

EP 3 670 909 A1 (11)

EUROPEAN PATENT APPLICATION (12)

(43) Date of publication:

24.06.2020 Bulletin 2020/26

(21) Application number: 19215224.7

(22) Date of filing: 11.12.2019

(51) Int Cl.: F04B 35/04 (2006.01) F25B 9/00 (2006.01)

F24F 5/00 (2006.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 19.12.2018 CZ 20180720

(71) Applicant: Mirai Intex SagI 6830 Chiasso (CH)

(72) Inventor: Tsyplakov, Vladyslav 1290 Versoix (CH)

(74) Representative: Musil, Dobroslav Zàbrdovicka 11 615 00 Brno (CZ)

(54)**AIR COOLING MACHINE**

(57)The invention relates to an air cooling machine comprising a compressor (1) whose inlet (11) is connected to an air outlet (92) of a cooling chamber (9) via a heat exchanger (3), whereby the compressor (1) outlet is connected to an air inlet (91) of the cooling chamber (9) via a cooler (2), the heat exchanger (3) and a turbodetander (4), the turbodetander (4) being coupled to a motor (5) of the compressor (1). Downstream of the outlet (12) of the compressor (1) is connected a bypass air conduit (61), into which is inserted a bypass valve (6), from which a continuing bypass air conduit (62) terminates downstream of an outlet (42) of the turbodetander (4), whereby a double three-way or block valve (8) is arranged at the air inlet (91) of the cooling chamber (9) and at the air outlet (92) of the cooling chamber (9), and upstream of the air outlet (92) of the cooling chamber (9) a dehumidifier (7) is arranged in the cooling chamber (9).

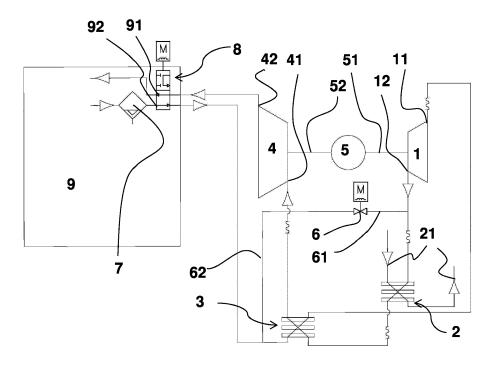


Fig. 2

Technical field

[0001] The invention relates to an air cooling machine comprising a compressor whose inlet is connected to an air outlet of a cooling chamber via a heat exchanger, whereby the compressor outlet is connected to an air inlet of the cooling chamber via a cooler, the heat exchanger and a turbodetander, whereby the turbodetander is coupled to a motor of the compressor.

1

Background art

[0002] Known are closed cycle regenerative gas cooling machines (see I. A. Sakunin, "Cooling machines", Mashinostroenie, 1985, pp. 360-367, Fig. 8.2), which include a compressor, an embedded cooling device, a detander, a heat exchanger, a motor and a regenerator. The gas flows into the compressor at a certain temperature and pressure, it is compressed and consequently its parameters change, the temperature increases. Thereafter, the gas flows to the embedded cooling device where it is cooled by passing water and is conveyed through the regenerator to the detander. Inside the regenerator, heat is removed from the "direct" stream by heating the "return" stream from the heat exchanger. In the detander, the gas expands and its pressure decreases. Then the gas is supplied to the heat exchanger or a cooling chamber, the gas temperature increases and the gas then passes through the regenerator to the compressor. The required temperatures are achieved by selecting the regeneration depth without increasing the pressure ratios in the compressor.

[0003] The disadvantage of this machine is using the embedded cooling device which makes the machine too complex and limits its use when installed in places where there is no water.

[0004] Also known in the background art is a lamella countercurrent heat exchanger and an air cooling machine for containers (patent application JP 2010025438 A, IPC F28D9/02, F25B9/00, published on 04.02.2010). This document also describes an air cooling machine in which the compressor and detander are located on one shaft and the compressed air is cooled by heat exchange with a stream of "processed" air from a cooling chamber. This arrangement is considered to be the most optimal and represents the closest prior art of the air cooling machine according to the present invention.

