(11) EP 3 663 443 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

10.06.2020 Bulletin 2020/24

(51) Int CI.:

D01G 7/04 (2006.01)

(21) Application number: 19211542.6

(22) Date of filing: 26.11.2019

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

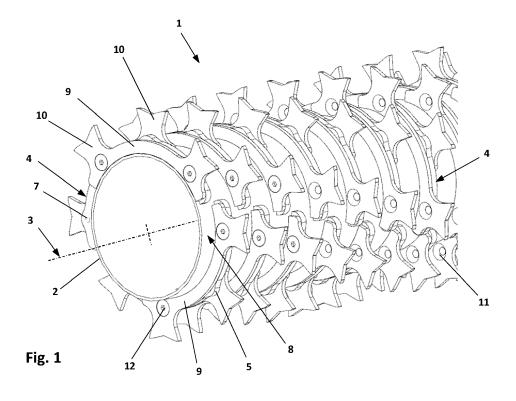
Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 03.12.2018 CH 14862018


(71) Applicant: Maschinenfabrik Rieter AG 8406 Winterthur (CH)

(72) Inventor: BRAUN, Lukas 8408 Winterthur (CH)

(54) **EXTRACTION ROLLER**

(57) The invention relates to an extraction roller (1) for mechanically opening fiber bales, having a base body (2) designed as a tube, a roller axis (3), and fastening elements (4, 5) situated on the base body (2) along the roller axis (3). The fastening elements (4) protrude perpendicularly from a surface (6) [sic; (8)] of the base body (2), and each fastening element (4) has at least one through opening (5) [sic; (7)], parallel to the roller axis (3), for fastening tooth elements (7) [sic; (9)]. Two tooth elements (7) [sic; (9)] in each case, having at least two

teeth 8 [sic; (10)] in each case, are mounted on each fastening element (4). The two tooth elements (7) [sic; (9)] are situated at the particular fastening element (4) on opposite sides thereof. The tooth elements (7) [sic; (9)] are arranged in a circumferential direction of the base body (2) in such a way that the teeth 8 [sic; (10)] of the respective tooth elements (7) [sic; (9)] fastened to a fastening element (4) are offset relative to one another in the circumferential direction.

30

40

[0001] The invention relates to an extraction roller for mechanically opening fiber bales.

1

[0002] Extraction rollers are used in so-called bale take-off machines or bale openers to extract fibers or fiber flocks from pressed fiber bales. For this purpose, one or more extraction rollers are moved across the fiber bales. Bale openers are also known from the prior art in which the fiber bales are moved past a stationary extraction roller.

[0003] Such extraction rollers are fitted with teeth which engage in the fiber bales and tear or pluck fibers or fiber flocks from the fiber bales due to the rotation of the extraction roller. The bale take-off machine is located at the beginning of processing lines in a spinning preparation (blow room) for processing fiber material, for example cotton or synthetic fibers or mixtures thereof, and has a decisive influence on the continuity of the sequences within the spinning preparation. In the bale take-off machine, the fiber material delivered in bales is extracted from the bales by taking off fiber flocks, and is transferred to a pneumatic transport system. The pneumatic transport system carries the fiber flocks through pipelines to the downstream cleaning machines. A grid is normally provided between the extraction roller and the fiber bales. The teeth of the extraction roller extend through the grid. The grid is thus used as a retaining element for the fiber bales. As the result of the grid elements which rest on the surface of the fiber bales, the teeth of the extraction roller are prevented from pulling oversized or irregular fiber flocks from the fiber bales.

[0004] Many designs of extraction rollers are known from the prior art. For example, EP 0 058 781 discloses a extraction roller in which the toothed disks are fastened to semicircular shells. Two of these half-shells in each case enclose the shaft of the extraction roller, and are fastened to one another in such a way that a press fit results between the half-shells and the shaft. One disadvantage of the disclosed design of the extraction roller is the complicated structure of the half-shells, and, due to a press fit, a detachable fastening of the toothed disks which may come loose, also during operation.

