TECHNICAL FIELD
[0001] The present embodiments relate to a method of enrichment and/or dilution of magnetic
molecular entities such as ions and molecules in a liquid, to an apparatus for enrichment
of and for dilution of magnetic molecular entities and for a microfluidic device that
may be used for separating magnetic molecular entities.
BACKGROUND
[0002] The difference in the magnitude of magnetic moments of different fractions in a fluid
can be used to separate the different fractions. For example, under the influence
of the magnetic field gradient in an inhomogeneous magnetic field, paramagnetic and
ferromagnetic particles move into the direction of higher field strength and diamagnetic
particles move into the direction of lower field strength.
[0005] Document
US 2011 / 0 117 577 A1 describes a microfluidic system for trapping and detecting biological entities in
a sample. The microfluidic device includes a microfluidic channel extending between
an inlet and an outlet. Circulating tumor cells (CTCs), which are labeled or coated
with magnetic elements, are magnetically isolated and trapped in a portion of the
microfluidic channel formed in a magnetic trapping region. A magnet in a first position
generates the magnetic field for trapping the CTCs in the magnetic trapping region.
In a second position, the magnet releases the CTCs for cell concentration and detection.
In the magnetic trapping region the microfluidic channel includes a spiral shaped
part with a first portion winding inwardly in a first rotation direction and with
a second portion winding outwardly in a second rotation direction.
[0006] An object of the present embodiments is providing a method and an apparatus facilitating
separation of magnetic molecular entities like molecules, ions and atoms in a cost-efficient
way.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The object is achieved with subject-matter of the independent claims. The dependent
claims relate to further embodiments.
[0008] The accompanying drawings are included to provide a further understanding of the
embodiments and are incorporated in and constitute a part of this specification. The
drawings illustrate the embodiments of the microfluidic device, a separation apparatus
and a method of enriching/diluting magnetic particles and together with the description
serve to explain principles of the embodiments. Further embodiments are described
in the following detailed description and the claims.
FIGS. 1A-1C show two horizontal and a vertical cross-sectional view of a microfluidic
device with a fluid channel including a planar spiral portion and a ferromagnetic
auxiliary structure formed in a plane parallel to the planar spiral section.
FIGS. 2A-2B show details of schematic vertical cross-sectional views of microfluidic
devices arranged in an external magnetic field according to embodiments.
FIG. 3A is a diagram showing the magnetic field in and in a vicinity of the fluid
channel of the microfluidic device of
FIG.2A in a plane orthogonal to the flow direction for discussing effects of the embodiments.
FIG. 3B is a diagram showing the magnetic field in and in a vicinity of the fluid
channel of the microfluidic device of FIG.2B in a plane orthogonal to the flow direction
for discussing effects of the embodiments.
FIG. 4 is a diagram showing the magnetic field strength along a vertical diameter
of the fluid channels of FIG. 2A and FIG. 2B as a function of a distance to the auxiliary
structure for discussing effects of the embodiments.
FIGS. 5A-5C show schematic vertical cross-sectional views of microfluidic devices
with auxiliary structures according to other embodiments.
FIGS. 6A-6B show a schematic plan view and a schematic cross-sectional view of another
microfluidic device according to an embodiment with the auxiliary structure including
a spiral part with windings laterally interleaved with windings of a planar spiral
portion of a fluid channel.
FIGS. 7A-7C show a plan view and two cross-sectional views of a microfluidic device
according to a further embodiment.
FIG. 8 is a schematic block diagram of a separation apparatus according to a further
embodiment.
DETAILED DESCRIPTION
[0009] In the following detailed description, reference is made to the accompanying drawings,
which form a part hereof and in which are shown by way of illustrations specific embodiments
in which the embodiments may be practiced.
[0010] The drawings are not scaled and are for illustrative purposes only. Corresponding
elements are designated by the same reference signs in the different drawings if not
stated otherwise.
[0011] The terms "having", "containing", "including", "comprising" and the like are open
and indicate the presence of stated structures, elements or features but do not preclude
the presence of additional elements or features. The articles "a", "an" and "the"
include both the plural and the singular unless the context clearly indicates otherwise.
[0012] The term "on" is not to be construed as meaning only "directly on". Rather, if a
first element is positioned "on" a second element, a third element may be positioned
between the first and second elements.
[0013] A molecular entity is any constitutionally or isotopically distinct atom, molecule,
ion, radical, complex, etc., identifiable as a separately distinguishable entity.
[0014] According to the invention a microfluidic device includes a substrate and a ferromagnetic
auxiliary structure. The substrate may be or may include a thin plate with two parallel
main surfaces, wherein the plate may include or consist of silicon, glass, LTCC (low-temperature
cofired ceramics), or polymers, e.g., PDMS (polydimethylsiloxane), TPE (thermoset
polyester or thermoplastic polymers. The substrate may be based on a one-piece plate
or may be formed by stacking and bonding two or more plate-like parts.
[0015] The substrate includes a fluid channel that extends from an inlet opening to a channel
branch, wherein at the channel branch the fluid channel branches into two outlet channels
forming a Y-shape with the fluid channel.
