BACKGROUND
[0001] The subject matter disclosed herein generally relates to the field of transportation
refrigeration systems, and more particularly to an apparatus and method of operating
the fuel systems of such transport refrigeration systems.
[0002] Typically, cold chain distribution systems are used to transport and distribute cargo,
or more specifically perishable goods and environmentally sensitive goods (herein
referred to as perishable goods) that may be susceptible to temperature, humidity,
and other environmental factors. Perishable goods may include but are not limited
to fruits, vegetables, grains, beans, nuts, eggs, dairy, seed, flowers, meat, poultry,
fish, ice, and pharmaceuticals. Advantageously, cold chain distribution systems allow
perishable goods to be effectively transported and distributed without damage or other
undesirable effects.
[0003] Refrigerated vehicles and trailers are commonly used to transport perishable goods
in a cold chain distribution system. A transport refrigeration system is mounted to
the vehicles or to the trailer in operative association with a cargo space defined
within the vehicles or trailer for maintaining a controlled temperature environment
within the cargo space.
[0004] Conventionally, transport refrigeration systems used in connection with refrigerated
vehicles and refrigerated trailers include a transport refrigeration unit having a
refrigerant compressor, a condenser with one or more associated condenser fans, an
expansion device, and an evaporator with one or more associated evaporator fans, which
are connected via appropriate refrigerant lines in a closed refrigerant flow circuit.
Air or an air/ gas mixture is drawn from the interior volume of the cargo space by
means of the evaporator fan(s) associated with the evaporator, passed through the
airside of the evaporator in heat exchange relationship with refrigerant whereby the
refrigerant absorbs heat from the air, thereby cooling the air. The cooled air is
then supplied back to the cargo space.
[0005] On commercially available transport refrigeration systems used in connection with
refrigerated vehicles and refrigerated trailers, the compressor, and typically other
components of the transport refrigeration unit, must be powered during transit by
a prime mover. In mechanically driven transport refrigeration systems the compressor
is driven by the prime mover, either through a direct mechanical coupling or a belt
drive, and other components, such as the condenser and evaporator fans are belt driven.
[0006] An "all electric" transport refrigeration system for a refrigerated trailer application
is also commercially available through Carrier Corporation. In the all electric transport
refrigeration system, a prime mover carried on and considered part of the transport
refrigeration system, drives an AC synchronous generator that generates AC power.
The generated AC power is used to power an electric compressor motor for driving the
refrigerant compressor of the transport refrigeration unit and also powering electric
AC fan motors for driving the condenser and evaporator motors and electric heaters
associated with the evaporator.
[0007] The prime mover typically is an engine carried on and considered part of the transport
refrigeration unit, while the vehicle includes a separate engine to power the vehicle.
Commonly, the engine of the vehicle and the engine of the transport refrigeration
unit utilize a single pressure sensor for multiple fuel tanks. The single pressure
sensor averages the combined pressure of the fuel tanks to roughly estimate the amount
of fuel within each fuel tank which makes it difficult to accurately measure fuel
quantities in each individual tank, thus a more efficient solution is desired.
[0008] DE 19531122 A1 discloses a vehicle which utilizes cryogenic fuel to cool a transport space via an
evaporator before being combusted in the engine of the vehicle.
BRIEF DESCRIPTION
[0009] According to the invention, a transport refrigeration system as defined in independent
claim 1 is provided. The transport refrigeration system comprises: a vehicle having
a refrigerated cargo space; a refrigeration unit in operative association with the
refrigerated cargo space, the refrigeration unit providing conditioned air to the
refrigerated cargo space; a first engine configured to power the refrigeration unit;
a plurality of first fuel tanks fluidly connected to the first engine, the plurality
of first fuel tanks configured to supply fuel to the first engine, wherein each of
the plurality of first fuel tanks includes a lock off valve and a pressure sensor
configured to detect a pressure level within each of the first fuel tanks; and one
or more engine controllers in electronic communication with each pressure sensor and
lock off valve, the one or more engine controllers being configured to adjust at least
one of the lock off valves in response to a pressure level detected by at least one
of the pressure sensors.
[0010] The transport refrigeration system may include a second engine configured to power
the vehicle; and a plurality of second fuel tanks fluidly connected to the second
engine, the plurality of second fuel tanks configured to supply fuel to the second
engine, wherein each of the plurality of second fuel tanks includes a lock off valve
and a pressure sensor configured to detect a pressure level within each of the second
fuel tanks.
[0011] The transport refrigeration system may include a single filling point fluidly connected
to the plurality of first fuel tanks and the plurality of second fuel tanks; wherein
the single filling point is configured to receive fuel.
[0012] The transport refrigeration system may include that the single filling point is configured
to distribute the fuel received to the plurality of first fuel tanks and the plurality
of second fuel tanks.
[0013] The transport refrigeration system may include that the controller is configured
to stop the fuel flow from one of the first fuel tanks to the first engine when at
least one of a fuel leak and an obstruction is detected.
[0014] The transport refrigeration system may include that the controller is configured
to stop the fuel flow from one of the second fuel tanks to the second engine when
at least one of a fuel leak and an obstruction is detected.
[0015] The transport refrigeration system may include that the fuel is at least one of compressed
natural gas and liquefied natural gas.
[0016] The transport refrigeration system may include that the fuel is at least one of compressed
natural gas and liquefied natural gas.
[0017] According to the invention, a method of operating a transport refrigeration system
as defined in independent claim 8 is provided. The method comprises: powering a refrigeration
unit using a first engine, the refrigeration unit being in operative association with
a refrigerated cargo space and providing conditioned air to the refrigerated cargo
space; storing fuel for the first engine in a plurality of first fuel tanks, the plurality
of first fuel tanks fluidly connected to the first engine, wherein each of the plurality
of first fuel tanks includes a lock off valve and a pressure sensor configured to
detect a pressure level within each of the first fuel tanks; detecting the pressure
level within each of the plurality of first fuel tanks; and adjusting one of the fuel
lock off valves in response to the pressure level.