[0005] EP 2 836 630 A1 discloses another embodiment of an extraction roller. The toothed disks have a ringshaped design with an elliptically shaped central cutout. The toothed disks are pushed onto a shaft and rotatably fixedly connected to the shaft. The toothed disks that follow are each turned relative to one another in such a way that their teeth, viewed in an axial direction, are not aligned one behind the other. In addition, the toothed disks are arranged at an angle of inclination with respect to the shaft axis. One disadvantage of this design is that replacing individual toothed disks is not possible. It is a frequent occurrence that a tooth breaks off, or the teeth are worn down more in a particular area than in other areas. However, such signs of wear cannot be easily dealt with, since it is not possible to either replace indi-

vidual teeth or to replace individual toothed disks.

[0006] The object of the invention is to provide an extraction roller that has a simple design, and that allows easy replacement of individual tooth elements.

[0007] The object is achieved by an extraction roller having the features of the independent claim.

[0008] To achieve the object, a novel extraction roller for mechanically opening fiber bales is proposed, having a base body designed as a tube, a roller axis, and fastening elements situated on the base body along the roller axis. The fastening elements protrude perpendicularly from a surface of the base body, and each fastening element has at least one through opening, parallel to the roller axis, for fastening tooth elements. Two tooth elements in each case, having at least two teeth in each case, are mounted on each fastening element, the two tooth elements being situated at the particular fastening element, on opposite sides thereof. The tooth elements are arranged in a circumferential direction of the base body in such a way that the teeth of the respective tooth elements fastened to a fastening element are offset relative to one another in the circumferential direction.

[0009] The fastening elements are fastened to the base body by welding or adhesive bonding, for example. The fastening elements are arranged on the surface of the base body in the manner of ribs. The fastening elements may be designed as closed rings or as ring segments. Due to the design of the tooth elements in the form of ring segments, they may be individually mounted on the fastening elements, independently of the base body, and if necessary, may also be independently replaced without having to remove the base body or the entire extraction roller from the machine. It is possible to easily replace individual tooth segments in the installed state of the extraction roller.

[0010] The fastening elements are advantageously each arranged in pairs, the fastening elements of one pair being offset by a certain distance in the axial direction with respect to a pair of fastening elements following in the axial direction. The distance between the pairs of fastening elements is determined by the clearance width of the grid through which the tooth elements, held on the fastening elements, extend. The distance between two pairs of fastening elements is preferably 20 mm to 35 mm, particularly preferably 27 mm. This distance is necessary in order to provide enough space between the tooth elements of adjacent pairs of fastening elements for a grid bar of the grid situated below the extraction roller.

[0011] The fastening elements of a pair are advantageously situated on the surface of the base body, opposite one another in the radial direction. A uniformly distributed load over the circumference of the base body may thus be achieved, and imbalance of the extraction roller is avoided due to the arrangement of the fastening elements or tooth elements.

[0012] The distance between the fastening elements of a pair is preferably 15 mm to 25 mm, particularly pref-

15

25

40

erably 18 mm. This distance has proven suitable, since the gap between the grid bars when the teeth extend through results in an optimal size of the flocks removed from the bales by the extraction roller.

[0013] The through openings provided in the tooth elements for fastening the tooth elements to the fastening elements are preferably situated in each case at one location on a tooth. The connection of two teeth may thus be established to form a tooth element in the form of a narrow web, so that weight may be saved.

[0014] In one preferred embodiment, the fastening elements or the through openings in the fastening elements in their sequence are turned relative to one another on the base body in the direction of the roller axis by a certain angle β in the circumferential direction. The radial turning between two successive teeth is preferably provided at an angle β of 6 to 36 degrees. This results in a full revolution after a certain number of teeth. For example, for a turning angle β of 36 degrees, the tenth tooth element is identical to the first tooth element. The turning angle β is selected as a function of the number of tooth elements on the overall extraction roller, resulting in a whole number of helical curves. The individual teeth or tooth elements are particularly preferably turned relative to one another by an angle β that corresponds to the nth portion of 360° or a multiple thereof, where n stands for the number of pairs of fastening elements on the extraction roller in the direction of the roller axis.

