method is ideal for cooling a single chip. For
example, some high-end gaming laptops and desktops use the water cooling method to
reduce the temperature of the Central Processing Unit (CPU). However, on the one hand,
the circulating water cooling device is too bulky, which affects the lightness and
thickness of the product; on the other hand, there is a lot of liquid working fluid
in the circulating water cooling device, and in a case that the aging and cracking
of the pipeline, etc. occur, the liquid is completely leaked, which easily leads to
a case that the integration circuit is short-circuited or even burned, and thus has
hidden trouble in safety. Because the semiconductor display panel trends to have a
large size and a thin thickness, such a water cooling device is not suitable for solving
the heat dissipation problem of the chip for the COF.
[0031] Embodiments of the present disclosure provide a heat dissipation structure for a
chip-on-film and a manufacturing method thereof, and a display device. The heat dissipation
structure for the chip-on-film includes: a heat dissipation plate body, including
an evaporation part and a condensation part; a plurality of micro-cavity structures,
disposed in the heat dissipation plate body. Two ports of each of the micro-cavity
structures are sealed, and the micro-cavity structure are filled with liquid. Each
of the micro-cavity structures extends from the evaporation part to the condensation
part, and after the liquid absorbs heat at the evaporation part to change into vapor,
the vapor moves toward the condensation part, and the vapor moved to the condensation
part is condensed and liquefied and moves toward the evaporation part by a capillary
force provided by the micro-channel structure to achieve the heat dissipation. The
heat dissipation structure provided by the embodiment of the present disclosure applies
a two-phase flow heat dissipation technology and a micro-channel heat dissipation
technology, and the heat dissipation structure can be applied to a large-size display
device to provide a good heat dissipation effect.
[0032] The heat dissipation structure for the chip-on-film and the manufacturing method
thereof and the display device provided by the embodiments of the present disclosure
are described below with reference to the accompanying drawings.
[0033] An embodiment of the present disclosure provides a heat dissipation structure for
a chip-on-film. FIG. 1A is a partial cutting view of a heat dissipation structure
according to an example of the present disclosure, and FIG. 1B is a cross-sectional
view of the heat dissipation structure shown in FIG. 1A along line AB. As shown in
FIGs. 1A and 1B, the heat dissipation structure 100 for the chip-on-film includes:
a heat dissipation plate body 130 including an evaporation part 110 and a condensation
part 120; and a plurality of micro-cavity structures 140 disposed in the heat dissipation
plate body 130. Two ports of each of the micro-cavity structures 140 in the heat dissipation
plate body 130 are sealed and the micro-cavity structures 140 are filled with liquid
150, and the liquid 150 is not completely filled up the micro-cavity structures 140.
Each of the micro-cavity structures 140 of the heat dissipation structure 100 extends
from the evaporation part 110 to the condensation part 120, and the evaporation part
110 is filled with the liquid 150 which absorbs the heat of the heat source close
to the evaporation part 110 (for example, the chip for the chip-on-film), and then
changes to vapor. The vapor moves toward the condensation part 120 in the micro-cavity
structures 140. The vapor moved to the condensation part 120 is condensed and liquefied
and moves toward the evaporation part 110 by means of the capillary force provided
by the micro-cavity structures 140 (for example, the micro-channel structures). After
the liquid 150 moves to the evaporation part 110, it continues to absorb heat to evaporate
so as to implement a phase change cycle, thereby achieving a heat dissipation effect
which rapidly transfers the heat.
[0034] It should be noted that, FIGs. 1A and 1B are schematic diagrams showing that the
condensation part 120 on the right side of the heat dissipation structure 100 is partially
cut. In the partial cutting diagram, the plane 1201 perpendicular to an extending
direction AB of the micro-cavity structure 140 can clearly illustrate the cross-sectional
shape of the internal micro-cavity structure 140 of the heat dissipation structure
100. Here, an example in which the cross section of the micro-cavity structure 140
is a rectangular shape is illustrated, but it is not limited thereto. For example,
it can be a circular shape, a polygonal shape, or an irregular shape. In addition,
the shape of the condensation part 120 on the right side of the heat dissipation structure
100 should be the same as the left side, that is, the heat dissipation structure has
a closed state.
[0035] It should be noted that, the "phase change cycle" herein refers to the evaporation-condensation
cycle of the two-phase flow heat dissipation technology, which uses the liquid to
absorb heat at the evaporation part close to the heat source, the liquid changes to
vapor, and then the vapor condenses and dissipates heat at the condensation part to
rapidly conduct the heat. Furthermore, the thermal conductivity efficiency of the
technology is higher than that of a general solid material.
[0036] For example, the "micro-cavity structure" of the present embodiment can refer to
a micro-channel. The heat dissipation structure 100 is provided with a micro-cavity
structure 140. The tiny space of the micro-cavity structure 140 can provide a capillary
pulling force for the liquid 150, and the capillary pulling force can facilitate to
pull back the liquid condensed in the cavity from the condensation part 120 to the
evaporation part 110 close to the heat source in time, thereby resisting the thrust
of the vapor pressure in the micro-cavity structure 140, to prevent the evaporation
part 110 from continuously drying in a large area, so as to improve performance and
efficiency of the heat dissipation structure 100. Therefore, the heat dissipation
structure provided by the embodiment of the present disclosure applies the two-phase
flow heat dissipation technology and micro-channel heat dissipation technology to
provide a good heat dissipation effect.
[0037] For example, the "micro-cavity structure" of the present embodiment can also refer
to a wire mesh or a sintered structure or the like, and the cross-sectional shape
of these structures can be a regular shape or an irregular shape. These structures
are also capable of providing the capillary pulling force to the liquid condensed
in the cavity so that the condensed liquid can flow back from the condensation part
to the evaporation part in time.