[0018] The method may include that prior to the adjusting, the method further comprises:
powering a vehicle using a second engine, the vehicle being connected to the refrigerated
cargo space; storing fuel for the second engine in a plurality of second fuel tanks,
the plurality of second fuel tanks fluidly connected to the second engine, wherein
each of the plurality of second fuel tanks includes a lock off valve and a pressure
sensor configured to detect a pressure level within each of the second fuel tanks;
and detecting the pressure level within each of the plurality of second fuel tanks.
[0019] The method may include: filling the plurality of first fuel tanks and the plurality
of second fuel tanks through a single filling point, the single filling point fluidly
connected to the plurality of first fuel tanks and the plurality of second fuel tanks.
[0020] The method may include: detecting, using a controller, at least one of a fuel leak
and an obstruction; and stopping fuel flow from one of the plurality of first fuel
tanks to the first engine when at least one of the fuel leak and the obstruction is
detected.
[0021] The method may include: detecting, using a controller, at least one of a fuel leak
and an obstruction; and stopping fuel flow from one of the plurality of second fuel
tanks to the second engine when at least one of the fuel leak and the obstruction
is detected.
[0022] The method may include that the fuel is at least one of compressed natural gas and
liquefied natural gas.
[0023] The method may include that the fuel is at least one of compressed natural gas and
liquefied natural gas.
[0024] Technical effects of embodiments of the present disclosure include utilizing a dedicated
pressure sensor on each fuel tank in order to monitor fuel flow to the engine of a
transport refrigeration system.
[0025] The foregoing features and elements may be combined in various combinations without
exclusivity, unless expressly indicated otherwise. These features and elements as
well as the operation thereof will become more apparent in light of the following
description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] The following descriptions should not be considered limiting in any way. With reference
to the accompanying drawings, like elements are numbered alike:
FIG. 1 is a schematic illustration of a transport refrigeration system having a single
filling point, according to an embodiment of the present disclosure;
FIG. 2 is an enlarged schematic illustration of the transport refrigeration system
of FIG. 1, according to an embodiment of the present disclosure;
FIG. 3 is a schematic illustration of a configuration of a plurality of first fuel
tanks, according to an embodiment of the present disclosure;
FIG. 4 is a schematic illustration of a conventional configuration of a plurality
of first fuel tanks;
FIG. 5 is a schematic illustration of a configuration of a plurality of second fuel
tanks, according to an embodiment of the present disclosure;
FIG. 6 is a schematic illustration of a conventional configuration of plurality of
second fuel tanks; and
FIG. 7 is a flow diagram illustrating a method of operating a transportation refrigeration
system, according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
[0027] A detailed description of one or more embodiments of the disclosed apparatus and
method are presented herein by way of exemplification and not limitation with reference
to the Figures.
[0028] Referring to FIGs. 1-2. FIG. 1 shows a schematic illustration of a transport refrigeration
system 200 and FIG. 2 shows an enlarged schematic illustration of the transport refrigeration
system 200 of FIG. 1. The transport refrigeration system 200 is being illustrated
as a trailer system 100 as seen in FIG. 1. The trailer system 100 includes a vehicle
102 and a transport container 106. The vehicle 102 includes an operator's compartment
or cab 104 and a second engine 150 which acts as the drive system of the trailer system
100. The second engine 150 may include an engine controller 152 configured to control
the operation of the second engine 150. The engine controller 152 may be an electronic
controller including a processor and an associated memory comprising computer-executable
instructions that, when executed by the processor, cause the processor to perform
various operations. The processor may be but is not limited to a single-processor
or multi-processor system of any of a wide array of possible architectures, including
field programmable gate array (FPGA), central processing unit (CPU), application specific
integrated circuits (ASIC), digital signal processor (DSP) or graphics processing
unit (GPU) hardware arranged homogenously or heterogeneously. The memory may be a
storage device such as, for example, a random access memory (RAM), read only memory
(ROM), or other electronic, optical, magnetic or any other computer readable medium.
[0029] The fuel that powers the second engine 150 may be at least one of compressed natural
gas and liquefied natural gas. In an embodiment, the fuel is compressed natural gas.
In the illustrated embodiment, the fuel to power the second engine 150 of the vehicle
102 is stored in a plurality of second fuel tanks 350. The plurality of second fuel
tanks 350 are fluidly connected to the second engine 150 through a second fuel line
352. The plurality of second fuel tanks 350 are configured to supply fuel to the second
engine 150 through the second fuel line 352. The transport container 106 is coupled
to the vehicle 102. The transport container 106 is a refrigerated trailer and includes
a top wall 108, a directly opposed bottom wall 110, opposed side walls 112, and a
front wall 114, with the front wall 114 being closest to the vehicle 102. The transport
container 106 further includes a door or doors 117 at a rear wall 116, opposite the
front wall 114. The walls of the transport container 106 define a refrigerated cargo
space 119. It is appreciated by those of skill in the art that embodiments described
herein may be applied to non-trailer refrigeration such as, for example a rigid truck
or a truck having refrigerate compartment.
[0030] Typically, transport refrigeration systems 200 are used to transport and distribute
perishable goods and environmentally sensitive goods (herein referred to as perishable
goods 118). The perishable goods 118 may include but are not limited to fruits, vegetables,
grains, beans, nuts, eggs, dairy, seed, flowers, meat, poultry, fish, ice, blood,
pharmaceuticals, or any other suitable cargo requiring temperature controlled transport.
[0031] As seen in FIG. 2, the transport refrigeration system 200 includes a refrigeration
unit 22, an electric generation device 24, a first engine 26 for driving the electric
generation device 24, and a controller 30. The refrigeration unit 22 functions, under
the control of the controller 30, to establish and regulate a desired environmental
parameters, such as, for example temperature, pressure, humidity, carbon dioxide,
ethylene, ozone, light exposure, vibration exposure, and other conditions in the interior
compartment 119 as known to one of ordinary skill in the art. In an embodiment, the
refrigeration unit 22 is a refrigeration system capable of providing a desired temperature
and humidity range.