[0015] The individual tooth elements situated in succession on the shaft have an identical design. However, the tooth elements have different radial arrangements in order to achieve better running characteristics of the extraction roller. As a result, not all successively arranged teeth engage in the fiber bales at the same time. Due to the radial turning, a tooth of one tooth element engages in the fiber bales, and only after the extraction roller has been further rotated does a tooth of a subsequent tooth element come into engagement. This also results in continuous removal of fibers from the fiber bales, viewed over the entire length of the extraction roller. In addition, transmission of vibrations is reduced due to the staggered engagement of the individual tooth elements. The required number of fastening elements may be limited by mounting a tooth element in each case on each side of a fastening element (in the direction of the roller axis). [0016] The fastening elements advantageously enclose the base body by less than 180 degrees. This type of design prevents the extraction roller from becoming too heavy. In addition, it is thus possible for all used fastening elements to have the same design, and for the offset of the tooth elements, and thus the teeth, to be achieved solely by their arrangement on the base body. [0017] Two fastening elements are particularly preferably situated in a shared plane. This measure also results in a reduction in the number of fastening elements. In addition, tooth elements or teeth are provided over the entire circumference of the extraction roller, and there-

fore teeth do not engage in the fiber bales just at a certain

location of the grid during a partial revolution.

[0018] In each case the tooth elements advantageously have two through holes and the fastening elements have at least three through holes, the through holes of the fastening elements being designed as a female thread. It is thus possible to easily screw the tooth elements to the fastening elements. However, other types of fastening, such as a clip connection, are also conceivable.

[0019] The fastening elements are preferably welded to the base body. Alternatively, in a design of the base body as a cast part, integral molding of the fastening elements is conceivable. It is advantageous for the base body to have a circular cross section. A cross section in the shape of a polygon would also be conceivable, although a circular cross section has advantages for simpler balancing.

[0020] The teeth are situated on the outer circumference of the tooth elements. The outer circumference of the tooth elements has a circular design. A rotationally symmetrical arrangement of the teeth is thus possible. A tooth element preferably has two teeth. The teeth on their outer surface are preferably subjected to heat treatment to impart a certain wear resistance. Tempering or hardening is used as heat treatment. However, other processes for increasing the wear resistance are also conceivable, such as coating instead of heat treatment. In some cases, sufficient wear resistance may also be achieved by appropriately selecting the material to be used for the toothed disks.

[0021] The teeth preferably have an external shape that allows operation of the extraction roller in both directions. The extraction roller may thus be moved in both directions across the fiber bales, which may also be removed in both directions.

[0022] A bearing element is advantageously provided at both ends of the extraction roller. A simple tube may thus be used as the base body. The bearing element may be provided with a journal that engages in the tube and is welded to the tube. Alternatively, the tube and the bearing element may be provided with a flange. The flange may in turn be welded or screwed on. However, the bearing element is preferably provided with a projection that engages in the base body. This allows precisely fitting positioning of the bearing element as well as a rotationally symmetrical arrangement of the bearing element with respect to the base body. The bearing element has a shaft stub via which the extraction roller may be rotatably held in appropriate bearings.

[0023] Also claimed is a tooth element for use in an extraction roller according to the above description.

[0024] The invention is explained in greater detail below based on one exemplary embodiment, with reference to the drawings.

Figure 1 shows a schematic perspective illustration of a extraction roller

Figure 2 shows a schematic illustration of a partial

55

side view of a extraction roller

Figure 3 shows a schematic illustration of an enlarged detail from Figure 2

Figure 4 shows a schematic illustration of a view in the direction X in Figure 2

[0025] Figure 1 shows a schematic perspective illustration of an extraction roller 1. The extraction roller 1 has a roller axis 3, and includes a base body 2, on the surface 8 of which a series of a plurality of first fastening elements 4 and second fastening elements 5 are arranged in a plane and in concentric adjacent planes. In each case two tooth elements 9 are mounted on the fastening elements 4 and 5 via screws 12, wherein the screws 12 engage in through openings 11 formed in the tooth elements 9, and engage in the fastening elements 4 or 5 via through openings 7 designed as a female thread. Two tooth elements 9 are mounted in each case on the fastening elements 4 and 5. Each tooth element 9 is fitted with two teeth 10. The fastening elements 4 and 5, and thus also the tooth elements 9, are arranged in the circumferential direction in an offset sequence in the direction of the roller axis 3. The arrangement of the teeth 10 has a helical configuration due to the identical design of all tooth elements 9.