[0038] For example, as shown in FIGs. 1A and 1B, the heat dissipation structure 100 has
a U-shaped cross section along the extending direction of the micro-cavity structure
140, that is, the cross section of the heat dissipation structure 100 along the line
AB is the U-shape. The "U" shape here includes a standard U-shape and an approximate
U-shape.
[0039] FIGs.1C and 1D are schematic cross-sectional views of the heat dissipation structure
100 along the line AB of FIG. 1A according to some examples of the present disclosure,
and the cross section of the heat dissipation structure 100 illustrated in FIGs. 1C
and 1D has an approximate U-shape. For example, it can be an approximate U-shape similar
to a para-curve, as shown in FIG. 1C, or an approximate U-shape consist of straight
lines, as shown in FIG. 1D.
[0040] Upon the heat dissipation structure 100 being used for dissipating heat of the chip
for the COF in a large-size display device, on the one hand, because the form of the
COF of the display device is often "U" shape, that is, the COF has a U-shaped cross
section, the heat dissipation structure having the U shape can better support the
COF. On the other hand, because the chip for the COF is disposed at a bent part of
the COF (the U-shaped COF bent part), the evaporation part 110 provided by the present
example is disposed at the bent part of the U-shaped heat dissipation structure 100
(U-shaped cross section), which can facilitate the gather of the liquid in the bent
part and make the liquid close to the chip for the COF, so that the U-shaped heat
dissipation structure 100 can provide a better heat dissipation effect.
[0041] For example, as shown in FIGs. 1A and 1B, the condensation part 120 is disposed at
an end of the U-shaped heat dissipation structure 100 (U-shaped cross section), that
is, the U-shaped heat dissipation structure 100 includes two ends, and the micro-cavity
structure 140 can extend from the bent part of the heat dissipation structure 100
to at least one end of the heat dissipation structure 100.
[0042] For example, the micro-cavity structure 140 can extend from the bent part to one
end of the U-shaped heat dissipation structure 100 to form an approximate L-shaped
(or J-shaped) cross section.
[0043] For example, the micro-cavity structure 140 can also extend from the bent part to
both ends of the U-shaped heat dissipation structure 100 to form a U-shaped cross
section. In the present embodiment, an example in which the condensation part 120
is disposed at both ends of the U-shaped heat dissipation structure 100 is illustrated.
[0044] For example, as shown in FIG. 1A, a plurality of micro-cavity structures 140 provided
by the present embodiment are provided in parallel to each other, that is, each of
the micro-cavity structures 140 is sequentially arranged in parallel in a direction
(Y direction) perpendicular to a plane in which the micro-cavity structure 140 extends.
In the present embodiment, an example in which the plurality of micro-cavity structures
140 of the heat dissipation structure are provided in parallel is illustrated. On
the one hand, uniform heat dissipation can be ensured, and on the other hand, in the
case where the size of the heat dissipation structure 100 is constant, the evaporation
part 110 can be filled with more liquid 150 to achieve an optimum heat dissipation
effect. The present embodiment includes it but is not limited thereto, and for example,
the plurality of micro-cavity structures can also be provided in non-parallel.
[0045] For example, as shown in FIGs. 1A and 1B, a maximum size
d of the cross section of each of the micro-cavity structures 140 in a plane perpendicular
to the extending direction of the micro-cavity structures 140 (for example, the plane
1201) is 10 µm -2 mm.
[0046] For example, as shown in FIGs. 1A and 1B, in the embodiment, an example in which
the cross section of the micro-cavity structure 140 in a plane 1201 perpendicular
to the extending direction of the micro-cavity structure 140 is a rectangular is illustrated,
and the maximum size
d is a diagonal size of the rectangular. The embodiment is not limited thereto. For
example, in a case that the cross section of the micro-cavity structure 140 in a plane
perpendicular to the extending direction of the micro-cavity structure 140 is a circular,
the maximum size
d is the diameter of the circular; alternatively, in a case that the cross section
of the micro-cavity structure 140 in the plane perpendicular to the extending direction
of the micro-cavity structure 140 is an irregular shape, the maximum size
d is the largest size of the irregular shape in each direction.
[0047] For example, in the direction perpendicular to the plane in which the micro-cavity
structure 140 extends (for example, a U-shaped or approximate U-shaped cross section),
that is, in the Y direction, the maximum size of each of the micro-cavity structures
140 is 10µm-1mm. The embodiment includes this but is not limited thereto. In a case
that the cross-sectional shape of each of the micro-cavity structures 140 is a rectangle
as shown in FIG. 1A, each of the micro-cavity structures 140 has a size of 10 µm-1
mm in the Y direction, that is, in the Y direction, the side length of the rectangle
is 10µm-1mm; in a case that the cross-sectional shape of each of the micro-cavity
structures 140 is a circular, a polygonal or an irregular, the maximum size of each
of the micro-cavity structures 140 in the Y direction is 10µm-1 mm, and in the Y direction,
a minimum size of each of the micro-cavity structures 140 can be in a range of 10µm-1
mm or less than 10µm. In the embodiment, the example in which the cross section of
the end of the micro-cavity structure 140 is a rectangular. The embodiment includes
this but is not limited thereto. In a case that the micro-cavity structures have a
mesh structure or a sintered structure, each opening of the mesh structure or the
sintered structure has a maximum size of 10µm-1 mm in the Y direction.
[0048] For example, as shown in FIG. 1A, in a case that the cross section of the micro-cavity
structure 140 in a plane perpendicular to the extending direction of the micro-cavity
structure 140 is a rectangular, the maximum size of the micro-cavity structure 140
in the X direction is 0.1mm-2 mm. That is, the side length of the rectangular cross
section of the micro-cavity structure 140 in the X direction is 0.1 mm-2 mm, and the
embodiment includes this but is not limited thereto. The micro-cavity structure provided
by the present embodiment has a very small aperture diameter, and thus a capillary
pulling force can be provided for the condensed liquid in the cavity to enable the
condensed liquid to flow from the condensation part back to the evaporation part in
time.