[0016] The fluid channel includes a planar spiral portion that winds at continuously increasing
distance around a centre point. In other words, a flow axis of a process liquid, which
enters the fluid channel through the inlet opening and which flows through the fluid
channel, winds around the centre point of the spiral portion in a horizontal plane.
The horizontal plane may be parallel to at least one main surface of the substrate.
The inlet opening may be closer to a centre of the spiral portion than the channel
branch such that the process liquid may flow outwardly into the direction of lower
curvature of the spiral portion.
[0017] The cross-sectional area of the spiral portion orthogonal to the flow axis may be
uniform or may deviate from a mean cross-sectional area by not more than 10% of the
mean cross-sectional area. The cross-sectional area may be rectangular with rounded
corners or oval, wherein a longer axis of the cross-sectional area may be orthogonal
or parallel to the horizontal plane. The cross-sectional area of the fluid channel
is such that a flow of a process liquid containing magnetic molecular entities is
predominantly laminar. In other words, the total flow through the fluid channel includes
a plurality of partial flows that mix at most to a negligible degree.
[0018] The microfluidic device further includes a ferromagnetic auxiliary structure that
is formed in a plane parallel to the planar spiral portion. A distance between the
spiral portion and the auxiliary structure may be at most 2mm, at most 1mm or at most
0.6mm. For example, the auxiliary structure may be in direct contact with the fluid
channel and may form a portion of the inner surface of the fluid channel.
[0019] The ferromagnetic auxiliary structure may laterally extend across at least a main
portion of the outline of the spiral portion, or across the complete outline of the
spiral portion, wherein the outline of the spiral portion is the area within the outer
edge of the outermost winding.
[0020] Ferromagnetic materials show a permanent magnetic moment in the absence of an external
magnetic field. The auxiliary structure may include an elementary ferromagnetic material
such as cobalt (Co), iron (Fe) and nickel (Ni), may contain or consist of a Heusler
alloy or another ferromagnetic compound.
[0021] A process liquid containing magnetic molecular entities may be fed through the inlet
opening into the fluid channel and flows outwardly into direction of the channel branch.
The magnetic molecular entities may include, e.g. magnetic molecules, atoms and/or
ions of rare earth elements, e.g., metals form the lanthanides group such as holmium(III)
ions and ferrous metals.
[0022] With the microfluidic device arranged in an external magnetic field, the ferromagnetic
auxiliary structure locally distorts the external magnetic field in close vicinity
to the fluid channel. The resulting field distortion is a positive gradient which
exerts a force on the magnetic molecular entities in the process liquid flowing through
the fluid channel. In the fluid channel, the comparatively strong magnetic field gradient
is oriented perpendicular to the fluid flow axis along at least 80% or along the complete
spiral portion.
[0023] With the auxiliary structure locally distorting the external magnetic field, the
field gradient in the fluid channel may be comparatively strong even if the externally
applied magnetic field is highly uniform. For example, a change of the magnetic field
strength along a vertical extension of the fluid channel may be at least 30%, e.g.,
at least 50% of the field strength of the external magnetic field. Within the fluid
channel, in particular, within the planar spiral portion paramagnetic molecules, ions,
and/or atoms move into direction of the higher magnetic field strength, whereas diamagnetic
ions move into direction of the lower magnetic field strength.
[0024] The strongly laminar flow along the flow axis effects that after a magnetic ion has
moved along the magnetic field gradient, the ion does not or only to a negligible
degree move in the opposite direction as a result of turbulences. In other words,
co-flowing portions of the total flow through the fluid channel do not mix. The microfluidic
device is further designed such that the effect of magnetic separation is maximized
despite the persisting effect of molecular diffusion in the directions orthogonal
and parallel to the flow.
[0025] Paramagnetic ions enrich in a partial flow in the half of the fluid channel oriented
to the ferromagnetic auxiliary structure and dilute in a partial flow in the half
of the fluid channel averted from the ferromagnetic auxiliary structure. Diamagnetic
ions enrich in the partial flow in the half of the fluid channel averted from the
ferromagnetic auxiliary structure and dilute in a partial flow in the half of the
fluid channel oriented to the ferromagnetic auxiliary structure.
[0026] The outlet channels are arranged such that one of the outlet channels collects a
partial flow enriched with molecular entities attracted by the stronger magnetic field
and/or diluted from molecular entities attracted by the weaker magnetic field and
such that the other one of the outlet channels collects a partial flow diluted from
molecular entities attracted by the stronger magnetic field and/or enriched with molecular
entities attracted by the weaker magnetic field.
[0027] The spiral portion of the fluid channel provides a comparatively long fluid channel
in a given area and uses an external magnetic field with high area efficiency. The
spiral portion facilitates a highly efficient application of the microfluidic device
in combination with an electromagnet or permanent magnet whose size is relatively
small. Other than meandering fluid channels, the spiral portion lacks of sharp bends
that may induce some turbulence in the fluid channel, wherein the turbulence may re-mix
to some degree previously enriched and/or diluted partial flows of the process liquid.
The spiral portion is designed such that in conjunction with a proper flow rate re-mixing
by curvature-induced vortices is avoided over a maximum length.