[0026] Figure 2 schematically shows a partial side view of the extraction roller 1, having a roller axis 3 and a base body 2. A bearing element 14, which in the shown embodiment is welded to the base body 2, is situated on the end of the base body 2. Mutually offset fastening elements 4 and 5 are provided on the surface 8 of the base body 2 in the circumferential direction. A first fastening element 4 and a second fastening element 5 in each case form a pair 6. Tooth elements 9 having teeth 10 are in each case mounted on both sides of the fastening elements 4 and 5, viewed in the direction of the roller axis 3. The tooth elements 9 are fastened to the fastening elements 4 and 5 via screws 12. The fastening elements 4 and 5 of a pair 6 are spaced apart by a distance B in the axial direction, and are situated opposite one another on the surface 8 of the base body 2 in the circumferential direction. The first fastening element 4 of a pair 6 is situated at a distance A from the second fastening element 5 of a pair 6 that successively follows in the axial direction. [0027] Figure 3 shows a schematic sectional illustration of an enlarged detail from Figure 2. The figure shows a section of the base body 2, designed as a tube, and a fastening element 4 that is affixed thereto via a weld 13. The fastening element 4 has a through opening 7 that is designed as a female thread. The design of the through opening 7 as a female thread allows a tooth element 9 to be fastened from both sides of the fastening element 4. The tooth element 9 has a tooth 10 on an end opposite from the surface 8 of the base body 2. In the embodiment shown, the through opening 11 provided in the tooth element 9 is designed for the use of a countersunk screw. [0028] Figure 4 shows a schematic illustration of a view in the direction X in Figure 2. On its surface 8 situated

about the roller axis 3, the base body 2 bears the fastening elements 4 and 5. The fastening elements 4 and 5 are provided with through openings 7 in which the tooth elements 9 are held via the screws 12. The fastening elements 4 and 5 or the pairs of fastening elements 4 and 5, and thus the tooth elements 9, in their sequence are arranged at a radial turning angle β in the direction of the roller axis 3. Since all fastening elements 4 and 5 and also the tooth elements 9 have identical designs in each case, turning about the angle β results in an offset of the teeth 10 of the tooth elements 9 following in succession in the axial direction, likewise by the angle β .

List of reference symbols

[0029]

15

- 1 extraction roller
- 2 base body
- 3 roller axis
 - 4 first fastening element
 - 5 second fastening element
 - 6 pair of fastening elements
- 7 through opening in the fastening element
- 25 8 surface of the base body
 - 9 tooth element
 - 10 tooth
 - 11 through opening in the tooth element
 - 12 screw
- 30 13 weld
 - 14 bearing element
 - A distance between two pairs of fastening elements
 - B distance between the fastening elements of a pair
- 35 β turning angle