[0049] For example, as shown in FIGs. 1A and 1B, the plurality of micro-cavity structures
140 are in communication with each other, that is, adjacent micro-cavity structures
140 are in communication with each other. In the present embodiment, an example in
which the adjacent micro-cavity structures 140 are in communication by a narrow channel
141 having the same extending direction as the micro-cavity structure 140 is illustrated.
In the present embodiment, the maximum size of the cross section of each of the micro-cavity
structures 140 in a plane perpendicular to the extending direction of the micro-cavity
structures 140 does not take into account the size of the narrow channel 141. The
embodiment includes this but is not limited thereto. For example, adjacent micro-cavity
structures 140 can also be in communication by through pores or the like. The plurality
of micro-cavity structures of the present embodiment are in communication with each
other, so that the liquid filled in the evaporation part can be distributed more uniform,
and the evaporated liquid contacts with the condensation part more uniform to achieve
a better heat dissipation effect.
[0050] For example, as shown in FIG. 1A, the heat dissipation plate body 130 includes a
first substrate 132 and a second substrate 133. The first substrate 132 and the second
substrate 133 are attached and sealed to each other, so that the plurality of micro-cavity
structures 140 are formed between the first substrate 132 and the second substrate
133.
[0051] For example, a thickness of the first substrate 132 (the second substrate 133) can
be 0.2 mm-2 mm, and a thickness of the heat dissipation plate body formed by attaching
the first substrate to the second substrate can be 0.5 mm-5 mm. The embodiment includes
this but is not limited thereto.
[0052] For example, the first substrate 132 is provided with a plurality of first grooves,
and the second substrate 133 is provided with a plurality of second grooves. A side
of the first substrate 132 provided with the first grooves and a side of the second
substrate 133 provided with the second grooves are attached and sealed, and an orthographic
projection of the plurality of first grooves on the second substrate 133 coincides
with the plurality of second grooves, so that the plurality of first grooves and the
plurality of second grooves are bonded in one-to-one correspondence to form the plurality
of micro-cavity structures 140.
[0053] For example, the first grooves and the second grooves do not run through the first
substrate 132 and the second substrate 133 in the extending direction thereof. The
periphery edges of the first substrate and the second substrate in the present example
are sealed to ensure that two ports of each of the micro-cavity structures are sealed
to prevent the liquid from flowing out of the micro-cavity structures.
[0054] The present embodiment includes this but is not limited thereto. For example, the
first groove (second groove) provided in the first substrate 132 (the second substrate
133) runs through the first substrate 132 (the second substrate 133) in at least one
direction of the extending direction thereof, so that the micro-cavity structure 140
runs through the heat dissipation plate body 130 in the at least one direction of
the extending direction.
[0055] For example, the ports of the micro-cavity structures 140 running through the heat
dissipation plate body 130 are sealed. For example, the material of the first substrate
132 (the second substrate 133) has the same material, and a material having thermal
conductivity higher than the thermal conductivity of the first substrate 132 (the
second substrate 133) is provided at the port of the micro-cavity structure 140 that
runs through the heat dissipation plate body 130 as the condensation part 120 of the
heat dissipation structure 100. That is, the thermal conductivity of the condensation
part 120 of the heat dissipation structure 100 provided by the present embodiment
is higher than that of the evaporation part 110 to achieve a better condensation effect,
and the present embodiment is not limited thereto.
[0056] For example, the material provided on the port of the micro-cavity structure 140
running through the heat dissipation plate body 130 can be copper having a higher
thermal conductivity, and the first substrate 132 (the second substrate 133) may be
made of aluminum having a lower thermal conductivity than the thermal conductivity
of the copper, so that the heat dissipation structure has a better heat dissipation
effect.
[0057] For example, in the present example, the first substrate (and/or the second substrate)
can include two materials, for example, the condensation part can be made of copper
having a higher thermal conductivity, and the evaporation part can be made of aluminum
having a lower thermal conductivity, in order to achieve a better heat dissipation
effect of the heat dissipation structure.
[0058] For example, the material of the heat dissipation plate body 130 (including the condensation
part and the evaporation part) can be the same material. For example, the material
can include copper, aluminum, graphite, or ceramics or the like which is advantageous
for heat dissipation. For example, in order to achieve a better evaporation and condensation
effect, the condensation part 120 of the heat dissipation plate body 130 can be doped
with a material having better heat dissipation property, and the present embodiment
includes this but is not limited thereto.
[0059] For example, the heat dissipation plate body can also include only one substrate.
A center line may be provided on the substrate, and then both sides of the center
line are processed to form symmetrically distributed grooves, and then the substrate
is folded along the center line to ensure that the grooves are completely bonded to
form the plurality of micro-cavity structures.
[0060] For example, as shown in FIGs. 1A and 1B, a region of the micro-cavity structure
140 that is not filled with the liquid 150 includes a negative pressure region 151,
that is, the gas pressure of the region of the micro-cavity structure 140 that is
not filled with the liquid 150 is lower than the standard atmospheric pressure to
prevent explosion of the micro-cavity structures 140 due to volume expansion in a
case that the liquid 150 absorbs heat and vaporizes at the evaporation part 110.
[0061] For example, the liquid 150 includes one of or a mixture of more than one selected
from the group consisting of water, ethanol, acetone, and a solvent containing nanoparticles,
and the like. The present embodiment includes this, but is not limited thereto, as
long as the liquid can be evaporated by heating and be condensed by cooling. For example,
the nanoparticles can be carbon nanotubes or the like, and the solvent containing
the nanoparticles can be water, ethanol or acetone.