[0028] The flow axis in the planar spiral portion may be formed with equally and uniformly
spaced spiral windings, wherein, starting from the spiral centre and after one full
turn of the spiral, along each complete spiral winding a distance between neighbouring
spiral windings remains constant or at least to a high degree constant with deviations
of at most 10%, 5%, or 1% from a mean distance between neighbouring windings. For
example, the planar spiral portion may be or may be approximated to a high degree
by an Archimedean spiral, wherein the spiral of the fluid flow axis can be described
in a polar coordinate system by equation (1).:

wherein r and θ are the polar coordinates, r=0 defines the location of the spiral
centre, a and b are real numbers. A spiral with uniform distance between all neighbouring
windings, e.g., an Archimedean spiral may provide high area efficiency at uniform
distortion of the magnetic field along the flow axis.
[0029] A distance between the outlet channels may continuously increase with increasing
distance to the channel branch, wherein partial flows can be separated from each other
with high efficiency.
[0030] The auxiliary structure may be arranged such that the direction of increasing magnetic
field is parallel to the planar spiral portion. Then, beginning from the channel branch,
the distance between the outlet channels may increase along the horizontal direction
and the outlet channels may be formed in the plane of the planar spiral portion. Alternatively,
the auxiliary structure may be arranged such that the direction of increasing magnetic
field is orthogonal to the planar spiral portion. Then, beginning from the channel
branch, the distance between the outlet channels increases along the vertical direction
and the outlet channels may be formed in a plane orthogonal to the planar spiral portion.
[0031] The outlet channels may include straight channel portions that directly adjoin the
channel branch, wherein an angle between neighbouring outlet channels is in a range
from 20 degree to 40 degree, e.g., about 30 degree to effectively separate two partial
flows. The channel branch 270 has the shape of the letter Y.
[0032] The distance between the planar spiral portion and the auxiliary structure may be
at most 2 mm, for example, at most 1 mm or at most 0.6 mm such that the field distortion
caused by the auxiliary structure generates a comparatively strong magnetic field
gradient within the fluid channel. A stronger magnetic field gradient in the fluid
channel increases the efficiency of magnetic separation.
[0033] The auxiliary structure may be formed in a direction vertical to the spiral portion,
in other words "above" or "below" the spiral portion. In particular, the auxiliary
structure is completely formed "above" or "below" the spiral portion. An auxiliary
structure formed above or below the spiral portion facilitates a small distance between
neighbouring windings of the spiral portion such that the total length of the spiral
portion in a given substrate area can be increased. In addition, the auxiliary structure
may be provided in a cost-efficient way, by bonding or adhering the auxiliary structure
on one of the main surfaces of the substrate.
[0034] Alternatively, a portion of or the complete auxiliary structure may be formed in
the plane of the spiral portion. For example, the auxiliary structure may include
a planar spiral part with the windings of the spiral part interleaved with the windings
of the spiral portion of the fluid channel.
[0035] For example, the auxiliary structure may be a flat plate attached, e.g., bonded to
a planar main surface of the substrate.
[0036] The auxiliary structure may include a planar spiral part, wherein a radius of the
planar spiral part of the auxiliary structure and a radius of the planar spiral portion
of the fluid channel show the same angle dependency. In other words, the same mathematic
equation with the same coefficients describes the flow axis of the fluid channel and
the curved longitudinal axis of spiral part of the auxiliary structure.
[0037] The auxiliary structure may exclusively include the spiral part or may further include
a main body, wherein the spiral part is formed or mounted on a flat surface of the
main body. The spiral part of the auxiliary structure may be formed directly above
or below the spiral portion of the fluid channel, wherein the spiral part may increase
the magnetic field in the fluid channel at least along the complete spiral portion
in an efficient way.
[0038] A radius of curvature of the spiral part pointing to the fluid channel may be equal
to or smaller than the radius of curvature of the spiral portion at the side pointing
to the auxiliary structure.
[0039] The spiral part may be a continuous structure with uniform cross-sectional area along
the curved longitudinal axis of the spiral part. The continuous spiral part may be
formed in a cost-efficient way, for example, by bending a wire or by moulding and
may provide a uniform magnetic field gradient along the complete length of the spiral
portion of the fluid channel. In case of an auxiliary structure formed by bending
a wire, the diameter of the wire may be equal to or smaller than a diameter of the
fluid channel.
[0040] Alternatively, the spiral part may include a plurality of protrusions arranged along
a spiral line.
[0041] A groove may extend from one of the main surfaces of the substrate into the substrate.
The groove may include a planar spiral section parallel to the spiral portion of the
fluid channel. At least a portion of the auxiliary structure may be arranged in the
groove. The groove may be formed in the same way as the fluid channel, e.g., by etching,
moulding or milling. The groove facilitates a simply alignment of the spiral part
of the auxiliary structure and the spiral portion of the fluid channel and facilitates
a small distance between auxiliary structure and fluid channel of less than 2mm, e.g.
less than 1mm with only low adverse impact on the mechanical stability of the substrate.
[0042] According to an embodiment the groove may expose the fluid channel and the auxiliary
structure may form a part of the inner surface of the fluid channel.
[0043] The substrate may include one single groove with a spiral section in one of the main
surfaces or may include grooves on both main surfaces of the substrate.
[0044] A cross-sectional area of the fluid channel orthogonal to the fluid flow axis may
be a circle.