[0032] The refrigeration unit 22 includes a refrigerant compression device 32, a refrigerant
heat rejection heat exchanger 34, an expansion device 36, and a refrigerant heat absorption
heat exchanger 38 connected in refrigerant flow communication in a closed loop refrigerant
circuit and arranged in a conventional refrigeration cycle. The refrigeration unit
22 also includes one or more fans 40 associated with the refrigerant heat rejection
heat exchanger 34 and driven by fan motor(s) 42 and one or more fans 44 associated
with the refrigerant heat absorption heat exchanger 38 and driven by fan motor(s)
46. The refrigeration unit 22 may also include a heater 48 associated with the refrigerant
heat absorption heat exchanger 38. In an embodiment, the heater 48 may be an electric
resistance heater. It is to be understood that other components (not shown) may be
incorporated into the refrigerant circuit as desired, including for example, but not
limited to, a suction modulation valve, a receiver, a filter/dryer, an economizer
circuit.
[0033] The refrigerant heat rejection heat exchanger 34 may, for example, comprise one or
more refrigerant conveying coiled tubes or one or more tube banks formed of a plurality
of refrigerant conveying tubes across flow path to the heat outlet 142. The fan(s)
40 are operative to pass air, typically ambient air, across the tubes of the refrigerant
heat rejection heat exchanger 34 to cool refrigerant vapor passing through the tubes.
The refrigerant heat rejection heat exchanger 34 may operate either as a refrigerant
condenser, such as if the refrigeration unit 22 is operating in a subcritical refrigerant
cycle or as a refrigerant gas cooler, such as if the refrigeration unit 22 is operating
in a transcritical cycle.
[0034] The refrigerant heat absorption heat exchanger 38 may, for example, also comprise
one or more refrigerant conveying coiled tubes or one or more tube banks formed of
a plurality of refrigerant conveying tubes extending across flow path from a return
air inlet 136. The fan(s) 44 are operative to pass air drawn from the refrigerated
cargo space 119 across the tubes of the refrigerant heat absorption heat exchanger
38 to heat and evaporate refrigerant liquid passing through the tubes and cool the
air. The air cooled in traversing the refrigerant heat rejection heat exchanger 38
is supplied back to the refrigerated cargo space 119 through a refrigeration unit
outlet 140. It is to be understood that the term "air" when used herein with reference
to the atmosphere within the cargo box includes mixtures of air with other gases,
such as for example, but not limited to, nitrogen or carbon dioxide, sometimes introduced
into a refrigerated cargo box for transport of perishable produce.
[0035] The refrigerant compression device 32 may comprise a single-stage or multiple-stage
compressor such as, for example, a reciprocating compressor or a scroll compressor.
The compression device 32 has a compression mechanism (not shown) driven by an electric
motor 50. In an embodiment, the motor 50 may be disposed internally within the compressor
with a drive shaft interconnected with a shaft of the compression mechanism, all sealed
within a common housing of the compression device 32.
[0036] The transport refrigeration system 200 also includes a controller 30 configured for
controlling operation of the transport refrigeration system 200 including, but not
limited to, operation of various components of the refrigerant unit 22 to provide
and maintain a desired thermal environment within the refrigerated cargo space 119.
The controller 30 may also be able to selectively operate the first engine 26, typically
through an electronic engine controller 54 operatively associated with the first engine
26. The controller 30 and the engine controller 54 may be electronic controllers including
a processor and an associated memory comprising computer-executable instructions that,
when executed by the processor, cause the processor to perform various operations.
The a processor may be but is not limited to a single-processor or multi-processor
system of any of a wide array of possible architectures, including field programmable
gate array (FPGA), central processing unit (CPU), application specific integrated
circuits (ASIC), digital signal processor (DSP) or graphics processing unit (GPU)
hardware arranged homogenously or heterogeneously. The memory may be a storage device
such as, for example, a random access memory (RAM), read only memory (ROM), or other
electronic, optical, magnetic or any other computer readable medium.
[0037] The refrigeration unit 22 has a plurality of power demand loads, including, but not
limited to, the compression device drive motor 50, the drive motor 42 for the fan
40 associated with the refrigerant heat rejection heat exchanger 34, and the drive
motor 46 for the fan 44 associated with the refrigerant heat absorption heat exchanger
38. In the depicted embodiment, the heater 48 also constitutes a power demand load.
The electric resistance heater 48 may be selectively operated by the controller 30
whenever a control temperature within the temperature controlled cargo box drops below
a preset lower temperature limit, which may occur in a cold ambient environment. In
such an event the controller 30 would activate the heater 48 to heat air circulated
over the heater 48 by the fan(s) 44 associated with the refrigerant heat absorption
heat exchanger 38. The heater 48 may also be used to de-ice the return air intake
136.
[0038] The first engine 26 is an on-board fossil-fuel engine that drives the electric generation
device 24, which generates electrical power. The fuel that powers the first engine
26 may be at least one of compressed natural gas and liquefied natural gas. In an
embodiment, the fuel is compressed natural gas. In another embodiment, the fuel that
powers the first engine 26 is the same fuel that powers the second engine 150 of the
vehicle 102 in FIG. 1. In the illustrated embodiment, the fuel to power the first
engine 26 is stored in a plurality of first fuel tanks 330. The plurality of first
fuel tanks 330 are fluidly connected to the first engine 26 through a first fuel line
332. The plurality of first fuel tanks 330 are configured to supply fuel to the first
engine 26 through the first fuel line 332.