[0062] For example, FIG. 2 is a partial schematic view showing an internal structure of
the heat dissipation structure shown in FIG. 1A. For example, FIG. 2 can be a partial
schematic view of the first substrate 132 of FIG. 1A provided with the first grooves.
It should be noted that, the first grooves 142 of FIG. 2 are a portion of the micro-cavity
structures 140. As shown in FIG. 2, a surface of the evaporation part 110 is provided
with a concave part 131 for wrapping a heat source such as the chip for the COF. That
is, the heat source can be disposed in the concave part 131. Therefore, the shape
and size of the concave part 131 can be designed according to the shape and size of
the heat source.
[0063] For example, the concave part 131 can be disposed in one of the upper and lower surfaces
of the evaporation part 110 in the Z direction. FIG. 2 illustrates an example in which
the concave part 131 is disposed in the lower surface of the evaporation part 110,
that is, an opening of the concave part 131 faces away from the condensation part,
but it is not limited thereto.
[0064] For example, the concave part 131 can also be disposed in the upper surface of the
evaporation part 110, that is, the opening of the concave part 131 faces the condensation
part. For example, a depth of the concave part 131 in the Z direction can be 0.5-1
mm, and the present embodiment includes this, but is not limited thereto.
[0065] It should be noted that, in a case that the thickness of the heat source in the Z
direction is less than the thickness of the bent part of the heat dissipation plate
body 130 (the solid part of the micro-cavity structure facing the heat source) in
the Z direction, the design of the micro-cavity structure would not be influenced;
in a case that the thickness of the heat source in the Z direction is not less than
the thickness of the bent part of the heat dissipation plate body 130 (the solid part
of the micro-cavity structure facing the heat source) in the Z direction, in order
to prevent leakage of the liquid in the micro-cavity structures, the heat dissipation
plate body 130 is not provided with any micro-cavity structure at the concave part
131, and the present embodiment includes this, but is not limited thereto.
[0066] For example, FIG. 3 is a schematic structural diagram of a heat dissipation structure
according to another example of an embodiment of the present disclosure. As shown
in FIG. 3, a cross section of the heat dissipation structure 100 along an extending
direction of the micro-cavity structures (not shown) is L-shape. The "L" shape herein
includes a standard L-shape and an approximate L-shape or a J-shape, and FIG. 3 shows
an approximate L-shape. Because the chip for the COF is disposed at the bent part
of the COF, in a case that the heat dissipation structure 100 provided by the present
example is used to dissipate heat of the chip for the COF, the evaporation part 110
is disposed at one end of the L-shaped cross section close to the heat source (the
chip for the COF), that is, close to the position of the chip for the COF, which can
have a better heat dissipation effect. The present embodiment is not limited thereto,
and the evaporation part of the heat dissipation plate body can also be disposed at
other positions, as long as it can dissipate the heat of the heat source.
[0067] For example, as shown in FIG. 3, the condensation part 120 is disposed at one end
of the L-shaped heat dissipation structure (L-shaped cross section) 100 far away from
the heat source, that is, the micro-cavity structures can extend from the end of the
L-shaped heat dissipation structure 100 close to the heat source to the end of the
L-shaped heat dissipation structure 100 far away from the heat source. The heat dissipation
structure provided by the present example has the same features as the heat dissipation
structure shown in FIG. 1A except for the shape, and details will not be repeated
herein.
[0068] Another embodiment of the present disclosure provides a display device. FIG. 4A is
a partial schematic structural diagram of a display device according to an embodiment
of the present disclosure. As shown in FIG. 4A, the display device includes a chip-on-film
(COF) and the heat dissipation structure 100 of any of the above embodiments. Here,
an example in which the cross section of the chip-on-film 200 has a U-shape, that
is, the cross section in the XZ plane as shown is U-shape, and the cross section of
the heat dissipating structure 100 along the extending direction of the micro-cavity
structure is U-shape, is illustrated. That is, the example in which the cross section
of the XZ plane as shown is U-shape is illustrated. The U-shaped heat dissipation
structure 100 can provide better support for the chip-on-film 200. The chip-on-film
200 includes a chip 210 which is disposed on an inner side of the bent part of the
U-shaped chip-on-film 200 (as shown in FIG. 4A). As shown in FIG. 4A, the heat dissipation
structure 100 is attached to the chip-on-film 200, and an orthographic projection
of the chip 210 on the heat dissipation structure 100 falls into the evaporation part
110. In the present embodiment, an example in which the heat dissipation structure
100 is attached to a side of the chip-on-film 200 facing away from the chip 210 is
illustrated. It should be noted that, the shape of the heat dissipation structure
can also be an approximate L-shape, as shown in FIG. 3, and the manner of attaching
to the chip-on-film and the heat dissipation principle of the L-shaped heat dissipation
structure are similar to those of the U-shaped heat dissipation structure, and will
not be repeated herein.
[0069] For example, the chip can also be disposed on an outer side of the bent part of the
U-shaped chip-on-film, and the heat dissipation structure can be attached to a side
of the chip-on-fihn facing away from the chip, that is, the heat dissipation structure
is attached to the inner side of the chip-on-film; the heat dissipation structure
can also be attached to the side of the chip-on-film facing the chip, that is, the
heat dissipating structure is attached to the outer side of the chip-on-film (the
side on which the chip is disposed), and in this case, the surface of the evaporation
part should be provided with a concave part to wrap the chip (not shown).
[0070] For example, as shown in FIG. 4A, the display device further includes a display panel
300 connected to one end of the chip-on-film 200, and a timing control (TCON) circuit
board 400 or a source circuit board 400 connected to the other end of the chip-on-film
200.