[0005] The use of air as a cooling agent causes difficulties caused by the formation of ice (icing) at the point of contact with the object to be cooled inside the air cooling machine and in the air conduits. This is due to the water content in air and to its freezing and removal when the temperature drops. Freezing causes a decrease in the operating efficiency of the air cooling machine due to frequent machine maintenance operations and may lead to the machine being withdrawn from service. It

should be emphasized that, firstly, removing ice from the air conduits and the devices of the air cooling machine is not an easy task; second, it is necessary to stop the system during this operation. This means that air cooling machines have significant limitations in terms of maximum continuous operation time.

[0006] The aim of the invention is therefore to reduce or completely eliminate the disadvantages of the background art, particularly to increase the efficiency of an air cooling machine and ensure the least frequent possible interruptions of the machine operation.

Principle of the invention

[0007] The aim of the invention is achieved by an air cooling machine according to the present invention, whose principle consists in that downstream of an outlet of a compressor is connected a bypass air conduit into which is inserted a bypass valve. A bypass air conduit continuing from the bypass valve terminates downstream of an outlet of a turbodetander, whereby a double threeway or block valve is arranged at an air inlet of a cooling chamber and at an air outlet of the cooling chamber, and a dehumidifier is arranged in the cooling chamber upstream of the air outlet of the cooling chamber. This arrangement ensures that during snow and/or ice removal from the dehumidifier, the double three-way or block valve is brought to a position in which the air from the turbodetander returns to the compressor and does not enter the cooling chamber and pass through the dehumidifier. When the air conduits or the heat exchanger freeze, they can be heated and the snow and ice can be melted without stopping the machine - only by interrupting the air supply to the cooling chamber and by returning this air to the compressor upstream of the cooling chamber, and the warm compressed air from the compressor is supplied via the bypass valve upstream of the heat exchanger, while at the same time the warm compressed air from the compressor is supplied via a cooler in which the cooling air or water supply is stopped.

[0008] To prevent heat loss, a double three-way or block valve is arranged in the cooling chamber.

[0009] Greater defrosting efficiency of the air conduits or the heat exchanger is achieved by inserting a bypass valve between the compressor outlet and the air outlet of the cooling chamber. For defrosting the heat exchanger, it is advantageous if the air from the bypass valve is supplied upstream of the exchanger.

Description of the drawings

[0010] The air cooling machine according to the present invention is schematically represented in the enclosed drawings, wherein Fig. 1 shows a diagram with a double three-way valve, Fig. 2 shows a diagram with a block valve in its operating position during cooling and Fig. 3 shows a diagram in a position during cleaning the dehumidifier or during defrosting.

50

Examples of embodiment

[0011] The air cooling machine according to the present invention comprises a compressor 1, which is coupled to an electric motor 5 by a shaft 51, and a turbodetander 4. The turbodetander 4 is coupled to the electric motor 5 by means of a shaft 52, thus constituting one assembly with the compressor 1. The motor 5 is coupled to a well-known unillustrated frequency convertor which is part of the machine control system and serves to regulate the revolutions of the compressor 1, of the motor 5 and of the turbodetander 4. The inlet 11 of the compressor 1 is connected to an air outlet 92 of the cooling chamber 9 via a heat exchanger 3 (recuperator). The outlet 12 of the compressor 1 is via an air cooler 2 and the heat exchanger 3 connected to the inlet 41 of the turbodetander 4, whose outlet 42 is connected to the air inlet 91 of the cooling chamber 9 via a double three-way or block valve 8. In the cooling chamber 9, upstream of the air outlet 92 of the cooling chamber 9, is arranged a dehumidifier 7, which is connected to the inlet 11 of the compressor 1 via the double three-way or block valve 8 and heat exchanger 3. In the embodiment shown, the double three-way or block valve 8 is arranged in the cooling chamber 9, and so the cooling air which enters the cooling chamber 9 is not heated. Downstream of the outlet 12 of the compressor 1, a bypass air conduit 61 is connected to the outlet air conduit, a bypass valve 6 being inserted into the bypass air conduit 61. In the embodiment shown, downstream of the turbodetander 4, the continuing bypass air conduit 62 opens into the air conduit between the air outlet 92 of the cooling chamber 9 and the heat exchanger 3. In an unillustrated embodiment, the continuing bypass air conduit 62 opens into the cooling chamber 9 in the direction of the air flow downstream of the turbodetander 4 upstream of the double three-way or block valve 8, that is, upstream of the air inlet 91 of the cooling chamber 9.