[0045] Alternatively, the cross-sectional area may be rectangular with rounded corners or
may be oval, wherein the greater one of two orthogonal extensions of the cross-sectional
area may be parallel or orthogonal to the planar spiral portion.
[0046] A diameter of a circular cross-sectional area of the fluid channel may be in a range
from 100 µm to 1 mm. For diameters below 100 µm, a significant fall of pressure may
occur along the flow direction for a process liquid that includes an aqueous solution
containing ions of rare earth elements and that passes the fluid channel at a flow
rate of 3ml/h. For diameters greater than 1 mm, at the same flow velocity the flow
may get more turbulent. Turbulences remix previously enriched and diluted partial
flows and deteriorate magnetic separation efficiency.
[0047] In fluid channels with noncircular cross-sectional area, the cross-sectional area
may be in a range from π × 2500 µm
2 to π × 0.25 mm
2, wherein an aqueous solution containing magnetic ions may pass through the fluid
channel at high rate, highly laminar flow and at high magnetic separation efficiency.
[0048] According to another embodiment, a magnetic separation apparatus for separating magnetic
molecular entities may include a magnetic field unit that is capable of generating
a magnetic field in a field space, e.g., an electromagnet or a permanent magnet. The
magnetic separation apparatus further includes a microfluidic device with a fluid
channel including a planar spiral portion and with a ferromagnetic auxiliary structure
formed in a plane parallel to the planar spiral portion at a distance of at most 2
mm. The auxiliary structure locally distorts the comparatively uniform magnetic field
in the field space such that even in a comparatively small field space with small
lateral dimensions a strong magnetic field gradient can be generated that is effective
across a comparatively long fluid channel.
[0049] The area efficient microfluidic device facilitates cost-efficient cascading for higher
yield and cost-efficient parallelizing for higher throughput.
[0050] A method of separating magnetic ions may include arranging a microfluidic device
as described above in a field space of a magnetic field unit. A process liquid, e.g.
an aqueous solution containing ions of rare earth elements, is fed into the inlet
opening of the microfluidic device. At least two different partial flows of the aqueous
solution can be separated from the process liquid through two or more outlet openings,
wherein in at least one partial flow at least one magnetic molecular entity is enriched
and in the other the magnetic molecular entity is diluted.
[0051] FIGS. 1A shows a vertical cross-sectional view and FIGS. 1B-1C show parallel horizontal
cross-sectional views of a microfluidic device 500 with a substrate 100 with two parallel
main surfaces 101, 102 at opposite sides. In the substrate 100, a fluid channel 250
extends from an inlet opening 210 to a channel branch 270, where the fluid channel
250 branches into two outlet channels 281, 282 that end at outlet openings 291, 292.
Apart from the inlet opening 210 and the outlet openings 291, 292 at the end of the
outlet channels 281, 282, the fluid channel 250 is spaced from both main surfaces
101, 102 and may be completely closed.
[0052] The inlet opening 210 may be formed close to the centre of a first main surface 101
at the front side of the microfluidic device 500. A first outlet opening 291 may be
formed in a peripheral portion of the first main surface 101. A second outlet opening
292 may be formed directly opposite to the first outlet opening 291 in the opposite
second main surface 102.
[0053] The fluid channel 250 includes a planar spiral portion 255 that may directly adjoin
the inlet opening 210. A straight portion 258 may connect the spiral portion 255 and
the two outlet channels 281, 282. A curved longitudinal axis of the spiral portion
255 forms or approximates to a high degree an Archimedean spiral, wherein a distance
between neighbouring windings is in a range of 0.5 to 5 mm. A cross-sectional area
of the fluid channel 250 orthogonal to the curved longitudinal axis may be a circle
with a diameter of at most 1mm, e.g., at most 0.6mm.
[0054] A groove 150 is formed in the second main surface 102. Alternatively, the groove
150 may be formed in the first main surface 101 or in both the first and the second
main surface 101, 102 grooves 150 may be formed.
[0055] The groove 150 may include a planar spiral section 155. The spiral section centre
point 151 and the spiral portion centre point 251 of are on the same vertical axis.
The radius r2 of the planar spiral section 155 of the groove 150 and a radius r1 of
a planar spiral portion 255 of the fluid channel 250 have equal angle dependency.
In other words, both planar spirals are defined by the same equation. For example,
in terms of polar coordinates related to the centre points 151, 251, both spirals
may be defined by
r =
a +
b · θ, wherein the coefficients a and b are the same for both spirals.
[0056] A ferromagnetic auxiliary structure 300 includes a spiral part 355 formed in the
groove 150. The auxiliary structure 300 may be formed in a lower portion of the groove
150, may fill the groove 150 completely, or may extend beyond the groove 150.
[0057] FIGS. 2A-2B show cross-sections of a portion of a microfluidic device 500 with four
windings of the spiral portion 255. The cross-sectional area of the spiral portion
255 orthogonal to the flow direction may be a circle with a diameter d0 in a range
from 100µm to 2mm, for example, about 1mm.