[0071] For example, after the display panel 300 starts to operate, the chip 210 for the
COF starts to generate heat, and the temperature of the chip for the COF 210 gradually
increases. As the temperature of the chip 210 increases, the liquid in the evaporation
part 110 of the heat dissipation plate body close to the chip 210 (the U-shaped bent
part) absorbs heat and evaporates. Meanwhile, the vapor pressure of the evaporation
part 110 increases, and the vapor rapidly moves to the condensation part 120 (at least
one end of the U-shaped heat dissipation structure 100) under the vapor pressure.
In the present embodiment, an example in which the condensation part 120 is disposed
at both ends of the U-shaped heat dissipation structure 100 is illustrated, but it
is not limited thereto. In a case that the vapor with high temperature moves to the
condensation part 120 with low temperature, the heat of the vapor is released and
the vapor is condensed into the liquid, and the liquid just condensed at the condensation
part 120 is pulled back to the evaporation part 110 by the gravity of the condensed
liquid and the capillary pulling force of the micro-cavity structures, and then, the
liquid absorbs heat at the evaporation part 110 again to produce a phase change, so
as to form a complete evaporation-condensation cycle, that is, the heat absorption
and release cycle. Such a phase change cycle can continuously remove the heat of the
chip 210 to achieve the effect of cooling the chip 210.
[0072] For example, FIG. 4B is a partial structural diagram of a display device according
to another example of an embodiment of the present disclosure. As shown in FIG. 4B,
FIG. 4B is different from FIG. 4A in that one side of the heat dissipation structure
100 is provided with a concave part 131, and the side of the heat dissipation structure
provided with the concave part 131 is attached to the side of the chip-on-film 200
provided with the chip 210, and the chip 210 is in the concave part 131. That is,
in a case that the U-shaped heat dissipation structure 100 is attached to the side
of the chip-on-film 200 provided with the chip 210, because the chip 210 generally
protrudes by about 0.5-1 mm from the surface of the chip-on-film 200, the concave
part 131 is formed on the surface of the evaporation part 110. The shape and size
of the concave part 131 are determined by the shape and size of the chip 210. For
example, the thickness of the concave part 131 in the Z direction can be 0.5-1 mm,
and the chip 210 is in the concave part 131 so as to better wrap the chip 210. The
purpose of providing the concave part in the example is to increase the heat transfer
contact area and protect the chip in terms of the mechanical structure.
[0073] For example, as shown in FIGs. 4A and 4B, a thermal silicone grease 500 is provided
between the heat dissipation structure 100 and the chip-on-film 200. That is, whether
the heat dissipation structure 100 is attached to the side of the chip-on-film 200
provided with the chip 210 or the side of the chip-on-film 200 facing away from the
chip 210, the thermal silicone grease 500 (i.e. the heat interface material) is provided
between the heat dissipation structure 100 and the chip-on-film 200, which can conduct
the heat radiated from the chip for the chip-on-film 20 to the heat dissipation structure
100, so that the temperature of the chip 210 can keep at a level at which it can work
stably, so as to prevent the chip 210 from being damaged due to poor heat dissipation
and prolong its service life.
[0074] For example, the thermal silicone grease is also called thermal grease. The thermal
grease is made of organic silicone as a main raw material, and is added a material
having excellent heat resistance and thermal conductivity to form thermal conductive
silicone grease composite. The thermal silicone grease is a high heat conductive and
insulation silicone material which almost cannot be cured. The thermal silicone grease
can maintain a long-lasting grease state at temperatures between -50°C and 230°C,
and has excellent electrical insulation and excellent heat conduction properties.
[0075] The heat dissipation structure of the display device provided by the present embodiment
applies the two-phase flow heat dissipation technology and the micro-channel heat
dissipation technology to achieve the technical effect of dissipating heat of the
chip for the chip-on-film to reduce the temperature of the chip for the chip-on-film,
thereby solving the problem of excessive heat and high temperature of the chip for
the chip-on-film in the large-size display device.
[0076] For example, the display device can be a display device such as a liquid crystal
display device, an organic light-emitting diode (OLED) display device and the like,
and any products or components having displaying function and including the display
device, such as a television, a digital camera, a mobile phone, a watch, a tablet
computer, a notebook computer, and a navigation device. The embodiment is not limited
thereto.
[0077] Another embodiment of the present disclosure provides a method of manufacturing a
heat dissipation structure. FIG. 5 is a schematic flowchart of a method of manufacturing
a heat dissipation structure according to an embodiment of the present disclosure.
As shown in FIG. 5, the method includes the following steps.
[0078] S301: forming a heat dissipation plate body having a plurality of micro-cavity structures;
[0079] S302: filling the plurality of micro-cavity structures with liquid, wherein the heat
dissipation plate body includes an evaporation part and a condensation part, each
of the plurality of micro-cavity structures extends from the evaporation part to the
condensation part, and after the liquid absorbs heat at the evaporation part to change
into vapor, the vapor moves toward the condensation part, and the vapor moved to the
condensation part is condensed and liquefied and moves toward the evaporation part
to achieve heat dissipation.
[0080] For example, FIG. 6A is a schematic diagram of a heat dissipation structure in a
manufacturing process according to an example of an embodiment of the present disclosure.