[0012] The dehumidifier $\underline{7}$ is coupled to a snow and ice conveyor (not shown), which is connected via a pressure valve (not shown) to the environment to which it conveys snow and ice and from which air is sucked through the pressure valve in the event of a pressure drop in the cooling chamber $\underline{9}$.

[0013] Through the air cooler $\underline{\mathbf{2}}$ is led a duct $\underline{\mathbf{21}}$ through which cooling air or cooling water passes. The described parts of the machine are coupled to a control system of the machine (not shown). Preferably, the control system is provided with a program for automatic control of the machine.

[0014] Air from the cooling chamber 9 is sucked into the compressor 1, where it is compressed and its temperature is increasing. Upon exiting the compressor 1, compressed air enters the air cooler 2, where it is cooled by passing part of its thermal energy to the cooling air or water which is supplied to the cooler 2 via the duct 21 and passes through the cooler 2. From the cooler 2, the compressed air is led to the heat exchanger 3, where it

is further cooled by heat exchange with an air flow which is discharged from the cooling chamber 9 and passes through the heat exchanger 3. The cooled compressed air is supplied to the turbodetander 4, where it expands and consequently is cooled and transmits, through the turbine it rotates, additional torque to the shaft of the machine motor **5**, thereby reducing the power consumption of the motor 5 required for the operation of the compressor 1. From the turbodetander 4, the cold air is led to the cooling chamber 9, passing through the double threeway or block valve 8. The cooling performance is changed by varying the speed of the compressor 1 by means of a frequency converter. Increasing the speed of the compressor 1 increases the pressure in the system and, consequently, the degree of expansion in the turbodetander 4, which results in a decrease in the temperature downstream of the turbodetander 4. Supplying cooler air to the cooling chamber 9 reduces also the temperature in the cooling chamber 9.

[0015] Air from the cooling chamber 9 is discharged through the dehumidifier 7, in which moisture from air is collected from air in the form of snow and/or ice. In the event that the amount of snow and/or ice in the dehumidifier 7 reaches a preset limit, the double three-way or block valve 8 moves to a position in which the supplied air does not enter the cooling chamber 9, but returns from the valve 8 via the exchanger 3 to the compressor 1, as shown in Fig. 3. In this mode, snow and/or ice is removed from the dehumidifier 7, whereby neither the dehumidifier 7, nor the cooling machine is heated. After removing snow and/or ice from the dehumidifier 7, the double three-way or block valve 8 returns to its operating position and air from the turbodetander 4 is again fed to the cooling chamber 9 and passes through the dehumidifier 7.

[0016] In the case of low temperatures during longterm operation, when air conduits freeze and/or snow and ice (water in a solid state) is deposited in the heat exchanger 3, whether in the part through which the compressed air passes from the compressor 1 or in the part through which air from the cooling chamber 9 passes, it is necessary to prevent complete freezing of the air conduits and/or the heat exchanger 3. For that purpose, the bypass valve 6 opens, the supply of the cooling air or cooling water to the cooler 2 is stopped and the double three-way or block valve 8 moves to a position in which the supplied air does not enter the cooling chamber 9, but returns from the valve 8 through the heat exchanger 3 to the compressor 1, as shown in Fig. 3, whereby, before entering the heat exchanger 3, it is mixed with the warm compressed air which passes through the bypass valve 6. At the same time, the compressed and warm air from the outlet 12 of the compressor 1 which is not cooled in the cooler 2 enters the heat exchanger 3. This results in the heating of the air conduits and/or the heat exchanger 3 and the dissolving of the snow or ice in them. Consequently, air from the cooling chamber 9 can again pass through the air conduits and the heat exchanger 3 after the valve 8 changes its position and the bypass valve 6

40

10

15

20

40

45

closes, whereby the air leaving the compressor 1 is again cooled in the cooler 2. In the above described unillustrated embodiment, the warm compressed air passing through the bypass valve 6 is supplied downstream of the turbodetander 4 upstream of the double three-way or block valve 8, that is, upstream of the air inlet 91 of the cooling chamber 9.