[0058] A centre-to-centre distance d2 between neighbouring windings of the spiral portion
255 may be in a range from 2 mm to 4 mm. A groove 150 extends from a second main surface
102 into the substrate 100. The groove 150 forms a planar spiral with the same angular
relationship of the radius as the spiral portion 255 and with the same centre point
such that the groove 150 is vertically aligned to the spiral portion 155. In other
words, a vertical projection of a spiral section 155 of the groove and of the spiral
portion 255 of the fluid channel 250 into the same plane may fully overlap.
[0059] In FIG. 2A the microfluidic device 500 is positioned in an external magnetic field
B with a magnetic field vector orthogonal to the spiral plane.
[0060] In FIG. 2B the microfluidic device 500 is positioned in an external magnetic field
B with a magnetic field vector parallel to the spiral plane.
[0061] FIG. 3A shows lines of equal magnetic field strength in an area close to the auxiliary
structure 300 and in the adjoining fluid channel 250 in case the magnetic field vector
is parallel to the spiral plane as depicted in FIG. 2A.
[0062] FIG. 3B shows lines of equal magnetic field strength in an area close to the auxiliary
structure 300 and in the adjoining fluid channel 250 in case the magnetic field vector
is orthogonal to the spiral plane as depicted in FIG. 2A.
[0063] In FIG. 4 line 501 shows the magnetic field strength along the vertical diameter
of the fluid channel 255 of FIG. 3A and line 502 shows the magnetic field strength
along the vertical diameter of the fluid channel 255 of FIG. 3B as a function of a
distance x to the auxiliary structure 330. The external magnetic field is a uniform
magnetic field with a magnetic field strength of 0.5 T. The minimum distance between
the fluid channel and the auxiliary structure is 0.6mm.
[0064] For the orthogonal magnetic field, the highest magnetic field strength and the highest
magnetic field strength gradient occur at the side of the fluid channel oriented to
the auxiliary structure. For the parallel magnetic field, the lowest magnetic field
strength and the highest magnetic field strength gradient occur at the side of the
fluid channel oriented to the auxiliary structure.
[0065] In both cases, the magnetic field strength in the fluid channel asymptotically approximates
the magnetic field strength of the external magnetic field at the side averted from
the auxiliary structure and in both cases a significant magnet field gradient can
be observed in the complete cross-sectional area of the fluid channel such that magnetic
separation occurs in the complete fluid channel.
[0066] The separating force effective on magnetic molecular entities is a function of the
vector product of magnetic induction (magnetic flux density) B and the gradient grad
(B) of the magnetic induction B. As indicated by lines 501, 502, in case the magnetic
field vector is orthogonal to the spiral plane, the effective magnetic induction B
in the fluid channel 250 is greater than in case the magnetic field vector is parallel
to the spiral plane and consequently the arrangement as illustrated in FIG. 2A may
show higher separation efficiency than the arrangement in FIG. 2B.
[0067] In FIG. 5A the auxiliary structure 350 is a flat plate that may be formed or bonded
onto at least that main surface 101, 102 of the substrate 100 that shows the smaller
distance to the spiral portion 255 of the fluid channel 250.
[0068] In FIG. 5B the auxiliary structure 350 includes a main body 352 and protrusions 353
extending from the main body 352 into the direction of the substrate 100. The protrusions
353 may be laterally separated pillars or cones formed along a spiral line aligned
to the spiral portion 255. Alignment fittings 359 of the auxiliary structure 359 and
corresponding alignment grooves 160 in the main surface 101, 102 may facilitate the
alignment between the protrusions 353 of the auxiliary structure 350 and the spiral
portion 255 of the fluid channel 250.
[0069] In FIG. 5C the auxiliary structure 350 includes a spiral part 355 formed on at least
one of the first and second main surfaces 101, 102 of the substrate 100, wherein a
distance between auxiliary structure 350 and the spiral portion 255 of the fluid channel
250 is less than 2 mm, for example less than 1mm or at most 0.6 mm. One or more alignment
grooves and one or more alignment fittings of the auxiliary structure may facilitate
sufficient alignment between the spiral part 355 and the spiral portion 255.
[0070] FIGS. 6A-6B show a microfluidic device 500 with the auxiliary structure 350 including
a spiral part 355 that is formed in a groove 150, wherein a spiral section 155 of
the groove 150 is formed between the windings of the spiral portion 255 of the fluid
channel 250. In particular, the windings of the spiral section 155 may be in the centre
between two neighbouring windings of the spiral portion 255. The magnetic field distortion
induced by the auxiliary structure 350 effects a decrease of the magnetic field along
a horizontal direction parallel to the spiral plane. The outlet channels 280 may be
formed in the plane of the fluid channel 250 and may end in vertical channel openings
290. The outlet channels 280 may be straight, the branch 270 have the shape of the
letter Y, and an angle α between the two outlet channels 280 may be about 30°.
[0071] FIGS. 7A-7C show a further microfluidic device 500 in greater detail. The microfluidic
device 500 may include fittings 370. Each fitting 370 is formed on one of the main
surfaces 101, 102 of the substrate 100. The fittings 370 may allow the connection
of the inlet opening 210 and/or the outlet openings 291, 292 to a microfluidic pump
or to the outlet opening of another microfluidic device of the same or similar type.
The fittings 370 facilitate the integration of the microfluidic device 500 in a microfluidic
system that cascades a plurality of the microfluidic devices 500.