As shown in FIG. 6A, the heat dissipation plate body 130 includes a first substrate
132 and a second substrate 133. A plurality of first grooves (such as the first groove
142 shown in FIG. 2) are formed in the first substrate 132. For example, the plurality
of first grooves are grooves arranged in parallel, and the first grooves do not run
through the first substrate 132 in the extending direction of the grooves (the first
grooves as shown in FIG. 1A). A plurality of second grooves (such as the second groove
143 shown in FIG. 1A) are formed in the second substrate 133. For example, the plurality
of second grooves are grooves arranged in parallel, and the second grooves do not
run through the second substrate 133 in the extending direction of the grooves. A
side of the first substrate 132 provided with the first grooves is attached to a side
of the second substrate 133 provided with the second grooves, and an orthographic
projection of the plurality of first grooves on the second substrate 133 coincides
with the plurality of second grooves, so that the plurality of first grooves are bonded
to the plurality of second grooves in one-to-one correspondence to form the plurality
of micro-cavity structures. Then, the periphery edges of the first substrate 132 and
the second substrate 133 are welded and sealed, and at least one non-welded area is
retained at the edge during welding. For example, an example in which an opening 134
(i.e. the non-closed area 134) is illustrated, but it is not limited thereto, and
it is also possible to have a plurality of openings. The openings 134 can be used
for subsequent filling the liquid.
[0081] For example, upon the heat dissipation structure being filled from the opening 134,
a certain amount of the liquid can be pressed into the micro-cavity structures of
the heat dissipation structure from the opening 134 by using a vacuum device, and
finally the opening is sealed by welding and sintering, or is blocked by heat resistance,
to form a completely enclosed U-shaped heat dissipation plate structure containing
a quantity of the liquid.
[0082] For example, in the liquid filling period, different strengths of negative pressure
can be selected to change the liquid filling rate to the heat dissipation structure
so that the micro-channel structure includes the liquid and the negative pressure
region.
[0083] For example, the liquid filled in the heat dissipation structure is distributed in
the bent part of the U-shaped heat dissipation structure due to the gravity of the
liquid, and the unfilled region in the micro-cavity structure includes the negative
pressure region. That is, the air pressure in the region of the micro-cavity structure
that is not filled with liquid is lower than the standard atmospheric pressure, to
prevent explosion of the micro-cavity structures due to volume expansion in a case
that the liquid absorbs heat and vaporizes at the evaporation part.
[0084] For example, the liquid includes one of or a mixture of more than one selected from
the group consisting of water, ethanol, acetone, and solvent containing nanoparticles,
and the like. The embodiment includes this, but is not limited thereto, as long as
the liquid can be evaporated by heating and be condensed by cooling.
[0085] For example, the first grooves (the second grooves) can also run through the first
substrate 132 (the second substrate 133) in the extending direction of the grooves.
Because the formed micro-cavity structures have a capillary phenomenon, the heat dissipation
plate body with the formed micro-cavity structures can be placed in the liquid to
inhale a certain amount of the liquid, and after that the micro-cavity structures
are sealed. Alternatively, a certain amount of the liquid can be pressed into the
micro-cavity structures from the opening at the end of the micro-cavity structures
by using a vacuum device, and then the micro-cavity structures are sealed. The present
embodiment does not limit the method of filling the liquid.
[0086] For example, FIG. 6B is a schematic diagram of a heat dissipation structure in the
manufacturing process according to another example of an embodiment of the present
disclosure. As shown in FIG. 6B, the heat dissipation plate body 130 includes a substrate,
a plurality of grooves extending in a first direction and arranged in a second direction
are formed in the substrate (similar to the first grooves 142 as shown in FIG. 2),
the first direction and the second direction are crossed to each other; then the substrate
is folded in the first direction to bond the plurality of grooves so as to form the
plurality of micro-cavity structures; after folding, three sides of the substrate
are welded and sealed except for the folded side, and at least one non-welded area
is retained at the edge during welding. For example, the example illustrates one opening
134 as an example. However, it is not limited thereto and the non-welded area can
have a plurality of openings, and the retained openings 134 are used to subsequently
fill the micro-cavity structures with the liquid. The method of filling the liquid
in the present example is the same as the above example, and will not be repeated
here.
[0087] For example, the heat dissipation plate body having the plurality of micro-cavity
structures can also be formed by using a 3D printing technology.
[0088] For example, the heat dissipation structure is manufactured into the U-shape or the
L-shape along the extending direction of the micro-cavity structure, that is, the
heat dissipation structure is processed such that the cross section of the heat dissipation
structure is the U-shape or the L-shape in the extending direction of the micro-cavity
structure. Here, the U-shape and the L-shape refer to the approximate U-shape and
L-shape, and the schematic diagram of the present embodiment mainly describes the
U-shaped heat dissipation structure as an example. For the L-shaped heat dissipation
structure, the heat dissipation principle is similar to the U-shaped heat dissipation
structure, and will not be repeated here.
[0089] For example, a maximum size of the cross section of each of the micro-cavity structures
in a plane perpendicular to the extending direction of the micro-cavity structures
is 10µm-2 mm, and the embodiment includes this but is not limited thereto. The micro-cavity
structure provided by the embodiment has a very small aperture diameter, and thus
a capillary pulling force can be provided for the condensed liquid in the cavity to
enable the condensed liquid to flow from the condensation part back to the evaporation
part in time.
[0090] For example, the plurality of micro-cavity structures are in communication with each
other, that is, adjacent micro-cavity structures are in communication with each other.
[0091] For example, an example in which the plurality of micro-cavity structures of the
heat dissipation structure are arranged in parallel is illustrated. On the one hand,
uniform heat dissipation can be ensured by arranging the plurality of micro-cavity
structures in parallel, and on the other hand, in a case that the size of the heat
dissipation structure is constant, the evaporation part can be filled with more liquid
to achieve an optimum heat dissipation effect. The present embodiment includes this
but is not limited thereto, and for example, the plurality of micro-cavity structures
can also be arranged in non-parallel. Upon the micro-cavity structures being arranged
in non-parallel, in a case that the heat dissipation plate body includes the first
substrate and the second substrate, the plurality of micro-cavity structures can be
formed by completely bonding the first grooves and the second grooves; in a case that
the heat dissipation plate body includes only one substrate, a center line can be
provided on the substrate, and then both sides of the center line are processed to
form symmetrically distributed grooves, and then the substrate is folded along the
center line to ensure to form the plurality of micro-cavity structures by bonding
the grooves. For example, the micro-cavity structure produced in the present embodiment
can further include a mesh or a sintered structure, and the like, which is not limited
in the present embodiment.