[0039] The drive shaft of the engine drives the shaft of the electric generation device
24. In an electrically powered embodiment of the refrigeration unit 20, the electric
generation device 24 may comprise a single on- board, engine driven AC generator configured
to generate alternating current (AC) power including at least one AC voltage at one
or more frequencies. In an embodiment, the electric generation device 24 may, for
example, be a permanent magnet AC generator or a synchronous AC generator. In another
embodiment, the electric generation device 24 may comprise a single on-board, engine
driven DC generator configured to generate direct current (DC) power at at least one
voltage. Some electric generation devices may have internal voltage regulators while
other electric generation devices do not. As each of the fan motors 42, 46 and the
compression device drive motor 50 may be an AC motor or a DC motor, it is to be understood
that various power converters 52, such as AC to DC rectifiers, DC to AC inverters,
AC to AC voltage/frequency converters, and DC to DC voltage converters, may be employed
in connection with the electric generation device 24 as appropriate. The transport
refrigeration system 200 may include a voltage sensor 28 to sense the voltage of the
electric generation device 24.
[0040] Airflow is circulated into and through the refrigerate cargo space 119 of the transport
container 106 by means of the refrigeration unit 22. A return airflow 134 flows into
the refrigeration unit 22 from the refrigerated cargo space 119 through the refrigeration
unit return air intake 136, and across the refrigerant heat absorption heat exchanger
38 via the fan 44, thus conditioning the return airflow 134 to a selected or predetermined
temperature. The conditioned return airflow 134, now referred to as supply airflow
138, is supplied into the refrigerated cargo space 119 of the transport container
106 through the refrigeration unit outlet 140, which in some embodiments is located
near the bottom wall 110 of the container system 106. Heat 135 is removed from the
refrigerant heat rejection heat exchanger 34 through the heat outlet 142. The refrigeration
unit 22 may contain an external air inlet 144, as shown in FIG. 2, to aid in the removal
of heat 135 from the refrigerant heat rejection heat exchanger 34 by pulling in external
air 137. The supply airflow 138 cools the perishable goods 118 in the refrigerated
cargo space 119 of the transport container 106. It is to be appreciated that the refrigeration
unit 22 can further be operated in reverse to warm the container system 106 when,
for example, the outside temperature is very low. In the illustrated embodiment, the
return air intake 136, the refrigeration unit outlet 140, the heat outlet 142, and
the external air inlet 144 are configured as grilles to help prevent foreign objects
from entering the refrigeration unit 22.
[0041] In the illustrated embodiment, the transport refrigeration system 200 includes a
single filling point 310. The single filling point 310 is fluidly connected to the
plurality of second fuel tanks 350 and the plurality of first fuel tanks 330 through
a filling line 312. The single filling point 310 is configured to receive fuel from
a filling station, such as for example a gas station. When the single filling point
310 receives fuel, the single filling point 310 distributes the fuel received to the
plurality of second fuel tanks 350 and the plurality of first fuel tanks 330.
[0042] Referring now to FIGs. 3 and 4 with continued reference to FIGs. 1 and 2. FIG. 3
shows the plurality of first fuel tanks 330 and each of the first fuel tanks 330 includes
a pressure sensor 470 and lock off valve 450. The lock off valve 450 may be an electric
solenoid valve in a non-limiting example. The lock off valve 450 may be in electronic
communication with the engine controller 54. The plurality of first fuel tanks 330
are fluidly connected to the first engine 26 through the first fuel line 332, as seen
in FIG. 4. As shown in FIG. 3, each first fuel tank 330 includes a pressure sensor
470 configured to monitor the pressure of the each first fuel tanks 330. The pressure
sensors 470 are each in electronic communication with the engine controller 54. The
engine controller 54 is configured to monitor a pressure level of each of the first
fuel tanks 330 and adjust the lock off valve 450 in response to the pressure level
of each first fuel tank 330. Conventionally, as illustrated by FIG. 4, a single pressure
sensor 470 may be connected to all of the first fuel tanks 330 and then a pressure
measurement from the pressure sensor 470 would be averaged to estimate the amount
of pressure in each first fuel tank 330. Advantageously, having a pressure sensor
470 monitor the pressure within each first fuel tank 330 allows from close monitoring
of the pressure within each first fuel tank 330, which allows the engine controller
54 to quickly detect a problem and identify which one of the plurality of first fuel
tank contains the problem.
[0043] Advantageously, having a pressure sensor 470 on each of the first fuel tanks 330
prevents the first fuel tanks 330 from being over filled by closely monitoring the
pressure level on each of each first fuel tank 330 separately. Also advantageously,
having a pressure sensor 470 on each of the first fuel tanks 330 helps monitor the
discharge of each first fuel tank 330 and identify any blockages/leakages that may
inhibit fuel discharge. Also advantageously, having a pressure sensor 470 on each
of the first fuel tanks 330 allows an empty first fuel tank 330 to be quickly identified,
removed, and/or replaced. Further advantageously, having a pressure sensor 470 on
each of the first fuel tanks 330 allows a lock off valve 450 failure to be detected.
In one example, a lock off valve 450 failure may be detected by detecting a change
in the pressure level of a first fuel tank 330 when the lock off valve 450 is detected
to be closed. Advantageously, having a pressure sensor 470 on each of the first fuel
tanks 330 helps detect a fuel leak quickly and identify the location of the potential
leakage.
[0044] Referring now to FIGs. 5 and 6 with continued reference to FIGs. 1 and 2. FIG. 5
shows the plurality of second fuel tanks 350 and each of the second fuel tanks 350
includes a pressure sensor 470 and lock off valve 450. The lock off 450 valve may
be an electric solenoid valve in a non-limiting example. The lock off valve 450 may
be in electronic communication with the engine controller 152. The plurality of second
fuel tanks 350 are fluidly connected to the second engine 150 through the second fuel
line 352, as seen in FIG. 6. As shown in FIG. 5, each second fuel tank 350 includes
a pressure sensor 470 configured to monitor the pressure of the each second fuel tanks
350. The pressure sensors 470 are each in electronic communication with the engine
controller 152. The engine controller 152 is configured to monitor a pressure level
of each of the second fuel tanks 350 and adjust the lock off valve 450 in response
to the pressure level of each second fuel tank 350. Conventionally, as illustrated
by FIG. 6, a single pressure sensor 470 may be connected to all of the second fuel
tanks 350 and then a pressure measurement from the pressure sensor 470 would be averaged
to estimate the amount of pressure in each second fuel tank 350. Advantageously, having
a pressure sensor 470 monitor the pressure within each second fuel tank 350 allows
from close monitoring of the pressure within each second fuel tank 350, which allows
the engine controller 152 to quickly detect a problem and identify which one of the
plurality of second fuel tank contains the problem.