[0072] The spiral portion 255 as well as the spiral part 355 may be described by variable
t in equations (2) and (3):

t=0 describes the centre point of the spiral. The spirals may be defined in a range
for t from -1.8640688 to 18*π. Equations (2) and (3) give the values for X(t) and
Y(t) in meters.
[0073] The microfluidic device 500 may be based on a one-piece substrate 100 formed, for
example, by 3D printing or may be a two-piece device, wherein the upper half and the
lower half of the fluid channel 250 are formed in the surfaces of two separated plates
which are then bonded together such that two half channels complete each other to
the fluid channel 250. Alternatively or in addition, a portion of the substrate including
the outlet channels 281, 282 may be formed in the same way as two-piece part and then
attached to the portion with the fluid channel 250. For further details, reference
is made to the description of the previous FIGS.
[0074] FIG. 8 shows a magnetic separation apparatus 900 for separating magnetic molecular
entities such as ions, atoms, and molecules. A magnetic field unit 400 generates a
magnetic field in a field space 450. The magnetic field in the field space 450 may
be highly uniform. A microfluidic device 500 with a fluid channel, an auxiliary structure
and two outlet openings as described above is arranged in the field space 450.
[0075] The diameter of the fluid channel may be 1mm. A pump may drive an aqueous solution
containing a 0.1M concentration of holmium (III) ions through the fluid channel at
a flow rate of 3ml/h. With a magnetic field strength of 0.5T in the field space 450,
a significant enrichment of holmium (III) ions can be observed in an output flow through
one of the outlet openings and a significant dilution of holmium (III) ions can be
observed in an output flow through the other outlet opening.
1. A microfluidic device (500), comprising:
a substrate (100) comprising a fluid channel (250) extending from an inlet opening
(210) to a channel branch (270), wherein the fluid channel (250) comprises a planar
spiral portion (255), wherein at the channel branch (270) the fluid channel (250)
branches in two outlet channels (280), and wherein the channel branch (270) has the
shape of the letter Y; and
a ferromagnetic auxiliary structure (300) formed in a plane parallel to the planar
spiral portion (255).
2. The microfluidic device according to the preceding claim, wherein
a distance between neighbouring windings of the planar spiral portion (255) deviates
by not more than 5% from a mean distance between the neighbouring windings.
3. The microfluidic device according to any of the preceding claims, wherein
with increasing distance to the channel branch (270) a distance between the outlet
channels (280) continuously increases with increasing distance to the channel branch
(270).
4. The microfluidic device according the preceding claim, wherein
the outlet channels (280) comprise straight channel portions directly adjoining the
channel branch (270), and wherein an angle between neighbouring outlet channels (280)
is in a range from 20 degree to 40 degree.
5. The microfluidic device according to any of the preceding claims, wherein
a distance (d1) between the planar spiral portion (255) and the auxiliary structure
(300) is at most 1 mm.
6. The microfluidic device according to any of the preceding claims, wherein
the planar spiral portion (255) winds around a centre point in a horizontal plane
in one rotation direction, wherein the auxiliary structure (300) is arranged in a
direction vertical to the planar spiral portion (255), and wherein the two outlet
channels (280) are formed in a plane orthogonal to or in a plane of the planar spiral
portion (255).
7. The microfluidic device according to any of the preceding claims, wherein
the auxiliary structure (300) comprises a planar spiral part (355) and a radius (r2)
of the spiral part (355) of the auxiliary structure (300) and a radius (r1) of the
planar spiral portion (255) of the fluid channel (250) have equal angle dependency.
8. The microfluidic device according to the preceding claim, wherein
the spiral part (355) is a continuous structure with uniform cross-sectional area
along a curved longitudinal axis of the spiral part (355).
9. The microfluidic device according to any of the preceding claims, wherein
the substrate (100) comprises a groove (150) formed in a main surface (101, 102) of
the substrate (100), the groove (150) comprises a planar spiral section (155) parallel
to the spiral portion (255), and wherein at least a portion of the auxiliary structure
(300) is formed in the groove (150).
10. The microfluidic device according to any of the preceding claims, wherein
the planar spiral portion (255) has a circular cross-sectional area orthogonal to
a fluid flow axis, and wherein the planar spiral portion (255) is described by r = a + b · θ, with r, θ being polar coordinates and a, b being real numbers.
11. The microfluidic device according to the preceding claim, wherein
a diameter of the cross-sectional area of the planar spiral portion (255) is in a
range from 100 µm to 1 mm.
12. A magnetic separation apparatus for separating magnetic molecular entities, the magnetic
separation apparatus comprising:
a magnetic field unit (400) capable of generating a magnetic field (405) in a field
space (450); and
a microfluidic device (500) according to any of the preceding claims in the field
space (450),
wherein the auxiliary structure (300) is configured to locally distort the magnetic
field (405) and
wherein the outlet channels (280) are arranged such that one of the outlet channels
(280) is configured to collect a partial flow enriched with molecular entities attracted
by a stronger magnetic field and/or diluted from molecular entities attracted by a
weaker magnetic field and such that the other one of the outlet channels (280) is
configured to collect a partial flow diluted from molecular entities attracted by
the stronger magnetic field and/or enriched with molecular entities attracted by the
weaker magnetic field.