[0092] For example, the heat dissipation plate body includes an evaporation part and a condensation
part, and each of the micro-cavity structures extends from the evaporation part to
the condensation part. The evaporation part is filled with the liquid, to absorb heat
at the evaporation part to change into vapor, the vapor moves toward the condensation
part, and the vapor moved to the condensation part is condensed and liquefied and
moves toward the evaporation part to achieve the phase change cycle. On the one hand,
the "phase change cycle" herein refers to the evaporation-condensation cycle of the
two-phase flow heat dissipation technology, which uses the liquid to absorb the heat
at the evaporation part close to the heat source, the liquid changes to vapor, and
then the vapor condenses and dissipates heat at the condensation part, to rapidly
conduct the heat, Furthermore, the heat transfer efficiency of this technology is
higher than that of a general solid material. On the other hand, the "micro-cavity
structure" of the present embodiment can refer to a micro-channel. The heat dissipation
structure is provided with the micro-cavity structure. The tiny space of the micro-cavity
structure can provide a capillary pulling force for the liquid, and the capillary
pulling force can facilitate to pull back the liquid condensed in the cavity from
the condensation part to the evaporation part close to the heat source in time, thereby
resisting the thrust of the vapor pressure in the micro-cavity structure, to prevent
the evaporation part from generating continuously drying in a large area, so as to
improve the performance and efficiency of the heat dissipation structure. Therefore,
the heat dissipation structure provided by the embodiment of the present disclosure
applied with the two-phase flow heat dissipation technology and the micro-channel
heat dissipation technology, can provide a good heat dissipation effect.
[0093] For example, the "micro-cavity structure" of the embodiment can also refer to the
mesh or the sintered structure, etc., which can also provide the capillary pulling
force for the condensed liquid in the cavity to enable the condensed liquid to flow
from the condensation part back to the evaporation part in time.
[0094] For example, the heat dissipation plate body has a U-shaped cross section along the
extending direction of the micro-cavity structures, the evaporation part is disposed
at the bent part of the U-shaped cross section, and the condensation part is disposed
at the end of the U-shaped cross section (or the heat dissipation plate body has a
L-shaped cross section in the extending direction of the micro-cavity structures,
the evaporation part is disposed at one end of the L-shaped cross section, and the
condensation part is disposed at the other end of the L-shaped cross section).
[0095] For example, it is also possible to form a concave part in the surface of the evaporation
part for wrapping a heat source such as a chip for a chip-on-film. Therefore, the
shape and size of the concave part can be designed according to the shape and size
of the heat source. For example, the depth of the concave part may be 0.5 - 1 mm,
and the embodiment includes this, but is not limited thereto.
[0096] It should be noted that, as shown in FIG. 2, upon the thickness of the heat source
in the Z direction being less than the thickness of the bent part of the heat dissipation
plate body 130 (the solid part of the micro-cavity structure facing the heat source
side) in the Z direction, the design of the micro-cavity structure will not be effected;
upon the thickness of the heat source in the Z direction being not less than the thickness
of the bent part of the heat dissipation plate body 130 (the solid part of the micro-cavity
structure facing the heat source side) in the Z direction, in order to prevent the
liquid in the micro-cavity structure 140 from leakage, the micro-cavity structure
140 is not provided at the heat dissipation plate body 130 where the concave part
131 is provided, and the embodiment includes this but is not limited thereto.
[0097] For example, the heat dissipation plate body can have the same material, including
materials such as copper, aluminum, graphite, ceramics, and the like, which have good
heat dissipation property. The embodiment illustrates an example in which the heat
dissipation plate body are made of copper.
[0098] For example, the thermal conductivity of the condensation part is higher than that
of the evaporation part. For example, in order to achieve a better evaporation and
condensation effect, the heat dissipation plate body disposed in the condensation
part can be doped with a material having better heat dissipation property, and the
embodiment includes this but is not limited thereto. For example, it is also possible
to use a material different from the evaporation part in the condensation part, that
is, the thermal conductivity of the material used in the condensation part is higher
than that of the material used in the evaporation part to achieve a better condensation
effect.
[0099] The heat dissipation structure of the display device manufactured by the method of
manufacturing the heat dissipation structure provided by the embodiment applies the
two-phase flow heat dissipation technology and the micro-channel heat dissipation
technology to achieve the technical effect of dissipating heat of the chip for the
chip-on-film to reduce the temperature of the chip-on-film, thereby solving the problem
of excessive heat and high temperature of the chip for the chip-on-film in the large-size
display device.
[0100] The following statements should be noted:
- (1) Unless otherwise defined, in the embodiments and accompanying drawings in the
present disclosure, the same reference numeral represents the same meaning.
- (2) The accompanying drawings involve only the structure(s) in connection with the
embodiment(s) of the present disclosure, and other structure(s) can be referred to
common design(s).
- (3) For the purpose of clarity, in accompanying drawings for illustrating the embodiment(s)
of the present disclosure, layer(s) or region(s) may be enlarged. However, it should
understood that, in the case in which a component or element such as a layer, film,
region, substrate or the like is referred to be "on" or "under" another component
or element, it may be directly on or under the another component or element or a component
or element is interposed therebetween.
[0101] The foregoing is only the embodiments of the present invention and not intended to
limit the scope of protection of the present invention, alternations or replacements
which can be easily envisaged by any skilled person being familiar with the present
technical field shall fall into the protection scope of the present disclosure. Thus,
the protection scope of the present disclosure should be based on the protection scope
of the claims.