[0045] Advantageously, having a pressure sensor 470 on each of the second fuel tanks 350
prevents the second fuel tanks 350 from being over filled by closely monitoring the
pressure level on each of each second fuel tank 350 separately. Also advantageously,
having a pressure sensor 470 on each of the second fuel tanks 350 helps monitor the
discharge of each second fuel tank 350 and identify any blockages/leakages that may
inhibit fuel discharge. Also advantageously, having a pressure sensor 470 on each
of the second fuel tanks 350 allows an empty second fuel tank 350 to be quickly identified,
removed, and/or replaced. Further advantageously, having a pressure sensor 470 on
each of the second fuel tanks 350 allows a lock off valve 450 failure to be detected.
In one example, a lock off valve 450 failure may be detected by detecting a change
in the pressure level of a second fuel tank 350 when the lock off valve 450 is detected
to be closed. Advantageously, having a pressure sensor 470 on each of the second fuel
tanks 350 helps detect a fuel leak quickly and identify the location of the potential
leakage.
[0046] Referring now to FIG. 7, with continued reference to FIGs. 1-6. FIG. 7 shows a flow
chart of method 700 of operating a transport refrigeration system 100, in accordance
with an embodiment of the disclosure. At block 704, a refrigeration unit 200 is powered
using a first engine 26. The refrigeration unit 200 is in operative association with
a refrigerated cargo space 119 and provides conditioned air to the refrigerated cargo
space 119. At block 706, fuel for the first engine 26 is stored in a plurality of
first fuel tanks 330. As described above, the plurality of first fuel tanks 330 are
fluidly connected to the first engine 26 and each of the plurality of first fuel tanks
330 includes a lock off valve 450 and a pressure sensor 470 configured to detect a
pressure level within each of the first fuel tanks 330. At block 708, the pressure
level within each of the plurality of first fuel tanks 330 is detected.
[0047] At block 710, a vehicle 102 is powered using a second engine 150. The vehicle 102
is connected to the refrigerated cargo space 119. At block 712, fuel for the second
engine 150 is stored in a plurality of second fuel tanks 350. As mentioned above,
the plurality of second fuel tanks 350 are fluidly connected to the second engine
150 and each of the plurality of second fuel tanks 350 includes a lock off valve 450
and a pressure sensor 470 configured to detect a pressure level within each of the
second fuel tanks 350. At block 714, the pressure level within each of the plurality
of second fuel tanks 350 are detected.
[0048] At block 716, one of the fuel lock off valves 450 is adjusted in response to the
pressure level. Adjusting may be including closing the lock off valve 450 completely,
opening the shutoff valve 450 completely or adjusting the lock off valve 450 to any
position between completely open and closed. The pressure level may be indicative
of a fuel leak and/or an obstruction between a fuel tank and its respective engine,
thus requiring a lock off valve 450 to be adjusted.
[0049] While the above description has described the flow process of FIG. 7 in a particular
order, it should be appreciated that unless otherwise specifically required in the
attached claims that the ordering of the steps may be varied.
[0050] While the present invention has been described with reference to an exemplary embodiment
or embodiments, it will be understood by those skilled in the art that various changes
may be made without departing from the scope of the present invention as defined by
the claims. In addition, many modifications may be made to adapt a particular situation
or material to the teachings of the present invention without departing from the scope
as defined by the claims. Therefore, it is intended that the present invention not
be limited to the particular embodiment disclosed as the best mode contemplated for
carrying out this present invention, but that the present invention will include all
embodiments falling within the scope of the claims.
1. A transport refrigeration system (200) comprising:
a vehicle (102) having a refrigerated cargo space (119);
a refrigeration unit (22) in operative association with the refrigerated cargo space,
the refrigeration unit providing conditioned air to the refrigerated cargo space;
a first engine (26) configured to power the refrigeration unit; characterized by:
a plurality of first fuel tanks (330) fluidly connected to the first engine, the plurality
of first fuel tanks configured to supply fuel to the first engine, wherein each of
the plurality of first fuel tanks includes a lock off valve (450) and a pressure sensor
(470) configured to detect a pressure level within each of the first fuel tanks; and
one or more engine controllers in electronic communication with each pressure sensor
and lock off valve, the one or more engine controllers being configured to adjust
at least one of the lock off valves in response to a pressure level detected by at
least one of the pressure sensors.
2. The transport refrigeration system (200) of claim 1, further comprising:
a second engine (150) configured to power the vehicle (102); and
a plurality of second fuel tanks (350) fluidly connected to the second engine, the
plurality of second fuel tanks configured to supply fuel to the second engine, wherein
each of the plurality of second fuel tanks includes a lock off valve (450) and a pressure
sensor (470) configured to detect a pressure level within each of the second fuel
tanks.
3. The transport refrigeration system (200) of claim 2, further comprising:
a single filling point (310) fluidly connected to the plurality of first fuel tanks
(330) and the plurality of second fuel tanks (350);
wherein the single filling point is configured to receive fuel.
4. The transport refrigeration system (200) of claim 3, wherein:
the single filling point (310) is configured to distribute the fuel received to the
plurality of first fuel tanks (330) and the plurality of second fuel tanks (350).
5. The transport refrigeration system (200) of claim 1, wherein:
the one or more engine controllers (54) is configured to stop the fuel flow from one
of the first fuel tanks (330) to the first engine (26) when at least one of a fuel
leak and an obstruction is detected.