13. A method of separating magnetic ions, the method comprising:
arranging a microfluidic device (500) as claimed in any of claims 1 to 11 in a field
space (450) of a magnetic field unit (400); and
feeding an aqueous solution (550) comprising magnetic ions (555) into the inlet opening
(210) of the microfluidic device (500).
1. Mikrofluidische Vorrichtung (500), aufweisend:
ein Substrat (100), das einen Fluidkanal (250) aufweist, der sich von einer Einlassöffnung
(210) zu einer Kanalverzweigung (270) erstreckt, wobei der Fluidkanal (250) einen
planaren Spiralbereich (255) aufweist, wobei an der Kanalverzweigung (270) sich der
Fluidkanal (250) in zwei Auslasskanäle (280) verzweigt und wobei die Kanalverzweigung
(270) die Form des Buchstabens Y hat; und
eine ferromagnetische Hilfsstruktur (300), die in einer zum planaren Spiralbereich
(255) parallelen Ebene ausgebildet ist.
2. Mikrofluidische Vorrichtung nach dem vorhergehenden Anspruch, wobei
ein Abstand zwischen benachbarten Windungen des planaren Spiralbereichs (255) um nicht
mehr als 5% von einem mittleren Abstand zwischen den benachbarten Windungen abweicht.
3. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
mit zunehmendem Abstand zur Kanalverzweigung (270) ein Abstand zwischen den Auslasskanälen
(280) mit zunehmendem Abstand zur Kanalverzeigung (270) kontinuierlich zunimmt.
4. Mikrofluidische Vorrichtung nach dem vorhergehenden Anspruch, wobei
die Auslasskanäle (280) gerade Kanalbereiche aufweisen, die direkt an die Kanalverzweigung
(270) grenzen, und wobei ein Winkel zwischen benachbarten Auslasskanälen (280) in
einem Bereich von 20 Grad bis 40 Grad liegt.
5. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
ein Abstand (d1) zwischen dem planaren Spiralbereich (255) und der Hilfsstruktur (300)
höchstens 1 mm beträgt.
6. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
der sich planare Spiralbereich (255) um einen Mittelpunkt in einer horizontalen Ebene
in einer Drehrichtung windet, wobei die Hilfsstruktur (300) in einer Richtung vertikal
zum planaren Spiralbereich (255) angeordnet ist und wobei die zwei Auslasskanäle (280)
in einer zum planaren Spiralbereich (255) orthogonalen Ebene oder in dessen Ebene
ausgebildet sind.
7. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Hilfsstruktur (300) ein planares Spiralteil (355) aufweist und ein Radius (r2)
des Spiralteils (355) der Hilfsstruktur (300) und ein Radius (r1) des planaren Spiralbereichs
(255) des Fluidkanals (250) die gleiche Winkelabhängigkeit aufweisen.
8. Mikrofluidische Vorrichtung nach dem vorhergehenden Anspruch, wobei
das Spiralteil (355) eine durchgehende Struktur mit einer gleichmäßigen Querschnittsfläche
entlang einer gekrümmten longitudinalen Achse des Spiralteils (355) ist.
9. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
das Substrat (100) eine Vertiefung (150) aufweist, die in einer Hauptoberfläche (101,
102) des Substrats (100) ausgebildet ist, die Vertiefung (150) eine planare Spiralsektion
(155) aufweist, die zum Spiralbereich (255) parallel ist, und wobei zumindest ein
Bereich der Hilfsstruktur (300) in der Vertiefung (150) ausgebildet ist.
10. Mikrofluidische Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
der planare Spiralbereich (255) eine zu einer Fluidstromachse orthogonale kreisförmige
Querschnittsfläche aufweist und der planare Spiralbereich (255) durch r = a + b · θ beschrieben wird, wobei r, θ Polarkoordinaten sind und a, b reelle Zahlen sind.
11. Mikrofluidische Vorrichtung nach dem vorhergehenden Anspruch, wobei
ein Durchmesser der Querschnittsfläche des planaren Spiralbereichs (255) in einem
Bereich von 100 µm bis 1 mm liegt.
12. Magnetische Trenneinrichtung zum Trennen magnetischer molekularer Einheiten, wobei
die magnetische Trenneinrichtung aufweist:
eine Magnetfeldeinheit (400), die imstande ist, ein Magnetfeld (405) in einem Feldraum
(450) zu erzeugen; und
eine mikrofluidische Vorrichtung (500) nach einem der vorhergehenden Ansprüche im
Feldraum (450),
wobei die Hilfsstruktur (300) dafür konfiguriert ist, das Magnetfeld (405) lokal zu
verzerren, und
wobei die Auslasskanäle (280) so angeordnet sind, dass einer der Auslasskanäle (280)
dafür konfiguriert ist, einen Partialstrom zu sammeln, der mit molekularen Einheiten
angereichert ist, die von einem stärkeren Magnetfeld angezogen werden, und/oder an
molekularen Einheiten verdünnt ist, die von einem schwächeren Magnetfeld angezogen
werden, und dass der andere der Auslasskanäle (280) dafür konfiguriert ist, einen
Partialstrom zu sammeln, der an molekularen Einheiten verdünnt ist, die vom stärkeren
Magnetfeld angezogenen werden, und/oder mit molekularen Einheiten angereichert ist,
die vom schwächeren Magnetfeld angezogen werden.