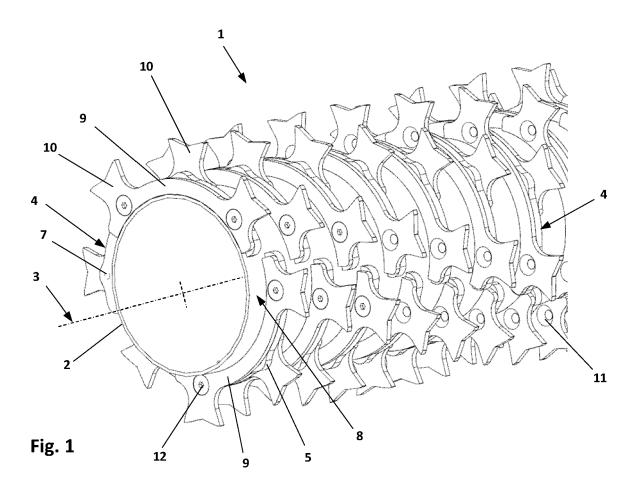
Claims

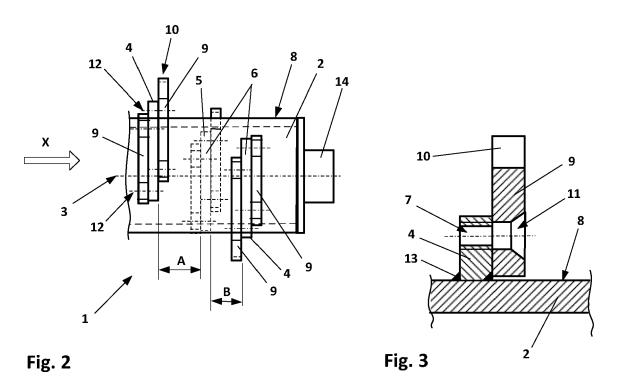
40

45

50

55


1. An extraction roller (1) for mechanically opening fiber bales, having a base body (2) designed as a tube, a roller axis (3), and fastening elements (4, 5) situated on the base body (2) along the roller axis (3), wherein the fastening elements (4, 5) protrude perpendicularly from a surface (8) of the base body (2), and each fastening element (4, 5) has at least one through opening (7), parallel to the roller axis (3), for fastening tooth elements (9), characterized in that two tooth elements (9) in each case, having at least two teeth (10) in each case, are mounted on each fastening element (4, 5), the two tooth elements (9) being situated at the particular fastening element (4, 5) on opposite sides thereof, and the tooth elements (9) are arranged in a circumferential direction of the base body (2) in such a way that the teeth (10) of the respective tooth elements (9) fastened to a fastening element (4, 5) are offset relative to one another in the circumferential direction.


- 2. The extraction roller (1) according to Claim 1, characterized in that the fastening elements (4, 5) are each arranged in pairs, the fastening elements (4, 5) of one pair (6) being offset by a certain distance (A) in the axial direction with respect to a pair (6) of fastening elements (4, 5) following in the axial direction
- 3. The extraction roller (1) according to Claim 2, characterized in that a distance (A) between two pairs (6) of fastening elements (4, 5) is 20 mm to 35 mm.
- 4. The extraction roller (1) according to Claim 2 or 3, characterized in that the fastening elements (4, 5) of a pair (6) are situated on the surface (8) of the base body (2), opposite one another in the radial direction.
- 5. The extraction roller (1) according to one of Claims 2 to 4, **characterized in that** the distance (B) between a first fastening element (4) and a second fastening element (5) of a pair (6) is 15 mm to 25 mm.
- **6.** The extraction roller (1) according to one of the preceding claims, **characterized in that** the fastening elements (4, 5) or the through openings (7) in the fastening elements (4, 5) in their sequence are turned relative to one another on the base body in the direction of the roller axis (3) by a certain angle (β) in the circumferential direction (2).
- 7. The extraction roller (1) according to one of the preceding claims, **characterized in that** the fastening elements (4, 5) enclose the base body (2) by less than 180 degrees.
- 8. The extraction roller (1) according to one of the preceding claims, **characterized in that** the tooth elements (9) in each case have two through holes (11) and the fastening elements have at least three through holes (4, 5), the through holes (7) of the fastening elements (4, 5) being designed as a female thread.
- **9.** The extraction roller (1) according to one of the preceding claims, **characterized in that** the fastening elements (4, 5) are welded to the base body (2).
- **10.** The extraction roller (1) according to one of the preceding claims, **characterized in that** the base body (2) has a circular cross section.
- 11. The extraction roller (1) according to one of the preceding claims, characterized in that the teeth (10) on their outer surface are subjected to heat treatment.
- 12. The extraction roller (1) according to one of the pre-

- ceding claims, **characterized in that** the teeth (10) have an external shape that allows operation in both directions for opening the fiber bales with the extraction roller (1).
- **13.** Tooth elements (4) [sic; (9)] for use in a extraction roller (1) according to one of Claims 1 to 12.