6. The transport refrigeration system (200) of claim 2,
further comprising a second engine controller (152) in electronic communication with
each pressure sensor (470) and lock off valve (450) of the second fuel tanks (350),
the second engine controller being configured to adjust at least one of the lock off
valves of the second fuel tanks in response to a pressure level detected by at least
one of the pressure sensors of the second fuel tanks, wherein:
the controller (152) is configured to stop the fuel flow from one of the second fuel
tanks (350) to the second engine (150) when at least one of a fuel leak and an obstruction
is detected.
7. The transport refrigeration system (200) of any preceding claim, wherein:
the fuel is at least one of compressed natural gas and liquefied natural gas.
8. A method (700) of operating a transport refrigeration system (200), the method comprising:
powering (704) a refrigeration unit using a first engine, the refrigeration unit being
in operative association with a refrigerated cargo space (119) and providing conditioned
air to the refrigerated cargo space; characterized by:
storing (706) fuel for the first engine (26) in a plurality of first fuel tanks (330),
the plurality of first fuel tanks fluidly connected to the first engine, wherein each
of the plurality of first fuel tanks includes a lock off valve (450) and a pressure
sensor (470) configured to detect a pressure level within each of the first fuel tanks;
detecting (708) the pressure level within each of the plurality of first fuel tanks;
and
adjusting (716) one of the fuel lock off valves in response to the pressure level.
9. The method (700) of claim 8, wherein prior to the adjusting, the method further comprises:
powering (710) a vehicle (102) using a second engine (150), the vehicle being connected
to the refrigerated cargo space (119);
storing (712) fuel for the second engine in a plurality of second fuel tanks (350),
the plurality of second fuel tanks fluidly connected to the second engine, wherein
each of the plurality of second fuel tanks includes a lock off valve (450) and a pressure
sensor (470) configured to detect a pressure level within each of the second fuel
tanks; and
detecting (714) the pressure level within each of the plurality of second fuel tanks.
10. The method (700) of claim 9, further comprising:
filling the plurality of first fuel tanks (330) and the plurality of second fuel tanks
(350) through a single filling point (310), the single filling point fluidly connected
to the plurality of first fuel tanks and the plurality of second fuel tanks.
11. The method (700) of claim 8, further comprising:
detecting, using a controller (54), at least one of a fuel leak and an obstruction;
and
stopping fuel flow from one of the plurality of first fuel tanks (330) to the first
engine (26) when at least one of the fuel leak and the obstruction is detected.
12. The method (700) of claim 9, further comprising:
detecting, using a controller (152), at least one of a fuel leak and an obstruction;
and
stopping fuel flow from one of the plurality of second fuel tanks (350) to the second
engine (150) when at least one of the fuel leak and the obstruction is detected.
13. The method (700) of any of claims 8 to 12, wherein:
the fuel is at least one of compressed natural gas and liquefied natural gas.
1. Transportkühlsystem (200), das umfasst:
ein Fahrzeug (102), das einen gekühlten Frachtraum (119) aufweist;
eine Kühleinheit (22) in betrieblicher Assoziation mit dem gekühlten Frachtraum, wobei
die Kühleinheit aufbereitete Luft zu dem gekühlten Frachtraum bereitstellt;
einen ersten Motor (26), der dazu konfiguriert ist, die Kühleinheit mit Leistung zu
versorgen; gekennzeichnet durch:
eine Vielzahl erster Kraftstofftanks (330), die fluidisch mit dem ersten Motor verbunden
sind, wobei die Vielzahl erster Kraftstofftanks dazu konfiguriert ist, Kraftstoff
zu dem ersten Motor zuzuführen, wobei jeder der Vielzahl erster Kraftstofftanks ein
Absperrventil (450) und einen Drucksensor (470) umfasst, der dazu konfiguriert ist,
ein Druckniveau innerhalb jedes der ersten Kraftstofftanks zu erfassen; und
eine oder mehrere Motorsteuereinheiten in elektronischer Kommunikation mit jedem Drucksensor
und Absperrventil, wobei die eine oder die mehreren Motorsteuereinheiten dazu konfiguriert
sind, mindestens eines der Absperrventile als Reaktion auf ein Druckniveau, das von
mindestens einem der Drucksensoren erfasst wird, einzustellen.
2. Transportkühlsystem (200) nach Anspruch 1, das weiter umfasst:
einen zweiten Motor (150), der dazu konfiguriert ist, das Fahrzeug (102) mit Leistung
zu versorgen; und
eine Vielzahl zweiter Kraftstofftanks (350), die fluidisch mit dem zweiten Motor verbunden
sind, wobei die Vielzahl zweiter Kraftstofftanks dazu konfiguriert ist, Kraftstoff
zu dem zweiten Motor zuzuführen, wobei jeder der Vielzahl zweiter Kraftstofftanks
ein Absperrventil (450) und einen Drucksensor (470) umfasst, der dazu konfiguriert
ist, ein Druckniveau innerhalb jedes der zweiten Kraftstofftanks zu erfassen.
3. Transportkühlsystem (200) nach Anspruch 2, das weiter umfasst:
eine einzige Einfüllstelle (310), die fluidisch mit der Vielzahl erster Kraftstofftanks
(330) und der Vielzahl zweiter Kraftstofftanks (350) verbunden ist;
wobei die einzige Einfüllstelle dazu konfiguriert ist, Kraftstoff zu erhalten.
4. Transportkühlsystem (200) nach Anspruch 3, wobei:
die einzige Einfüllstelle (310) dazu konfiguriert ist, den erhaltenen Kraftstoff zu
der Vielzahl erster Kraftstofftanks (330) und zu der Vielzahl zweiter Kraftstofftanks
(350) zu verteilen.
5. Transportkühlsystem (200) nach Anspruch 1, wobei:
die eine oder die mehreren Motorsteuereinheiten (54) dazu konfiguriert sind, den Kraftstofffluss
von einem der ersten Kraftstofftanks (330) zu dem ersten Motor (26) zu stoppen, wenn
mindestens eines eines Kraftstoffflecks und einer Verstopfung erfasst wird.