13. Verfahren zum Trennen magnetischer Ionen, wobei das Verfahren aufweist:
ein Anordnen einer mikrofluidischen Vorrichtung (500) nach einem der Ansprüche 1 bis
11 in einem Feldraum (450) einer Magnetfeldeinheit (400); und
ein Einspeisen einer magnetische Ionen (555) aufweisenden wässrigen Lösung (550) in
die Einlassöffnung (210) der mikrofluidischen Vorrichtung (500).
1. Dispositif microfluidique (500), comprenant :
un substrat (100) comprenant un canal de fluide (250) s'étendant d'une ouverture d'entrée
(210) à une branche de canal (270), dans lequel le canal de fluide (250) comprend
une portion de spirale plane (255), dans lequel en la branche de canal (270), le canal
de fluide (250) se ramifie en deux canaux de sortie (280), et dans lequel la branche
de canal (270) présente la forme de la lettre Y ; et
une structure auxiliaire ferromagnétique (300) formée dans un plan parallèle à la
portion de spirale plane (255).
2. Dispositif microfluidique selon la revendication précédente, dans lequel
une distance entre des enroulements voisins de la portion de spirale plane (255) ne
s'écarte pas de plus de 5 % d'une distance moyenne entre les enroulements voisins.
3. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
à une distance croissante de la branche de canal (270), une distance entre les canaux
de sortie (280) augmente en continu avec une distance croissante de la branche de
canal (270).
4. Dispositif microfluidique selon la revendication précédente, dans lequel
les canaux de sortie (280) comprennent des portions de canal droites attenantes directement
à la branche de canal (270), et dans lequel un angle entre des canaux de sortie voisins
(280) est dans une plage de 20 degrés à 40 degrés.
5. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
une distance (d1) entre la portion de spirale plane (255) et la structure auxiliaire
(300) s'élève au plus à 1 mm.
6. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
la portion de spirale plane (255) s'enroule autour d'un point central dans un plan
horizontal dans une direction de rotation, dans lequel la structure auxiliaire (300)
est agencée dans une direction verticale à la portion de spirale plane (255), et dans
lequel les deux canaux de sortie (280) sont formés dans un plan orthogonal à la portion
de spirale plane (255) ou dans un plan de celle-ci.
7. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
la structure auxiliaire (300) comprend une partie de spirale plane (355) et un rayon
(r2) de la partie de spirale (355) de la structure auxiliaire (300) et un rayon (r1)
de la portion de spirale plane (255) du canal de fluide (250) présentent une dépendance
angulaire égale.
8. Dispositif microfluidique selon la revendication précédente, dans lequel
la partie de spirale (355) est une structure continue avec une aire de section transversale
uniforme le long d'un axe longitudinal incurvé de la partie de spirale (355).
9. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
le substrat (100) comprend une rainure (150) formée dans une surface principale (101,
102) du substrat (100), la rainure (150) comprend une section de spirale plane (155)
parallèle à la portion de spirale (255), et dans lequel au moins une portion de la
structure auxiliaire (300) est formée dans la rainure (150).
10. Dispositif microfluidique selon l'une des revendications précédentes, dans lequel
la portion de spirale plane (255) présente une aire de section transversale circulaire
orthogonale à un axe d'écoulement de fluide, et dans lequel la portion de spirale
plane (255) est décrite par r = a + b·θ, avec r, θ étant des coordonnées polaires et a, b étant des nombres réels.
11. Dispositif microfluidique selon la revendication précédente, dans lequel
un diamètre de l'aire de section transversale de la portion de spirale plane (255)
est dans une plage de 100 µm à 1 mm.
12. Appareil de séparation magnétique pour la séparation d'entités moléculaires magnétiques,
l'appareil de séparation magnétique comprenant :
une unité de champ magnétique (400) capable de générer un champ magnétique (405) dans
un espace de champ (450) ; et
un dispositif microfluidique (500) selon l'une des revendications précédentes dans
l'espace de champ (450),
dans lequel la structure auxiliaire (300) est configurée pour déformer localement
le champ magnétique (405) et
dans lequel les canaux de sortie (280) sont agencés de sorte qu'un des canaux de sortie
(280) soit configuré pour collecter un écoulement partiel enrichi avec des entités
moléculaires attirées par un champ magnétique plus fort et/ou diluées à partir d'entités
moléculaires attirées par un champ magnétique plus faible et de sorte que l'autre
des canaux de sortie (280) soit configuré pour collecter un écoulement partiel dilué
à partir d'entités moléculaires attirées par le champ magnétique plus fort et/ou enrichies
avec des entités moléculaires attirées par le champ magnétique plus faible.
13. Procédé de séparation d'ions magnétiques, le procédé comprenant :
agencer un dispositif microfluidique (500) selon l'une des revendications 1 à 11 dans
un espace de champ (450) d'une unité de champ magnétique (400) ; et
fournir une solution aqueuse (550) comprenant des ions magnétiques (555) dans l'ouverture
d'entrée (210) du dispositif microfluidique (500).