35

40

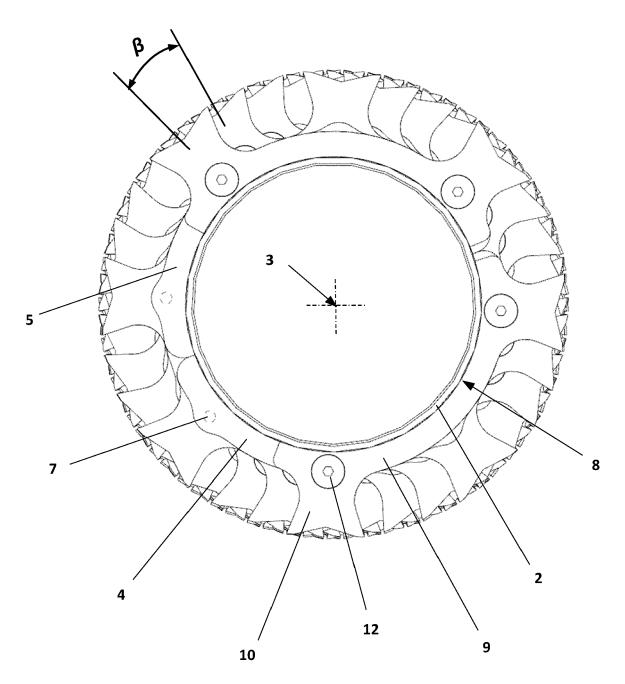


Fig. 4

EUROPEAN SEARCH REPORT

Application Number EP 19 21 1542

5

10		
15		
20		
25		
30		
35		
40		

50

55

45

(P04C01
03.82
1503
FORM
EPO

Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
X,D A	EP 0 058 781 A1 (RI 1 September 1982 (1 * page 4, paragraph	ETER AG MASCHF [CH])	13	INV. D01G7/04		
	2; figures 1-3 *					
X,D	EP 2 836 630 B1 (RI 25 July 2018 (2018-	ETER AG MASCHF [CH]) 07-25)	13			
Α	* paragraph [0019] figures 1-3 *	- paragraph [0021];	1-12			
Χ	DE 85 03 753 U1 (TF KG) 6 September 199	RÜTZSCHLER GMBH & CO.	13			
Α		1 - page 8, paragraph	1-12			
Х		FOSTER RAYMOND KEITH	1,2,6,			
A	[US] ET AL) 7 March * paragraph [0065] figures 5-8 *	- paragraph [0070];	8-13 3-5,7			
А	15 July 1999 (1999-	RIETER AG MASCHF [CH]) -07-15) - column 6, line 58;	1-13	TECHNICAL FIELDS SEARCHED (IPC) D01G B02C		
А			1-13	A01F		
А	MACHINERY FACTORY L 17 May 2017 (2017-0		1-13			
	The present search report has	-/				
	Place of search	Date of completion of the search		Examiner		
	Munich	21 April 2020	To	Todarello, Giovann		
X : part Y : part	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category	T : theory or princip E : earlier patent d after the filing da	le underlying the ocument, but puk ate in the applicatio	e invention Jished on, or n		

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number EP 19 21 1542

	DOCUMENTS CONSIDERED TO BE RELEVANT				
	Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	A	28 August 1984 (198	TTON GLENN E [US] ET AL) 34-08-28) 5 - column 2, line 49;	1-13	
15					
20					
25					TECHNICAL FIELDS SEARCHED (IPC)
30					
35					
40					
1		The present search report has	been drawn up for all claims Date of completion of the search		Examiner
4C01)		Munich	21 April 2020	Tod	arello, Giovanni
09 PPO FORM 1503 03.82 (P04C01)	X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS iicularly relevant if taken alone iicularly relevant if combined with anot ument of the same category innological background i-written disclosure rmediate document	E : earlier patent door after the filling date her D : dooument cited in L : dooument cited fo	ument, but publis the application rother reasons	hed on, or

page 2 of 2

EP 3 663 443 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 21 1542

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

21-04-2020

	Patent document ed in search report		Publication date		Patent family member(s)		Publication date
EP	0058781	A1	01-09-1982	AT DE EP IN JP JP US	13699 3170900 0058781 157550 H0316404 S57149517 4457058	D1 A1 B B2 A	15-06-1985 11-07-1985 01-09-1982 19-04-1986 05-03-1991 16-09-1982 03-07-1984
EP	2836630	В1	25-07-2018	CH CN EP TR WO	706351 104246034 2836630 201815006 2013153444	A A1 T4	15-10-2013 24-12-2014 18-02-2015 21-11-2018 17-10-2013
DE	8503753	U1	06-09-1990	NONE			
US	2002026687	A1	07-03-2002	AT AU AU BR EP ES MX US US WO	356897 8687401 2001286874 0114035 1325179 2283430 PA03001883 6393665 2002026687 0220884	A B2 A A2 T3 A B1 A1	15-04-2007 22-03-2002 19-05-2005 27-01-2004 09-07-2003 01-11-2007 25-02-2005 28-05-2002 07-03-2002 14-03-2002
DE	19800371	A1	15-07-1999	DE EP	19800371 0928839		15-07-1999 14-07-1999
US	3325880	Α	20-06-1967	NONE			
CN	206173506	U	17-05-2017	NONE			
US	4467502	Α	28-08-1984	NONE			

© Lorentz Control Cont

EP 3 663 443 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 0058781 A **[0004]**

EP 2836630 A1 [0005]