6. Transportkühlsystem (200) nach Anspruch 2,
das weiter eine zweite Motorsteuereinheit (152) in elektronischer Kommunikation mit
jedem Drucksensor (470) und Absperrventil (450) der zweiten Kraftstofftanks (350)
umfasst, wobei die zweite Motorsteuereinheit dazu konfiguriert ist, mindestens eines
der Absperrventile der zweiten Kraftstofftanks als Reaktion auf ein Druckniveau, das
von mindestens einem der Drucksensoren der zweiten Kraftstofftanks erfasst wird, einzustellen,
wobei:
die Steuereinheit (152) dazu konfiguriert ist, den Kraftstofffluss von einem der zweiten
Kraftstofftanks (350) zu dem zweiten Motor (150) zu stoppen, wenn mindestens eines
eines Kraftstoffflecks und einer Verstopfung erfasst wird.
7. Transportkühlsystem (200) nach einem vorstehenden Anspruch, wobei:
der Kraftstoff mindestens eines von komprimiertem Erdgas und Flüssigerdgas ist.
8. Verfahren (700) zum Betreiben eines Transportkühlsystems (200), wobei das Verfahren
umfasst:
Leistungsversorgen (704) einer Kühleinheit unter Verwenden eines ersten Motors, wobei
die Kühleinheit in betrieblicher Assoziation mit einem gekühlten Frachtraum (119)
steht, und Bereitstellen aufbereiteter Luft zu dem gekühlten Frachtraum;
gekennzeichnet durch:
Lagern (706) von Kraftstoff für den ersten Motor (26) in einer Vielzahl erster Kraftstofftanks
(330), wobei die Vielzahl erster Kraftstofftanks fluidisch mit dem ersten Motor verbunden
ist, wobei jeder der Vielzahl erster Kraftstofftanks ein Absperrventil (450) und einen
Drucksensor (470) beinhaltet, der dazu konfiguriert ist, ein Druckniveau innerhalb
jedes der ersten Kraftstofftanks zu erfassen;
Erfassen (708) des Druckniveaus innerhalb jedes der Vielzahl erster Kraftstofftanks;
und
Einstellen (716) eines der Kraftstoffabsperrventile als Reaktion auf das Druckniveau.
9. Verfahren (700) nach Anspruch 8, wobei vor dem Einstellen das Verfahren weiter umfasst:
Leistungsversorgen (710) eines Fahrzeugs (102) unter Verwenden eines zweiten Motors
(150), wobei das Fahrzeug mit dem gekühlten Frachtraum (119) verbunden ist;
Lagern (712) von Kraftstoff für den zweiten Motor in einer Vielzahl zweiter Kraftstofftanks
(350), wobei die Vielzahl zweiter Kraftstofftanks fluidisch mit dem zweiten Motor
verbunden ist, wobei jeder der Vielzahl zweiter Kraftstofftanks ein Absperrventil
(450) und einen Drucksensor (470) umfasst, der dazu konfiguriert ist, ein Druckniveau
innerhalb jedes der zweiten Kraftstofftanks zu erfassen; und
Erfassen (714) des Druckniveaus innerhalb jedes der Vielzahl zweiter Kraftstofftanks.
10. Verfahren (700) nach Anspruch 9, das weiter umfasst:
Füllen der Vielzahl erster Kraftstofftanks (330) und der Vielzahl zweiter Kraftstofftanks
(350) durch eine einzige Einfüllstelle (310), wobei die einzige Einfüllstelle fluidisch
mit der Vielzahl erster Kraftstofftanks und der Vielzahl zweiter Kraftstofftanks verbunden
ist.
11. Verfahren (700) nach Anspruch 8, das weiter umfasst:
Erfassen unter Verwenden einer Steuereinheit (54) mindestens eines eines Kraftstoffflecks
und einer Verstopfung; und
Stoppen des Kraftstoffflusses von einem der Vielzahl erster Kraftstofftanks (330)
zu dem ersten Motor (26), wenn mindestens eines eines Kraftstoffflecks und einer Verstopfung
erfasst wird.
12. Verfahren (700) nach Anspruch 9, das weiter umfasst:
Erfassen unter Verwenden einer Steuereinheit (152) mindestens eines eines Kraftstoffflecks
und einer Verstopfung; und
Stoppen des Kraftstoffflusses von einem der Vielzahl zweiter Kraftstofftanks (350)
zu dem zweiten Motor (150), wenn mindestens eines eines Kraftstoffflecks und einer
Verstopfung erfasst wird.
13. Verfahren (700) nach einem der Ansprüche 8 bis 12, wobei:
der Kraftstoff mindestens einer von komprimiertem Erdgas und Flüssigerdgas ist.
1. Système de réfrigération de transport (200) comprenant :
un véhicule (102) présentant un espace de chargement réfrigéré (119) ;
une unité de réfrigération (22) en association fonctionnelle avec l'espace de chargement
réfrigéré, l'unité de réfrigération fournissant de l'air conditionné à l'espace de
chargement réfrigéré ;
un premier moteur (26) configuré pour alimenter l'unité de réfrigération ;
caractérisé par :
une pluralité de premiers réservoirs de carburant (330) en communication fluidique
avec le premier moteur, la pluralité de premiers réservoirs de carburant étant configurée
pour fournir du carburant au premier moteur, dans lequel chacun de la pluralité de
premiers réservoirs de carburant inclut une vanne d'arrêt (450) et un capteur de pression
(470) configuré pour détecter un niveau de pression à l'intérieur de chacun des premiers
réservoirs de carburant ; et
un ou plusieurs dispositifs de commande de moteur en communication électronique avec
chaque capteur de pression et la vanne d'arrêt, les un ou plusieurs dispositifs de
commande de moteur étant configurés pour ajuster au moins une des vannes d'arrêt en
réponse à un niveau de pression détecté par au moins un des capteurs de pression.