Industrial applicability

[0017] The invention relates to the field of refrigeration technology and can be used for production of cooling units, freezing chambers, rapid cooling systems, air conditioning systems and/or temperature maintenance systems.

List of references

[0018]

1 compressor 11 compressor inlet 12 compressor outlet 2 air cooler 3 25 heat exchanger 4 turbodetander 41 turbodetander inlet 42 turbodetander outlet 5 motor 51 shaft of the compressor 30 shaft of the turbodetander 52 6 bypass valve 61,62 bypass air conduits 7 dehumidifier 8 double three-way or block valve 35 9

cooling chamber

air inlet of the cooling chamber

air outlet of the cooling chamber

Claims

91

92

1. An air cooling machine comprising a compressor (1) whose inlet (11) is connected to an air outlet (92) of a cooling chamber (9) via a heat exchanger (3), whereby the compressor (1) outlet is connected to an air inlet (91) of the cooling chamber (9) via a cooler (2), the heat exchanger (3) and a turbodetander (4), the turbodetander (4) being coupled to a motor (5) of the compressor (1), characterized in that downstream of the outlet (12) of the compressor (1) is connected a bypass air conduit (61) into which is inserted a bypass valve (6) from which a continuing bypass air conduit (62) terminates downstream of an outlet (42) of the turbodetander (4), whereby a double three-way or block valve (8) is arranged at the air inlet (91) of the cooling chamber (9) and at the air outlet (92) of the cooling chamber (9), and

upstream of the air outlet (92) of the cooling chamber (9) a dehumidifier (7) is arranged in the cooling chamber (9).

- 2. The air cooling machine according to claim 1, characterized in that a double three-way or block valve (8) is arranged in the cooling chamber (9).
- The air cooling machine according to claim 1 or 2, characterized in that the continuing bypass air conduit (62) terminates between the air outlet (92) of the cooling chamber (9) and the heat exchanger (3).
- The air cooling machine according to claim 1 or 2, characterized in that the continuing bypass air conduit (62) terminates upstream of the double threeway or block valve (8).