1. A heat dissipation structure for a chip-on-film, comprising:
a heat dissipation plate body, comprising an evaporation part and a condensation part;
and
a plurality of micro-cavity structures, disposed in the heat dissipation plate body,
two ports of each of the plurality of micro-cavity structures being sealed, and the
plurality of micro-cavity structures being filled with liquid,
wherein each of the plurality of micro-cavity structures extends from the evaporation
part to the condensation part, and after the liquid absorbs heat at the evaporation
part to change into vapor, the vapor moves toward the condensation part, and the vapor
moved to the condensation part is condensed and liquefied and moves toward the evaporation
part to achieve heat dissipation.
2. The heat dissipation structure according to claim 1, wherein the heat dissipation
structure has a U-shaped or L-shaped cross section along an extending direction of
the plurality of micro-cavity structures.
3. The heat dissipation structure according to claim 1 or 2, wherein a maximum size of
a cross section of each of the plurality of micro-cavity structures in a plane perpendicular
to an extending direction of the plurality of micro-cavity structures is 10µm-2mm.
4. The heat dissipation structure according to any one of claims 1 to 3, wherein a region
of the plurality of micro-cavity structures which is not filled with the liquid comprises
a negative pressure region.
5. The heat dissipation structure according to any one of claims 1 to 4, wherein the
plurality of micro-cavity structures are in communication with each other.
6. The heat dissipation structure according to any one of claims 1 to 5, wherein the
plurality of micro-cavity structures are arranged in parallel to each other.
7. The heat dissipation structure according to any one of claims 1 to 6, wherein a surface
of the evaporation part is provided with a concave part.
8. The heat dissipation structure according to any one of claims 1 to 7, wherein a thermal
conductivity of the condensation part is higher than that of the evaporation part.
9. The heat dissipation structure according to any one of claims 1 to 8, wherein the
heat dissipation plate body comprises a first substrate and a second substrate, and
the first substrate and the second substrate are attached and sealed to each other,
so that the plurality of micro-cavity structures are formed between the first substrate
and the second substrate.
10. The heat dissipation structure according to any one of claims 1 to 9, wherein the
liquid comprises one of or a mixture of more than one selected from the group consisting
of water, ethanol, acetone, and solvent containing nanoparticles.
11. A display device comprising:
a chip-on-film, comprising a chip; and
the heat dissipation structure according to any one of claims 1 to 10,
wherein the heat dissipation structure is attached to the chip-on-film, and an orthographic
projection of the chip on the heat dissipation structure falls into the evaporation
part.
12. The display device according to claim 11, wherein the heat dissipation structure is
attached to a side of the chip-on-film facing away from the chip.
13. The display device according to claim 11, wherein one side of the heat dissipation
structure is provided with a concave part, and the side of the heat dissipation structure
provided with the concave part is attached to the side of the chip-on-film provided
with the chip, and the chip is in the concave part.
14. The display device according to any one of claims 11 to 13, wherein a thermal silicone
grease is provided between the heat dissipation structure and the chip-on-film.
15. A method of manufacturing the heat dissipation structure according to any of claims
1-10, comprising:
forming the heat dissipation plate body having the plurality of micro-cavity structures;
filling the plurality of micro-cavity structures with the liquid,
wherein the heat dissipation plate body comprises the evaporation part and the condensation
part, each of the plurality of micro-cavity structures extends from the evaporation
part to the condensation part, and after the liquid absorbs heat at the evaporation
part to change into vapor, the vapor moves toward the condensation part, and the vapor
moved to the condensation part is condensed and liquefied and moves toward the evaporation
part to achieve heat dissipation.
16. The method of manufacturing the heat dissipation structure according to claim 15,
wherein the heat dissipation plate body comprises a first substrate and a second substrate,
and forming the heat dissipation plate body having the plurality of micro-cavity structures
comprises:
forming a plurality of first grooves in the first substrate;
forming a plurality of second grooves in the second substrate;
attaching a side of the first substrate provided with the first grooves to a side
of the second substrate provided with the second grooves to form the heat dissipation
plate body having the plurality of micro-cavity structures,
wherein an orthographic projection of the plurality of first grooves on the second
substrate completely coincides with an orthographic projection of the plurality of
second grooves on the second substrate, so that the plurality of first grooves are
bonded to the plurality of second grooves in one-to-one correspondence to form the
plurality of micro-cavity structures.
17. The method of manufacturing the heat dissipation structure according to claim 15,
wherein forming the heat dissipation plate body having the plurality of micro-cavity
structures comprises:
providing a substrate;
presetting a center line on the substrate, and symmetrically processing both sides
of the center line to form a plurality of grooves symmetrically distributed on the
both sides of the center line;
folding the substrate along the center line to form the heat dissipation plate body
having the plurality of micro-cavity structures,
wherein the substrate is folded along the center line to bond the plurality of grooves
completely to form the plurality of micro-cavity structures.
18. The method of manufacturing the heat dissipation structure according to any one of
claims 15-17, wherein the heat dissipation plate body having the plurality of micro-cavity
structures is formed by using a 3D printing technique.
19. The method of manufacturing the heat dissipation structure according to any one of
claims 15 to 18, further comprising:
processing the heat dissipating structure so that the heat dissipation structure has
a U-shaped or L-shaped cross section along an extending direction of the plurality
of micro-cavity structures.
20. The method of manufacturing the heat dissipation structure according to claim 16 or
17, wherein after forming the plurality of micro-cavity structures, sealing periphery
edges of the heat dissipation plate body, and in the sealing, at least one unsealed
region is retained at an edge where the plurality of micro-cavity structures extend
to the heat dissipation plate body so as to fill the plurality of micro-cavity structures
with the liquid, and sealing the unsealed region after filling the liquid.