2. Système de réfrigération de transport (200) selon la revendication 1, comprenant en
outre :
un second moteur (150) configuré pour alimenter le véhicule (102) ; et
une pluralité de seconds réservoirs de carburant (350) en communication fluidique
avec le second moteur, la pluralité de seconds réservoirs de carburant étant configurée
pour fournir du carburant au second moteur, dans lequel chacun de la pluralité de
seconds réservoirs de carburant inclut une vanne d'arrêt (450) et un capteur de pression
(470) configuré pour détecter un niveau de pression à l'intérieur de chacun des seconds
réservoirs de carburant.
3. Système de réfrigération de transport (200) selon la revendication 2, comprenant en
outre :
un point de remplissage unique (310) en communication fluidique avec la pluralité
de premiers réservoirs de carburant (330) et la pluralité de seconds réservoirs de
carburant (350) ;
dans lequel le point de remplissage unique est configuré pour recevoir du carburant.
4. Système de réfrigération de transport (200) selon la revendication 3, dans lequel
:
le point de remplissage unique (310) est configuré pour distribuer le carburant reçu
à la pluralité de premiers réservoirs de carburant (330) et à la pluralité de seconds
réservoirs de carburant (350).
5. Système de réfrigération de transport (200) selon la revendication 1, dans lequel
:
les un ou plusieurs dispositifs de commande de moteur (54) sont configurés pour arrêter
l'écoulement de carburant depuis l'un des premiers réservoirs de carburant (330) vers
le premier moteur (26) lorsqu'au moins l'une d'une fuite de carburant et d'une obstruction
est détectée.
6. Système de réfrigération de transport (200) selon la revendication 2, comprenant en
outre un second dispositif de commande de moteur (152) en communication électronique
avec chaque capteur de pression (470) et la vanne d'arrêt (450) des seconds réservoirs
de carburant (350), le second dispositif de commande de moteur étant configuré pour
ajuster au moins l'une des vannes d'arrêt des seconds réservoirs de carburant en réponse
à un niveau de pression détecté par au moins l'un des capteurs de pression des seconds
réservoirs de carburant, dans lequel :
le dispositif de commande (152) est configuré pour arrêter l'écoulement de carburant
depuis l'un des seconds réservoirs de carburant (350) vers le second moteur (150)
lorsqu'au moins l'une d'une fuite de carburant et d'une obstruction est détectée.
7. Système de réfrigération de transport (200) selon l'une quelconque des revendications
précédentes, dans lequel :
le carburant est au moins un parmi du gaz naturel comprimé et du gaz naturel liquéfié.
8. Procédé (700) de fonctionnement d'un système de réfrigération de transport (200),
le procédé comprenant l'étape consistant à :
alimenter (704) une unité de réfrigération à l'aide d'un premier moteur, l'unité de
réfrigération étant en association fonctionnelle avec un espace de chargement réfrigéré
(119) et fournissant de l'air conditionné à l'espace de chargement réfrigéré ; caractérisé par les étapes consistant à :
stocker (706) du carburant pour le premier moteur (26) dans une pluralité de premiers
réservoirs de carburant (330), la pluralité de premiers réservoirs de carburant étant
en communication fluidique avec le premier moteur, dans lequel chacun de la pluralité
de premiers réservoirs de carburant inclut une vanne d'arrêt (450) et un capteur de
pression (470) configuré pour détecter un niveau de pression dans chacun des premiers
réservoirs de carburant ;
détecter (708) le niveau de pression dans chacun de la pluralité de premiers réservoirs
de carburant ; et
ajuster (716) l'une des vannes d'arrêt de carburant en réponse au niveau de pression.
9. Procédé (700) selon la revendication 8, dans lequel avant l'ajustement, le procédé
comprend en outre les étapes consistant à :
alimenter (710) un véhicule (102) à l'aide d'un second moteur (150), le véhicule étant
connecté à l'espace de chargement réfrigéré (119) ;
stocker (712) du carburant pour le second moteur dans une pluralité de seconds réservoirs
de carburant (350), la pluralité de seconds réservoirs de carburant étant en communication
fluidique avec le second moteur, dans lequel chacun de la pluralité de seconds réservoirs
de carburant inclut une vanne d'arrêt (450) et un capteur de pression (470) configuré
pour détecter un niveau de pression à l'intérieur de chacun des seconds réservoirs
de carburant ; et
détecter (714) le niveau de pression dans chacun de la pluralité de seconds réservoirs
de carburant.
10. Procédé (700) selon la revendication 9, comprenant en outre l'étape consistant à :
remplir la pluralité de premiers réservoirs de carburant (330) et la pluralité de
seconds réservoirs de carburant (350) via un point de remplissage unique (310), le
point de remplissage unique étant en communication fluidique avec la pluralité de
premiers réservoirs de carburant et la pluralité de seconds réservoirs de carburant.
11. Procédé (700) selon la revendication 8, comprenant en outre les étapes consistant
à :
détecter, à l'aide d'un dispositif de commande (54), au moins l'une d'une fuite de
carburant et d'une obstruction ; et
arrêter un écoulement de carburant depuis l'un de la pluralité de premiers réservoirs
de carburant (330) vers le premier moteur (26) lorsqu'au moins l'une de la fuite de
carburant et de l'obstruction est détectée.
12. Procédé (700) selon la revendication 9, comprenant en outre les étapes consistant
à :
détecter, à l'aide d'un dispositif de commande (152), au moins l'une d'une fuite de
carburant et d'une obstruction ; et
arrêter un écoulement de carburant depuis l'un de la pluralité de seconds réservoirs
de carburant (350) vers le second moteur (150) lorsqu'au moins l'une de la fuite de
carburant et de l'obstruction est détectée.
13. Procédé (700) selon l'une quelconque des revendications 8 à 12, dans lequel :
le carburant est au moins un parmi du gaz naturel comprimé et du gaz naturel liquéfié.