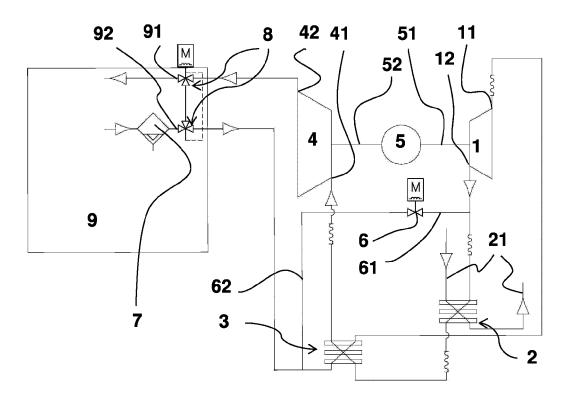


Fig. 1

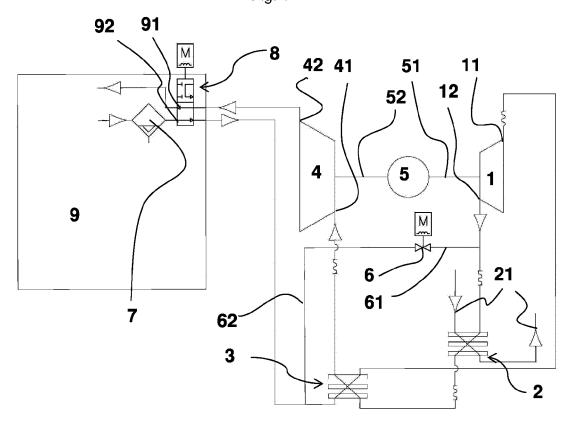


Fig. 2

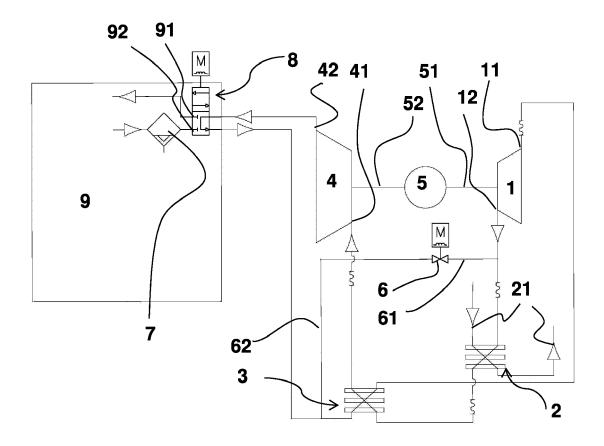


Fig. 3

EUROPEAN SEARCH REPORT

Application Number EP 19 21 5224

5

	Category	Citation of document with in	clication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)			
10	Y	19 July 2012 (2012- * figures 1-4 *	AEKAWA SEISAKUSHO KK) 07-19) - paragraph [0067] *	1-4	INV. F04B35/04 F24F5/00 F25B9/00			
15	Y	EP 1 022 521 A1 (SH 26 July 2000 (2000- * figure 2 * * paragraph [0018] * paragraph [0033]	07-26)	1-4				
20	A	[JP]; INT CT ENVIRO 23 May 2007 (2007-0 * figure 1 *	TSUBISHI HEAVY IND LTD NMENTAL TECH TFR [JP]) 5-23) - paragraph [0045] *	1-4				
25	A	JP 2003 279183 A (N 2 October 2003 (200 * figures 1,2 * * paragraph [0009]		1-4	TECHNICAL FIELDS			
30	A	JP S54 107147 A (K0 22 August 1979 (197 * figure 1 * * paragraph [0002]	9-08-22)	1-4	F25B F24F F04B			
35	A	CO LTD) 21 May 1999 * figure 1 *	JIMA CORP; NHK SPRING (1999-05-21) - paragraph [0036] *	1-4				
40	A	US 4 430 867 A (WAR 14 February 1984 (1 * figure 1 * * column 2, line 54		1-4				
45								
1	L	The present search report has b						
50		Place of search Munich Place of search A March 2020		Ricci, Saverio				
	, C	ATEGORY OF CITED DOCUMENTS	e underlying the invention					
55	Y:par doc A:tecl O:nor	E : earlier patent document, but published on, or X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure B : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons E : member of the same patent family, corresponding document						

EP 3 670 909 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 19 21 5224

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04-03-2020

cite	Patent document ed in search report		Publication date		Patent family member(s)		Publication date
JP	2012137218	Α	19-07-2012	JP JP	5320382 2012137218		23-10-20 19-07-20
EP	1022521	A1	26-07-2000	DE EP JP US WO	69827521 1022521 H11101520 6301922 9917065	A1 A B1	10-11-20 26-07-20 13-04-19 16-10-20 08-04-19
EP	1788323	A1	23-05-2007	EP EP JP US US WO	1788323 2952830 W02006011297 2007101756 2011041526 2006011297	A1 A1 A1 A1	23-05-20 09-12-20 01-05-20 10-05-20 24-02-20 02-02-20
JP	2003279183	Α	02-10-2003	JP JP	3747370 2003279183		22-02-20 02-10-20
JP	S54107147	Α	22-08-1979	JP JP	S5740969 S54107147	Α	31-08-19 22-08-19
JР	H11132582	A	21-05-1999	JP JP	3824757 H11132582	B2	20-09-20 21-05-19
US	4430867	Α	14-02-1984	NONE			

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 670 909 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2010025438 A [0004]

Non-patent literature cited in the description

• I. A. SAKUNIN. Cooling machines. *Mashinostroenie*, 1985, 360-367 [0002]